irq-gic-v3.c 64.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 5 6
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

7 8
#define pr_fmt(fmt)	"GICv3: " fmt

9
#include <linux/acpi.h>
10
#include <linux/cpu.h>
11
#include <linux/cpu_pm.h>
12 13
#include <linux/delay.h>
#include <linux/interrupt.h>
14
#include <linux/irqdomain.h>
15
#include <linux/kstrtox.h>
16 17 18 19
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/percpu.h>
20
#include <linux/refcount.h>
21 22
#include <linux/slab.h>

23
#include <linux/irqchip.h>
24
#include <linux/irqchip/arm-gic-common.h>
25
#include <linux/irqchip/arm-gic-v3.h>
26
#include <linux/irqchip/irq-partition-percpu.h>
27 28 29
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/arm-smccc.h>
30 31 32 33

#include <asm/cputype.h>
#include <asm/exception.h>
#include <asm/smp_plat.h>
34
#include <asm/virt.h>
35 36 37

#include "irq-gic-common.h"

38 39
#define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)

40
#define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
41
#define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
42
#define FLAGS_WORKAROUND_MTK_GICR_SAVE		(1ULL << 2)
43

44 45
#define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)

46 47 48
struct redist_region {
	void __iomem		*redist_base;
	phys_addr_t		phys_base;
49
	bool			single_redist;
50 51
};

52
struct gic_chip_data {
53
	struct fwnode_handle	*fwnode;
54
	phys_addr_t		dist_phys_base;
55
	void __iomem		*dist_base;
56 57
	struct redist_region	*redist_regions;
	struct rdists		rdists;
58 59
	struct irq_domain	*domain;
	u64			redist_stride;
60
	u32			nr_redist_regions;
61
	u64			flags;
62
	bool			has_rss;
63
	unsigned int		ppi_nr;
64
	struct partition_desc	**ppi_descs;
65 66
};

67 68 69 70
#define T241_CHIPS_MAX		4
static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);

71
static struct gic_chip_data gic_data __read_mostly;
72
static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
73

74
#define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
75
#define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
76 77
#define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)

78 79 80 81 82 83 84 85 86 87
/*
 * The behaviours of RPR and PMR registers differ depending on the value of
 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
 * distributor and redistributors depends on whether security is enabled in the
 * GIC.
 *
 * When security is enabled, non-secure priority values from the (re)distributor
 * are presented to the GIC CPUIF as follow:
 *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
 *
88
 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
89
 * EL1 are subject to a similar operation thus matching the priorities presented
90
 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
91
 * these values are unchanged by the GIC.
92 93 94 95 96 97 98 99 100
 *
 * see GICv3/GICv4 Architecture Specification (IHI0069D):
 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
 *   priorities.
 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
 *   interrupt.
 */
static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);

101 102 103
DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
EXPORT_SYMBOL(gic_nonsecure_priorities);

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * When the Non-secure world has access to group 0 interrupts (as a
 * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
 * return the Distributor's view of the interrupt priority.
 *
 * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
 * written by software is moved to the Non-secure range by the Distributor.
 *
 * If both are true (which is when gic_nonsecure_priorities gets enabled),
 * we need to shift down the priority programmed by software to match it
 * against the value returned by ICC_RPR_EL1.
 */
#define GICD_INT_RPR_PRI(priority)					\
	({								\
		u32 __priority = (priority);				\
		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
			__priority = 0x80 | (__priority >> 1);		\
									\
		__priority;						\
	})

125
/* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
126
static refcount_t *ppi_nmi_refs;
127

128
static struct gic_kvm_info gic_v3_kvm_info __initdata;
129
static DEFINE_PER_CPU(bool, has_rss);
130

131
#define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
132 133
#define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
134 135 136 137 138
#define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)

/* Our default, arbitrary priority value. Linux only uses one anyway. */
#define DEFAULT_PMR_VALUE	0xf0

139
enum gic_intid_range {
140
	SGI_RANGE,
141 142
	PPI_RANGE,
	SPI_RANGE,
143
	EPPI_RANGE,
144
	ESPI_RANGE,
145 146 147 148 149 150 151
	LPI_RANGE,
	__INVALID_RANGE__
};

static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
{
	switch (hwirq) {
152 153
	case 0 ... 15:
		return SGI_RANGE;
154 155 156 157
	case 16 ... 31:
		return PPI_RANGE;
	case 32 ... 1019:
		return SPI_RANGE;
158 159
	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
		return EPPI_RANGE;
160 161
	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
		return ESPI_RANGE;
162 163 164 165 166 167 168 169 170 171 172 173
	case 8192 ... GENMASK(23, 0):
		return LPI_RANGE;
	default:
		return __INVALID_RANGE__;
	}
}

static enum gic_intid_range get_intid_range(struct irq_data *d)
{
	return __get_intid_range(d->hwirq);
}

174 175 176 177 178
static inline unsigned int gic_irq(struct irq_data *d)
{
	return d->hwirq;
}

179
static inline bool gic_irq_in_rdist(struct irq_data *d)
180
{
181 182 183 184 185 186 187 188
	switch (get_intid_range(d)) {
	case SGI_RANGE:
	case PPI_RANGE:
	case EPPI_RANGE:
		return true;
	default:
		return false;
	}
189 190
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
{
	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
		irq_hw_number_t hwirq = irqd_to_hwirq(d);
		u32 chip;

		/*
		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
		 * registers are directed to the chip that owns the SPI. The
		 * the alias region can also be used for writes to the
		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
		 * for 320 {E}SPIs. Mappings for all 4 chips:
		 *    Chip0 = 32-351
		 *    Chip1 = 352-671
		 *    Chip2 = 672-991
		 *    Chip3 = 4096-4415
		 */
		switch (__get_intid_range(hwirq)) {
		case SPI_RANGE:
			chip = (hwirq - 32) / 320;
			break;
		case ESPI_RANGE:
			chip = 3;
			break;
		default:
			unreachable();
		}
		return t241_dist_base_alias[chip];
	}

	return gic_data.dist_base;
}

224 225
static inline void __iomem *gic_dist_base(struct irq_data *d)
{
226
	switch (get_intid_range(d)) {
227
	case SGI_RANGE:
228
	case PPI_RANGE:
229
	case EPPI_RANGE:
230
		/* SGI+PPI -> SGI_base for this CPU */
231 232
		return gic_data_rdist_sgi_base();

233
	case SPI_RANGE:
234
	case ESPI_RANGE:
235
		/* SPI -> dist_base */
236 237
		return gic_data.dist_base;

238 239 240
	default:
		return NULL;
	}
241 242
}

243
static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
244 245 246
{
	u32 count = 1000000;	/* 1s! */

247
	while (readl_relaxed(base + GICD_CTLR) & bit) {
248 249 250 251 252 253 254
		count--;
		if (!count) {
			pr_err_ratelimited("RWP timeout, gone fishing\n");
			return;
		}
		cpu_relax();
		udelay(1);
255
	}
256 257 258 259 260
}

/* Wait for completion of a distributor change */
static void gic_dist_wait_for_rwp(void)
{
261
	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
262 263 264 265 266
}

/* Wait for completion of a redistributor change */
static void gic_redist_wait_for_rwp(void)
{
267
	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
268 269
}

270
#ifdef CONFIG_ARM64
271 272 273

static u64 __maybe_unused gic_read_iar(void)
{
274
	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
275 276 277 278
		return gic_read_iar_cavium_thunderx();
	else
		return gic_read_iar_common();
}
279
#endif
280

281
static void gic_enable_redist(bool enable)
282 283 284 285 286
{
	void __iomem *rbase;
	u32 count = 1000000;	/* 1s! */
	u32 val;

287 288 289
	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
		return;

290 291 292
	rbase = gic_data_rdist_rd_base();

	val = readl_relaxed(rbase + GICR_WAKER);
293 294 295 296 297
	if (enable)
		/* Wake up this CPU redistributor */
		val &= ~GICR_WAKER_ProcessorSleep;
	else
		val |= GICR_WAKER_ProcessorSleep;
298 299
	writel_relaxed(val, rbase + GICR_WAKER);

300 301 302 303 304 305
	if (!enable) {		/* Check that GICR_WAKER is writeable */
		val = readl_relaxed(rbase + GICR_WAKER);
		if (!(val & GICR_WAKER_ProcessorSleep))
			return;	/* No PM support in this redistributor */
	}

306
	while (--count) {
307
		val = readl_relaxed(rbase + GICR_WAKER);
308
		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
309
			break;
310 311
		cpu_relax();
		udelay(1);
312
	}
313 314 315
	if (!count)
		pr_err_ratelimited("redistributor failed to %s...\n",
				   enable ? "wakeup" : "sleep");
316 317 318 319 320
}

