vc4_plane.c 37.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright (C) 2015 Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/**
 * DOC: VC4 plane module
 *
 * Each DRM plane is a layer of pixels being scanned out by the HVS.
 *
 * At atomic modeset check time, we compute the HVS display element
 * state that would be necessary for displaying the plane (giving us a
 * chance to figure out if a plane configuration is invalid), then at
 * atomic flush time the CRTC will ask us to write our element state
 * into the region of the HVS that it has allocated for us.
 */

21 22 23 24
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_plane_helper.h>
D
Daniel Vetter 已提交
25
#include <drm/drm_atomic_uapi.h>
26

27
#include "uapi/drm/vc4_drm.h"
28 29 30 31 32 33 34 35 36 37
#include "vc4_drv.h"
#include "vc4_regs.h"

static const struct hvs_format {
	u32 drm; /* DRM_FORMAT_* */
	u32 hvs; /* HVS_FORMAT_* */
	u32 pixel_order;
} hvs_formats[] = {
	{
		.drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
38
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
39 40 41
	},
	{
		.drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
42
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
43
	},
44 45
	{
		.drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
46
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
47 48 49
	},
	{
		.drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
50
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
51
	},
52 53
	{
		.drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
54
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
55 56 57
	},
	{
		.drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
58
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
59 60 61
	},
	{
		.drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
62
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
63 64 65
	},
	{
		.drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
66
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
67
	},
68 69
	{
		.drm = DRM_FORMAT_RGB888, .hvs = HVS_PIXEL_FORMAT_RGB888,
70
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
71 72 73
	},
	{
		.drm = DRM_FORMAT_BGR888, .hvs = HVS_PIXEL_FORMAT_RGB888,
74
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
75
	},
76 77 78
	{
		.drm = DRM_FORMAT_YUV422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
79
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
80 81 82 83
	},
	{
		.drm = DRM_FORMAT_YVU422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
84
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
85 86 87 88
	},
	{
		.drm = DRM_FORMAT_YUV420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
89
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
90 91 92 93
	},
	{
		.drm = DRM_FORMAT_YVU420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
94
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
95 96 97 98
	},
	{
		.drm = DRM_FORMAT_NV12,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
99
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
100
	},
101 102 103 104 105
	{
		.drm = DRM_FORMAT_NV21,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
106 107 108
	{
		.drm = DRM_FORMAT_NV16,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
109
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
110
	},
111 112 113 114 115
	{
		.drm = DRM_FORMAT_NV61,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
116 117 118 119 120 121 122 123 124 125 126 127 128 129
};

static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
{
	unsigned i;

	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
		if (hvs_formats[i].drm == drm_format)
			return &hvs_formats[i];
	}

	return NULL;
}

130 131
static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
{
132 133 134
	if (dst == src)
		return VC4_SCALING_NONE;
	if (3 * dst >= 2 * src)
135 136
		return VC4_SCALING_PPF;
	else
137
		return VC4_SCALING_TPZ;
138 139
}

140 141 142 143 144
static bool plane_enabled(struct drm_plane_state *state)
{
	return state->fb && state->crtc;
}

145
static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
146 147 148 149 150 151 152 153 154 155
{
	struct vc4_plane_state *vc4_state;

	if (WARN_ON(!plane->state))
		return NULL;

	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

156
	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
157
	vc4_state->dlist_initialized = 0;
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);

	if (vc4_state->dlist) {
		vc4_state->dlist = kmemdup(vc4_state->dlist,
					   vc4_state->dlist_count * 4,
					   GFP_KERNEL);
		if (!vc4_state->dlist) {
			kfree(vc4_state);
			return NULL;
		}
		vc4_state->dlist_size = vc4_state->dlist_count;
	}

	return &vc4_state->base;
}

175 176
static void vc4_plane_destroy_state(struct drm_plane *plane,
				    struct drm_plane_state *state)
177
{
178
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
179 180
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

181 182 183 184 185 186 187 188
	if (vc4_state->lbm.allocated) {
		unsigned long irqflags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
		drm_mm_remove_node(&vc4_state->lbm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
	}

189
	kfree(vc4_state->dlist);
190
	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
191 192 193 194
	kfree(state);
}

/* Called during init to allocate the plane's atomic state. */
195
static void vc4_plane_reset(struct drm_plane *plane)
196 197 198 199 200 201 202 203 204
{
	struct vc4_plane_state *vc4_state;

	WARN_ON(plane->state);

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return;

