irq-gic-v3.c 55.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 5 6
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

7 8
#define pr_fmt(fmt)	"GICv3: " fmt

9
#include <linux/acpi.h>
10
#include <linux/cpu.h>
11
#include <linux/cpu_pm.h>
12 13
#include <linux/delay.h>
#include <linux/interrupt.h>
14
#include <linux/irqdomain.h>
15 16 17 18
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/percpu.h>
19
#include <linux/refcount.h>
20 21
#include <linux/slab.h>

22
#include <linux/irqchip.h>
23
#include <linux/irqchip/arm-gic-common.h>
24
#include <linux/irqchip/arm-gic-v3.h>
25
#include <linux/irqchip/irq-partition-percpu.h>
26 27 28 29

#include <asm/cputype.h>
#include <asm/exception.h>
#include <asm/smp_plat.h>
30
#include <asm/virt.h>
31 32 33

#include "irq-gic-common.h"

34 35
#define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)

36
#define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
37
#define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
38

39 40
#define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)

41 42 43
struct redist_region {
	void __iomem		*redist_base;
	phys_addr_t		phys_base;
44
	bool			single_redist;
45 46
};

47
struct gic_chip_data {
48
	struct fwnode_handle	*fwnode;
49
	void __iomem		*dist_base;
50 51
	struct redist_region	*redist_regions;
	struct rdists		rdists;
52 53
	struct irq_domain	*domain;
	u64			redist_stride;
54
	u32			nr_redist_regions;
55
	u64			flags;
56
	bool			has_rss;
57
	unsigned int		ppi_nr;
58
	struct partition_desc	**ppi_descs;
59 60 61
};

static struct gic_chip_data gic_data __read_mostly;
62
static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63

64
#define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65
#define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 67
#define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)

68 69 70 71 72 73 74 75 76 77 78 79
/*
 * The behaviours of RPR and PMR registers differ depending on the value of
 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
 * distributor and redistributors depends on whether security is enabled in the
 * GIC.
 *
 * When security is enabled, non-secure priority values from the (re)distributor
 * are presented to the GIC CPUIF as follow:
 *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
 *
 * If SCR_EL3.FIQ == 1, the values writen to/read from PMR and RPR at non-secure
 * EL1 are subject to a similar operation thus matching the priorities presented
80 81
 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
 * these values are unchanched by the GIC.
82 83 84 85 86 87 88 89 90
 *
 * see GICv3/GICv4 Architecture Specification (IHI0069D):
 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
 *   priorities.
 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
 *   interrupt.
 */
static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);

91 92 93 94 95 96 97 98 99
/*
 * Global static key controlling whether an update to PMR allowing more
 * interrupts requires to be propagated to the redistributor (DSB SY).
 * And this needs to be exported for modules to be able to enable
 * interrupts...
 */
DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
EXPORT_SYMBOL(gic_pmr_sync);

100 101 102
DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
EXPORT_SYMBOL(gic_nonsecure_priorities);

103
/* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
104
static refcount_t *ppi_nmi_refs;
105

106
static struct gic_kvm_info gic_v3_kvm_info;
107
static DEFINE_PER_CPU(bool, has_rss);
108

109
#define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
110 111
#define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
112 113 114 115 116
#define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)

/* Our default, arbitrary priority value. Linux only uses one anyway. */
#define DEFAULT_PMR_VALUE	0xf0

117
enum gic_intid_range {
118
	SGI_RANGE,
119 120
	PPI_RANGE,
	SPI_RANGE,
121
	EPPI_RANGE,
122
	ESPI_RANGE,
123 124 125 126 127 128 129
	LPI_RANGE,
	__INVALID_RANGE__
};

static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
{
	switch (hwirq) {
130 131
	case 0 ... 15:
		return SGI_RANGE;
132 133 134 135
	case 16 ... 31:
		return PPI_RANGE;
	case 32 ... 1019:
		return SPI_RANGE;
136 137
	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
		return EPPI_RANGE;
138 139
	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
		return ESPI_RANGE;
140 141 142 143 144 145 146 147 148 149 150 151
	case 8192 ... GENMASK(23, 0):
		return LPI_RANGE;
	default:
		return __INVALID_RANGE__;
	}
}

static enum gic_intid_range get_intid_range(struct irq_data *d)
{
	return __get_intid_range(d->hwirq);
}

152 153 154 155 156
static inline unsigned int gic_irq(struct irq_data *d)
{
	return d->hwirq;
}

157
static inline bool gic_irq_in_rdist(struct irq_data *d)
158
{
159 160 161 162 163 164 165 166
	switch (get_intid_range(d)) {
	case SGI_RANGE:
	case PPI_RANGE:
	case EPPI_RANGE:
		return true;
	default:
		return false;
	}
167 168 169 170
}

static inline void __iomem *gic_dist_base(struct irq_data *d)
{
171
	switch (get_intid_range(d)) {
172
	case SGI_RANGE:
173
	case PPI_RANGE:
174
	case EPPI_RANGE:
175
		/* SGI+PPI -> SGI_base for this CPU */
176 177
		return gic_data_rdist_sgi_base();

178
	case SPI_RANGE:
179
	case ESPI_RANGE:
180
		/* SPI -> dist_base */
181 182
		return gic_data.dist_base;

183 184 185
	default:
		return NULL;
	}
186 187 188 189 190 191 192 193 194 195 196 197 198 199
}

static void gic_do_wait_for_rwp(void __iomem *base)
{
	u32 count = 1000000;	/* 1s! */

	while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
		count--;
		if (!count) {
			pr_err_ratelimited("RWP timeout, gone fishing\n");
			return;
		}
		cpu_relax();
		udelay(1);
200
	}
201 202 203 204 205 206 207 208 209 210 211 212 213 214
}

/* Wait for completion of a distributor change */
static void gic_dist_wait_for_rwp(void)
{
	gic_do_wait_for_rwp(gic_data.dist_base);
}

/* Wait for completion of a redistributor change */
static void gic_redist_wait_for_rwp(void)
{
	gic_do_wait_for_rwp(gic_data_rdist_rd_base());
}

215
#ifdef CONFIG_ARM64
216 217 218

static u64 __maybe_unused gic_read_iar(void)
{
219
	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
220 221 222 223
		return gic_read_iar_cavium_thunderx();
	else
		return gic_read_iar_common();
}
224
#endif
225