/*
 * Routines to disable, enable, EOI and route interrupts
 */
321 322 323
static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
{
	switch (get_intid_range(d)) {
324
	case SGI_RANGE:
325 326 327 328
	case PPI_RANGE:
	case SPI_RANGE:
		*index = d->hwirq;
		return offset;
329 330 331 332 333 334 335 336
	case EPPI_RANGE:
		/*
		 * Contrary to the ESPI range, the EPPI range is contiguous
		 * to the PPI range in the registers, so let's adjust the
		 * displacement accordingly. Consistency is overrated.
		 */
		*index = d->hwirq - EPPI_BASE_INTID + 32;
		return offset;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	case ESPI_RANGE:
		*index = d->hwirq - ESPI_BASE_INTID;
		switch (offset) {
		case GICD_ISENABLER:
			return GICD_ISENABLERnE;
		case GICD_ICENABLER:
			return GICD_ICENABLERnE;
		case GICD_ISPENDR:
			return GICD_ISPENDRnE;
		case GICD_ICPENDR:
			return GICD_ICPENDRnE;
		case GICD_ISACTIVER:
			return GICD_ISACTIVERnE;
		case GICD_ICACTIVER:
			return GICD_ICACTIVERnE;
		case GICD_IPRIORITYR:
			return GICD_IPRIORITYRnE;
		case GICD_ICFGR:
			return GICD_ICFGRnE;
		case GICD_IROUTER:
			return GICD_IROUTERnE;
		default:
			break;
		}
		break;
362 363 364 365 366 367 368 369 370
	default:
		break;
	}

	WARN_ON(1);
	*index = d->hwirq;
	return offset;
}

371 372 373
static int gic_peek_irq(struct irq_data *d, u32 offset)
{
	void __iomem *base;
374 375 376 377
	u32 index, mask;

	offset = convert_offset_index(d, offset, &index);
	mask = 1 << (index % 32);
378 379 380 381

	if (gic_irq_in_rdist(d))
		base = gic_data_rdist_sgi_base();
	else
382
		base = gic_dist_base_alias(d);
383

384
	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
385 386
}

387 388 389
static void gic_poke_irq(struct irq_data *d, u32 offset)
{
	void __iomem *base;
390 391 392 393
	u32 index, mask;

	offset = convert_offset_index(d, offset, &index);
	mask = 1 << (index % 32);
394

395
	if (gic_irq_in_rdist(d))
396
		base = gic_data_rdist_sgi_base();
397
	else
398 399
		base = gic_data.dist_base;

400
	writel_relaxed(mask, base + offset + (index / 32) * 4);
401 402 403 404 405
}

static void gic_mask_irq(struct irq_data *d)
{
	gic_poke_irq(d, GICD_ICENABLER);
406 407 408 409
	if (gic_irq_in_rdist(d))
		gic_redist_wait_for_rwp();
	else
		gic_dist_wait_for_rwp();
410 411
}

412 413 414
static void gic_eoimode1_mask_irq(struct irq_data *d)
{
	gic_mask_irq(d);
415 416 417 418 419 420 421 422
	/*
	 * When masking a forwarded interrupt, make sure it is
	 * deactivated as well.
	 *
	 * This ensures that an interrupt that is getting
	 * disabled/masked will not get "stuck", because there is
	 * noone to deactivate it (guest is being terminated).
	 */
423
	if (irqd_is_forwarded_to_vcpu(d))
424
		gic_poke_irq(d, GICD_ICACTIVER);
425 426
}

427 428 429 430 431
static void gic_unmask_irq(struct irq_data *d)
{
	gic_poke_irq(d, GICD_ISENABLER);
}

432 433 434 435 436 437
static inline bool gic_supports_nmi(void)
{
	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
	       static_branch_likely(&supports_pseudo_nmis);
}

438 439 440 441 442
static int gic_irq_set_irqchip_state(struct irq_data *d,
				     enum irqchip_irq_state which, bool val)
{
	u32 reg;

443
	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
444 445 446 447 448 449 450 451 452 453 454 455
		return -EINVAL;

	switch (which) {
	case IRQCHIP_STATE_PENDING:
		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
		break;

	case IRQCHIP_STATE_ACTIVE:
		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
		break;

	case IRQCHIP_STATE_MASKED:
456 457 458 459 460
		if (val) {
			gic_mask_irq(d);
			return 0;
		}
		reg = GICD_ISENABLER;
461 462 463 464 465 466 467 468 469 470 471 472 473
		break;

	default:
		return -EINVAL;
	}

	gic_poke_irq(d, reg);
	return 0;
}

static int gic_irq_get_irqchip_state(struct irq_data *d,
				     enum irqchip_irq_state which, bool *val)
{
474
	if (d->hwirq >= 8192) /* PPI/SPI only */
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		return -EINVAL;

	switch (which) {
	case IRQCHIP_STATE_PENDING:
		*val = gic_peek_irq(d, GICD_ISPENDR);
		break;

	case IRQCHIP_STATE_ACTIVE:
		*val = gic_peek_irq(d, GICD_ISACTIVER);
		break;

	case IRQCHIP_STATE_MASKED:
		*val = !gic_peek_irq(d, GICD_ISENABLER);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

497 498 499
static void gic_irq_set_prio(struct irq_data *d, u8 prio)
{
	void __iomem *base = gic_dist_base(d);
500
	u32 offset, index;
501

502 503 504
	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);

	writeb_relaxed(prio, base + offset + index);
505 506
}

507
static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
508
{
509
	switch (__get_intid_range(hwirq)) {
510
	case PPI_RANGE:
511
		return hwirq - 16;
512
	case EPPI_RANGE:
513
		return hwirq - EPPI_BASE_INTID + 16;
514 515 516 517 518
	default:
		unreachable();
	}
}

519 520 521 522 523
static u32 gic_get_ppi_index(struct irq_data *d)
{
	return __gic_get_ppi_index(d->hwirq);
}

524 525 526
static int gic_irq_nmi_setup(struct irq_data *d)
{
	struct irq_desc *desc = irq_to_desc(d->irq);
527
	u32 idx;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

	if (!gic_supports_nmi())
		return -EINVAL;

	if (gic_peek_irq(d, GICD_ISENABLER)) {
		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
		return -EINVAL;
	}

	/*
	 * A secondary irq_chip should be in charge of LPI request,
	 * it should not be possible to get there
	 */
	if (WARN_ON(gic_irq(d) >= 8192))
		return -EINVAL;

	/* desc lock should already be held */
545 546 547 548 549 550
	switch (get_intid_range(d)) {
	case SGI_RANGE:
		break;
	case PPI_RANGE:
	case EPPI_RANGE:
		idx = gic_get_ppi_index(d);
551

552
		/* Setting up PPI as NMI, only switch handler for first NMI */
553 554
		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
			refcount_set(&ppi_nmi_refs[idx], 1);
555 556
			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
		}
557 558
		break;
	default:
559
		desc->handle_irq = handle_fasteoi_nmi;
560
		break;
561 562 563 564 565 566 567 568 569 570
	}

	gic_irq_set_prio(d, GICD_INT_NMI_PRI);

	return 0;
}

static void gic_irq_nmi_teardown(struct irq_data *d)
{
	struct irq_desc *desc = irq_to_desc(d->irq);
571
	u32 idx;
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

	if (WARN_ON(!gic_supports_nmi()))
		return;

	if (gic_peek_irq(d, GICD_ISENABLER)) {
		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
		return;
	}

	/*
	 * A secondary irq_chip should be in charge of LPI request,
	 * it should not be possible to get there
	 */
	if (WARN_ON(gic_irq(d) >= 8192))
		return;

	/* desc lock should already be held */
589 590 591 592 593 594
	switch (get_intid_range(d)) {
	case SGI_RANGE:
		break;
	case PPI_RANGE:
	case EPPI_RANGE:
		idx = gic_get_ppi_index(d);
595

596
		/* Tearing down NMI, only switch handler for last NMI */
597
		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
598
			desc->handle_irq = handle_percpu_devid_irq;
599 600
		break;
	default:
601
		desc->handle_irq = handle_fasteoi_irq;
602
		break;
603 604 605 606 607
	}

	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
}

608 609
static void gic_eoi_irq(struct irq_data *d)
{
610 611
	write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
	isb();
612 613
}

614 615 616
static void gic_eoimode1_eoi_irq(struct irq_data *d)
{
	/*
617 618
	 * No need to deactivate an LPI, or an interrupt that
	 * is is getting forwarded to a vcpu.
619
	 */
620
	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
621 622 623 624
		return;
	gic_write_dir(gic_irq(d));
}

625 626
static int gic_set_type(struct irq_data *d, unsigned int type)
{
627
	enum gic_intid_range range;
628 629
	unsigned int irq = gic_irq(d);
	void __iomem *base;
630
	u32 offset, index;
631
	int ret;
632

633 634
	range = get_intid_range(d);

635 636 637 638
	/* Interrupt configuration for SGIs can't be changed */
	if (range == SGI_RANGE)
		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;

639
	/* SPIs have restrictions on the supported types */
640 641
	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
642 643
		return -EINVAL;

644
	if (gic_irq_in_rdist(d))
645
		base = gic_data_rdist_sgi_base();
646
	else
647
		base = gic_dist_base_alias(d);
648