205
	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
206 207 208 209 210 211
}

static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
{
	if (vc4_state->dlist_count == vc4_state->dlist_size) {
		u32 new_size = max(4u, vc4_state->dlist_count * 2);
212
		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
213 214 215 216 217 218 219 220 221 222 223 224 225

		if (!new_dlist)
			return;
		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);

		kfree(vc4_state->dlist);
		vc4_state->dlist = new_dlist;
		vc4_state->dlist_size = new_size;
	}

	vc4_state->dlist[vc4_state->dlist_count++] = val;
}

226 227 228 229 230
/* Returns the scl0/scl1 field based on whether the dimensions need to
 * be up/down/non-scaled.
 *
 * This is a replication of a table from the spec.
 */
231
static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
232 233 234
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

235
	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_PPF_V_PPF;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_PPF_V_NONE;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_NONE_V_PPF;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
	default:
	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
		/* The unity case is independently handled by
		 * SCALER_CTL0_UNITY.
		 */
		return 0;
	}
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
{
	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
	struct drm_crtc_state *crtc_state;

	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
						   pstate->crtc);

	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
	if (!left && !right && !top && !bottom)
		return 0;

	if (left + right >= crtc_state->mode.hdisplay ||
	    top + bottom >= crtc_state->mode.vdisplay)
		return -EINVAL;

	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
					       adjhdisplay,
					       crtc_state->mode.hdisplay);
	vc4_pstate->crtc_x += left;
	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;

	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
					       adjvdisplay,
					       crtc_state->mode.vdisplay);
	vc4_pstate->crtc_y += top;
	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;

	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
					       adjhdisplay,
					       crtc_state->mode.hdisplay);
	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
					       adjvdisplay,
					       crtc_state->mode.vdisplay);

	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
		return -EINVAL;

	return 0;
}

307
static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
308 309 310
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
311
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
312
	u32 subpixel_src_mask = (1 << 16) - 1;
V
Ville Syrjälä 已提交
313
	u32 format = fb->format->format;
314
	int num_planes = fb->format->num_planes;
315 316 317 318 319 320 321 322 323 324 325
	struct drm_crtc_state *crtc_state;
	u32 h_subsample, v_subsample;
	int i, ret;

	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
							state->crtc);
	if (!crtc_state) {
		DRM_DEBUG_KMS("Invalid crtc state\n");
		return -EINVAL;
	}

326 327
	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
						  INT_MAX, true, true);
328 329 330 331 332
	if (ret)
		return ret;

	h_subsample = drm_format_horz_chroma_subsampling(format);
	v_subsample = drm_format_vert_chroma_subsampling(format);
333

334 335
	for (i = 0; i < num_planes; i++)
		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
336

337
	/* We don't support subpixel source positioning for scaling. */
338 339 340 341
	if ((state->src.x1 & subpixel_src_mask) ||
	    (state->src.x2 & subpixel_src_mask) ||
	    (state->src.y1 & subpixel_src_mask) ||
	    (state->src.y2 & subpixel_src_mask)) {
342 343 344
		return -EINVAL;
	}

345 346 347 348
	vc4_state->src_x = state->src.x1 >> 16;
	vc4_state->src_y = state->src.y1 >> 16;
	vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
	vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
349

350 351 352 353
	vc4_state->crtc_x = state->dst.x1;
	vc4_state->crtc_y = state->dst.y1;
	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
354

355 356 357 358
	ret = vc4_plane_margins_adj(state);
	if (ret)
		return ret;

359 360 361 362 363
	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
						       vc4_state->crtc_w);
	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
						       vc4_state->crtc_h);

364 365 366
	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);

367 368 369 370 371 372 373 374 375 376 377 378 379
	if (num_planes > 1) {
		vc4_state->is_yuv = true;

		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;

		vc4_state->x_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_w[1],
					     vc4_state->crtc_w);
		vc4_state->y_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_h[1],
					     vc4_state->crtc_h);

380 381 382 383 384
		/* YUV conversion requires that horizontal scaling be enabled
		 * on the UV plane even if vc4_get_scaling_mode() returned
		 * VC4_SCALING_NONE (which can happen when the down-scaling
		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
		 * case.
385
		 */
386 387
		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
388
	} else {
389
		vc4_state->is_yuv = false;
390 391
		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
392 393
	}

394 395 396
	return 0;
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale, recip;

	scale = (1 << 16) * src / dst;

	/* The specs note that while the reciprocal would be defined
	 * as (1<<32)/scale, ~0 is close enough.
	 */
	recip = ~0 / scale;

