irq-gic-v3.c 50.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 5 6
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

7 8
#define pr_fmt(fmt)	"GICv3: " fmt

9
#include <linux/acpi.h>
10
#include <linux/cpu.h>
11
#include <linux/cpu_pm.h>
12 13
#include <linux/delay.h>
#include <linux/interrupt.h>
14
#include <linux/irqdomain.h>
15 16 17 18
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/percpu.h>
19
#include <linux/refcount.h>
20 21
#include <linux/slab.h>

22
#include <linux/irqchip.h>
23
#include <linux/irqchip/arm-gic-common.h>
24
#include <linux/irqchip/arm-gic-v3.h>
25
#include <linux/irqchip/irq-partition-percpu.h>
26 27 28 29

#include <asm/cputype.h>
#include <asm/exception.h>
#include <asm/smp_plat.h>
30
#include <asm/virt.h>
31 32 33

#include "irq-gic-common.h"

34 35
#define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)

36 37
#define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)

38 39 40
struct redist_region {
	void __iomem		*redist_base;
	phys_addr_t		phys_base;
41
	bool			single_redist;
42 43
};

44
struct gic_chip_data {
45
	struct fwnode_handle	*fwnode;
46
	void __iomem		*dist_base;
47 48
	struct redist_region	*redist_regions;
	struct rdists		rdists;
49 50
	struct irq_domain	*domain;
	u64			redist_stride;
51
	u32			nr_redist_regions;
52
	u64			flags;
53
	bool			has_rss;
54
	unsigned int		ppi_nr;
55
	struct partition_desc	**ppi_descs;
56 57 58
};

static struct gic_chip_data gic_data __read_mostly;
59
static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
60

61 62 63 64
#define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
#define GIC_LINE_NR	max(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
#define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/*
 * The behaviours of RPR and PMR registers differ depending on the value of
 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
 * distributor and redistributors depends on whether security is enabled in the
 * GIC.
 *
 * When security is enabled, non-secure priority values from the (re)distributor
 * are presented to the GIC CPUIF as follow:
 *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
 *
 * If SCR_EL3.FIQ == 1, the values writen to/read from PMR and RPR at non-secure
 * EL1 are subject to a similar operation thus matching the priorities presented
 * from the (re)distributor when security is enabled.
 *
 * see GICv3/GICv4 Architecture Specification (IHI0069D):
 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
 *   priorities.
 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
 *   interrupt.
 *
 * For now, we only support pseudo-NMIs if we have non-secure view of
 * priorities.
 */
static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);

90
/* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
91
static refcount_t *ppi_nmi_refs;
92

93
static struct gic_kvm_info gic_v3_kvm_info;
94
static DEFINE_PER_CPU(bool, has_rss);
95

96
#define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
97 98
#define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
99 100 101 102 103
#define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)

/* Our default, arbitrary priority value. Linux only uses one anyway. */
#define DEFAULT_PMR_VALUE	0xf0

104 105 106
enum gic_intid_range {
	PPI_RANGE,
	SPI_RANGE,
107
	EPPI_RANGE,
108
	ESPI_RANGE,
109 110 111 112 113 114 115 116 117 118 119
	LPI_RANGE,
	__INVALID_RANGE__
};

static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
{
	switch (hwirq) {
	case 16 ... 31:
		return PPI_RANGE;
	case 32 ... 1019:
		return SPI_RANGE;
120 121
	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
		return EPPI_RANGE;
122 123
	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
		return ESPI_RANGE;
124 125 126 127 128 129 130 131 132 133 134 135
	case 8192 ... GENMASK(23, 0):
		return LPI_RANGE;
	default:
		return __INVALID_RANGE__;
	}
}

static enum gic_intid_range get_intid_range(struct irq_data *d)
{
	return __get_intid_range(d->hwirq);
}

136 137 138 139 140 141 142
static inline unsigned int gic_irq(struct irq_data *d)
{
	return d->hwirq;
}

static inline int gic_irq_in_rdist(struct irq_data *d)
{
143 144
	enum gic_intid_range range = get_intid_range(d);
	return range == PPI_RANGE || range == EPPI_RANGE;
145 146 147 148
}

static inline void __iomem *gic_dist_base(struct irq_data *d)
{
149 150
	switch (get_intid_range(d)) {
	case PPI_RANGE:
151
	case EPPI_RANGE:
152
		/* SGI+PPI -> SGI_base for this CPU */
153 154
		return gic_data_rdist_sgi_base();

155
	case SPI_RANGE:
156
	case ESPI_RANGE:
157
		/* SPI -> dist_base */
158 159
		return gic_data.dist_base;

160 161 162
	default:
		return NULL;
	}
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
}

static void gic_do_wait_for_rwp(void __iomem *base)
{
	u32 count = 1000000;	/* 1s! */

	while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
		count--;
		if (!count) {
			pr_err_ratelimited("RWP timeout, gone fishing\n");
			return;
		}
		cpu_relax();
		udelay(1);
	};
}

/* Wait for completion of a distributor change */
static void gic_dist_wait_for_rwp(void)
{
	gic_do_wait_for_rwp(gic_data.dist_base);
}

/* Wait for completion of a redistributor change */
static void gic_redist_wait_for_rwp(void)
{
	gic_do_wait_for_rwp(gic_data_rdist_rd_base());
}

192
#ifdef CONFIG_ARM64
193 194 195

static u64 __maybe_unused gic_read_iar(void)
{
196
	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
197 198 199 200
		return gic_read_iar_cavium_thunderx();
	else
		return gic_read_iar_common();
}
201
#endif
202

203
static void gic_enable_redist(bool enable)
204 205 206 207 208
{
	void __iomem *rbase;
	u32 count = 1000000;	/* 1s! */
	u32 val;

209 210 211
	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
		return;

212 213 214
	rbase = gic_data_rdist_rd_base();

	val = readl_relaxed(rbase + GICR_WAKER);
215 216 217 218 219
	if (enable)
		/* Wake up this CPU redistributor */
		val &= ~GICR_WAKER_ProcessorSleep;
	else
		val |= GICR_WAKER_ProcessorSleep;
220 221
	writel_relaxed(val, rbase + GICR_WAKER);

222 223 224 225 226 227
	if (!enable) {		/* Check that GICR_WAKER is writeable */
		val = readl_relaxed(rbase + GICR_WAKER);
		if (!(val & GICR_WAKER_ProcessorSleep))
			return;	/* No PM support in this redistributor */
	}

228
	while (--count) {
229
		val = readl_relaxed(rbase + GICR_WAKER);
230
		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
231
			break;
232 233 234
		cpu_relax();
		udelay(1);
	};
235 236 237
	if (!count)
		pr_err_ratelimited("redistributor failed to %s...\n",
				   enable ? "wakeup" : "sleep");
238 239 240 241 242
}