226
static void gic_enable_redist(bool enable)
227 228 229 230 231
{
	void __iomem *rbase;
	u32 count = 1000000;	/* 1s! */
	u32 val;

232 233 234
	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
		return;

235 236 237
	rbase = gic_data_rdist_rd_base();

	val = readl_relaxed(rbase + GICR_WAKER);
238 239 240 241 242
	if (enable)
		/* Wake up this CPU redistributor */
		val &= ~GICR_WAKER_ProcessorSleep;
	else
		val |= GICR_WAKER_ProcessorSleep;
243 244
	writel_relaxed(val, rbase + GICR_WAKER);

245 246 247 248 249 250
	if (!enable) {		/* Check that GICR_WAKER is writeable */
		val = readl_relaxed(rbase + GICR_WAKER);
		if (!(val & GICR_WAKER_ProcessorSleep))
			return;	/* No PM support in this redistributor */
	}

251
	while (--count) {
252
		val = readl_relaxed(rbase + GICR_WAKER);
253
		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
254
			break;
255 256
		cpu_relax();
		udelay(1);
257
	}
258 259 260
	if (!count)
		pr_err_ratelimited("redistributor failed to %s...\n",
				   enable ? "wakeup" : "sleep");
261 262 263 264 265
}

/*
 * Routines to disable, enable, EOI and route interrupts
 */
266 267 268
static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
{
	switch (get_intid_range(d)) {
269
	case SGI_RANGE:
270 271 272 273
	case PPI_RANGE:
	case SPI_RANGE:
		*index = d->hwirq;
		return offset;
274 275 276 277 278 279 280 281
	case EPPI_RANGE:
		/*
		 * Contrary to the ESPI range, the EPPI range is contiguous
		 * to the PPI range in the registers, so let's adjust the
		 * displacement accordingly. Consistency is overrated.
		 */
		*index = d->hwirq - EPPI_BASE_INTID + 32;
		return offset;
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	case ESPI_RANGE:
		*index = d->hwirq - ESPI_BASE_INTID;
		switch (offset) {
		case GICD_ISENABLER:
			return GICD_ISENABLERnE;
		case GICD_ICENABLER:
			return GICD_ICENABLERnE;
		case GICD_ISPENDR:
			return GICD_ISPENDRnE;
		case GICD_ICPENDR:
			return GICD_ICPENDRnE;
		case GICD_ISACTIVER:
			return GICD_ISACTIVERnE;
		case GICD_ICACTIVER:
			return GICD_ICACTIVERnE;
		case GICD_IPRIORITYR:
			return GICD_IPRIORITYRnE;
		case GICD_ICFGR:
			return GICD_ICFGRnE;
		case GICD_IROUTER:
			return GICD_IROUTERnE;
		default:
			break;
		}
		break;
307 308 309 310 311 312 313 314 315
	default:
		break;
	}

	WARN_ON(1);
	*index = d->hwirq;
	return offset;
}

316 317 318
static int gic_peek_irq(struct irq_data *d, u32 offset)
{
	void __iomem *base;
319 320 321 322
	u32 index, mask;

	offset = convert_offset_index(d, offset, &index);
	mask = 1 << (index % 32);
323 324 325 326 327 328

	if (gic_irq_in_rdist(d))
		base = gic_data_rdist_sgi_base();
	else
		base = gic_data.dist_base;

329
	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
330 331
}

332 333 334 335
static void gic_poke_irq(struct irq_data *d, u32 offset)
{
	void (*rwp_wait)(void);
	void __iomem *base;
336 337 338 339
	u32 index, mask;

	offset = convert_offset_index(d, offset, &index);
	mask = 1 << (index % 32);
340 341 342 343 344 345 346 347 348

	if (gic_irq_in_rdist(d)) {
		base = gic_data_rdist_sgi_base();
		rwp_wait = gic_redist_wait_for_rwp;
	} else {
		base = gic_data.dist_base;
		rwp_wait = gic_dist_wait_for_rwp;
	}

349
	writel_relaxed(mask, base + offset + (index / 32) * 4);
350 351 352 353 354 355 356 357
	rwp_wait();
}

static void gic_mask_irq(struct irq_data *d)
{
	gic_poke_irq(d, GICD_ICENABLER);
}

358 359 360
static void gic_eoimode1_mask_irq(struct irq_data *d)
{
	gic_mask_irq(d);
361 362 363 364 365 366 367 368
	/*
	 * When masking a forwarded interrupt, make sure it is
	 * deactivated as well.
	 *
	 * This ensures that an interrupt that is getting
	 * disabled/masked will not get "stuck", because there is
	 * noone to deactivate it (guest is being terminated).
	 */
369
	if (irqd_is_forwarded_to_vcpu(d))
370
		gic_poke_irq(d, GICD_ICACTIVER);
371 372
}

373 374 375 376 377
static void gic_unmask_irq(struct irq_data *d)
{
	gic_poke_irq(d, GICD_ISENABLER);
}

378 379 380 381 382 383
static inline bool gic_supports_nmi(void)
{
	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
	       static_branch_likely(&supports_pseudo_nmis);
}

384 385 386 387 388
static int gic_irq_set_irqchip_state(struct irq_data *d,
				     enum irqchip_irq_state which, bool val)
{
	u32 reg;

389
	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
		return -EINVAL;

	switch (which) {
	case IRQCHIP_STATE_PENDING:
		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
		break;

	case IRQCHIP_STATE_ACTIVE:
		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
		break;

	case IRQCHIP_STATE_MASKED:
		reg = val ? GICD_ICENABLER : GICD_ISENABLER;
		break;

	default:
		return -EINVAL;
	}

	gic_poke_irq(d, reg);
	return 0;
}

static int gic_irq_get_irqchip_state(struct irq_data *d,
				     enum irqchip_irq_state which, bool *val)
{
416
	if (d->hwirq >= 8192) /* PPI/SPI only */
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
		return -EINVAL;

	switch (which) {
	case IRQCHIP_STATE_PENDING:
		*val = gic_peek_irq(d, GICD_ISPENDR);
		break;

	case IRQCHIP_STATE_ACTIVE:
		*val = gic_peek_irq(d, GICD_ISACTIVER);
		break;

	case IRQCHIP_STATE_MASKED:
		*val = !gic_peek_irq(d, GICD_ISENABLER);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

439 440 441
static void gic_irq_set_prio(struct irq_data *d, u8 prio)
{
	void __iomem *base = gic_dist_base(d);
442
	u32 offset, index;
443