	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
}

static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale = (1 << 16) * src / dst;

	vc4_dlist_write(vc4_state,
			SCALER_PPF_AGC |
			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
}

static u32 vc4_lbm_size(struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	/* This is the worst case number.  One of the two sizes will
	 * be used depending on the scaling configuration.
	 */
431
	u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
432 433
	u32 lbm;

434 435 436 437 438
	/* LBM is not needed when there's no vertical scaling. */
	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
		return 0;

439
	if (!vc4_state->is_yuv) {
440
		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
441 442 443 444 445 446 447 448 449 450
			lbm = pix_per_line * 8;
		else {
			/* In special cases, this multiplier might be 12. */
			lbm = pix_per_line * 16;
		}
	} else {
		/* There are cases for this going down to a multiplier
		 * of 2, but according to the firmware source, the
		 * table in the docs is somewhat wrong.
		 */
451 452 453 454 455 456 457 458
		lbm = pix_per_line * 16;
	}

	lbm = roundup(lbm, 32);

	return lbm;
}

459 460
static void vc4_write_scaling_parameters(struct drm_plane_state *state,
					 int channel)
461 462 463 464
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

	/* Ch0 H-PPF Word 0: Scaling Parameters */
465
	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
466
		vc4_write_ppf(vc4_state,
467
			      vc4_state->src_w[channel], vc4_state->crtc_w);
468 469 470
	}

	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
471
	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
472
		vc4_write_ppf(vc4_state,
473
			      vc4_state->src_h[channel], vc4_state->crtc_h);
474 475 476 477
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}

	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
478
	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
479
		vc4_write_tpz(vc4_state,
480
			      vc4_state->src_w[channel], vc4_state->crtc_w);
481 482 483
	}

	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
484
	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
485
		vc4_write_tpz(vc4_state,
486
			      vc4_state->src_h[channel], vc4_state->crtc_h);
487 488 489
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}
}
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
static void vc4_plane_calc_load(struct drm_plane_state *state)
{
	unsigned int hvs_load_shift, vrefresh, i;
	struct drm_framebuffer *fb = state->fb;
	struct vc4_plane_state *vc4_state;
	struct drm_crtc_state *crtc_state;
	unsigned int vscale_factor;

	vc4_state = to_vc4_plane_state(state);
	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
							state->crtc);
	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);

	/* The HVS is able to process 2 pixels/cycle when scaling the source,
	 * 4 pixels/cycle otherwise.
	 * Alpha blending step seems to be pipelined and it's always operating
	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
	 * scaler block.
	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
	 */
	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
		hvs_load_shift = 1;
	else
		hvs_load_shift = 2;

	vc4_state->membus_load = 0;
	vc4_state->hvs_load = 0;
	for (i = 0; i < fb->format->num_planes; i++) {
		/* Even if the bandwidth/plane required for a single frame is
		 *
		 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
		 *
		 * when downscaling, we have to read more pixels per line in
		 * the time frame reserved for a single line, so the bandwidth
		 * demand can be punctually higher. To account for that, we
		 * calculate the down-scaling factor and multiply the plane
		 * load by this number. We're likely over-estimating the read
		 * demand, but that's better than under-estimating it.
		 */
		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
					     vc4_state->crtc_h);
		vc4_state->membus_load += vc4_state->src_w[i] *
					  vc4_state->src_h[i] * vscale_factor *
					  fb->format->cpp[i];
		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
	}

	vc4_state->hvs_load *= vrefresh;
	vc4_state->hvs_load >>= hvs_load_shift;
	vc4_state->membus_load *= vrefresh;
}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	unsigned long irqflags;
	u32 lbm_size;

	lbm_size = vc4_lbm_size(state);
	if (!lbm_size)
		return 0;

	if (WARN_ON(!vc4_state->lbm_offset))
		return -EINVAL;

	/* Allocate the LBM memory that the HVS will use for temporary
	 * storage due to our scaling/format conversion.
	 */
	if (!vc4_state->lbm.allocated) {
		int ret;

		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
						 &vc4_state->lbm,
						 lbm_size, 32, 0, 0);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);

		if (ret)
			return ret;
	} else {
		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
	}

	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;

	return 0;
}

583 584 585 586 587 588
/* Writes out a full display list for an active plane to the plane's
 * private dlist state.
 */
static int vc4_plane_mode_set(struct drm_plane *plane,
			      struct drm_plane_state *state)
{
589
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
590 591 592
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
	u32 ctl0_offset = vc4_state->dlist_count;
V
Ville Syrjälä 已提交
593
	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
594
	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
595
	int num_planes = drm_format_num_planes(format->drm);
596
	u32 h_subsample, v_subsample;
597
	bool mix_plane_alpha;
598
	bool covers_screen;
599
	u32 scl0, scl1, pitch0;
600
	u32 tiling, src_y;
601
	u32 hvs_format = format->hvs;
602
	unsigned int rotation;
603
	int ret, i;
604