/*
 * Routines to disable, enable, EOI and route interrupts
 */
243 244 245 246 247 248 249
static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
{
	switch (get_intid_range(d)) {
	case PPI_RANGE:
	case SPI_RANGE:
		*index = d->hwirq;
		return offset;
250 251 252 253 254 255 256 257
	case EPPI_RANGE:
		/*
		 * Contrary to the ESPI range, the EPPI range is contiguous
		 * to the PPI range in the registers, so let's adjust the
		 * displacement accordingly. Consistency is overrated.
		 */
		*index = d->hwirq - EPPI_BASE_INTID + 32;
		return offset;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	case ESPI_RANGE:
		*index = d->hwirq - ESPI_BASE_INTID;
		switch (offset) {
		case GICD_ISENABLER:
			return GICD_ISENABLERnE;
		case GICD_ICENABLER:
			return GICD_ICENABLERnE;
		case GICD_ISPENDR:
			return GICD_ISPENDRnE;
		case GICD_ICPENDR:
			return GICD_ICPENDRnE;
		case GICD_ISACTIVER:
			return GICD_ISACTIVERnE;
		case GICD_ICACTIVER:
			return GICD_ICACTIVERnE;
		case GICD_IPRIORITYR:
			return GICD_IPRIORITYRnE;
		case GICD_ICFGR:
			return GICD_ICFGRnE;
		case GICD_IROUTER:
			return GICD_IROUTERnE;
		default:
			break;
		}
		break;
283 284 285 286 287 288 289 290 291
	default:
		break;
	}

	WARN_ON(1);
	*index = d->hwirq;
	return offset;
}

292 293 294
static int gic_peek_irq(struct irq_data *d, u32 offset)
{
	void __iomem *base;
295 296 297 298
	u32 index, mask;

	offset = convert_offset_index(d, offset, &index);
	mask = 1 << (index % 32);
299 300 301 302 303 304

	if (gic_irq_in_rdist(d))
		base = gic_data_rdist_sgi_base();
	else
		base = gic_data.dist_base;

305
	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
306 307
}

308 309 310 311
static void gic_poke_irq(struct irq_data *d, u32 offset)
{
	void (*rwp_wait)(void);
	void __iomem *base;
312 313 314 315
	u32 index, mask;

	offset = convert_offset_index(d, offset, &index);
	mask = 1 << (index % 32);
316 317 318 319 320 321 322 323 324

	if (gic_irq_in_rdist(d)) {
		base = gic_data_rdist_sgi_base();
		rwp_wait = gic_redist_wait_for_rwp;
	} else {
		base = gic_data.dist_base;
		rwp_wait = gic_dist_wait_for_rwp;
	}

325
	writel_relaxed(mask, base + offset + (index / 32) * 4);
326 327 328 329 330 331 332 333
	rwp_wait();
}

static void gic_mask_irq(struct irq_data *d)
{
	gic_poke_irq(d, GICD_ICENABLER);
}

334 335 336
static void gic_eoimode1_mask_irq(struct irq_data *d)
{
	gic_mask_irq(d);
337 338 339 340 341 342 343 344
	/*
	 * When masking a forwarded interrupt, make sure it is
	 * deactivated as well.
	 *
	 * This ensures that an interrupt that is getting
	 * disabled/masked will not get "stuck", because there is
	 * noone to deactivate it (guest is being terminated).
	 */
345
	if (irqd_is_forwarded_to_vcpu(d))
346
		gic_poke_irq(d, GICD_ICACTIVER);
347 348
}

349 350 351 352 353
static void gic_unmask_irq(struct irq_data *d)
{
	gic_poke_irq(d, GICD_ISENABLER);
}

354 355 356 357 358 359
static inline bool gic_supports_nmi(void)
{
	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
	       static_branch_likely(&supports_pseudo_nmis);
}

360 361 362 363 364
static int gic_irq_set_irqchip_state(struct irq_data *d,
				     enum irqchip_irq_state which, bool val)
{
	u32 reg;

365
	if (d->hwirq >= 8192) /* PPI/SPI only */
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		return -EINVAL;

	switch (which) {
	case IRQCHIP_STATE_PENDING:
		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
		break;

	case IRQCHIP_STATE_ACTIVE:
		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
		break;

	case IRQCHIP_STATE_MASKED:
		reg = val ? GICD_ICENABLER : GICD_ISENABLER;
		break;

	default:
		return -EINVAL;
	}

	gic_poke_irq(d, reg);
	return 0;
}

static int gic_irq_get_irqchip_state(struct irq_data *d,
				     enum irqchip_irq_state which, bool *val)
{
392
	if (d->hwirq >= 8192) /* PPI/SPI only */
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
		return -EINVAL;

	switch (which) {
	case IRQCHIP_STATE_PENDING:
		*val = gic_peek_irq(d, GICD_ISPENDR);
		break;

	case IRQCHIP_STATE_ACTIVE:
		*val = gic_peek_irq(d, GICD_ISACTIVER);
		break;

	case IRQCHIP_STATE_MASKED:
		*val = !gic_peek_irq(d, GICD_ISENABLER);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

415 416 417
static void gic_irq_set_prio(struct irq_data *d, u8 prio)
{
	void __iomem *base = gic_dist_base(d);
418
	u32 offset, index;
419

420 421 422
	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);

	writeb_relaxed(prio, base + offset + index);
423 424
}

425 426 427 428 429
static u32 gic_get_ppi_index(struct irq_data *d)
{
	switch (get_intid_range(d)) {
	case PPI_RANGE:
		return d->hwirq - 16;
430 431
	case EPPI_RANGE:
		return d->hwirq - EPPI_BASE_INTID + 16;
432 433 434 435 436
	default:
		unreachable();
	}
}

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static int gic_irq_nmi_setup(struct irq_data *d)
{
	struct irq_desc *desc = irq_to_desc(d->irq);

	if (!gic_supports_nmi())
		return -EINVAL;

	if (gic_peek_irq(d, GICD_ISENABLER)) {
		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
		return -EINVAL;
	}

	/*
	 * A secondary irq_chip should be in charge of LPI request,
	 * it should not be possible to get there
	 */
	if (WARN_ON(gic_irq(d) >= 8192))
		return -EINVAL;

	/* desc lock should already be held */
457 458 459
	if (gic_irq_in_rdist(d)) {
		u32 idx = gic_get_ppi_index(d);

460
		/* Setting up PPI as NMI, only switch handler for first NMI */
461 462
		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
			refcount_set(&ppi_nmi_refs[idx], 1);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
		}
	} else {
		desc->handle_irq = handle_fasteoi_nmi;
	}

	gic_irq_set_prio(d, GICD_INT_NMI_PRI);

	return 0;
}

static void gic_irq_nmi_teardown(struct irq_data *d)
{
	struct irq_desc *desc = irq_to_desc(d->irq);

	if (WARN_ON(!gic_supports_nmi()))
		return;

	if (gic_peek_irq(d, GICD_ISENABLER)) {
		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
		return;
	}

	/*
	 * A secondary irq_chip should be in charge of LPI request,
	 * it should not be possible to get there
	 */
	if (WARN_ON(gic_irq(d) >= 8192))
		return;

	/* desc lock should already be held */
494 495 496
	if (gic_irq_in_rdist(d)) {
		u32 idx = gic_get_ppi_index(d);

497
		/* Tearing down NMI, only switch handler for last NMI */
498
		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
499 500 501 502 503 504 505 506
			desc->handle_irq = handle_percpu_devid_irq;
	} else {
		desc->handle_irq = handle_fasteoi_irq;
	}

	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
}

507 508 509 510 511
static void gic_eoi_irq(struct irq_data *d)
{
	gic_write_eoir(gic_irq(d));
}

512 513 514
static void gic_eoimode1_eoi_irq(struct irq_data *d)
{
	/*
515 516
	 * No need to deactivate an LPI, or an interrupt that
	 * is is getting forwarded to a vcpu.
517
	 */
518
	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
519 520 521 522
		return;
	gic_write_dir(gic_irq(d));
}