649
	offset = convert_offset_index(d, GICD_ICFGR, &index);
650

651
	ret = gic_configure_irq(index, type, base + offset, NULL);
652
	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
653
		/* Misconfigured PPIs are usually not fatal */
654
		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
655 656 657 658
		ret = 0;
	}

	return ret;
659 660
}

661 662
static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
{
663 664 665
	if (get_intid_range(d) == SGI_RANGE)
		return -EINVAL;

666 667 668 669
	if (vcpu)
		irqd_set_forwarded_to_vcpu(d);
	else
		irqd_clr_forwarded_to_vcpu(d);
670 671 672
	return 0;
}

673
static u64 gic_mpidr_to_affinity(unsigned long mpidr)
674 675 676
{
	u64 aff;

677
	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
678 679 680 681 682 683 684
	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
	       MPIDR_AFFINITY_LEVEL(mpidr, 0));

	return aff;
}

685 686 687 688 689 690
static void gic_deactivate_unhandled(u32 irqnr)
{
	if (static_branch_likely(&supports_deactivate_key)) {
		if (irqnr < 8192)
			gic_write_dir(irqnr);
	} else {
691 692
		write_gicreg(irqnr, ICC_EOIR1_EL1);
		isb();
693 694 695
	}
}

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
/*
 * Follow a read of the IAR with any HW maintenance that needs to happen prior
 * to invoking the relevant IRQ handler. We must do two things:
 *
 * (1) Ensure instruction ordering between a read of IAR and subsequent
 *     instructions in the IRQ handler using an ISB.
 *
 *     It is possible for the IAR to report an IRQ which was signalled *after*
 *     the CPU took an IRQ exception as multiple interrupts can race to be
 *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
 *     later interrupts could be prioritized by the GIC.
 *
 *     For devices which are tightly coupled to the CPU, such as PMUs, a
 *     context synchronization event is necessary to ensure that system
 *     register state is not stale, as these may have been indirectly written
 *     *after* exception entry.
 *
 * (2) Deactivate the interrupt when EOI mode 1 is in use.
 */
static inline void gic_complete_ack(u32 irqnr)
716 717
{
	if (static_branch_likely(&supports_deactivate_key))
718
		write_gicreg(irqnr, ICC_EOIR1_EL1);
719

720
	isb();
721 722
}

723
static bool gic_rpr_is_nmi_prio(void)
724
{
725 726
	if (!gic_supports_nmi())
		return false;
727

728 729
	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
}
730

731 732 733 734
static bool gic_irqnr_is_special(u32 irqnr)
{
	return irqnr >= 1020 && irqnr <= 1023;
}
735

736 737 738 739
static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
{
	if (gic_irqnr_is_special(irqnr))
		return;
740

741
	gic_complete_ack(irqnr);
742

743 744
	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
745
		gic_deactivate_unhandled(irqnr);
746
	}
747 748
}

749
static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
750
{
751 752
	if (gic_irqnr_is_special(irqnr))
		return;
753

754
	gic_complete_ack(irqnr);
755

756 757 758
	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
		gic_deactivate_unhandled(irqnr);
759 760 761
	}
}

762 763 764 765 766 767 768 769 770 771 772 773
/*
 * An exception has been taken from a context with IRQs enabled, and this could
 * be an IRQ or an NMI.
 *
 * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
 * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
 * after handling any NMI but before handling any IRQ.
 *
 * The entry code has performed IRQ entry, and if an NMI is detected we must
 * perform NMI entry/exit around invoking the handler.
 */
static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
774
{
775
	bool is_nmi;
776
	u32 irqnr;
777

778
	irqnr = gic_read_iar();
779

780
	is_nmi = gic_rpr_is_nmi_prio();
781

782 783 784 785
	if (is_nmi) {
		nmi_enter();
		__gic_handle_nmi(irqnr, regs);
		nmi_exit();
786 787
	}

788 789 790 791 792
	if (gic_prio_masking_enabled()) {
		gic_pmr_mask_irqs();
		gic_arch_enable_irqs();
	}

793 794 795
	if (!is_nmi)
		__gic_handle_irq(irqnr, regs);
}
796

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/*
 * An exception has been taken from a context with IRQs disabled, which can only
 * be an NMI.
 *
 * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
 * DAIF.IF (and ICC_PMR_EL1) unchanged.
 *
 * The entry code has performed NMI entry.
 */
static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
{
	u64 pmr;
	u32 irqnr;

	/*
	 * We were in a context with IRQs disabled. However, the
	 * entry code has set PMR to a value that allows any
	 * interrupt to be acknowledged, and not just NMIs. This can
	 * lead to surprising effects if the NMI has been retired in
	 * the meantime, and that there is an IRQ pending. The IRQ
	 * would then be taken in NMI context, something that nobody
	 * wants to debug twice.
	 *
	 * Until we sort this, drop PMR again to a level that will
	 * actually only allow NMIs before reading IAR, and then
	 * restore it to what it was.
	 */
	pmr = gic_read_pmr();
	gic_pmr_mask_irqs();
	isb();
	irqnr = gic_read_iar();
	gic_write_pmr(pmr);

	__gic_handle_nmi(irqnr, regs);
}

static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
{
	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
		__gic_handle_irq_from_irqsoff(regs);
	else
		__gic_handle_irq_from_irqson(regs);
839 840
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
static u32 gic_get_pribits(void)
{
	u32 pribits;

	pribits = gic_read_ctlr();
	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
	pribits++;

	return pribits;
}

static bool gic_has_group0(void)
{
	u32 val;
856 857 858
	u32 old_pmr;

	old_pmr = gic_read_pmr();
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873

	/*
	 * Let's find out if Group0 is under control of EL3 or not by
	 * setting the highest possible, non-zero priority in PMR.
	 *
	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
	 * order for the CPU interface to set bit 7, and keep the
	 * actual priority in the non-secure range. In the process, it
	 * looses the least significant bit and the actual priority
	 * becomes 0x80. Reading it back returns 0, indicating that
	 * we're don't have access to Group0.
	 */
	gic_write_pmr(BIT(8 - gic_get_pribits()));
	val = gic_read_pmr();

874 875
	gic_write_pmr(old_pmr);

876 877 878
	return val != 0;
}

879 880 881 882 883
static void __init gic_dist_init(void)
{
	unsigned int i;
	u64 affinity;
	void __iomem *base = gic_data.dist_base;
884
	u32 val;
885 886 887 888 889

	/* Disable the distributor */
	writel_relaxed(0, base + GICD_CTLR);
	gic_dist_wait_for_rwp();

890 891 892 893 894 895
	/*
	 * Configure SPIs as non-secure Group-1. This will only matter
	 * if the GIC only has a single security state. This will not
	 * do the right thing if the kernel is running in secure mode,
	 * but that's not the intended use case anyway.
	 */
896
	for (i = 32; i < GIC_LINE_NR; i += 32)
897 898
		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
	for (i = 0; i < GIC_ESPI_NR; i += 32) {
		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
	}

	for (i = 0; i < GIC_ESPI_NR; i += 32)
		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);

	for (i = 0; i < GIC_ESPI_NR; i += 16)
		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);

	for (i = 0; i < GIC_ESPI_NR; i += 4)
		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);

914 915
	/* Now do the common stuff */
	gic_dist_config(base, GIC_LINE_NR, NULL);
916

917 918 919 920 921 922
	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
		pr_info("Enabling SGIs without active state\n");
		val |= GICD_CTLR_nASSGIreq;
	}

923
	/* Enable distributor with ARE, Group1, and wait for it to drain */
924
	writel_relaxed(val, base + GICD_CTLR);
925
	gic_dist_wait_for_rwp();
926 927 928 929 930 931

	/*
	 * Set all global interrupts to the boot CPU only. ARE must be
	 * enabled.
	 */
	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
932
	for (i = 32; i < GIC_LINE_NR; i++)
933
		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
934 935 936

	for (i = 0; i < GIC_ESPI_NR; i++)
		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
937 938
}

939
static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
940
{
941
	int ret = -ENODEV;
942 943
	int i;

944 945
	for (i = 0; i < gic_data.nr_redist_regions; i++) {
		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
946
		u64 typer;
947 948 949 950 951 952 953 954 955 956
		u32 reg;

		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
		if (reg != GIC_PIDR2_ARCH_GICv3 &&
		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
			pr_warn("No redistributor present @%p\n", ptr);
			break;
		}

		do {
957
			typer = gic_read_typer(ptr + GICR_TYPER);
958 959
			ret = fn(gic_data.redist_regions + i, ptr);
			if (!ret)
960 961
				return 0;

962 963 964
			if (gic_data.redist_regions[i].single_redist)
				break;

965 966 967 968 969 970 971 972 973 974
			if (gic_data.redist_stride) {
				ptr += gic_data.redist_stride;
			} else {
				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
				if (typer & GICR_TYPER_VLPIS)
					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
			}
		} while (!(typer & GICR_TYPER_LAST));
	}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	return ret ? -ENODEV : 0;
}

static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
{
	unsigned long mpidr = cpu_logical_map(smp_processor_id());
	u64 typer;
	u32 aff;