444 445 446
	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);

	writeb_relaxed(prio, base + offset + index);
447 448
}

449 450 451 452 453
static u32 gic_get_ppi_index(struct irq_data *d)
{
	switch (get_intid_range(d)) {
	case PPI_RANGE:
		return d->hwirq - 16;
454 455
	case EPPI_RANGE:
		return d->hwirq - EPPI_BASE_INTID + 16;
456 457 458 459 460
	default:
		unreachable();
	}
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static int gic_irq_nmi_setup(struct irq_data *d)
{
	struct irq_desc *desc = irq_to_desc(d->irq);

	if (!gic_supports_nmi())
		return -EINVAL;

	if (gic_peek_irq(d, GICD_ISENABLER)) {
		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
		return -EINVAL;
	}

	/*
	 * A secondary irq_chip should be in charge of LPI request,
	 * it should not be possible to get there
	 */
	if (WARN_ON(gic_irq(d) >= 8192))
		return -EINVAL;

	/* desc lock should already be held */
481 482 483
	if (gic_irq_in_rdist(d)) {
		u32 idx = gic_get_ppi_index(d);

484
		/* Setting up PPI as NMI, only switch handler for first NMI */
485 486
		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
			refcount_set(&ppi_nmi_refs[idx], 1);
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
		}
	} else {
		desc->handle_irq = handle_fasteoi_nmi;
	}

	gic_irq_set_prio(d, GICD_INT_NMI_PRI);

	return 0;
}

static void gic_irq_nmi_teardown(struct irq_data *d)
{
	struct irq_desc *desc = irq_to_desc(d->irq);

	if (WARN_ON(!gic_supports_nmi()))
		return;

	if (gic_peek_irq(d, GICD_ISENABLER)) {
		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
		return;
	}

	/*
	 * A secondary irq_chip should be in charge of LPI request,
	 * it should not be possible to get there
	 */
	if (WARN_ON(gic_irq(d) >= 8192))
		return;

	/* desc lock should already be held */
518 519 520
	if (gic_irq_in_rdist(d)) {
		u32 idx = gic_get_ppi_index(d);

521
		/* Tearing down NMI, only switch handler for last NMI */
522
		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
523 524 525 526 527 528 529 530
			desc->handle_irq = handle_percpu_devid_irq;
	} else {
		desc->handle_irq = handle_fasteoi_irq;
	}

	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
}

531 532 533 534 535
static void gic_eoi_irq(struct irq_data *d)
{
	gic_write_eoir(gic_irq(d));
}

536 537 538
static void gic_eoimode1_eoi_irq(struct irq_data *d)
{
	/*
539 540
	 * No need to deactivate an LPI, or an interrupt that
	 * is is getting forwarded to a vcpu.
541
	 */
542
	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
543 544 545 546
		return;
	gic_write_dir(gic_irq(d));
}

547 548
static int gic_set_type(struct irq_data *d, unsigned int type)
{
549
	enum gic_intid_range range;
550 551 552
	unsigned int irq = gic_irq(d);
	void (*rwp_wait)(void);
	void __iomem *base;
553
	u32 offset, index;
554
	int ret;
555

556 557
	range = get_intid_range(d);

558 559 560 561
	/* Interrupt configuration for SGIs can't be changed */
	if (range == SGI_RANGE)
		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;

562
	/* SPIs have restrictions on the supported types */
563 564
	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
565 566 567 568 569 570 571 572 573 574
		return -EINVAL;

	if (gic_irq_in_rdist(d)) {
		base = gic_data_rdist_sgi_base();
		rwp_wait = gic_redist_wait_for_rwp;
	} else {
		base = gic_data.dist_base;
		rwp_wait = gic_dist_wait_for_rwp;
	}

575
	offset = convert_offset_index(d, GICD_ICFGR, &index);
576

577
	ret = gic_configure_irq(index, type, base + offset, rwp_wait);
578
	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
579
		/* Misconfigured PPIs are usually not fatal */
580
		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
581 582 583 584
		ret = 0;
	}

	return ret;
585 586
}

587 588
static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
{
589 590 591
	if (get_intid_range(d) == SGI_RANGE)
		return -EINVAL;

592 593 594 595
	if (vcpu)
		irqd_set_forwarded_to_vcpu(d);
	else
		irqd_clr_forwarded_to_vcpu(d);
596 597 598
	return 0;
}

599
static u64 gic_mpidr_to_affinity(unsigned long mpidr)
600 601 602
{
	u64 aff;

603
	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
604 605 606 607 608 609 610
	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
	       MPIDR_AFFINITY_LEVEL(mpidr, 0));

	return aff;
}

611 612 613 614 615 616 617 618 619 620 621 622
static void gic_deactivate_unhandled(u32 irqnr)
{
	if (static_branch_likely(&supports_deactivate_key)) {
		if (irqnr < 8192)
			gic_write_dir(irqnr);
	} else {
		gic_write_eoir(irqnr);
	}
}

static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
{
623
	bool irqs_enabled = interrupts_enabled(regs);
624 625
	int err;

626 627 628
	if (irqs_enabled)
		nmi_enter();

629 630 631 632 633 634 635 636 637 638 639
	if (static_branch_likely(&supports_deactivate_key))
		gic_write_eoir(irqnr);
	/*
	 * Leave the PSR.I bit set to prevent other NMIs to be
	 * received while handling this one.
	 * PSR.I will be restored when we ERET to the
	 * interrupted context.
	 */
	err = handle_domain_nmi(gic_data.domain, irqnr, regs);
	if (err)
		gic_deactivate_unhandled(irqnr);
640 641 642

	if (irqs_enabled)
		nmi_exit();
643 644
}

645 646
static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
{
647
	u32 irqnr;
648

649
	irqnr = gic_read_iar();
650

651 652 653 654 655 656
	if (gic_supports_nmi() &&
	    unlikely(gic_read_rpr() == GICD_INT_NMI_PRI)) {
		gic_handle_nmi(irqnr, regs);
		return;
	}

657 658 659 660 661
	if (gic_prio_masking_enabled()) {
		gic_pmr_mask_irqs();
		gic_arch_enable_irqs();
	}

662 663 664 665
	/* Check for special IDs first */
	if ((irqnr >= 1020 && irqnr <= 1023))
		return;