523 524
static int gic_set_type(struct irq_data *d, unsigned int type)
{
525
	enum gic_intid_range range;
526 527 528
	unsigned int irq = gic_irq(d);
	void (*rwp_wait)(void);
	void __iomem *base;
529
	u32 offset, index;
530
	int ret;
531 532 533 534 535

	/* Interrupt configuration for SGIs can't be changed */
	if (irq < 16)
		return -EINVAL;

536 537
	range = get_intid_range(d);

538
	/* SPIs have restrictions on the supported types */
539 540
	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
541 542 543 544 545 546 547 548 549 550
		return -EINVAL;

	if (gic_irq_in_rdist(d)) {
		base = gic_data_rdist_sgi_base();
		rwp_wait = gic_redist_wait_for_rwp;
	} else {
		base = gic_data.dist_base;
		rwp_wait = gic_dist_wait_for_rwp;
	}

551
	offset = convert_offset_index(d, GICD_ICFGR, &index);
552

553
	ret = gic_configure_irq(index, type, base + offset, rwp_wait);
554
	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
555
		/* Misconfigured PPIs are usually not fatal */
556
		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
557 558 559 560
		ret = 0;
	}

	return ret;
561 562
}

563 564
static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
{
565 566 567 568
	if (vcpu)
		irqd_set_forwarded_to_vcpu(d);
	else
		irqd_clr_forwarded_to_vcpu(d);
569 570 571
	return 0;
}

572
static u64 gic_mpidr_to_affinity(unsigned long mpidr)
573 574 575
{
	u64 aff;

576
	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
577 578 579 580 581 582 583
	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
	       MPIDR_AFFINITY_LEVEL(mpidr, 0));

	return aff;
}

584 585 586 587 588 589 590 591 592 593 594 595
static void gic_deactivate_unhandled(u32 irqnr)
{
	if (static_branch_likely(&supports_deactivate_key)) {
		if (irqnr < 8192)
			gic_write_dir(irqnr);
	} else {
		gic_write_eoir(irqnr);
	}
}

static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
{
596
	bool irqs_enabled = interrupts_enabled(regs);
597 598
	int err;

599 600 601
	if (irqs_enabled)
		nmi_enter();

602 603 604 605 606 607 608 609 610 611 612
	if (static_branch_likely(&supports_deactivate_key))
		gic_write_eoir(irqnr);
	/*
	 * Leave the PSR.I bit set to prevent other NMIs to be
	 * received while handling this one.
	 * PSR.I will be restored when we ERET to the
	 * interrupted context.
	 */
	err = handle_domain_nmi(gic_data.domain, irqnr, regs);
	if (err)
		gic_deactivate_unhandled(irqnr);
613 614 615

	if (irqs_enabled)
		nmi_exit();
616 617
}

618 619
static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
{
620
	u32 irqnr;
621

622
	irqnr = gic_read_iar();
623

624 625 626 627 628 629
	if (gic_supports_nmi() &&
	    unlikely(gic_read_rpr() == GICD_INT_NMI_PRI)) {
		gic_handle_nmi(irqnr, regs);
		return;
	}

630 631 632 633 634
	if (gic_prio_masking_enabled()) {
		gic_pmr_mask_irqs();
		gic_arch_enable_irqs();
	}

635 636 637 638 639 640
	/* Check for special IDs first */
	if ((irqnr >= 1020 && irqnr <= 1023))
		return;

	/* Treat anything but SGIs in a uniform way */
	if (likely(irqnr > 15)) {
641
		int err;
642

643 644 645 646 647 648 649 650
		if (static_branch_likely(&supports_deactivate_key))
			gic_write_eoir(irqnr);
		else
			isb();

		err = handle_domain_irq(gic_data.domain, irqnr, regs);
		if (err) {
			WARN_ONCE(true, "Unexpected interrupt received!\n");
651
			gic_deactivate_unhandled(irqnr);
652
		}
653 654 655 656 657 658
		return;
	}
	if (irqnr < 16) {
		gic_write_eoir(irqnr);
		if (static_branch_likely(&supports_deactivate_key))
			gic_write_dir(irqnr);
659
#ifdef CONFIG_SMP
660 661 662 663 664 665 666 667
		/*
		 * Unlike GICv2, we don't need an smp_rmb() here.
		 * The control dependency from gic_read_iar to
		 * the ISB in gic_write_eoir is enough to ensure
		 * that any shared data read by handle_IPI will
		 * be read after the ACK.
		 */
		handle_IPI(irqnr, regs);
668
#else
669
		WARN_ONCE(true, "Unexpected SGI received!\n");
670
#endif
671
	}
672 673
}

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
static u32 gic_get_pribits(void)
{
	u32 pribits;

	pribits = gic_read_ctlr();
	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
	pribits++;

	return pribits;
}

static bool gic_has_group0(void)
{
	u32 val;
689 690 691
	u32 old_pmr;

	old_pmr = gic_read_pmr();
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	/*
	 * Let's find out if Group0 is under control of EL3 or not by
	 * setting the highest possible, non-zero priority in PMR.
	 *
	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
	 * order for the CPU interface to set bit 7, and keep the
	 * actual priority in the non-secure range. In the process, it
	 * looses the least significant bit and the actual priority
	 * becomes 0x80. Reading it back returns 0, indicating that
	 * we're don't have access to Group0.
	 */
	gic_write_pmr(BIT(8 - gic_get_pribits()));
	val = gic_read_pmr();

707 708
	gic_write_pmr(old_pmr);

709 710 711
	return val != 0;
}

712 713 714 715 716 717 718 719 720 721
static void __init gic_dist_init(void)
{
	unsigned int i;
	u64 affinity;
	void __iomem *base = gic_data.dist_base;

	/* Disable the distributor */
	writel_relaxed(0, base + GICD_CTLR);
	gic_dist_wait_for_rwp();

722 723 724 725 726 727
	/*
	 * Configure SPIs as non-secure Group-1. This will only matter
	 * if the GIC only has a single security state. This will not
	 * do the right thing if the kernel is running in secure mode,
	 * but that's not the intended use case anyway.
	 */
728
	for (i = 32; i < GIC_LINE_NR; i += 32)
729 730
		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
	for (i = 0; i < GIC_ESPI_NR; i += 32) {
		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
	}

	for (i = 0; i < GIC_ESPI_NR; i += 32)
		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);

	for (i = 0; i < GIC_ESPI_NR; i += 16)
		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);

	for (i = 0; i < GIC_ESPI_NR; i += 4)
		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);

	/* Now do the common stuff, and wait for the distributor to drain */
	gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
748 749 750 751 752 753 754 755 756 757

	/* Enable distributor with ARE, Group1 */
	writel_relaxed(GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1,
		       base + GICD_CTLR);

	/*
	 * Set all global interrupts to the boot CPU only. ARE must be
	 * enabled.
	 */
	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
758
	for (i = 32; i < GIC_LINE_NR; i++)
759
		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
760 761 762

	for (i = 0; i < GIC_ESPI_NR; i++)
		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
763 764
}

765
static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
766
{
767
	int ret = -ENODEV;
768 769
	int i;

770 771
	for (i = 0; i < gic_data.nr_redist_regions; i++) {
		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
772
		u64 typer;
773 774 775 776 777 778 779 780 781 782
		u32 reg;

		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
		if (reg != GIC_PIDR2_ARCH_GICv3 &&
		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
			pr_warn("No redistributor present @%p\n", ptr);
			break;
		}

		do {
783
			typer = gic_read_typer(ptr + GICR_TYPER);
784 785
			ret = fn(gic_data.redist_regions + i, ptr);
			if (!ret)
786 787
				return 0;