605 606 607
	if (vc4_state->dlist_initialized)
		return 0;

608
	ret = vc4_plane_setup_clipping_and_scaling(state);
609 610 611
	if (ret)
		return ret;

612 613 614 615 616 617 618
	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
	 * and 4:4:4, scl1 should be set to scl0 so both channels of
	 * the scaler do the same thing.  For YUV, the Y plane needs
	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
	 * the scl fields here.
	 */
	if (num_planes == 1) {
619
		scl0 = vc4_get_scl_field(state, 0);
620 621 622 623 624
		scl1 = scl0;
	} else {
		scl0 = vc4_get_scl_field(state, 1);
		scl1 = vc4_get_scl_field(state, 0);
	}
625

626 627 628
	h_subsample = drm_format_horz_chroma_subsampling(format->drm);
	v_subsample = drm_format_vert_chroma_subsampling(format->drm);

629 630 631 632 633 634 635 636 637 638
	rotation = drm_rotation_simplify(state->rotation,
					 DRM_MODE_ROTATE_0 |
					 DRM_MODE_REFLECT_X |
					 DRM_MODE_REFLECT_Y);

	/* We must point to the last line when Y reflection is enabled. */
	src_y = vc4_state->src_y;
	if (rotation & DRM_MODE_REFLECT_Y)
		src_y += vc4_state->src_h[0] - 1;

639
	switch (base_format_mod) {
640 641 642
	case DRM_FORMAT_MOD_LINEAR:
		tiling = SCALER_CTL0_TILING_LINEAR;
		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
643 644 645 646 647

		/* Adjust the base pointer to the first pixel to be scanned
		 * out.
		 */
		for (i = 0; i < num_planes; i++) {
648
			vc4_state->offsets[i] += src_y /
649 650
						 (i ? v_subsample : 1) *
						 fb->pitches[i];
651

652 653 654 655
			vc4_state->offsets[i] += vc4_state->src_x /
						 (i ? h_subsample : 1) *
						 fb->format->cpp[i];
		}
656

657
		break;
658 659 660

	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
		u32 tile_size_shift = 12; /* T tiles are 4kb */
661 662
		/* Whole-tile offsets, mostly for setting the pitch. */
		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
663
		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
664 665 666 667 668 669 670 671 672 673
		u32 tile_w_mask = (1 << tile_w_shift) - 1;
		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
		 * the height (in pixels) of a 4k tile.
		 */
		u32 tile_h_mask = (2 << tile_h_shift) - 1;
		/* For T-tiled, the FB pitch is "how many bytes from one row to
		 * the next, such that
		 *
		 *	pitch * tile_h == tile_size * tiles_per_row
		 */
674
		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
675 676
		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
		u32 tiles_r = tiles_w - tiles_l;
677
		u32 tiles_t = src_y >> tile_h_shift;
678 679 680 681
		/* Intra-tile offsets, which modify the base address (the
		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
		 * base address).
		 */
682 683 684
		u32 tile_y = (src_y >> 4) & 1;
		u32 subtile_y = (src_y >> 2) & 3;
		u32 utile_y = src_y & 3;
685
		u32 x_off = vc4_state->src_x & tile_w_mask;
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
		u32 y_off = src_y & tile_h_mask;

		/* When Y reflection is requested we must set the
		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
		 * after the initial one should be fetched in descending order,
		 * which makes sense since we start from the last line and go
		 * backward.
		 * Don't know why we need y_off = max_y_off - y_off, but it's
		 * definitely required (I guess it's also related to the "going
		 * backward" situation).
		 */
		if (rotation & DRM_MODE_REFLECT_Y) {
			y_off = tile_h_mask - y_off;
			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
		} else {
			pitch0 = 0;
		}
703

704
		tiling = SCALER_CTL0_TILING_256B_OR_T;
705 706 707 708
		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
709 710 711 712 713 714 715 716 717 718 719 720 721 722
		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
		vc4_state->offsets[0] += subtile_y << 8;
		vc4_state->offsets[0] += utile_y << 4;

		/* Rows of tiles alternate left-to-right and right-to-left. */
		if (tiles_t & 1) {
			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
						 tile_size_shift;
			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
		} else {
			vc4_state->offsets[0] += tiles_l << tile_size_shift;
			vc4_state->offsets[0] += tile_y << 10;
		}
723 724

		break;
725 726
	}

727 728 729 730
	case DRM_FORMAT_MOD_BROADCOM_SAND64:
	case DRM_FORMAT_MOD_BROADCOM_SAND128:
	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
731
		u32 tile_w, tile, x_off, pix_per_tile;
732