666
	if (static_branch_likely(&supports_deactivate_key))
667
		gic_write_eoir(irqnr);
668 669 670 671 672 673
	else
		isb();

	if (handle_domain_irq(gic_data.domain, irqnr, regs)) {
		WARN_ONCE(true, "Unexpected interrupt received!\n");
		gic_deactivate_unhandled(irqnr);
674
	}
675 676
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
static u32 gic_get_pribits(void)
{
	u32 pribits;

	pribits = gic_read_ctlr();
	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
	pribits++;

	return pribits;
}

static bool gic_has_group0(void)
{
	u32 val;
692 693 694
	u32 old_pmr;

	old_pmr = gic_read_pmr();
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

	/*
	 * Let's find out if Group0 is under control of EL3 or not by
	 * setting the highest possible, non-zero priority in PMR.
	 *
	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
	 * order for the CPU interface to set bit 7, and keep the
	 * actual priority in the non-secure range. In the process, it
	 * looses the least significant bit and the actual priority
	 * becomes 0x80. Reading it back returns 0, indicating that
	 * we're don't have access to Group0.
	 */
	gic_write_pmr(BIT(8 - gic_get_pribits()));
	val = gic_read_pmr();

710 711
	gic_write_pmr(old_pmr);

712 713 714
	return val != 0;
}

715 716 717 718 719
static void __init gic_dist_init(void)
{
	unsigned int i;
	u64 affinity;
	void __iomem *base = gic_data.dist_base;
720
	u32 val;
721 722 723 724 725

	/* Disable the distributor */
	writel_relaxed(0, base + GICD_CTLR);
	gic_dist_wait_for_rwp();

726 727 728 729 730 731
	/*
	 * Configure SPIs as non-secure Group-1. This will only matter
	 * if the GIC only has a single security state. This will not
	 * do the right thing if the kernel is running in secure mode,
	 * but that's not the intended use case anyway.
	 */
732
	for (i = 32; i < GIC_LINE_NR; i += 32)
733 734
		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
	for (i = 0; i < GIC_ESPI_NR; i += 32) {
		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
	}

	for (i = 0; i < GIC_ESPI_NR; i += 32)
		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);

	for (i = 0; i < GIC_ESPI_NR; i += 16)
		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);

	for (i = 0; i < GIC_ESPI_NR; i += 4)
		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);

	/* Now do the common stuff, and wait for the distributor to drain */
	gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
752

753 754 755 756 757 758
	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
		pr_info("Enabling SGIs without active state\n");
		val |= GICD_CTLR_nASSGIreq;
	}

759
	/* Enable distributor with ARE, Group1 */
760
	writel_relaxed(val, base + GICD_CTLR);
761 762 763 764 765 766

	/*
	 * Set all global interrupts to the boot CPU only. ARE must be
	 * enabled.
	 */
	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
767
	for (i = 32; i < GIC_LINE_NR; i++)
768
		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
769 770 771

	for (i = 0; i < GIC_ESPI_NR; i++)
		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
772 773
}

774
static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
775
{
776
	int ret = -ENODEV;
777 778
	int i;

779 780
	for (i = 0; i < gic_data.nr_redist_regions; i++) {
		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
781
		u64 typer;
782 783 784 785 786 787 788 789 790 791
		u32 reg;

		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
		if (reg != GIC_PIDR2_ARCH_GICv3 &&
		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
			pr_warn("No redistributor present @%p\n", ptr);
			break;
		}

		do {
792
			typer = gic_read_typer(ptr + GICR_TYPER);
793 794
			ret = fn(gic_data.redist_regions + i, ptr);
			if (!ret)
795 796
				return 0;

797 798 799
			if (gic_data.redist_regions[i].single_redist)
				break;

800 801 802 803 804 805 806 807 808 809
			if (gic_data.redist_stride) {
				ptr += gic_data.redist_stride;
			} else {
				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
				if (typer & GICR_TYPER_VLPIS)
					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
			}
		} while (!(typer & GICR_TYPER_LAST));
	}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	return ret ? -ENODEV : 0;
}

static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
{
	unsigned long mpidr = cpu_logical_map(smp_processor_id());
	u64 typer;
	u32 aff;

	/*
	 * Convert affinity to a 32bit value that can be matched to
	 * GICR_TYPER bits [63:32].
	 */
	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 0));

	typer = gic_read_typer(ptr + GICR_TYPER);
	if ((typer >> 32) == aff) {
		u64 offset = ptr - region->redist_base;
831
		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
		gic_data_rdist_rd_base() = ptr;
		gic_data_rdist()->phys_base = region->phys_base + offset;

		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
			smp_processor_id(), mpidr,
			(int)(region - gic_data.redist_regions),
			&gic_data_rdist()->phys_base);
		return 0;
	}

	/* Try next one */
	return 1;
}

static int gic_populate_rdist(void)
{
	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
		return 0;

851
	/* We couldn't even deal with ourselves... */
852
	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
853 854
	     smp_processor_id(),
	     (unsigned long)cpu_logical_map(smp_processor_id()));
855 856 857
	return -ENODEV;
}

858 859
static int __gic_update_rdist_properties(struct redist_region *region,
					 void __iomem *ptr)
860 861
{
	u64 typer = gic_read_typer(ptr + GICR_TYPER);
862

863
	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
864 865 866 867 868

	/* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
					   gic_data.rdists.has_rvpeid);
869
	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
870 871 872 873 874 875 876 877

	/* Detect non-sensical configurations */
	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
		gic_data.rdists.has_direct_lpi = false;
		gic_data.rdists.has_vlpis = false;
		gic_data.rdists.has_rvpeid = false;
	}

878
	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
879 880 881 882

	return 1;
}

883
static void gic_update_rdist_properties(void)
884
{
885 886 887 888 889
	gic_data.ppi_nr = UINT_MAX;
	gic_iterate_rdists(__gic_update_rdist_properties);
	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
		gic_data.ppi_nr = 0;
	pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
890 891 892 893 894
	if (gic_data.rdists.has_vlpis)
		pr_info("GICv4 features: %s%s%s\n",
			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
895 896
}

897 898 899 900 901 902
/* Check whether it's single security state view */
static inline bool gic_dist_security_disabled(void)
{
	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
}

903 904
static void gic_cpu_sys_reg_init(void)
{
905 906 907
	int i, cpu = smp_processor_id();
	u64 mpidr = cpu_logical_map(cpu);
	u64 need_rss = MPIDR_RS(mpidr);
908
	bool group0;
909
	u32 pribits;
910