788 789 790
			if (gic_data.redist_regions[i].single_redist)
				break;

791 792 793 794 795 796 797 798 799 800
			if (gic_data.redist_stride) {
				ptr += gic_data.redist_stride;
			} else {
				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
				if (typer & GICR_TYPER_VLPIS)
					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
			}
		} while (!(typer & GICR_TYPER_LAST));
	}

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	return ret ? -ENODEV : 0;
}

static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
{
	unsigned long mpidr = cpu_logical_map(smp_processor_id());
	u64 typer;
	u32 aff;

	/*
	 * Convert affinity to a 32bit value that can be matched to
	 * GICR_TYPER bits [63:32].
	 */
	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 0));

	typer = gic_read_typer(ptr + GICR_TYPER);
	if ((typer >> 32) == aff) {
		u64 offset = ptr - region->redist_base;
		gic_data_rdist_rd_base() = ptr;
		gic_data_rdist()->phys_base = region->phys_base + offset;

		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
			smp_processor_id(), mpidr,
			(int)(region - gic_data.redist_regions),
			&gic_data_rdist()->phys_base);
		return 0;
	}

	/* Try next one */
	return 1;
}

static int gic_populate_rdist(void)
{
	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
		return 0;

841
	/* We couldn't even deal with ourselves... */
842
	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
843 844
	     smp_processor_id(),
	     (unsigned long)cpu_logical_map(smp_processor_id()));
845 846 847
	return -ENODEV;
}

848 849
static int __gic_update_rdist_properties(struct redist_region *region,
					 void __iomem *ptr)
850 851 852 853
{
	u64 typer = gic_read_typer(ptr + GICR_TYPER);
	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
	gic_data.rdists.has_direct_lpi &= !!(typer & GICR_TYPER_DirectLPIS);
854
	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
855 856 857 858

	return 1;
}

859
static void gic_update_rdist_properties(void)
860
{
861 862 863 864 865
	gic_data.ppi_nr = UINT_MAX;
	gic_iterate_rdists(__gic_update_rdist_properties);
	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
		gic_data.ppi_nr = 0;
	pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
866 867 868 869 870
	pr_info("%sVLPI support, %sdirect LPI support\n",
		!gic_data.rdists.has_vlpis ? "no " : "",
		!gic_data.rdists.has_direct_lpi ? "no " : "");
}

871 872 873 874 875 876
/* Check whether it's single security state view */
static inline bool gic_dist_security_disabled(void)
{
	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
}

877 878
static void gic_cpu_sys_reg_init(void)
{
879 880 881
	int i, cpu = smp_processor_id();
	u64 mpidr = cpu_logical_map(cpu);
	u64 need_rss = MPIDR_RS(mpidr);
882
	bool group0;
883
	u32 pribits;
884

885 886 887 888 889 890 891 892 893
	/*
	 * Need to check that the SRE bit has actually been set. If
	 * not, it means that SRE is disabled at EL2. We're going to
	 * die painfully, and there is nothing we can do about it.
	 *
	 * Kindly inform the luser.
	 */
	if (!gic_enable_sre())
		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
894

895
	pribits = gic_get_pribits();
896

897
	group0 = gic_has_group0();
898

899
	/* Set priority mask register */
900
	if (!gic_prio_masking_enabled()) {
901
		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
902 903 904 905 906 907 908 909 910
	} else {
		/*
		 * Mismatch configuration with boot CPU, the system is likely
		 * to die as interrupt masking will not work properly on all
		 * CPUs
		 */
		WARN_ON(gic_supports_nmi() && group0 &&
			!gic_dist_security_disabled());
	}
911

912 913 914 915 916 917 918 919
	/*
	 * Some firmwares hand over to the kernel with the BPR changed from
	 * its reset value (and with a value large enough to prevent
	 * any pre-emptive interrupts from working at all). Writing a zero
	 * to BPR restores is reset value.
	 */
	gic_write_bpr1(0);

920
	if (static_branch_likely(&supports_deactivate_key)) {
921 922 923 924 925 926
		/* EOI drops priority only (mode 1) */
		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
	} else {
		/* EOI deactivates interrupt too (mode 0) */
		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
	}
927

928 929 930 931 932 933 934
	/* Always whack Group0 before Group1 */
	if (group0) {
		switch(pribits) {
		case 8:
		case 7:
			write_gicreg(0, ICC_AP0R3_EL1);
			write_gicreg(0, ICC_AP0R2_EL1);
935
		/* Fall through */
936 937
		case 6:
			write_gicreg(0, ICC_AP0R1_EL1);
938
		/* Fall through */
939 940 941 942 943 944 945
		case 5:
		case 4:
			write_gicreg(0, ICC_AP0R0_EL1);
		}

		isb();
	}
946

947
	switch(pribits) {
948 949 950 951
	case 8:
	case 7:
		write_gicreg(0, ICC_AP1R3_EL1);
		write_gicreg(0, ICC_AP1R2_EL1);
952
		/* Fall through */
953 954
	case 6:
		write_gicreg(0, ICC_AP1R1_EL1);
955
		/* Fall through */
956 957 958 959 960 961 962
	case 5:
	case 4:
		write_gicreg(0, ICC_AP1R0_EL1);
	}

	isb();

963 964
	/* ... and let's hit the road... */
	gic_write_grpen1(1);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988

	/* Keep the RSS capability status in per_cpu variable */
	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);

	/* Check all the CPUs have capable of sending SGIs to other CPUs */
	for_each_online_cpu(i) {
		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);

		need_rss |= MPIDR_RS(cpu_logical_map(i));
		if (need_rss && (!have_rss))
			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
				cpu, (unsigned long)mpidr,
				i, (unsigned long)cpu_logical_map(i));
	}

	/**
	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
	 * UNPREDICTABLE choice of :
	 *   - The write is ignored.
	 *   - The RS field is treated as 0.
	 */
	if (need_rss && (!gic_data.has_rss))
		pr_crit_once("RSS is required but GICD doesn't support it\n");
989 990
}

991 992 993 994 995 996 997 998
static bool gicv3_nolpi;

static int __init gicv3_nolpi_cfg(char *buf)
{
	return strtobool(buf, &gicv3_nolpi);
}
early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);

999 1000
static int gic_dist_supports_lpis(void)
{
1001 1002 1003
	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
		!gicv3_nolpi);
1004 1005
}

1006 1007 1008
static void gic_cpu_init(void)
{
	void __iomem *rbase;
1009
	int i;
1010 1011 1012 1013 1014

	/* Register ourselves with the rest of the world */
	if (gic_populate_rdist())
		return;

1015
	gic_enable_redist(true);
1016

1017 1018 1019 1020 1021
	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
	     "Distributor has extended ranges, but CPU%d doesn't\n",
	     smp_processor_id());

1022 1023
	rbase = gic_data_rdist_sgi_base();

1024
	/* Configure SGIs/PPIs as non-secure Group-1 */
1025 1026
	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1027

1028
	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1029

1030 1031
	/* initialise system registers */
	gic_cpu_sys_reg_init();
1032 1033 1034
}

#ifdef CONFIG_SMP
1035

1036 1037 1038
#define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
#define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)

1039
static int gic_starting_cpu(unsigned int cpu)
1040
{
1041
	gic_cpu_init();
1042 1043 1044 1045

	if (gic_dist_supports_lpis())
		its_cpu_init();