733
		hvs_format = HVS_PIXEL_FORMAT_H264;
734 735 736 737

		switch (base_format_mod) {
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
			tiling = SCALER_CTL0_TILING_64B;
738
			tile_w = 64;
739 740 741
			break;
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
			tiling = SCALER_CTL0_TILING_128B;
742
			tile_w = 128;
743 744 745
			break;
		case DRM_FORMAT_MOD_BROADCOM_SAND256:
			tiling = SCALER_CTL0_TILING_256B_OR_T;
746
			tile_w = 256;
747 748 749 750 751 752 753 754 755 756
			break;
		default:
			break;
		}

		if (param > SCALER_TILE_HEIGHT_MASK) {
			DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
			return -EINVAL;
		}

757 758 759 760 761 762 763 764 765
		pix_per_tile = tile_w / fb->format->cpp[0];
		tile = vc4_state->src_x / pix_per_tile;
		x_off = vc4_state->src_x % pix_per_tile;

		/* Adjust the base pointer to the first pixel to be scanned
		 * out.
		 */
		for (i = 0; i < num_planes; i++) {
			vc4_state->offsets[i] += param * tile_w * tile;
766
			vc4_state->offsets[i] += src_y /
767 768 769 770 771 772 773
						 (i ? v_subsample : 1) *
						 tile_w;
			vc4_state->offsets[i] += x_off /
						 (i ? h_subsample : 1) *
						 fb->format->cpp[i];
		}

774 775 776 777
		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
		break;
	}

778 779 780 781 782 783
	default:
		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
			      (long long)fb->modifier);
		return -EINVAL;
	}

784
	/* Control word */
785 786
	vc4_dlist_write(vc4_state,
			SCALER_CTL0_VALID |
787 788
			(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
			(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
789
			VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
790
			(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
791
			(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
792
			VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
793
			(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
794 795
			VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
			VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
796 797

	/* Position Word 0: Image Positions and Alpha Value */
798
	vc4_state->pos0_offset = vc4_state->dlist_count;
799
	vc4_dlist_write(vc4_state,
800
			VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
801 802
			VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
			VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
803

804 805 806 807 808 809 810 811
	/* Position Word 1: Scaled Image Dimensions. */
	if (!vc4_state->is_unity) {
		vc4_dlist_write(vc4_state,
				VC4_SET_FIELD(vc4_state->crtc_w,
					      SCALER_POS1_SCL_WIDTH) |
				VC4_SET_FIELD(vc4_state->crtc_h,
					      SCALER_POS1_SCL_HEIGHT));
	}
812

813 814 815 816 817 818 819
	/* Don't waste cycles mixing with plane alpha if the set alpha
	 * is opaque or there is no per-pixel alpha information.
	 * In any case we use the alpha property value as the fixed alpha.
	 */
	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
			  fb->format->has_alpha;

820
	/* Position Word 2: Source Image Size, Alpha */
821
	vc4_state->pos2_offset = vc4_state->dlist_count;
822
	vc4_dlist_write(vc4_state,
823
			VC4_SET_FIELD(fb->format->has_alpha ?
824 825 826
				      SCALER_POS2_ALPHA_MODE_PIPELINE :
				      SCALER_POS2_ALPHA_MODE_FIXED,
				      SCALER_POS2_ALPHA_MODE) |
827
			(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
828
			(fb->format->has_alpha ? SCALER_POS2_ALPHA_PREMULT : 0) |
829 830
			VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
			VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
831 832 833 834

	/* Position Word 3: Context.  Written by the HVS. */
	vc4_dlist_write(vc4_state, 0xc0c0c0c0);

835 836 837 838 839

	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
	 *
	 * The pointers may be any byte address.
	 */
840
	vc4_state->ptr0_offset = vc4_state->dlist_count;
841 842
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
843

844 845 846
	/* Pointer Context Word 0/1/2: Written by the HVS */
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
847

848 849 850 851 852
	/* Pitch word 0 */
	vc4_dlist_write(vc4_state, pitch0);

	/* Pitch word 1/2 */
	for (i = 1; i < num_planes; i++) {
853 854 855 856 857 858 859
		if (hvs_format != HVS_PIXEL_FORMAT_H264) {
			vc4_dlist_write(vc4_state,
					VC4_SET_FIELD(fb->pitches[i],
						      SCALER_SRC_PITCH));
		} else {
			vc4_dlist_write(vc4_state, pitch0);
		}
860 861 862 863 864 865 866 867
	}