911 912 913 914 915 916 917 918 919
	/*
	 * Need to check that the SRE bit has actually been set. If
	 * not, it means that SRE is disabled at EL2. We're going to
	 * die painfully, and there is nothing we can do about it.
	 *
	 * Kindly inform the luser.
	 */
	if (!gic_enable_sre())
		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
920

921
	pribits = gic_get_pribits();
922

923
	group0 = gic_has_group0();
924

925
	/* Set priority mask register */
926
	if (!gic_prio_masking_enabled()) {
927
		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
928
	} else if (gic_supports_nmi()) {
929 930 931 932
		/*
		 * Mismatch configuration with boot CPU, the system is likely
		 * to die as interrupt masking will not work properly on all
		 * CPUs
933 934 935 936
		 *
		 * The boot CPU calls this function before enabling NMI support,
		 * and as a result we'll never see this warning in the boot path
		 * for that CPU.
937
		 */
938 939 940 941
		if (static_branch_unlikely(&gic_nonsecure_priorities))
			WARN_ON(!group0 || gic_dist_security_disabled());
		else
			WARN_ON(group0 && !gic_dist_security_disabled());
942
	}
943

944 945 946 947 948 949 950 951
	/*
	 * Some firmwares hand over to the kernel with the BPR changed from
	 * its reset value (and with a value large enough to prevent
	 * any pre-emptive interrupts from working at all). Writing a zero
	 * to BPR restores is reset value.
	 */
	gic_write_bpr1(0);

952
	if (static_branch_likely(&supports_deactivate_key)) {
953 954 955 956 957 958
		/* EOI drops priority only (mode 1) */
		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
	} else {
		/* EOI deactivates interrupt too (mode 0) */
		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
	}
959

960 961 962 963 964 965 966
	/* Always whack Group0 before Group1 */
	if (group0) {
		switch(pribits) {
		case 8:
		case 7:
			write_gicreg(0, ICC_AP0R3_EL1);
			write_gicreg(0, ICC_AP0R2_EL1);
967
			fallthrough;
968 969
		case 6:
			write_gicreg(0, ICC_AP0R1_EL1);
970
			fallthrough;
971 972 973 974 975 976 977
		case 5:
		case 4:
			write_gicreg(0, ICC_AP0R0_EL1);
		}

		isb();
	}
978

979
	switch(pribits) {
980 981 982 983
	case 8:
	case 7:
		write_gicreg(0, ICC_AP1R3_EL1);
		write_gicreg(0, ICC_AP1R2_EL1);
984
		fallthrough;
985 986
	case 6:
		write_gicreg(0, ICC_AP1R1_EL1);
987
		fallthrough;
988 989 990 991 992 993 994
	case 5:
	case 4:
		write_gicreg(0, ICC_AP1R0_EL1);
	}

	isb();

995 996
	/* ... and let's hit the road... */
	gic_write_grpen1(1);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

	/* Keep the RSS capability status in per_cpu variable */
	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);

	/* Check all the CPUs have capable of sending SGIs to other CPUs */
	for_each_online_cpu(i) {
		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);

		need_rss |= MPIDR_RS(cpu_logical_map(i));
		if (need_rss && (!have_rss))
			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
				cpu, (unsigned long)mpidr,
				i, (unsigned long)cpu_logical_map(i));
	}

	/**
	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
	 * UNPREDICTABLE choice of :
	 *   - The write is ignored.
	 *   - The RS field is treated as 0.
	 */
	if (need_rss && (!gic_data.has_rss))
		pr_crit_once("RSS is required but GICD doesn't support it\n");
1021 1022
}

1023 1024 1025 1026 1027 1028 1029 1030
static bool gicv3_nolpi;

static int __init gicv3_nolpi_cfg(char *buf)
{
	return strtobool(buf, &gicv3_nolpi);
}
early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);

1031 1032
static int gic_dist_supports_lpis(void)
{
1033 1034 1035
	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
		!gicv3_nolpi);
1036 1037
}

1038 1039 1040
static void gic_cpu_init(void)
{
	void __iomem *rbase;
1041
	int i;
1042 1043 1044 1045 1046

	/* Register ourselves with the rest of the world */
	if (gic_populate_rdist())
		return;

1047
	gic_enable_redist(true);
1048

1049 1050 1051 1052 1053
	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
	     "Distributor has extended ranges, but CPU%d doesn't\n",
	     smp_processor_id());

1054 1055
	rbase = gic_data_rdist_sgi_base();

1056
	/* Configure SGIs/PPIs as non-secure Group-1 */
1057 1058
	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1059

1060
	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1061

1062 1063
	/* initialise system registers */
	gic_cpu_sys_reg_init();
1064 1065 1066
}

#ifdef CONFIG_SMP
1067

1068 1069 1070
#define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
#define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)

1071
static int gic_starting_cpu(unsigned int cpu)
1072
{
1073
	gic_cpu_init();
1074 1075 1076 1077

	if (gic_dist_supports_lpis())
		its_cpu_init();

1078
	return 0;
1079 1080 1081
}

static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1082
				   unsigned long cluster_id)
1083
{
1084
	int next_cpu, cpu = *base_cpu;
1085
	unsigned long mpidr = cpu_logical_map(cpu);
1086 1087 1088 1089 1090
	u16 tlist = 0;

	while (cpu < nr_cpu_ids) {
		tlist |= 1 << (mpidr & 0xf);

1091 1092
		next_cpu = cpumask_next(cpu, mask);
		if (next_cpu >= nr_cpu_ids)
1093
			goto out;
1094
		cpu = next_cpu;
1095 1096 1097

		mpidr = cpu_logical_map(cpu);

1098
		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1099 1100 1101 1102 1103 1104 1105 1106 1107
			cpu--;
			goto out;
		}
	}
out:
	*base_cpu = cpu;
	return tlist;
}

1108 1109 1110 1111
#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)

1112 1113 1114 1115
static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
{
	u64 val;

1116 1117 1118 1119
	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1120
	       MPIDR_TO_SGI_RS(cluster_id)		|
1121
	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1122

1123
	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1124 1125 1126
	gic_write_sgi1r(val);
}

1127
static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1128 1129 1130
{
	int cpu;

1131
	if (WARN_ON(d->hwirq >= 16))
1132 1133 1134 1135 1136 1137
		return;

	/*
	 * Ensure that stores to Normal memory are visible to the
	 * other CPUs before issuing the IPI.
	 */
1138
	wmb();
1139