1046
	return 0;
1047 1048 1049
}

static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1050
				   unsigned long cluster_id)
1051
{
1052
	int next_cpu, cpu = *base_cpu;
1053
	unsigned long mpidr = cpu_logical_map(cpu);
1054 1055 1056 1057 1058
	u16 tlist = 0;

	while (cpu < nr_cpu_ids) {
		tlist |= 1 << (mpidr & 0xf);

1059 1060
		next_cpu = cpumask_next(cpu, mask);
		if (next_cpu >= nr_cpu_ids)
1061
			goto out;
1062
		cpu = next_cpu;
1063 1064 1065

		mpidr = cpu_logical_map(cpu);

1066
		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1067 1068 1069 1070 1071 1072 1073 1074 1075
			cpu--;
			goto out;
		}
	}
out:
	*base_cpu = cpu;
	return tlist;
}

1076 1077 1078 1079
#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)

1080 1081 1082 1083
static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
{
	u64 val;

1084 1085 1086 1087
	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1088
	       MPIDR_TO_SGI_RS(cluster_id)		|
1089
	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1090

1091
	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	gic_write_sgi1r(val);
}

static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
{
	int cpu;

	if (WARN_ON(irq >= 16))
		return;

	/*
	 * Ensure that stores to Normal memory are visible to the
	 * other CPUs before issuing the IPI.
	 */
1106
	wmb();
1107

1108
	for_each_cpu(cpu, mask) {
1109
		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		u16 tlist;

		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
		gic_send_sgi(cluster_id, tlist, irq);
	}

	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
	isb();
}

static void gic_smp_init(void)
{
	set_smp_cross_call(gic_raise_softirq);
1123
	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
T
Thomas Gleixner 已提交
1124 1125
				  "irqchip/arm/gicv3:starting",
				  gic_starting_cpu, NULL);
1126 1127 1128 1129 1130
}

static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
			    bool force)
{
1131
	unsigned int cpu;
1132
	u32 offset, index;
1133 1134 1135 1136
	void __iomem *reg;
	int enabled;
	u64 val;

1137 1138 1139 1140 1141
	if (force)
		cpu = cpumask_first(mask_val);
	else
		cpu = cpumask_any_and(mask_val, cpu_online_mask);

1142 1143 1144
	if (cpu >= nr_cpu_ids)
		return -EINVAL;

1145 1146 1147 1148 1149 1150 1151 1152
	if (gic_irq_in_rdist(d))
		return -EINVAL;

	/* If interrupt was enabled, disable it first */
	enabled = gic_peek_irq(d, GICD_ISENABLER);
	if (enabled)
		gic_mask_irq(d);

1153 1154
	offset = convert_offset_index(d, GICD_IROUTER, &index);
	reg = gic_dist_base(d) + offset + (index * 8);
1155 1156
	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));

1157
	gic_write_irouter(val, reg);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

	/*
	 * If the interrupt was enabled, enabled it again. Otherwise,
	 * just wait for the distributor to have digested our changes.
	 */
	if (enabled)
		gic_unmask_irq(d);
	else
		gic_dist_wait_for_rwp();

1168 1169
	irq_data_update_effective_affinity(d, cpumask_of(cpu));

1170
	return IRQ_SET_MASK_OK_DONE;
1171 1172 1173 1174 1175 1176
}
#else
#define gic_set_affinity	NULL
#define gic_smp_init()		do { } while(0)
#endif

1177 1178 1179 1180 1181
#ifdef CONFIG_CPU_PM
static int gic_cpu_pm_notifier(struct notifier_block *self,
			       unsigned long cmd, void *v)
{
	if (cmd == CPU_PM_EXIT) {
1182 1183
		if (gic_dist_security_disabled())
			gic_enable_redist(true);
1184
		gic_cpu_sys_reg_init();
1185
	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		gic_write_grpen1(0);
		gic_enable_redist(false);
	}
	return NOTIFY_OK;
}

static struct notifier_block gic_cpu_pm_notifier_block = {
	.notifier_call = gic_cpu_pm_notifier,
};

static void gic_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
}

#else
static inline void gic_cpu_pm_init(void) { }
#endif /* CONFIG_CPU_PM */

1205 1206 1207 1208 1209 1210 1211
static struct irq_chip gic_chip = {
	.name			= "GICv3",
	.irq_mask		= gic_mask_irq,
	.irq_unmask		= gic_unmask_irq,
	.irq_eoi		= gic_eoi_irq,
	.irq_set_type		= gic_set_type,
	.irq_set_affinity	= gic_set_affinity,
1212 1213
	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1214 1215
	.irq_nmi_setup		= gic_irq_nmi_setup,
	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1216 1217 1218
	.flags			= IRQCHIP_SET_TYPE_MASKED |
				  IRQCHIP_SKIP_SET_WAKE |
				  IRQCHIP_MASK_ON_SUSPEND,
1219 1220
};

1221 1222 1223 1224 1225 1226 1227 1228 1229
static struct irq_chip gic_eoimode1_chip = {
	.name			= "GICv3",
	.irq_mask		= gic_eoimode1_mask_irq,
	.irq_unmask		= gic_unmask_irq,
	.irq_eoi		= gic_eoimode1_eoi_irq,
	.irq_set_type		= gic_set_type,
	.irq_set_affinity	= gic_set_affinity,
	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1230
	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1231 1232
	.irq_nmi_setup		= gic_irq_nmi_setup,
	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1233 1234 1235
	.flags			= IRQCHIP_SET_TYPE_MASKED |
				  IRQCHIP_SKIP_SET_WAKE |
				  IRQCHIP_MASK_ON_SUSPEND,
1236 1237
};

1238 1239 1240
static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
			      irq_hw_number_t hw)
{
1241 1242
	struct irq_chip *chip = &gic_chip;

1243
	if (static_branch_likely(&supports_deactivate_key))
1244 1245
		chip = &gic_eoimode1_chip;

1246 1247
	switch (__get_intid_range(hw)) {
	case PPI_RANGE:
1248
	case EPPI_RANGE:
1249
		irq_set_percpu_devid(irq);
1250
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1251
				    handle_percpu_devid_irq, NULL, NULL);
1252
		irq_set_status_flags(irq, IRQ_NOAUTOEN);
1253 1254 1255
		break;

	case SPI_RANGE:
1256
	case ESPI_RANGE:
1257
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1258
				    handle_fasteoi_irq, NULL, NULL);
1259
		irq_set_probe(irq);
1260
		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
1261 1262 1263
		break;

	case LPI_RANGE:
1264 1265
		if (!gic_dist_supports_lpis())
			return -EPERM;
1266
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1267
				    handle_fasteoi_irq, NULL, NULL);
1268 1269 1270 1271
		break;

	default:
		return -EPERM;
1272 1273
	}

1274 1275 1276
	return 0;
}

1277 1278
#define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)

1279 1280 1281 1282
static int gic_irq_domain_translate(struct irq_domain *d,
				    struct irq_fwspec *fwspec,
				    unsigned long *hwirq,
				    unsigned int *type)
1283
{
1284 1285 1286
	if (is_of_node(fwspec->fwnode)) {
		if (fwspec->param_count < 3)
			return -EINVAL;
1287