	/* Colorspace conversion words */
	if (vc4_state->is_yuv) {
		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
	}
868

869 870
	vc4_state->lbm_offset = 0;

871 872 873 874
	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
875 876 877
		/* Reserve a slot for the LBM Base Address. The real value will
		 * be set when calling vc4_plane_allocate_lbm().
		 */
878
		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
879 880
		    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
			vc4_state->lbm_offset = vc4_state->dlist_count++;
881

882 883 884 885 886 887 888 889
		if (num_planes > 1) {
			/* Emit Cb/Cr as channel 0 and Y as channel
			 * 1. This matches how we set up scl0/scl1
			 * above.
			 */
			vc4_write_scaling_parameters(state, 1);
		}
		vc4_write_scaling_parameters(state, 0);
890 891 892 893

		/* If any PPF setup was done, then all the kernel
		 * pointers get uploaded.
		 */
894 895 896 897
		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
898 899 900 901 902 903 904 905 906 907 908 909 910 911
			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
						   SCALER_PPF_KERNEL_OFFSET);

			/* HPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* HPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
		}
	}

912 913 914
	vc4_state->dlist[ctl0_offset] |=
		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);

915 916 917 918 919
	/* crtc_* are already clipped coordinates. */
	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
			vc4_state->crtc_h == state->crtc->mode.vdisplay;
	/* Background fill might be necessary when the plane has per-pixel
920 921
	 * alpha content or a non-opaque plane alpha and could blend from the
	 * background or does not cover the entire screen.
922
	 */
923 924
	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
925

926 927 928 929 930 931 932
	/* Flag the dlist as initialized to avoid checking it twice in case
	 * the async update check already called vc4_plane_mode_set() and
	 * decided to fallback to sync update because async update was not
	 * possible.
	 */
	vc4_state->dlist_initialized = 1;

933 934
	vc4_plane_calc_load(state);

935 936 937 938 939 940 941 942 943 944 945 946 947 948
	return 0;
}

/* If a modeset involves changing the setup of a plane, the atomic
 * infrastructure will call this to validate a proposed plane setup.
 * However, if a plane isn't getting updated, this (and the
 * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
 * compute the dlist here and have all active plane dlists get updated
 * in the CRTC's flush.
 */
static int vc4_plane_atomic_check(struct drm_plane *plane,
				  struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
949
	int ret;
950 951 952

	vc4_state->dlist_count = 0;

953
	if (!plane_enabled(state))
954
		return 0;
955 956 957 958 959 960

	ret = vc4_plane_mode_set(plane, state);
	if (ret)
		return ret;

	return vc4_plane_allocate_lbm(state);
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
}

static void vc4_plane_atomic_update(struct drm_plane *plane,
				    struct drm_plane_state *old_state)
{
	/* No contents here.  Since we don't know where in the CRTC's
	 * dlist we should be stored, our dlist is uploaded to the
	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
	 * time.
	 */
}

u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	int i;

978 979
	vc4_state->hw_dlist = dlist;

980 981 982 983 984 985 986
	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
	for (i = 0; i < vc4_state->dlist_count; i++)
		writel(vc4_state->dlist[i], &dlist[i]);

	return vc4_state->dlist_count;
}

987
u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
988
{
989 990
	const struct vc4_plane_state *vc4_state =
		container_of(state, typeof(*vc4_state), base);
991 992 993 994

	return vc4_state->dlist_count;
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/* Updates the plane to immediately (well, once the FIFO needs
 * refilling) scan out from at a new framebuffer.
 */
void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
	uint32_t addr;

	/* We're skipping the address adjustment for negative origin,
	 * because this is only called on the primary plane.
	 */
	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
	addr = bo->paddr + fb->offsets[0];

	/* Write the new address into the hardware immediately.  The
	 * scanout will start from this address as soon as the FIFO
	 * needs to refill with pixels.
	 */
1014
	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1015 1016 1017 1018 1019

	/* Also update the CPU-side dlist copy, so that any later
	 * atomic updates that don't do a new modeset on our plane
	 * also use our updated address.
	 */
1020
	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1021 1022
}

1023 1024 1025
static void vc4_plane_atomic_async_update(struct drm_plane *plane,
					  struct drm_plane_state *state)
{
1026
	struct vc4_plane_state *vc4_state, *new_vc4_state;
1027