	/*
	 * Convert affinity to a 32bit value that can be matched to
	 * GICR_TYPER bits [63:32].
	 */
	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 0));

	typer = gic_read_typer(ptr + GICR_TYPER);
	if ((typer >> 32) == aff) {
		u64 offset = ptr - region->redist_base;
996
		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		gic_data_rdist_rd_base() = ptr;
		gic_data_rdist()->phys_base = region->phys_base + offset;

		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
			smp_processor_id(), mpidr,
			(int)(region - gic_data.redist_regions),
			&gic_data_rdist()->phys_base);
		return 0;
	}

	/* Try next one */
	return 1;
}

static int gic_populate_rdist(void)
{
	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
		return 0;

1016
	/* We couldn't even deal with ourselves... */
1017
	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1018 1019
	     smp_processor_id(),
	     (unsigned long)cpu_logical_map(smp_processor_id()));
1020 1021 1022
	return -ENODEV;
}

1023 1024
static int __gic_update_rdist_properties(struct redist_region *region,
					 void __iomem *ptr)
1025 1026
{
	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1027
	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1028

1029
	/* Boot-time cleanup */
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
		u64 val;

		/* Deactivate any present vPE */
		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
		if (val & GICR_VPENDBASER_Valid)
			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
					      ptr + SZ_128K + GICR_VPENDBASER);

		/* Mark the VPE table as invalid */
		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
		val &= ~GICR_VPROPBASER_4_1_VALID;
		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
	}

1045
	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055
	/*
	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
	 * that the ITS driver can make use of for LPIs (and not VLPIs).
	 *
	 * These are 3 different ways to express the same thing, depending
	 * on the revision of the architecture and its relaxations over
	 * time. Just group them under the 'direct_lpi' banner.
	 */
1056 1057
	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1058
					   !!(ctlr & GICR_CTLR_IR) |
1059
					   gic_data.rdists.has_rvpeid);
1060
	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1061 1062 1063 1064 1065 1066 1067 1068

	/* Detect non-sensical configurations */
	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
		gic_data.rdists.has_direct_lpi = false;
		gic_data.rdists.has_vlpis = false;
		gic_data.rdists.has_rvpeid = false;
	}

1069
	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1070 1071 1072 1073

	return 1;
}

1074
static void gic_update_rdist_properties(void)
1075
{
1076 1077 1078 1079
	gic_data.ppi_nr = UINT_MAX;
	gic_iterate_rdists(__gic_update_rdist_properties);
	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
		gic_data.ppi_nr = 0;
1080 1081 1082 1083 1084
	pr_info("GICv3 features: %d PPIs%s%s\n",
		gic_data.ppi_nr,
		gic_data.has_rss ? ", RSS" : "",
		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");

1085 1086 1087 1088 1089
	if (gic_data.rdists.has_vlpis)
		pr_info("GICv4 features: %s%s%s\n",
			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1090 1091
}

1092 1093 1094 1095 1096 1097
/* Check whether it's single security state view */
static inline bool gic_dist_security_disabled(void)
{
	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
}

1098 1099
static void gic_cpu_sys_reg_init(void)
{
1100 1101 1102
	int i, cpu = smp_processor_id();
	u64 mpidr = cpu_logical_map(cpu);
	u64 need_rss = MPIDR_RS(mpidr);
1103
	bool group0;
1104
	u32 pribits;
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114
	/*
	 * Need to check that the SRE bit has actually been set. If
	 * not, it means that SRE is disabled at EL2. We're going to
	 * die painfully, and there is nothing we can do about it.
	 *
	 * Kindly inform the luser.
	 */
	if (!gic_enable_sre())
		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1115

1116
	pribits = gic_get_pribits();
1117

1118
	group0 = gic_has_group0();
1119

1120
	/* Set priority mask register */
1121
	if (!gic_prio_masking_enabled()) {
1122
		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1123
	} else if (gic_supports_nmi()) {
1124 1125 1126 1127
		/*
		 * Mismatch configuration with boot CPU, the system is likely
		 * to die as interrupt masking will not work properly on all
		 * CPUs
1128 1129 1130 1131
		 *
		 * The boot CPU calls this function before enabling NMI support,
		 * and as a result we'll never see this warning in the boot path
		 * for that CPU.
1132
		 */
1133 1134 1135 1136
		if (static_branch_unlikely(&gic_nonsecure_priorities))
			WARN_ON(!group0 || gic_dist_security_disabled());
		else
			WARN_ON(group0 && !gic_dist_security_disabled());
1137
	}
1138

1139 1140 1141 1142 1143 1144 1145 1146
	/*
	 * Some firmwares hand over to the kernel with the BPR changed from
	 * its reset value (and with a value large enough to prevent
	 * any pre-emptive interrupts from working at all). Writing a zero
	 * to BPR restores is reset value.
	 */
	gic_write_bpr1(0);

1147
	if (static_branch_likely(&supports_deactivate_key)) {
1148 1149 1150 1151 1152 1153
		/* EOI drops priority only (mode 1) */
		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
	} else {
		/* EOI deactivates interrupt too (mode 0) */
		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
	}
1154

1155 1156 1157 1158 1159 1160 1161
	/* Always whack Group0 before Group1 */
	if (group0) {
		switch(pribits) {
		case 8:
		case 7:
			write_gicreg(0, ICC_AP0R3_EL1);
			write_gicreg(0, ICC_AP0R2_EL1);
1162
			fallthrough;
1163 1164
		case 6:
			write_gicreg(0, ICC_AP0R1_EL1);
1165
			fallthrough;
1166 1167 1168 1169 1170 1171 1172
		case 5:
		case 4:
			write_gicreg(0, ICC_AP0R0_EL1);
		}

		isb();
	}
1173

1174
	switch(pribits) {
1175 1176 1177 1178
	case 8:
	case 7:
		write_gicreg(0, ICC_AP1R3_EL1);
		write_gicreg(0, ICC_AP1R2_EL1);
1179
		fallthrough;
1180 1181
	case 6:
		write_gicreg(0, ICC_AP1R1_EL1);
1182
		fallthrough;
1183 1184 1185 1186 1187 1188 1189
	case 5:
	case 4:
		write_gicreg(0, ICC_AP1R0_EL1);
	}

	isb();

1190 1191
	/* ... and let's hit the road... */
	gic_write_grpen1(1);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

	/* Keep the RSS capability status in per_cpu variable */
	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);

	/* Check all the CPUs have capable of sending SGIs to other CPUs */
	for_each_online_cpu(i) {
		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);

		need_rss |= MPIDR_RS(cpu_logical_map(i));
		if (need_rss && (!have_rss))
			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
				cpu, (unsigned long)mpidr,
				i, (unsigned long)cpu_logical_map(i));
	}

	/**
	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
	 * UNPREDICTABLE choice of :
	 *   - The write is ignored.
	 *   - The RS field is treated as 0.
	 */
	if (need_rss && (!gic_data.has_rss))
		pr_crit_once("RSS is required but GICD doesn't support it\n");
1216 1217
}

1218 1219 1220 1221
static bool gicv3_nolpi;

static int __init gicv3_nolpi_cfg(char *buf)
{
1222
	return kstrtobool(buf, &gicv3_nolpi);
1223 1224 1225
}
early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);

1226 1227
static int gic_dist_supports_lpis(void)
{
1228 1229 1230
	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
		!gicv3_nolpi);
1231 1232
}

1233 1234 1235
static void gic_cpu_init(void)
{
	void __iomem *rbase;
1236
	int i;
1237 1238 1239 1240 1241

	/* Register ourselves with the rest of the world */
	if (gic_populate_rdist())
		return;

1242
	gic_enable_redist(true);
1243

1244 1245 1246 1247 1248
	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
	     "Distributor has extended ranges, but CPU%d doesn't\n",
	     smp_processor_id());

1249 1250
	rbase = gic_data_rdist_sgi_base();

1251
	/* Configure SGIs/PPIs as non-secure Group-1 */
1252 1253
	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1254

1255
	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1256

1257 1258
	/* initialise system registers */
	gic_cpu_sys_reg_init();
1259 1260 1261
}

#ifdef CONFIG_SMP
1262

1263 1264 1265
#define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
#define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)

1266
static int gic_starting_cpu(unsigned int cpu)
1267
{
1268
	gic_cpu_init();
1269 1270 1271 1272

	if (gic_dist_supports_lpis())
		its_cpu_init();

1273
	return 0;
1274 1275 1276
}

static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1277
				   unsigned long cluster_id)
1278
{
1279
	int next_cpu, cpu = *base_cpu;
1280
	unsigned long mpidr = cpu_logical_map(cpu);
1281 1282 1283 1284 1285
	u16 tlist = 0;

	while (cpu < nr_cpu_ids) {
		tlist |= 1 << (mpidr & 0xf);

1286 1287
		next_cpu = cpumask_next(cpu, mask);
		if (next_cpu >= nr_cpu_ids)
1288
			goto out;
1289
		cpu = next_cpu;
1290 1291 1292

		mpidr = cpu_logical_map(cpu);

1293
		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1294 1295 1296 1297 1298 1299 1300 1301 1302
			cpu--;
			goto out;
		}
	}
out:
	*base_cpu = cpu;
	return tlist;
}

1303 1304 1305 1306
#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)

1307 1308 1309 1310
static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
{
	u64 val;