1288 1289 1290 1291 1292 1293 1294
		switch (fwspec->param[0]) {
		case 0:			/* SPI */
			*hwirq = fwspec->param[1] + 32;
			break;
		case 1:			/* PPI */
			*hwirq = fwspec->param[1] + 16;
			break;
1295 1296 1297
		case 2:			/* ESPI */
			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
			break;
1298 1299 1300
		case 3:			/* EPPI */
			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
			break;
1301 1302 1303
		case GIC_IRQ_TYPE_LPI:	/* LPI */
			*hwirq = fwspec->param[1];
			break;
1304 1305 1306 1307 1308 1309 1310
		case GIC_IRQ_TYPE_PARTITION:
			*hwirq = fwspec->param[1];
			if (fwspec->param[1] >= 16)
				*hwirq += EPPI_BASE_INTID - 16;
			else
				*hwirq += 16;
			break;
1311 1312 1313
		default:
			return -EINVAL;
		}
1314 1315

		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1316

1317 1318 1319 1320 1321 1322
		/*
		 * Make it clear that broken DTs are... broken.
		 * Partitionned PPIs are an unfortunate exception.
		 */
		WARN_ON(*type == IRQ_TYPE_NONE &&
			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1323
		return 0;
1324 1325
	}

1326 1327 1328 1329 1330 1331
	if (is_fwnode_irqchip(fwspec->fwnode)) {
		if(fwspec->param_count != 2)
			return -EINVAL;

		*hwirq = fwspec->param[0];
		*type = fwspec->param[1];
1332 1333

		WARN_ON(*type == IRQ_TYPE_NONE);
1334 1335 1336
		return 0;
	}

1337
	return -EINVAL;
1338 1339
}

1340 1341 1342 1343 1344 1345
static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
				unsigned int nr_irqs, void *arg)
{
	int i, ret;
	irq_hw_number_t hwirq;
	unsigned int type = IRQ_TYPE_NONE;
1346
	struct irq_fwspec *fwspec = arg;
1347

1348
	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1349 1350 1351
	if (ret)
		return ret;

1352 1353 1354 1355 1356
	for (i = 0; i < nr_irqs; i++) {
		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
		if (ret)
			return ret;
	}
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

	return 0;
}

static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
				unsigned int nr_irqs)
{
	int i;

	for (i = 0; i < nr_irqs; i++) {
		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
		irq_set_handler(virq + i, NULL);
		irq_domain_reset_irq_data(d);
	}
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static int gic_irq_domain_select(struct irq_domain *d,
				 struct irq_fwspec *fwspec,
				 enum irq_domain_bus_token bus_token)
{
	/* Not for us */
        if (fwspec->fwnode != d->fwnode)
		return 0;

	/* If this is not DT, then we have a single domain */
	if (!is_of_node(fwspec->fwnode))
		return 1;

	/*
	 * If this is a PPI and we have a 4th (non-null) parameter,
	 * then we need to match the partition domain.
	 */
	if (fwspec->param_count >= 4 &&
1390 1391
	    fwspec->param[0] == 1 && fwspec->param[3] != 0 &&
	    gic_data.ppi_descs)
1392 1393 1394 1395 1396
		return d == partition_get_domain(gic_data.ppi_descs[fwspec->param[1]]);

	return d == gic_data.domain;
}

1397
static const struct irq_domain_ops gic_irq_domain_ops = {
1398
	.translate = gic_irq_domain_translate,
1399 1400
	.alloc = gic_irq_domain_alloc,
	.free = gic_irq_domain_free,
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	.select = gic_irq_domain_select,
};

static int partition_domain_translate(struct irq_domain *d,
				      struct irq_fwspec *fwspec,
				      unsigned long *hwirq,
				      unsigned int *type)
{
	struct device_node *np;
	int ret;

1412 1413 1414
	if (!gic_data.ppi_descs)
		return -ENOMEM;

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	np = of_find_node_by_phandle(fwspec->param[3]);
	if (WARN_ON(!np))
		return -EINVAL;

	ret = partition_translate_id(gic_data.ppi_descs[fwspec->param[1]],
				     of_node_to_fwnode(np));
	if (ret < 0)
		return ret;

	*hwirq = ret;
	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;

	return 0;
}

static const struct irq_domain_ops partition_domain_ops = {
	.translate = partition_domain_translate,
	.select = gic_irq_domain_select,
1433 1434
};

1435 1436 1437 1438 1439 1440 1441 1442 1443
static bool gic_enable_quirk_msm8996(void *data)
{
	struct gic_chip_data *d = data;

	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;

	return true;
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
static bool gic_enable_quirk_hip06_07(void *data)
{
	struct gic_chip_data *d = data;

	/*
	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
	 * not being an actual ARM implementation). The saving grace is
	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
	 * HIP07 doesn't even have a proper IIDR, and still pretends to
	 * have ESPI. In both cases, put them right.
	 */
	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
		/* Zero both ESPI and the RES0 field next to it... */
		d->rdists.gicd_typer &= ~GENMASK(9, 8);
		return true;
	}

	return false;
}

static const struct gic_quirk gic_quirks[] = {
	{
		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
		.compatible = "qcom,msm8996-gic-v3",
		.init	= gic_enable_quirk_msm8996,
	},
	{
		.desc	= "GICv3: HIP06 erratum 161010803",
		.iidr	= 0x0204043b,
		.mask	= 0xffffffff,
		.init	= gic_enable_quirk_hip06_07,
	},
	{
		.desc	= "GICv3: HIP07 erratum 161010803",
		.iidr	= 0x00000000,
		.mask	= 0xffffffff,
		.init	= gic_enable_quirk_hip06_07,
	},
	{
	}
};

1486 1487
static void gic_enable_nmi_support(void)
{
1488 1489
	int i;

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	if (!gic_prio_masking_enabled())
		return;

	if (gic_has_group0() && !gic_dist_security_disabled()) {
		pr_warn("SCR_EL3.FIQ is cleared, cannot enable use of pseudo-NMIs\n");
		return;
	}

	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
	if (!ppi_nmi_refs)
		return;

	for (i = 0; i < gic_data.ppi_nr; i++)
1503 1504
		refcount_set(&ppi_nmi_refs[i], 0);

1505
	static_branch_enable(&supports_pseudo_nmis);
1506 1507 1508 1509 1510

	if (static_branch_likely(&supports_deactivate_key))
		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
	else
		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1511 1512
}

1513 1514 1515 1516 1517
static int __init gic_init_bases(void __iomem *dist_base,
				 struct redist_region *rdist_regs,
				 u32 nr_redist_regions,
				 u64 redist_stride,
				 struct fwnode_handle *handle)
1518
{
1519
	u32 typer;
1520 1521
	int err;

1522
	if (!is_hyp_mode_available())
1523
		static_branch_disable(&supports_deactivate_key);
1524

1525
	if (static_branch_likely(&supports_deactivate_key))
1526 1527
		pr_info("GIC: Using split EOI/Deactivate mode\n");

1528
	gic_data.fwnode = handle;
1529
	gic_data.dist_base = dist_base;
1530 1531
	gic_data.redist_regions = rdist_regs;
	gic_data.nr_redist_regions = nr_redist_regions;
1532 1533 1534 1535 1536
	gic_data.redist_stride = redist_stride;

	/*
	 * Find out how many interrupts are supported.
	 */
1537
	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1538
	gic_data.rdists.gicd_typer = typer;
1539 1540 1541 1542

	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
			  gic_quirks, &gic_data);

1543 1544
	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1545 1546
	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
						 &gic_data);
1547
	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1548
	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1549 1550
	gic_data.rdists.has_vlpis = true;
	gic_data.rdists.has_direct_lpi = true;
1551