1028
	drm_atomic_set_fb_for_plane(plane->state, state->fb);
1029 1030
	plane->state->crtc_x = state->crtc_x;
	plane->state->crtc_y = state->crtc_y;
1031 1032
	plane->state->crtc_w = state->crtc_w;
	plane->state->crtc_h = state->crtc_h;
1033 1034
	plane->state->src_x = state->src_x;
	plane->state->src_y = state->src_y;
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	plane->state->src_w = state->src_w;
	plane->state->src_h = state->src_h;
	plane->state->src_h = state->src_h;
	plane->state->alpha = state->alpha;
	plane->state->pixel_blend_mode = state->pixel_blend_mode;
	plane->state->rotation = state->rotation;
	plane->state->zpos = state->zpos;
	plane->state->normalized_zpos = state->normalized_zpos;
	plane->state->color_encoding = state->color_encoding;
	plane->state->color_range = state->color_range;
	plane->state->src = state->src;
	plane->state->dst = state->dst;
	plane->state->visible = state->visible;
1048 1049 1050 1051

	new_vc4_state = to_vc4_plane_state(state);
	vc4_state = to_vc4_plane_state(plane->state);

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	vc4_state->crtc_x = new_vc4_state->crtc_x;
	vc4_state->crtc_y = new_vc4_state->crtc_y;
	vc4_state->crtc_h = new_vc4_state->crtc_h;
	vc4_state->crtc_w = new_vc4_state->crtc_w;
	vc4_state->src_x = new_vc4_state->src_x;
	vc4_state->src_y = new_vc4_state->src_y;
	memcpy(vc4_state->src_w, new_vc4_state->src_w,
	       sizeof(vc4_state->src_w));
	memcpy(vc4_state->src_h, new_vc4_state->src_h,
	       sizeof(vc4_state->src_h));
	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
	       sizeof(vc4_state->x_scaling));
	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
	       sizeof(vc4_state->y_scaling));
	vc4_state->is_unity = new_vc4_state->is_unity;
	vc4_state->is_yuv = new_vc4_state->is_yuv;
	memcpy(vc4_state->offsets, new_vc4_state->offsets,
	       sizeof(vc4_state->offsets));
	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;

1072 1073 1074 1075 1076 1077 1078
	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
	vc4_state->dlist[vc4_state->pos0_offset] =
		new_vc4_state->dlist[vc4_state->pos0_offset];
	vc4_state->dlist[vc4_state->pos2_offset] =
		new_vc4_state->dlist[vc4_state->pos2_offset];
	vc4_state->dlist[vc4_state->ptr0_offset] =
		new_vc4_state->dlist[vc4_state->ptr0_offset];
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	/* Note that we can't just call vc4_plane_write_dlist()
	 * because that would smash the context data that the HVS is
	 * currently using.
	 */
	writel(vc4_state->dlist[vc4_state->pos0_offset],
	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
	writel(vc4_state->dlist[vc4_state->pos2_offset],
	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
	writel(vc4_state->dlist[vc4_state->ptr0_offset],
	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
}

static int vc4_plane_atomic_async_check(struct drm_plane *plane,
					struct drm_plane_state *state)
{
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
	int ret;
	u32 i;

	ret = vc4_plane_mode_set(plane, state);
	if (ret)
		return ret;

	old_vc4_state = to_vc4_plane_state(plane->state);
	new_vc4_state = to_vc4_plane_state(state);
	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
	    vc4_lbm_size(plane->state) != vc4_lbm_size(state))
1110 1111
		return -EINVAL;

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
	 * if anything else has changed, fallback to a sync update.
	 */
	for (i = 0; i < new_vc4_state->dlist_count; i++) {
		if (i == new_vc4_state->pos0_offset ||
		    i == new_vc4_state->pos2_offset ||
		    i == new_vc4_state->ptr0_offset ||
		    (new_vc4_state->lbm_offset &&
		     i == new_vc4_state->lbm_offset))
			continue;

		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
			return -EINVAL;
	}

1127 1128 1129
	return 0;
}

1130 1131 1132 1133 1134
static int vc4_prepare_fb(struct drm_plane *plane,
			  struct drm_plane_state *state)
{
	struct vc4_bo *bo;
	struct dma_fence *fence;
1135
	int ret;
1136

1137
	if (!state->fb)
1138 1139 1140
		return 0;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1141

1142
	fence = reservation_object_get_excl_rcu(bo->base.base.resv);
1143 1144 1145 1146 1147
	drm_atomic_set_fence_for_plane(state, fence);

	if (plane->state->fb == state->fb)
		return 0;

1148 1149 1150 1151
	ret = vc4_bo_inc_usecnt(bo);
	if (ret)
		return ret;