1311 1312 1313 1314
	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1315
	       MPIDR_TO_SGI_RS(cluster_id)		|
1316
	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1317

1318
	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1319 1320 1321
	gic_write_sgi1r(val);
}

1322
static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1323 1324 1325
{
	int cpu;

1326
	if (WARN_ON(d->hwirq >= 16))
1327 1328 1329 1330 1331 1332
		return;

	/*
	 * Ensure that stores to Normal memory are visible to the
	 * other CPUs before issuing the IPI.
	 */
1333
	dsb(ishst);
1334

1335
	for_each_cpu(cpu, mask) {
1336
		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1337 1338 1339
		u16 tlist;

		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1340
		gic_send_sgi(cluster_id, tlist, d->hwirq);
1341 1342 1343 1344 1345 1346
	}

	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
	isb();
}

1347
static void __init gic_smp_init(void)
1348
{
1349 1350 1351 1352 1353 1354
	struct irq_fwspec sgi_fwspec = {
		.fwnode		= gic_data.fwnode,
		.param_count	= 1,
	};
	int base_sgi;

1355
	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
T
Thomas Gleixner 已提交
1356 1357
				  "irqchip/arm/gicv3:starting",
				  gic_starting_cpu, NULL);
1358 1359

	/* Register all 8 non-secure SGIs */
1360
	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1361 1362 1363 1364
	if (WARN_ON(base_sgi <= 0))
		return;

	set_smp_ipi_range(base_sgi, 8);
1365 1366 1367 1368 1369
}

static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
			    bool force)
{
1370
	unsigned int cpu;
1371
	u32 offset, index;
1372 1373 1374 1375
	void __iomem *reg;
	int enabled;
	u64 val;

1376 1377 1378 1379 1380
	if (force)
		cpu = cpumask_first(mask_val);
	else
		cpu = cpumask_any_and(mask_val, cpu_online_mask);

1381 1382 1383
	if (cpu >= nr_cpu_ids)
		return -EINVAL;

1384 1385 1386 1387 1388 1389 1390 1391
	if (gic_irq_in_rdist(d))
		return -EINVAL;

	/* If interrupt was enabled, disable it first */
	enabled = gic_peek_irq(d, GICD_ISENABLER);
	if (enabled)
		gic_mask_irq(d);

1392 1393
	offset = convert_offset_index(d, GICD_IROUTER, &index);
	reg = gic_dist_base(d) + offset + (index * 8);
1394 1395
	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));

1396
	gic_write_irouter(val, reg);
1397 1398 1399 1400 1401 1402 1403 1404

	/*
	 * If the interrupt was enabled, enabled it again. Otherwise,
	 * just wait for the distributor to have digested our changes.
	 */
	if (enabled)
		gic_unmask_irq(d);

1405 1406
	irq_data_update_effective_affinity(d, cpumask_of(cpu));

1407
	return IRQ_SET_MASK_OK_DONE;
1408 1409 1410
}
#else
#define gic_set_affinity	NULL
1411
#define gic_ipi_send_mask	NULL
1412 1413 1414
#define gic_smp_init()		do { } while(0)
#endif

1415 1416 1417 1418 1419
static int gic_retrigger(struct irq_data *data)
{
	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
}

1420 1421 1422 1423 1424
#ifdef CONFIG_CPU_PM
static int gic_cpu_pm_notifier(struct notifier_block *self,
			       unsigned long cmd, void *v)
{
	if (cmd == CPU_PM_EXIT) {
1425 1426
		if (gic_dist_security_disabled())
			gic_enable_redist(true);
1427
		gic_cpu_sys_reg_init();
1428
	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		gic_write_grpen1(0);
		gic_enable_redist(false);
	}
	return NOTIFY_OK;
}

static struct notifier_block gic_cpu_pm_notifier_block = {
	.notifier_call = gic_cpu_pm_notifier,
};

static void gic_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
}

#else
static inline void gic_cpu_pm_init(void) { }
#endif /* CONFIG_CPU_PM */

1448 1449 1450 1451 1452 1453 1454
static struct irq_chip gic_chip = {
	.name			= "GICv3",
	.irq_mask		= gic_mask_irq,
	.irq_unmask		= gic_unmask_irq,
	.irq_eoi		= gic_eoi_irq,
	.irq_set_type		= gic_set_type,
	.irq_set_affinity	= gic_set_affinity,
1455
	.irq_retrigger          = gic_retrigger,
1456 1457
	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1458 1459
	.irq_nmi_setup		= gic_irq_nmi_setup,
	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1460
	.ipi_send_mask		= gic_ipi_send_mask,
1461 1462 1463
	.flags			= IRQCHIP_SET_TYPE_MASKED |
				  IRQCHIP_SKIP_SET_WAKE |
				  IRQCHIP_MASK_ON_SUSPEND,
1464 1465
};

1466 1467 1468 1469 1470 1471 1472
static struct irq_chip gic_eoimode1_chip = {
	.name			= "GICv3",
	.irq_mask		= gic_eoimode1_mask_irq,
	.irq_unmask		= gic_unmask_irq,
	.irq_eoi		= gic_eoimode1_eoi_irq,
	.irq_set_type		= gic_set_type,
	.irq_set_affinity	= gic_set_affinity,
1473
	.irq_retrigger          = gic_retrigger,
1474 1475
	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1476
	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1477 1478
	.irq_nmi_setup		= gic_irq_nmi_setup,
	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1479
	.ipi_send_mask		= gic_ipi_send_mask,
1480 1481 1482
	.flags			= IRQCHIP_SET_TYPE_MASKED |
				  IRQCHIP_SKIP_SET_WAKE |
				  IRQCHIP_MASK_ON_SUSPEND,
1483 1484
};

1485 1486 1487
static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
			      irq_hw_number_t hw)
{
1488
	struct irq_chip *chip = &gic_chip;
1489
	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1490

1491
	if (static_branch_likely(&supports_deactivate_key))
1492 1493
		chip = &gic_eoimode1_chip;

1494
	switch (__get_intid_range(hw)) {
1495
	case SGI_RANGE:
1496
	case PPI_RANGE:
1497
	case EPPI_RANGE:
1498
		irq_set_percpu_devid(irq);
1499
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1500
				    handle_percpu_devid_irq, NULL, NULL);
1501 1502 1503
		break;

	case SPI_RANGE:
1504
	case ESPI_RANGE:
1505
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1506
				    handle_fasteoi_irq, NULL, NULL);
1507
		irq_set_probe(irq);
1508
		irqd_set_single_target(irqd);
1509 1510 1511
		break;

	case LPI_RANGE:
1512 1513
		if (!gic_dist_supports_lpis())
			return -EPERM;
1514
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1515
				    handle_fasteoi_irq, NULL, NULL);
1516 1517 1518 1519
		break;

	default:
		return -EPERM;
1520 1521
	}

1522 1523
	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
	irqd_set_handle_enforce_irqctx(irqd);
1524 1525 1526
	return 0;
}

1527 1528 1529 1530
static int gic_irq_domain_translate(struct irq_domain *d,
				    struct irq_fwspec *fwspec,
				    unsigned long *hwirq,
				    unsigned int *type)
1531
{
1532 1533 1534 1535 1536 1537
	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
		*hwirq = fwspec->param[0];
		*type = IRQ_TYPE_EDGE_RISING;
		return 0;
	}

1538 1539 1540
	if (is_of_node(fwspec->fwnode)) {
		if (fwspec->param_count < 3)
			return -EINVAL;
1541

1542 1543 1544 1545 1546 1547 1548
		switch (fwspec->param[0]) {
		case 0:			/* SPI */
			*hwirq = fwspec->param[1] + 32;
			break;
		case 1:			/* PPI */
			*hwirq = fwspec->param[1] + 16;
			break;
1549 1550 1551
		case 2:			/* ESPI */
			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
			break;
1552 1553 1554
		case 3:			/* EPPI */
			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
			break;
1555 1556 1557
		case GIC_IRQ_TYPE_LPI:	/* LPI */
			*hwirq = fwspec->param[1];
			break;
1558 1559 1560 1561 1562 1563 1564
		case GIC_IRQ_TYPE_PARTITION:
			*hwirq = fwspec->param[1];
			if (fwspec->param[1] >= 16)
				*hwirq += EPPI_BASE_INTID - 16;
			else
				*hwirq += 16;
			break;
1565 1566 1567
		default:
			return -EINVAL;
		}
1568 1569

		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1570

1571 1572
		/*
		 * Make it clear that broken DTs are... broken.
I
Ingo Molnar 已提交
1573
		 * Partitioned PPIs are an unfortunate exception.
1574 1575 1576
		 */
		WARN_ON(*type == IRQ_TYPE_NONE &&
			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1577
		return 0;
1578 1579
	}

1580 1581 1582 1583
	if (is_fwnode_irqchip(fwspec->fwnode)) {
		if(fwspec->param_count != 2)
			return -EINVAL;

1584 1585 1586 1587 1588 1589
		if (fwspec->param[0] < 16) {
			pr_err(FW_BUG "Illegal GSI%d translation request\n",
			       fwspec->param[0]);
			return -EINVAL;
		}