1552
	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1553 1554 1555 1556
		err = -ENOMEM;
		goto out_free;
	}

1557 1558 1559 1560
	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
	pr_info("Distributor has %sRange Selector support\n",
		gic_data.has_rss ? "" : "no ");

1561 1562 1563 1564 1565 1566
	if (typer & GICD_TYPER_MBIS) {
		err = mbi_init(handle, gic_data.domain);
		if (err)
			pr_err("Failed to initialize MBIs\n");
	}

1567 1568
	set_handle_irq(gic_handle_irq);

1569
	gic_update_rdist_properties();
1570

1571 1572 1573
	gic_smp_init();
	gic_dist_init();
	gic_cpu_init();
1574
	gic_cpu_pm_init();
1575

1576 1577 1578
	if (gic_dist_supports_lpis()) {
		its_init(handle, &gic_data.rdists, gic_data.domain);
		its_cpu_init();
1579 1580 1581
	} else {
		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
			gicv2m_init(handle, gic_data.domain);
1582 1583
	}

1584
	gic_enable_nmi_support();
1585

1586 1587 1588 1589 1590
	return 0;

out_free:
	if (gic_data.domain)
		irq_domain_remove(gic_data.domain);
1591
	free_percpu(gic_data.rdists.rdist);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	return err;
}

static int __init gic_validate_dist_version(void __iomem *dist_base)
{
	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;

	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
		return -ENODEV;

	return 0;
}

1605
/* Create all possible partitions at boot time */
1606
static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1607 1608 1609 1610 1611 1612
{
	struct device_node *parts_node, *child_part;
	int part_idx = 0, i;
	int nr_parts;
	struct partition_affinity *parts;

1613
	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1614 1615 1616
	if (!parts_node)
		return;

1617 1618 1619 1620
	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
	if (!gic_data.ppi_descs)
		return;

1621 1622 1623
	nr_parts = of_get_child_count(parts_node);

	if (!nr_parts)
1624
		goto out_put_node;
1625

K
Kees Cook 已提交
1626
	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1627
	if (WARN_ON(!parts))
1628
		goto out_put_node;
1629 1630 1631 1632 1633 1634 1635 1636 1637

	for_each_child_of_node(parts_node, child_part) {
		struct partition_affinity *part;
		int n;

		part = &parts[part_idx];

		part->partition_id = of_node_to_fwnode(child_part);

1638 1639
		pr_info("GIC: PPI partition %pOFn[%d] { ",
			child_part, part_idx);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

		n = of_property_count_elems_of_size(child_part, "affinity",
						    sizeof(u32));
		WARN_ON(n <= 0);

		for (i = 0; i < n; i++) {
			int err, cpu;
			u32 cpu_phandle;
			struct device_node *cpu_node;

			err = of_property_read_u32_index(child_part, "affinity",
							 i, &cpu_phandle);
			if (WARN_ON(err))
				continue;

			cpu_node = of_find_node_by_phandle(cpu_phandle);
			if (WARN_ON(!cpu_node))
				continue;

1659 1660
			cpu = of_cpu_node_to_id(cpu_node);
			if (WARN_ON(cpu < 0))
1661 1662
				continue;

1663
			pr_cont("%pOF[%d] ", cpu_node, cpu);
1664 1665 1666 1667 1668 1669 1670 1671

			cpumask_set_cpu(cpu, &part->mask);
		}

		pr_cont("}\n");
		part_idx++;
	}

1672
	for (i = 0; i < gic_data.ppi_nr; i++) {
1673 1674 1675 1676 1677 1678
		unsigned int irq;
		struct partition_desc *desc;
		struct irq_fwspec ppi_fwspec = {
			.fwnode		= gic_data.fwnode,
			.param_count	= 3,
			.param		= {
1679
				[0]	= GIC_IRQ_TYPE_PARTITION,
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
				[1]	= i,
				[2]	= IRQ_TYPE_NONE,
			},
		};

		irq = irq_create_fwspec_mapping(&ppi_fwspec);
		if (WARN_ON(!irq))
			continue;
		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
					     irq, &partition_domain_ops);
		if (WARN_ON(!desc))
			continue;

		gic_data.ppi_descs[i] = desc;
	}
1695 1696 1697

out_put_node:
	of_node_put(parts_node);
1698 1699
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
static void __init gic_of_setup_kvm_info(struct device_node *node)
{
	int ret;
	struct resource r;
	u32 gicv_idx;

	gic_v3_kvm_info.type = GIC_V3;

	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
	if (!gic_v3_kvm_info.maint_irq)
		return;

	if (of_property_read_u32(node, "#redistributor-regions",
				 &gicv_idx))
		gicv_idx = 1;

	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
	ret = of_address_to_resource(node, gicv_idx, &r);
	if (!ret)
		gic_v3_kvm_info.vcpu = r;

1721
	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1722 1723 1724
	gic_set_kvm_info(&gic_v3_kvm_info);
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
static int __init gic_of_init(struct device_node *node, struct device_node *parent)
{
	void __iomem *dist_base;
	struct redist_region *rdist_regs;
	u64 redist_stride;
	u32 nr_redist_regions;
	int err, i;

	dist_base = of_iomap(node, 0);
	if (!dist_base) {
1735
		pr_err("%pOF: unable to map gic dist registers\n", node);
1736 1737 1738 1739 1740
		return -ENXIO;
	}

	err = gic_validate_dist_version(dist_base);
	if (err) {
1741
		pr_err("%pOF: no distributor detected, giving up\n", node);
1742 1743 1744 1745 1746 1747
		goto out_unmap_dist;
	}

	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
		nr_redist_regions = 1;

K
Kees Cook 已提交
1748 1749
	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
			     GFP_KERNEL);
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	if (!rdist_regs) {
		err = -ENOMEM;
		goto out_unmap_dist;
	}

	for (i = 0; i < nr_redist_regions; i++) {
		struct resource res;
		int ret;

		ret = of_address_to_resource(node, 1 + i, &res);
		rdist_regs[i].redist_base = of_iomap(node, 1 + i);
		if (ret || !rdist_regs[i].redist_base) {
1762
			pr_err("%pOF: couldn't map region %d\n", node, i);
1763 1764 1765 1766 1767 1768 1769 1770 1771
			err = -ENODEV;
			goto out_unmap_rdist;
		}
		rdist_regs[i].phys_base = res.start;
	}

	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
		redist_stride = 0;

1772 1773
	gic_enable_of_quirks(node, gic_quirks, &gic_data);

1774 1775
	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
			     redist_stride, &node->fwnode);
1776 1777 1778 1779
	if (err)
		goto out_unmap_rdist;

	gic_populate_ppi_partitions(node);
1780

1781
	if (static_branch_likely(&supports_deactivate_key))
1782
		gic_of_setup_kvm_info(node);
1783
	return 0;
1784

1785
out_unmap_rdist:
1786 1787 1788 1789
	for (i = 0; i < nr_redist_regions; i++)
		if (rdist_regs[i].redist_base)
			iounmap(rdist_regs[i].redist_base);
	kfree(rdist_regs);
1790 1791 1792 1793 1794 1795
out_unmap_dist:
	iounmap(dist_base);
	return err;
}

IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
1796 1797

#ifdef CONFIG_ACPI
1798 1799 1800 1801 1802 1803
static struct
{
	void __iomem *dist_base;
	struct redist_region *redist_regs;
	u32 nr_redist_regions;
	bool single_redist;
1804 1805 1806
	u32 maint_irq;
	int maint_irq_mode;
	phys_addr_t vcpu_base;
1807
} acpi_data __initdata;
1808 1809 1810 1811 1812 1813

static void __init
gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
{
	static int count = 0;