1140
	for_each_cpu(cpu, mask) {
1141
		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1142 1143 1144
		u16 tlist;

		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1145
		gic_send_sgi(cluster_id, tlist, d->hwirq);
1146 1147 1148 1149 1150 1151
	}

	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
	isb();
}

1152
static void __init gic_smp_init(void)
1153
{
1154 1155 1156 1157 1158 1159
	struct irq_fwspec sgi_fwspec = {
		.fwnode		= gic_data.fwnode,
		.param_count	= 1,
	};
	int base_sgi;

1160
	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
T
Thomas Gleixner 已提交
1161 1162
				  "irqchip/arm/gicv3:starting",
				  gic_starting_cpu, NULL);
1163 1164 1165 1166 1167 1168 1169 1170 1171

	/* Register all 8 non-secure SGIs */
	base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
					   NUMA_NO_NODE, &sgi_fwspec,
					   false, NULL);
	if (WARN_ON(base_sgi <= 0))
		return;

	set_smp_ipi_range(base_sgi, 8);
1172 1173 1174 1175 1176
}

static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
			    bool force)
{
1177
	unsigned int cpu;
1178
	u32 offset, index;
1179 1180 1181 1182
	void __iomem *reg;
	int enabled;
	u64 val;

1183 1184 1185 1186 1187
	if (force)
		cpu = cpumask_first(mask_val);
	else
		cpu = cpumask_any_and(mask_val, cpu_online_mask);

1188 1189 1190
	if (cpu >= nr_cpu_ids)
		return -EINVAL;

1191 1192 1193 1194 1195 1196 1197 1198
	if (gic_irq_in_rdist(d))
		return -EINVAL;

	/* If interrupt was enabled, disable it first */
	enabled = gic_peek_irq(d, GICD_ISENABLER);
	if (enabled)
		gic_mask_irq(d);

1199 1200
	offset = convert_offset_index(d, GICD_IROUTER, &index);
	reg = gic_dist_base(d) + offset + (index * 8);
1201 1202
	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));

1203
	gic_write_irouter(val, reg);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

	/*
	 * If the interrupt was enabled, enabled it again. Otherwise,
	 * just wait for the distributor to have digested our changes.
	 */
	if (enabled)
		gic_unmask_irq(d);
	else
		gic_dist_wait_for_rwp();

1214 1215
	irq_data_update_effective_affinity(d, cpumask_of(cpu));

1216
	return IRQ_SET_MASK_OK_DONE;
1217 1218 1219
}
#else
#define gic_set_affinity	NULL
1220
#define gic_ipi_send_mask	NULL
1221 1222 1223
#define gic_smp_init()		do { } while(0)
#endif

1224 1225 1226 1227 1228
static int gic_retrigger(struct irq_data *data)
{
	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
}

1229 1230 1231 1232 1233
#ifdef CONFIG_CPU_PM
static int gic_cpu_pm_notifier(struct notifier_block *self,
			       unsigned long cmd, void *v)
{
	if (cmd == CPU_PM_EXIT) {
1234 1235
		if (gic_dist_security_disabled())
			gic_enable_redist(true);
1236
		gic_cpu_sys_reg_init();
1237
	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
		gic_write_grpen1(0);
		gic_enable_redist(false);
	}
	return NOTIFY_OK;
}

static struct notifier_block gic_cpu_pm_notifier_block = {
	.notifier_call = gic_cpu_pm_notifier,
};

static void gic_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
}

#else
static inline void gic_cpu_pm_init(void) { }
#endif /* CONFIG_CPU_PM */

1257 1258 1259 1260 1261 1262 1263
static struct irq_chip gic_chip = {
	.name			= "GICv3",
	.irq_mask		= gic_mask_irq,
	.irq_unmask		= gic_unmask_irq,
	.irq_eoi		= gic_eoi_irq,
	.irq_set_type		= gic_set_type,
	.irq_set_affinity	= gic_set_affinity,
1264
	.irq_retrigger          = gic_retrigger,
1265 1266
	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1267 1268
	.irq_nmi_setup		= gic_irq_nmi_setup,
	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1269
	.ipi_send_mask		= gic_ipi_send_mask,
1270 1271 1272
	.flags			= IRQCHIP_SET_TYPE_MASKED |
				  IRQCHIP_SKIP_SET_WAKE |
				  IRQCHIP_MASK_ON_SUSPEND,
1273 1274
};

1275 1276 1277 1278 1279 1280 1281
static struct irq_chip gic_eoimode1_chip = {
	.name			= "GICv3",
	.irq_mask		= gic_eoimode1_mask_irq,
	.irq_unmask		= gic_unmask_irq,
	.irq_eoi		= gic_eoimode1_eoi_irq,
	.irq_set_type		= gic_set_type,
	.irq_set_affinity	= gic_set_affinity,
1282
	.irq_retrigger          = gic_retrigger,
1283 1284
	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1285
	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1286 1287
	.irq_nmi_setup		= gic_irq_nmi_setup,
	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1288
	.ipi_send_mask		= gic_ipi_send_mask,
1289 1290 1291
	.flags			= IRQCHIP_SET_TYPE_MASKED |
				  IRQCHIP_SKIP_SET_WAKE |
				  IRQCHIP_MASK_ON_SUSPEND,
1292 1293
};

1294 1295 1296
static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
			      irq_hw_number_t hw)
{
1297
	struct irq_chip *chip = &gic_chip;
1298
	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1299

1300
	if (static_branch_likely(&supports_deactivate_key))
1301 1302
		chip = &gic_eoimode1_chip;

1303
	switch (__get_intid_range(hw)) {
1304
	case SGI_RANGE:
1305
	case PPI_RANGE:
1306
	case EPPI_RANGE:
1307
		irq_set_percpu_devid(irq);
1308
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1309
				    handle_percpu_devid_irq, NULL, NULL);
1310 1311 1312
		break;

	case SPI_RANGE:
1313
	case ESPI_RANGE:
1314
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1315
				    handle_fasteoi_irq, NULL, NULL);
1316
		irq_set_probe(irq);
1317
		irqd_set_single_target(irqd);
1318 1319 1320
		break;

	case LPI_RANGE:
1321 1322
		if (!gic_dist_supports_lpis())
			return -EPERM;
1323
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1324
				    handle_fasteoi_irq, NULL, NULL);
1325 1326 1327 1328
		break;

	default:
		return -EPERM;
1329 1330
	}

1331 1332
	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
	irqd_set_handle_enforce_irqctx(irqd);
1333 1334 1335
	return 0;
}