1152 1153 1154
	return 0;
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
static void vc4_cleanup_fb(struct drm_plane *plane,
			   struct drm_plane_state *state)
{
	struct vc4_bo *bo;

	if (plane->state->fb == state->fb || !state->fb)
		return;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
	vc4_bo_dec_usecnt(bo);
}

1167 1168 1169
static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
	.atomic_check = vc4_plane_atomic_check,
	.atomic_update = vc4_plane_atomic_update,
1170
	.prepare_fb = vc4_prepare_fb,
1171
	.cleanup_fb = vc4_cleanup_fb,
1172 1173
	.atomic_async_check = vc4_plane_atomic_async_check,
	.atomic_async_update = vc4_plane_atomic_async_update,
1174 1175 1176 1177 1178 1179 1180
};

static void vc4_plane_destroy(struct drm_plane *plane)
{
	drm_plane_cleanup(plane);
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static bool vc4_format_mod_supported(struct drm_plane *plane,
				     uint32_t format,
				     uint64_t modifier)
{
	/* Support T_TILING for RGB formats only. */
	switch (format) {
	case DRM_FORMAT_XRGB8888:
	case DRM_FORMAT_ARGB8888:
	case DRM_FORMAT_ABGR8888:
	case DRM_FORMAT_XBGR8888:
	case DRM_FORMAT_RGB565:
	case DRM_FORMAT_BGR565:
	case DRM_FORMAT_ARGB1555:
	case DRM_FORMAT_XRGB1555:
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
		switch (fourcc_mod_broadcom_mod(modifier)) {
		case DRM_FORMAT_MOD_LINEAR:
		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
			return true;
		default:
			return false;
		}
	case DRM_FORMAT_NV12:
	case DRM_FORMAT_NV21:
		switch (fourcc_mod_broadcom_mod(modifier)) {
		case DRM_FORMAT_MOD_LINEAR:
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
		case DRM_FORMAT_MOD_BROADCOM_SAND256:
			return true;
		default:
			return false;
		}
1213 1214 1215 1216 1217
	case DRM_FORMAT_YUV422:
	case DRM_FORMAT_YVU422:
	case DRM_FORMAT_YUV420:
	case DRM_FORMAT_YVU420:
	case DRM_FORMAT_NV16:
1218
	case DRM_FORMAT_NV61:
1219 1220 1221 1222 1223
	default:
		return (modifier == DRM_FORMAT_MOD_LINEAR);
	}
}

1224
static const struct drm_plane_funcs vc4_plane_funcs = {
1225
	.update_plane = drm_atomic_helper_update_plane,
1226 1227 1228 1229 1230 1231
	.disable_plane = drm_atomic_helper_disable_plane,
	.destroy = vc4_plane_destroy,
	.set_property = NULL,
	.reset = vc4_plane_reset,
	.atomic_duplicate_state = vc4_plane_duplicate_state,
	.atomic_destroy_state = vc4_plane_destroy_state,
1232
	.format_mod_supported = vc4_format_mod_supported,
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
};

struct drm_plane *vc4_plane_init(struct drm_device *dev,
				 enum drm_plane_type type)
{
	struct drm_plane *plane = NULL;
	struct vc4_plane *vc4_plane;
	u32 formats[ARRAY_SIZE(hvs_formats)];
	int ret = 0;
	unsigned i;
1243 1244
	static const uint64_t modifiers[] = {
		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1245 1246 1247
		DRM_FORMAT_MOD_BROADCOM_SAND128,
		DRM_FORMAT_MOD_BROADCOM_SAND64,
		DRM_FORMAT_MOD_BROADCOM_SAND256,
1248 1249 1250
		DRM_FORMAT_MOD_LINEAR,
		DRM_FORMAT_MOD_INVALID
	};
1251 1252 1253

	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
				 GFP_KERNEL);
1254 1255
	if (!vc4_plane)
		return ERR_PTR(-ENOMEM);
1256

1257 1258 1259
	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
		formats[i] = hvs_formats[i].drm;

1260
	plane = &vc4_plane->base;
1261
	ret = drm_universal_plane_init(dev, plane, 0,
1262
				       &vc4_plane_funcs,
1263
				       formats, ARRAY_SIZE(formats),
1264
				       modifiers, type, NULL);
1265 1266 1267

	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);

1268
	drm_plane_create_alpha_property(plane);
1269 1270 1271 1272 1273
	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
					   DRM_MODE_ROTATE_0 |
					   DRM_MODE_ROTATE_180 |
					   DRM_MODE_REFLECT_X |
					   DRM_MODE_REFLECT_Y);
1274

1275 1276
	return plane;
}