1590 1591
		*hwirq = fwspec->param[0];
		*type = fwspec->param[1];
1592 1593

		WARN_ON(*type == IRQ_TYPE_NONE);
1594 1595 1596
		return 0;
	}

1597
	return -EINVAL;
1598 1599
}

1600 1601 1602 1603 1604 1605
static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
				unsigned int nr_irqs, void *arg)
{
	int i, ret;
	irq_hw_number_t hwirq;
	unsigned int type = IRQ_TYPE_NONE;
1606
	struct irq_fwspec *fwspec = arg;
1607

1608
	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1609 1610 1611
	if (ret)
		return ret;

1612 1613 1614 1615 1616
	for (i = 0; i < nr_irqs; i++) {
		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
		if (ret)
			return ret;
	}
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

	return 0;
}

static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
				unsigned int nr_irqs)
{
	int i;

	for (i = 0; i < nr_irqs; i++) {
		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
		irq_set_handler(virq + i, NULL);
		irq_domain_reset_irq_data(d);
	}
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
				      irq_hw_number_t hwirq)
{
	enum gic_intid_range range;

	if (!gic_data.ppi_descs)
		return false;

	if (!is_of_node(fwspec->fwnode))
		return false;

	if (fwspec->param_count < 4 || !fwspec->param[3])
		return false;

	range = __get_intid_range(hwirq);
	if (range != PPI_RANGE && range != EPPI_RANGE)
		return false;

	return true;
}

1654 1655 1656 1657
static int gic_irq_domain_select(struct irq_domain *d,
				 struct irq_fwspec *fwspec,
				 enum irq_domain_bus_token bus_token)
{
1658 1659 1660
	unsigned int type, ret, ppi_idx;
	irq_hw_number_t hwirq;

1661 1662 1663 1664 1665 1666 1667 1668
	/* Not for us */
        if (fwspec->fwnode != d->fwnode)
		return 0;

	/* If this is not DT, then we have a single domain */
	if (!is_of_node(fwspec->fwnode))
		return 1;

1669 1670 1671 1672 1673 1674 1675
	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
	if (WARN_ON_ONCE(ret))
		return 0;

	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
		return d == gic_data.domain;

1676 1677 1678 1679
	/*
	 * If this is a PPI and we have a 4th (non-null) parameter,
	 * then we need to match the partition domain.
	 */
1680 1681
	ppi_idx = __gic_get_ppi_index(hwirq);
	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1682 1683
}

1684
static const struct irq_domain_ops gic_irq_domain_ops = {
1685
	.translate = gic_irq_domain_translate,
1686 1687
	.alloc = gic_irq_domain_alloc,
	.free = gic_irq_domain_free,
1688 1689 1690 1691 1692 1693 1694 1695
	.select = gic_irq_domain_select,
};

static int partition_domain_translate(struct irq_domain *d,
				      struct irq_fwspec *fwspec,
				      unsigned long *hwirq,
				      unsigned int *type)
{
1696
	unsigned long ppi_intid;
1697
	struct device_node *np;
1698
	unsigned int ppi_idx;
1699 1700
	int ret;

1701 1702 1703
	if (!gic_data.ppi_descs)
		return -ENOMEM;

1704 1705 1706 1707
	np = of_find_node_by_phandle(fwspec->param[3]);
	if (WARN_ON(!np))
		return -EINVAL;

1708 1709 1710 1711 1712 1713
	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
	if (WARN_ON_ONCE(ret))
		return 0;

	ppi_idx = __gic_get_ppi_index(ppi_intid);
	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
				     of_node_to_fwnode(np));
	if (ret < 0)
		return ret;

	*hwirq = ret;
	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;

	return 0;
}

static const struct irq_domain_ops partition_domain_ops = {
	.translate = partition_domain_translate,
	.select = gic_irq_domain_select,
1727 1728
};

1729 1730 1731 1732 1733 1734 1735 1736 1737
static bool gic_enable_quirk_msm8996(void *data)
{
	struct gic_chip_data *d = data;

	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;

	return true;
}

1738 1739 1740 1741 1742 1743 1744 1745 1746
static bool gic_enable_quirk_mtk_gicr(void *data)
{
	struct gic_chip_data *d = data;

	d->flags |= FLAGS_WORKAROUND_MTK_GICR_SAVE;

	return true;
}

1747 1748 1749 1750 1751 1752 1753 1754 1755
static bool gic_enable_quirk_cavium_38539(void *data)
{
	struct gic_chip_data *d = data;

	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;

	return true;
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
static bool gic_enable_quirk_hip06_07(void *data)
{
	struct gic_chip_data *d = data;

	/*
	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
	 * not being an actual ARM implementation). The saving grace is
	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
	 * HIP07 doesn't even have a proper IIDR, and still pretends to
	 * have ESPI. In both cases, put them right.
	 */
	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
		/* Zero both ESPI and the RES0 field next to it... */
		d->rdists.gicd_typer &= ~GENMASK(9, 8);
		return true;
	}

	return false;
}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
#define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
#define T241_CHIP_GICDA_OFFSET	0x1580000
#define SMCCC_SOC_ID_T241	0x036b0241

static bool gic_enable_quirk_nvidia_t241(void *data)
{
	s32 soc_id = arm_smccc_get_soc_id_version();
	unsigned long chip_bmask = 0;
	phys_addr_t phys;
	u32 i;

	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
		return false;

	/* Find the chips based on GICR regions PHYS addr */
	for (i = 0; i < gic_data.nr_redist_regions; i++) {
		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
				  (u64)gic_data.redist_regions[i].phys_base));
	}

	if (hweight32(chip_bmask) < 3)
		return false;

	/* Setup GICD alias regions */
	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
		if (chip_bmask & BIT(i)) {
			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
			WARN_ON_ONCE(!t241_dist_base_alias[i]);
		}
	}
	static_branch_enable(&gic_nvidia_t241_erratum);
	return true;
}

1813 1814 1815 1816 1817 1818
static const struct gic_quirk gic_quirks[] = {
	{
		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
		.compatible = "qcom,msm8996-gic-v3",
		.init	= gic_enable_quirk_msm8996,
	},
1819 1820 1821 1822 1823
	{
		.desc	= "GICv3: Mediatek Chromebook GICR save problem",
		.property = "mediatek,broken-save-restore-fw",
		.init	= gic_enable_quirk_mtk_gicr,
	},
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	{
		.desc	= "GICv3: HIP06 erratum 161010803",
		.iidr	= 0x0204043b,
		.mask	= 0xffffffff,
		.init	= gic_enable_quirk_hip06_07,
	},
	{
		.desc	= "GICv3: HIP07 erratum 161010803",
		.iidr	= 0x00000000,
		.mask	= 0xffffffff,
		.init	= gic_enable_quirk_hip06_07,
	},
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	{
		/*
		 * Reserved register accesses generate a Synchronous
		 * External Abort. This erratum applies to:
		 * - ThunderX: CN88xx
		 * - OCTEON TX: CN83xx, CN81xx
		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
		 */
		.desc	= "GICv3: Cavium erratum 38539",
		.iidr	= 0xa000034c,
		.mask	= 0xe8f00fff,
		.init	= gic_enable_quirk_cavium_38539,
	},
1849 1850 1851 1852 1853 1854
	{
		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
		.iidr	= 0x0402043b,
		.mask	= 0xffffffff,
		.init	= gic_enable_quirk_nvidia_t241,
	},
1855 1856 1857 1858
	{
	}
};

1859 1860
static void gic_enable_nmi_support(void)
{
1861 1862
	int i;

1863 1864 1865
	if (!gic_prio_masking_enabled())
		return;

1866 1867 1868 1869 1870
	if (gic_data.flags & FLAGS_WORKAROUND_MTK_GICR_SAVE) {
		pr_warn("Skipping NMI enable due to firmware issues\n");
		return;
	}

1871 1872 1873 1874 1875
	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
	if (!ppi_nmi_refs)
		return;

	for (i = 0; i < gic_data.ppi_nr; i++)
1876 1877
		refcount_set(&ppi_nmi_refs[i], 0);

1878
	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1879
		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1880

1881 1882 1883 1884 1885
	/*
	 * How priority values are used by the GIC depends on two things:
	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
J
Jason Wang 已提交
1886
	 * ICC_PMR_EL1 register and the priority that software assigns to
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	 * interrupts:
	 *
	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
	 * -----------------------------------------------------------
	 *      1       |      -      |  unchanged  |    unchanged
	 * -----------------------------------------------------------
	 *      0       |      1      |  non-secure |    non-secure
	 * -----------------------------------------------------------
	 *      0       |      0      |  unchanged  |    non-secure
	 *
	 * where non-secure means that the value is right-shifted by one and the
	 * MSB bit set, to make it fit in the non-secure priority range.
	 *
	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
	 * are both either modified or unchanged, we can use the same set of
	 * priorities.
	 *
	 * In the last case, where only the interrupt priorities are modified to
	 * be in the non-secure range, we use a different PMR value to mask IRQs
	 * and the rest of the values that we use remain unchanged.
	 */
	if (gic_has_group0() && !gic_dist_security_disabled())
		static_branch_enable(&gic_nonsecure_priorities);