1814 1815 1816
	acpi_data.redist_regs[count].phys_base = phys_base;
	acpi_data.redist_regs[count].redist_base = redist_base;
	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
1817 1818
	count++;
}
1819 1820

static int __init
1821
gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
			   const unsigned long end)
{
	struct acpi_madt_generic_redistributor *redist =
			(struct acpi_madt_generic_redistributor *)header;
	void __iomem *redist_base;

	redist_base = ioremap(redist->base_address, redist->length);
	if (!redist_base) {
		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
		return -ENOMEM;
	}

1834
	gic_acpi_register_redist(redist->base_address, redist_base);
1835 1836 1837
	return 0;
}

1838
static int __init
1839
gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
1840 1841 1842 1843
			 const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
				(struct acpi_madt_generic_interrupt *)header;
1844
	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1845 1846 1847
	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
	void __iomem *redist_base;

1848 1849 1850 1851
	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	redist_base = ioremap(gicc->gicr_base_address, size);
	if (!redist_base)
		return -ENOMEM;

	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
	return 0;
}

static int __init gic_acpi_collect_gicr_base(void)
{
	acpi_tbl_entry_handler redist_parser;
	enum acpi_madt_type type;

1865
	if (acpi_data.single_redist) {
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
		redist_parser = gic_acpi_parse_madt_gicc;
	} else {
		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
		redist_parser = gic_acpi_parse_madt_redist;
	}

	/* Collect redistributor base addresses in GICR entries */
	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
		return 0;

	pr_info("No valid GICR entries exist\n");
	return -ENODEV;
}

1881
static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
1882 1883 1884 1885 1886 1887
				  const unsigned long end)
{
	/* Subtable presence means that redist exists, that's it */
	return 0;
}

1888
static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
				      const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
				(struct acpi_madt_generic_interrupt *)header;

	/*
	 * If GICC is enabled and has valid gicr base address, then it means
	 * GICR base is presented via GICC
	 */
	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address)
		return 0;

1901 1902 1903 1904 1905 1906 1907
	/*
	 * It's perfectly valid firmware can pass disabled GICC entry, driver
	 * should not treat as errors, skip the entry instead of probe fail.
	 */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	return -ENODEV;
}

static int __init gic_acpi_count_gicr_regions(void)
{
	int count;

	/*
	 * Count how many redistributor regions we have. It is not allowed
	 * to mix redistributor description, GICR and GICC subtables have to be
	 * mutually exclusive.
	 */
	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
				      gic_acpi_match_gicr, 0);
	if (count > 0) {
1923
		acpi_data.single_redist = false;
1924 1925 1926 1927 1928 1929
		return count;
	}

	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
				      gic_acpi_match_gicc, 0);
	if (count > 0)
1930
		acpi_data.single_redist = true;
1931 1932 1933 1934

	return count;
}

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
					   struct acpi_probe_entry *ape)
{
	struct acpi_madt_generic_distributor *dist;
	int count;

	dist = (struct acpi_madt_generic_distributor *)header;
	if (dist->version != ape->driver_data)
		return false;

	/* We need to do that exercise anyway, the sooner the better */
1946
	count = gic_acpi_count_gicr_regions();
1947 1948 1949
	if (count <= 0)
		return false;

1950
	acpi_data.nr_redist_regions = count;
1951 1952 1953
	return true;
}

1954
static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
						const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
		(struct acpi_madt_generic_interrupt *)header;
	int maint_irq_mode;
	static int first_madt = true;

	/* Skip unusable CPUs */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;

	if (first_madt) {
		first_madt = false;

		acpi_data.maint_irq = gicc->vgic_interrupt;
		acpi_data.maint_irq_mode = maint_irq_mode;
		acpi_data.vcpu_base = gicc->gicv_base_address;

		return 0;
	}

	/*
	 * The maintenance interrupt and GICV should be the same for every CPU
	 */
	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
	    (acpi_data.vcpu_base != gicc->gicv_base_address))
		return -EINVAL;

	return 0;
}

static bool __init gic_acpi_collect_virt_info(void)
{
	int count;

	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
				      gic_acpi_parse_virt_madt_gicc, 0);

	return (count > 0);
}

2000
#define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
#define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
#define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)

static void __init gic_acpi_setup_kvm_info(void)
{
	int irq;

	if (!gic_acpi_collect_virt_info()) {
		pr_warn("Unable to get hardware information used for virtualization\n");
		return;
	}

	gic_v3_kvm_info.type = GIC_V3;

	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
				acpi_data.maint_irq_mode,
				ACPI_ACTIVE_HIGH);
	if (irq <= 0)
		return;

	gic_v3_kvm_info.maint_irq = irq;

	if (acpi_data.vcpu_base) {
		struct resource *vcpu = &gic_v3_kvm_info.vcpu;

		vcpu->flags = IORESOURCE_MEM;
		vcpu->start = acpi_data.vcpu_base;
		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
	}

2031
	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2032 2033
	gic_set_kvm_info(&gic_v3_kvm_info);
}
2034 2035 2036 2037 2038 2039

static int __init
gic_acpi_init(struct acpi_subtable_header *header, const unsigned long end)
{
	struct acpi_madt_generic_distributor *dist;
	struct fwnode_handle *domain_handle;
2040
	size_t size;
2041
	int i, err;
2042 2043 2044

	/* Get distributor base address */
	dist = (struct acpi_madt_generic_distributor *)header;
2045 2046 2047
	acpi_data.dist_base = ioremap(dist->base_address,
				      ACPI_GICV3_DIST_MEM_SIZE);
	if (!acpi_data.dist_base) {
2048 2049 2050 2051
		pr_err("Unable to map GICD registers\n");
		return -ENOMEM;
	}

2052
	err = gic_validate_dist_version(acpi_data.dist_base);
2053
	if (err) {
2054
		pr_err("No distributor detected at @%p, giving up\n",
2055
		       acpi_data.dist_base);
2056 2057 2058
		goto out_dist_unmap;
	}

2059 2060 2061
	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
	if (!acpi_data.redist_regs) {
2062 2063 2064 2065
		err = -ENOMEM;
		goto out_dist_unmap;
	}

2066 2067
	err = gic_acpi_collect_gicr_base();
	if (err)
2068 2069
		goto out_redist_unmap;

2070
	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2071 2072 2073 2074 2075
	if (!domain_handle) {
		err = -ENOMEM;
		goto out_redist_unmap;
	}

2076 2077
	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
			     acpi_data.nr_redist_regions, 0, domain_handle);
2078 2079 2080 2081
	if (err)
		goto out_fwhandle_free;

	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2082

2083
	if (static_branch_likely(&supports_deactivate_key))
2084
		gic_acpi_setup_kvm_info();
2085

2086 2087 2088 2089 2090
	return 0;

out_fwhandle_free:
	irq_domain_free_fwnode(domain_handle);
out_redist_unmap:
2091 2092 2093 2094
	for (i = 0; i < acpi_data.nr_redist_regions; i++)
		if (acpi_data.redist_regs[i].redist_base)
			iounmap(acpi_data.redist_regs[i].redist_base);
	kfree(acpi_data.redist_regs);
2095
out_dist_unmap:
2096
	iounmap(acpi_data.dist_base);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	return err;
}
IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
		     gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
		     gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
		     gic_acpi_init);
#endif