1336 1337 1338 1339
static int gic_irq_domain_translate(struct irq_domain *d,
				    struct irq_fwspec *fwspec,
				    unsigned long *hwirq,
				    unsigned int *type)
1340
{
1341 1342 1343 1344 1345 1346
	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
		*hwirq = fwspec->param[0];
		*type = IRQ_TYPE_EDGE_RISING;
		return 0;
	}

1347 1348 1349
	if (is_of_node(fwspec->fwnode)) {
		if (fwspec->param_count < 3)
			return -EINVAL;
1350

1351 1352 1353 1354 1355 1356 1357
		switch (fwspec->param[0]) {
		case 0:			/* SPI */
			*hwirq = fwspec->param[1] + 32;
			break;
		case 1:			/* PPI */
			*hwirq = fwspec->param[1] + 16;
			break;
1358 1359 1360
		case 2:			/* ESPI */
			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
			break;
1361 1362 1363
		case 3:			/* EPPI */
			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
			break;
1364 1365 1366
		case GIC_IRQ_TYPE_LPI:	/* LPI */
			*hwirq = fwspec->param[1];
			break;
1367 1368 1369 1370 1371 1372 1373
		case GIC_IRQ_TYPE_PARTITION:
			*hwirq = fwspec->param[1];
			if (fwspec->param[1] >= 16)
				*hwirq += EPPI_BASE_INTID - 16;
			else
				*hwirq += 16;
			break;
1374 1375 1376
		default:
			return -EINVAL;
		}
1377 1378

		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1379

1380 1381 1382 1383 1384 1385
		/*
		 * Make it clear that broken DTs are... broken.
		 * Partitionned PPIs are an unfortunate exception.
		 */
		WARN_ON(*type == IRQ_TYPE_NONE &&
			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1386
		return 0;
1387 1388
	}

1389 1390 1391 1392 1393 1394
	if (is_fwnode_irqchip(fwspec->fwnode)) {
		if(fwspec->param_count != 2)
			return -EINVAL;

		*hwirq = fwspec->param[0];
		*type = fwspec->param[1];
1395 1396

		WARN_ON(*type == IRQ_TYPE_NONE);
1397 1398 1399
		return 0;
	}

1400
	return -EINVAL;
1401 1402
}

1403 1404 1405 1406 1407 1408
static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
				unsigned int nr_irqs, void *arg)
{
	int i, ret;
	irq_hw_number_t hwirq;
	unsigned int type = IRQ_TYPE_NONE;
1409
	struct irq_fwspec *fwspec = arg;
1410

1411
	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1412 1413 1414
	if (ret)
		return ret;

1415 1416 1417 1418 1419
	for (i = 0; i < nr_irqs; i++) {
		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
		if (ret)
			return ret;
	}
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

	return 0;
}

static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
				unsigned int nr_irqs)
{
	int i;

	for (i = 0; i < nr_irqs; i++) {
		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
		irq_set_handler(virq + i, NULL);
		irq_domain_reset_irq_data(d);
	}
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static int gic_irq_domain_select(struct irq_domain *d,
				 struct irq_fwspec *fwspec,
				 enum irq_domain_bus_token bus_token)
{
	/* Not for us */
        if (fwspec->fwnode != d->fwnode)
		return 0;

	/* If this is not DT, then we have a single domain */
	if (!is_of_node(fwspec->fwnode))
		return 1;

	/*
	 * If this is a PPI and we have a 4th (non-null) parameter,
	 * then we need to match the partition domain.
	 */
	if (fwspec->param_count >= 4 &&
1453 1454
	    fwspec->param[0] == 1 && fwspec->param[3] != 0 &&
	    gic_data.ppi_descs)
1455 1456 1457 1458 1459
		return d == partition_get_domain(gic_data.ppi_descs[fwspec->param[1]]);

	return d == gic_data.domain;
}

1460
static const struct irq_domain_ops gic_irq_domain_ops = {
1461
	.translate = gic_irq_domain_translate,
1462 1463
	.alloc = gic_irq_domain_alloc,
	.free = gic_irq_domain_free,
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	.select = gic_irq_domain_select,
};

static int partition_domain_translate(struct irq_domain *d,
				      struct irq_fwspec *fwspec,
				      unsigned long *hwirq,
				      unsigned int *type)
{
	struct device_node *np;
	int ret;

1475 1476 1477
	if (!gic_data.ppi_descs)
		return -ENOMEM;

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	np = of_find_node_by_phandle(fwspec->param[3]);
	if (WARN_ON(!np))
		return -EINVAL;

	ret = partition_translate_id(gic_data.ppi_descs[fwspec->param[1]],
				     of_node_to_fwnode(np));
	if (ret < 0)
		return ret;

	*hwirq = ret;
	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;

	return 0;
}

static const struct irq_domain_ops partition_domain_ops = {
	.translate = partition_domain_translate,
	.select = gic_irq_domain_select,
1496 1497
};

1498 1499 1500 1501 1502 1503 1504 1505 1506
static bool gic_enable_quirk_msm8996(void *data)
{
	struct gic_chip_data *d = data;

	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;

	return true;
}

1507 1508 1509 1510 1511 1512 1513 1514 1515
static bool gic_enable_quirk_cavium_38539(void *data)
{
	struct gic_chip_data *d = data;

	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;

	return true;
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static bool gic_enable_quirk_hip06_07(void *data)
{
	struct gic_chip_data *d = data;

	/*
	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
	 * not being an actual ARM implementation). The saving grace is
	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
	 * HIP07 doesn't even have a proper IIDR, and still pretends to
	 * have ESPI. In both cases, put them right.
	 */
	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
		/* Zero both ESPI and the RES0 field next to it... */
		d->rdists.gicd_typer &= ~GENMASK(9, 8);
		return true;
	}

	return false;
}

static const struct gic_quirk gic_quirks[] = {
	{
		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
		.compatible = "qcom,msm8996-gic-v3",
		.init	= gic_enable_quirk_msm8996,
	},
	{
		.desc	= "GICv3: HIP06 erratum 161010803",
		.iidr	= 0x0204043b,
		.mask	= 0xffffffff,
		.init	= gic_enable_quirk_hip06_07,
	},
	{
		.desc	= "GICv3: HIP07 erratum 161010803",
		.iidr	= 0x00000000,
		.mask	= 0xffffffff,
		.init	= gic_enable_quirk_hip06_07,
	},
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	{
		/*
		 * Reserved register accesses generate a Synchronous
		 * External Abort. This erratum applies to:
		 * - ThunderX: CN88xx
		 * - OCTEON TX: CN83xx, CN81xx
		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
		 */
		.desc	= "GICv3: Cavium erratum 38539",
		.iidr	= 0xa000034c,
		.mask	= 0xe8f00fff,
		.init	= gic_enable_quirk_cavium_38539,
	},
1567 1568 1569 1570
	{
	}
};