1911
	static_branch_enable(&supports_pseudo_nmis);
1912 1913 1914 1915 1916

	if (static_branch_likely(&supports_deactivate_key))
		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
	else
		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1917 1918
}

1919 1920
static int __init gic_init_bases(phys_addr_t dist_phys_base,
				 void __iomem *dist_base,
1921 1922 1923 1924
				 struct redist_region *rdist_regs,
				 u32 nr_redist_regions,
				 u64 redist_stride,
				 struct fwnode_handle *handle)
1925
{
1926
	u32 typer;
1927 1928
	int err;

1929
	if (!is_hyp_mode_available())
1930
		static_branch_disable(&supports_deactivate_key);
1931

1932
	if (static_branch_likely(&supports_deactivate_key))
1933 1934
		pr_info("GIC: Using split EOI/Deactivate mode\n");

1935
	gic_data.fwnode = handle;
1936
	gic_data.dist_phys_base = dist_phys_base;
1937
	gic_data.dist_base = dist_base;
1938 1939
	gic_data.redist_regions = rdist_regs;
	gic_data.nr_redist_regions = nr_redist_regions;
1940 1941 1942 1943 1944
	gic_data.redist_stride = redist_stride;

	/*
	 * Find out how many interrupts are supported.
	 */
1945
	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1946
	gic_data.rdists.gicd_typer = typer;
1947 1948 1949 1950

	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
			  gic_quirks, &gic_data);

1951 1952
	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1953

1954 1955 1956 1957 1958 1959
	/*
	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
	 * architecture spec (which says that reserved registers are RES0).
	 */
	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1960

1961 1962
	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
						 &gic_data);
1963
	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1964 1965 1966 1967 1968 1969 1970
	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
		gic_data.rdists.has_rvpeid = true;
		gic_data.rdists.has_vlpis = true;
		gic_data.rdists.has_direct_lpi = true;
		gic_data.rdists.has_vpend_valid_dirty = true;
	}
1971

1972
	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1973 1974 1975 1976
		err = -ENOMEM;
		goto out_free;
	}

1977 1978
	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);

1979 1980
	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);

1981 1982 1983 1984 1985 1986
	if (typer & GICD_TYPER_MBIS) {
		err = mbi_init(handle, gic_data.domain);
		if (err)
			pr_err("Failed to initialize MBIs\n");
	}

1987 1988
	set_handle_irq(gic_handle_irq);

1989
	gic_update_rdist_properties();
1990

1991 1992
	gic_dist_init();
	gic_cpu_init();
1993
	gic_enable_nmi_support();
1994
	gic_smp_init();
1995
	gic_cpu_pm_init();
1996

1997 1998 1999
	if (gic_dist_supports_lpis()) {
		its_init(handle, &gic_data.rdists, gic_data.domain);
		its_cpu_init();
2000
		its_lpi_memreserve_init();
2001 2002 2003
	} else {
		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
			gicv2m_init(handle, gic_data.domain);
2004 2005
	}

2006 2007 2008 2009 2010
	return 0;

out_free:
	if (gic_data.domain)
		irq_domain_remove(gic_data.domain);
2011
	free_percpu(gic_data.rdists.rdist);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	return err;
}

static int __init gic_validate_dist_version(void __iomem *dist_base)
{
	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;

	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
		return -ENODEV;

	return 0;
}

2025
/* Create all possible partitions at boot time */
2026
static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2027 2028 2029 2030 2031 2032
{
	struct device_node *parts_node, *child_part;
	int part_idx = 0, i;
	int nr_parts;
	struct partition_affinity *parts;

2033
	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2034 2035 2036
	if (!parts_node)
		return;

2037 2038
	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
	if (!gic_data.ppi_descs)
2039
		goto out_put_node;
2040

2041 2042 2043
	nr_parts = of_get_child_count(parts_node);

	if (!nr_parts)
2044
		goto out_put_node;
2045

K
Kees Cook 已提交
2046
	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2047
	if (WARN_ON(!parts))
2048
		goto out_put_node;
2049 2050 2051 2052 2053 2054 2055 2056 2057

	for_each_child_of_node(parts_node, child_part) {
		struct partition_affinity *part;
		int n;

		part = &parts[part_idx];

		part->partition_id = of_node_to_fwnode(child_part);

2058 2059
		pr_info("GIC: PPI partition %pOFn[%d] { ",
			child_part, part_idx);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

		n = of_property_count_elems_of_size(child_part, "affinity",
						    sizeof(u32));
		WARN_ON(n <= 0);

		for (i = 0; i < n; i++) {
			int err, cpu;
			u32 cpu_phandle;
			struct device_node *cpu_node;

			err = of_property_read_u32_index(child_part, "affinity",
							 i, &cpu_phandle);
			if (WARN_ON(err))
				continue;

			cpu_node = of_find_node_by_phandle(cpu_phandle);
			if (WARN_ON(!cpu_node))
				continue;

2079
			cpu = of_cpu_node_to_id(cpu_node);
2080 2081
			if (WARN_ON(cpu < 0)) {
				of_node_put(cpu_node);
2082
				continue;
2083
			}
2084

2085
			pr_cont("%pOF[%d] ", cpu_node, cpu);
2086 2087

			cpumask_set_cpu(cpu, &part->mask);
2088
			of_node_put(cpu_node);
2089 2090 2091 2092 2093 2094
		}

		pr_cont("}\n");
		part_idx++;
	}

2095
	for (i = 0; i < gic_data.ppi_nr; i++) {
2096 2097 2098 2099 2100 2101
		unsigned int irq;
		struct partition_desc *desc;
		struct irq_fwspec ppi_fwspec = {
			.fwnode		= gic_data.fwnode,
			.param_count	= 3,
			.param		= {
2102
				[0]	= GIC_IRQ_TYPE_PARTITION,
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
				[1]	= i,
				[2]	= IRQ_TYPE_NONE,
			},
		};

		irq = irq_create_fwspec_mapping(&ppi_fwspec);
		if (WARN_ON(!irq))
			continue;
		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
					     irq, &partition_domain_ops);
		if (WARN_ON(!desc))
			continue;

		gic_data.ppi_descs[i] = desc;
	}
2118 2119 2120

out_put_node:
	of_node_put(parts_node);
2121 2122
}

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
static void __init gic_of_setup_kvm_info(struct device_node *node)
{
	int ret;
	struct resource r;
	u32 gicv_idx;

	gic_v3_kvm_info.type = GIC_V3;

	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
	if (!gic_v3_kvm_info.maint_irq)
		return;

	if (of_property_read_u32(node, "#redistributor-regions",
				 &gicv_idx))
		gicv_idx = 1;

	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
	ret = of_address_to_resource(node, gicv_idx, &r);
	if (!ret)
		gic_v3_kvm_info.vcpu = r;

2144
	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2145
	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2146
	vgic_set_kvm_info(&gic_v3_kvm_info);
2147 2148
}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
static void gic_request_region(resource_size_t base, resource_size_t size,
			       const char *name)
{
	if (!request_mem_region(base, size, name))
		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
			     name, &base);
}

static void __iomem *gic_of_iomap(struct device_node *node, int idx,
				  const char *name, struct resource *res)
{
	void __iomem *base;
	int ret;

	ret = of_address_to_resource(node, idx, res);
	if (ret)
		return IOMEM_ERR_PTR(ret);

	gic_request_region(res->start, resource_size(res), name);
	base = of_iomap(node, idx);

	return base ?: IOMEM_ERR_PTR(-ENOMEM);
}

2173 2174
static int __init gic_of_init(struct device_node *node, struct device_node *parent)
{
2175
	phys_addr_t dist_phys_base;
2176 2177
	void __iomem *dist_base;
	struct redist_region *rdist_regs;
2178
	struct resource res;
2179 2180 2181 2182
	u64 redist_stride;
	u32 nr_redist_regions;
	int err, i;

2183
	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2184
	if (IS_ERR(dist_base)) {
2185
		pr_err("%pOF: unable to map gic dist registers\n", node);
2186
		return PTR_ERR(dist_base);
2187 2188
	}

2189 2190
	dist_phys_base = res.start;

2191 2192
	err = gic_validate_dist_version(dist_base);
	if (err) {
2193
		pr_err("%pOF: no distributor detected, giving up\n", node);
2194 2195 2196 2197 2198 2199
		goto out_unmap_dist;
	}

	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
		nr_redist_regions = 1;

K
Kees Cook 已提交
2200 2201
	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
			     GFP_KERNEL);
2202 2203 2204 2205 2206 2207
	if (!rdist_regs) {
		err = -ENOMEM;
		goto out_unmap_dist;
	}

	for (i = 0; i < nr_redist_regions; i++) {
2208 2209
		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
		if (IS_ERR(rdist_regs[i].redist_base)) {
2210
			pr_err("%pOF: couldn't map region %d\n", node, i);
2211 2212 2213 2214 2215 2216 2217 2218 2219
			err = -ENODEV;
			goto out_unmap_rdist;
		}
		rdist_regs[i].phys_base = res.start;
	}

	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
		redist_stride = 0;

2220 2221
	gic_enable_of_quirks(node, gic_quirks, &gic_data);

2222 2223
	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
			     nr_redist_regions, redist_stride, &node->fwnode);
2224 2225 2226 2227
	if (err)
		goto out_unmap_rdist;

	gic_populate_ppi_partitions(node);
2228

2229
	if (static_branch_likely(&supports_deactivate_key))
2230
		gic_of_setup_kvm_info(node);
2231
	return 0;
2232

2233
out_unmap_rdist:
2234
	for (i = 0; i < nr_redist_regions; i++)
2235
		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2236 2237
			iounmap(rdist_regs[i].redist_base);
	kfree(rdist_regs);
2238 2239 2240 2241 2242 2243
out_unmap_dist:
	iounmap(dist_base);
	return err;
}

IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2244 2245

#ifdef CONFIG_ACPI
2246 2247 2248 2249 2250 2251
static struct
{
	void __iomem *dist_base;
	struct redist_region *redist_regs;
	u32 nr_redist_regions;
	bool single_redist;
2252
	int enabled_rdists;
2253 2254 2255
	u32 maint_irq;
	int maint_irq_mode;
	phys_addr_t vcpu_base;
2256
} acpi_data __initdata;
2257 2258 2259 2260 2261 2262

static void __init
gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
{
	static int count = 0;

2263 2264 2265
	acpi_data.redist_regs[count].phys_base = phys_base;
	acpi_data.redist_regs[count].redist_base = redist_base;
	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2266 2267
	count++;
}
2268 2269

static int __init
2270
gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
			   const unsigned long end)
{
	struct acpi_madt_generic_redistributor *redist =
			(struct acpi_madt_generic_redistributor *)header;
	void __iomem *redist_base;

	redist_base = ioremap(redist->base_address, redist->length);
	if (!redist_base) {
		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
		return -ENOMEM;
	}
2282
	gic_request_region(redist->base_address, redist->length, "GICR");
2283

2284
	gic_acpi_register_redist(redist->base_address, redist_base);
2285 2286 2287
	return 0;
}

2288
static int __init
2289
gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2290 2291 2292 2293
			 const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
				(struct acpi_madt_generic_interrupt *)header;
2294
	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2295 2296 2297
	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
	void __iomem *redist_base;

2298 2299 2300 2301
	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

2302 2303 2304
	redist_base = ioremap(gicc->gicr_base_address, size);
	if (!redist_base)
		return -ENOMEM;
2305
	gic_request_region(gicc->gicr_base_address, size, "GICR");
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
	return 0;
}

static int __init gic_acpi_collect_gicr_base(void)
{
	acpi_tbl_entry_handler redist_parser;
	enum acpi_madt_type type;

2316
	if (acpi_data.single_redist) {
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
		redist_parser = gic_acpi_parse_madt_gicc;
	} else {
		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
		redist_parser = gic_acpi_parse_madt_redist;
	}

	/* Collect redistributor base addresses in GICR entries */
	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
		return 0;

	pr_info("No valid GICR entries exist\n");
	return -ENODEV;
}

2332
static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2333 2334 2335 2336 2337 2338
				  const unsigned long end)
{
	/* Subtable presence means that redist exists, that's it */
	return 0;
}

2339
static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2340 2341 2342 2343 2344 2345 2346 2347 2348
				      const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
				(struct acpi_madt_generic_interrupt *)header;

	/*
	 * If GICC is enabled and has valid gicr base address, then it means
	 * GICR base is presented via GICC
	 */
2349 2350
	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
		acpi_data.enabled_rdists++;
2351
		return 0;
2352
	}
2353

2354 2355 2356 2357 2358 2359 2360
	/*
	 * It's perfectly valid firmware can pass disabled GICC entry, driver
	 * should not treat as errors, skip the entry instead of probe fail.
	 */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	return -ENODEV;
}

static int __init gic_acpi_count_gicr_regions(void)
{
	int count;

	/*
	 * Count how many redistributor regions we have. It is not allowed
	 * to mix redistributor description, GICR and GICC subtables have to be
	 * mutually exclusive.
	 */
	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
				      gic_acpi_match_gicr, 0);
	if (count > 0) {
2376
		acpi_data.single_redist = false;
2377 2378 2379 2380 2381
		return count;
	}

	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
				      gic_acpi_match_gicc, 0);
2382
	if (count > 0) {
2383
		acpi_data.single_redist = true;
2384 2385
		count = acpi_data.enabled_rdists;
	}
2386 2387 2388 2389

	return count;
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
					   struct acpi_probe_entry *ape)
{
	struct acpi_madt_generic_distributor *dist;
	int count;

	dist = (struct acpi_madt_generic_distributor *)header;
	if (dist->version != ape->driver_data)
		return false;

	/* We need to do that exercise anyway, the sooner the better */
2401
	count = gic_acpi_count_gicr_regions();
2402 2403 2404
	if (count <= 0)
		return false;

2405
	acpi_data.nr_redist_regions = count;
2406 2407 2408
	return true;
}

2409
static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
						const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
		(struct acpi_madt_generic_interrupt *)header;
	int maint_irq_mode;
	static int first_madt = true;

	/* Skip unusable CPUs */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;

	if (first_madt) {
		first_madt = false;

		acpi_data.maint_irq = gicc->vgic_interrupt;
		acpi_data.maint_irq_mode = maint_irq_mode;
		acpi_data.vcpu_base = gicc->gicv_base_address;

		return 0;
	}

	/*
	 * The maintenance interrupt and GICV should be the same for every CPU
	 */
	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
	    (acpi_data.vcpu_base != gicc->gicv_base_address))
		return -EINVAL;

	return 0;
}

static bool __init gic_acpi_collect_virt_info(void)
{
	int count;

	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
				      gic_acpi_parse_virt_madt_gicc, 0);

	return (count > 0);
}

2455
#define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
#define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
#define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)

static void __init gic_acpi_setup_kvm_info(void)
{
	int irq;

	if (!gic_acpi_collect_virt_info()) {
		pr_warn("Unable to get hardware information used for virtualization\n");
		return;
	}

	gic_v3_kvm_info.type = GIC_V3;

	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
				acpi_data.maint_irq_mode,
				ACPI_ACTIVE_HIGH);
	if (irq <= 0)
		return;

	gic_v3_kvm_info.maint_irq = irq;

	if (acpi_data.vcpu_base) {
		struct resource *vcpu = &gic_v3_kvm_info.vcpu;

		vcpu->flags = IORESOURCE_MEM;
		vcpu->start = acpi_data.vcpu_base;
		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
	}

2486
	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2487
	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2488
	vgic_set_kvm_info(&gic_v3_kvm_info);
2489
}
2490

2491 2492 2493 2494 2495 2496 2497
static struct fwnode_handle *gsi_domain_handle;

static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
{
	return gsi_domain_handle;
}

2498
static int __init
2499
gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2500 2501
{
	struct acpi_madt_generic_distributor *dist;
2502
	size_t size;
2503
	int i, err;
2504 2505 2506

	/* Get distributor base address */
	dist = (struct acpi_madt_generic_distributor *)header;
2507 2508 2509
	acpi_data.dist_base = ioremap(dist->base_address,
				      ACPI_GICV3_DIST_MEM_SIZE);
	if (!acpi_data.dist_base) {
2510 2511 2512
		pr_err("Unable to map GICD registers\n");
		return -ENOMEM;
	}
2513
	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2514

2515
	err = gic_validate_dist_version(acpi_data.dist_base);
2516
	if (err) {
2517
		pr_err("No distributor detected at @%p, giving up\n",
2518
		       acpi_data.dist_base);
2519 2520 2521
		goto out_dist_unmap;
	}

2522 2523 2524
	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
	if (!acpi_data.redist_regs) {
2525 2526 2527 2528
		err = -ENOMEM;
		goto out_dist_unmap;
	}

2529 2530
	err = gic_acpi_collect_gicr_base();
	if (err)
2531 2532
		goto out_redist_unmap;

2533 2534
	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
	if (!gsi_domain_handle) {
2535 2536 2537 2538
		err = -ENOMEM;
		goto out_redist_unmap;
	}

2539 2540 2541
	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
			     0, gsi_domain_handle);
2542 2543 2544
	if (err)
		goto out_fwhandle_free;

2545
	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2546

2547
	if (static_branch_likely(&supports_deactivate_key))
2548
		gic_acpi_setup_kvm_info();
2549

2550 2551 2552
	return 0;

out_fwhandle_free:
2553
	irq_domain_free_fwnode(gsi_domain_handle);
2554
out_redist_unmap:
2555 2556 2557 2558
	for (i = 0; i < acpi_data.nr_redist_regions; i++)
		if (acpi_data.redist_regs[i].redist_base)
			iounmap(acpi_data.redist_regs[i].redist_base);
	kfree(acpi_data.redist_regs);
2559
out_dist_unmap:
2560
	iounmap(acpi_data.dist_base);
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	return err;
}
IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
		     gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
		     gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
		     gic_acpi_init);
#endif