1571 1572
static void gic_enable_nmi_support(void)
{
1573 1574
	int i;

1575 1576 1577 1578 1579 1580 1581 1582
	if (!gic_prio_masking_enabled())
		return;

	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
	if (!ppi_nmi_refs)
		return;

	for (i = 0; i < gic_data.ppi_nr; i++)
1583 1584
		refcount_set(&ppi_nmi_refs[i], 0);

1585 1586 1587 1588 1589 1590 1591 1592
	/*
	 * Linux itself doesn't use 1:N distribution, so has no need to
	 * set PMHE. The only reason to have it set is if EL3 requires it
	 * (and we can't change it).
	 */
	if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
		static_branch_enable(&gic_pmr_sync);

1593 1594
	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
		static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	/*
	 * How priority values are used by the GIC depends on two things:
	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
	 * the ICC_PMR_EL1 register and the priority that software assigns to
	 * interrupts:
	 *
	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
	 * -----------------------------------------------------------
	 *      1       |      -      |  unchanged  |    unchanged
	 * -----------------------------------------------------------
	 *      0       |      1      |  non-secure |    non-secure
	 * -----------------------------------------------------------
	 *      0       |      0      |  unchanged  |    non-secure
	 *
	 * where non-secure means that the value is right-shifted by one and the
	 * MSB bit set, to make it fit in the non-secure priority range.
	 *
	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
	 * are both either modified or unchanged, we can use the same set of
	 * priorities.
	 *
	 * In the last case, where only the interrupt priorities are modified to
	 * be in the non-secure range, we use a different PMR value to mask IRQs
	 * and the rest of the values that we use remain unchanged.
	 */
	if (gic_has_group0() && !gic_dist_security_disabled())
		static_branch_enable(&gic_nonsecure_priorities);

1626
	static_branch_enable(&supports_pseudo_nmis);
1627 1628 1629 1630 1631

	if (static_branch_likely(&supports_deactivate_key))
		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
	else
		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1632 1633
}

1634 1635 1636 1637 1638
static int __init gic_init_bases(void __iomem *dist_base,
				 struct redist_region *rdist_regs,
				 u32 nr_redist_regions,
				 u64 redist_stride,
				 struct fwnode_handle *handle)
1639
{
1640
	u32 typer;
1641 1642
	int err;

1643
	if (!is_hyp_mode_available())
1644
		static_branch_disable(&supports_deactivate_key);
1645

1646
	if (static_branch_likely(&supports_deactivate_key))
1647 1648
		pr_info("GIC: Using split EOI/Deactivate mode\n");

1649
	gic_data.fwnode = handle;
1650
	gic_data.dist_base = dist_base;
1651 1652
	gic_data.redist_regions = rdist_regs;
	gic_data.nr_redist_regions = nr_redist_regions;
1653 1654 1655 1656 1657
	gic_data.redist_stride = redist_stride;

	/*
	 * Find out how many interrupts are supported.
	 */
1658
	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1659
	gic_data.rdists.gicd_typer = typer;
1660 1661 1662 1663

	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
			  gic_quirks, &gic_data);

1664 1665
	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1666

1667 1668 1669 1670 1671 1672
	/*
	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
	 * architecture spec (which says that reserved registers are RES0).
	 */
	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1673

1674 1675
	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
						 &gic_data);
1676
	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1677
	gic_data.rdists.has_rvpeid = true;
1678 1679
	gic_data.rdists.has_vlpis = true;
	gic_data.rdists.has_direct_lpi = true;
1680
	gic_data.rdists.has_vpend_valid_dirty = true;
1681

1682
	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1683 1684 1685 1686
		err = -ENOMEM;
		goto out_free;
	}

1687 1688
	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);

1689 1690 1691 1692
	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
	pr_info("Distributor has %sRange Selector support\n",
		gic_data.has_rss ? "" : "no ");

1693 1694 1695 1696 1697 1698
	if (typer & GICD_TYPER_MBIS) {
		err = mbi_init(handle, gic_data.domain);
		if (err)
			pr_err("Failed to initialize MBIs\n");
	}

1699 1700
	set_handle_irq(gic_handle_irq);

1701
	gic_update_rdist_properties();
1702

1703 1704
	gic_dist_init();
	gic_cpu_init();
1705
	gic_smp_init();
1706
	gic_cpu_pm_init();
1707

1708 1709 1710
	if (gic_dist_supports_lpis()) {
		its_init(handle, &gic_data.rdists, gic_data.domain);
		its_cpu_init();
1711 1712 1713
	} else {
		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
			gicv2m_init(handle, gic_data.domain);
1714 1715
	}

1716
	gic_enable_nmi_support();
1717

1718 1719 1720 1721 1722
	return 0;

out_free:
	if (gic_data.domain)
		irq_domain_remove(gic_data.domain);
1723
	free_percpu(gic_data.rdists.rdist);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	return err;
}

static int __init gic_validate_dist_version(void __iomem *dist_base)
{
	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;

	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
		return -ENODEV;

	return 0;
}

1737
/* Create all possible partitions at boot time */
1738
static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1739 1740 1741 1742 1743 1744
{
	struct device_node *parts_node, *child_part;
	int part_idx = 0, i;
	int nr_parts;
	struct partition_affinity *parts;

1745
	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1746 1747 1748
	if (!parts_node)
		return;

1749 1750 1751 1752
	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
	if (!gic_data.ppi_descs)
		return;

1753 1754 1755
	nr_parts = of_get_child_count(parts_node);

	if (!nr_parts)
1756
		goto out_put_node;
1757

K
Kees Cook 已提交
1758
	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1759
	if (WARN_ON(!parts))
1760
		goto out_put_node;
1761 1762 1763 1764 1765 1766 1767 1768 1769

	for_each_child_of_node(parts_node, child_part) {
		struct partition_affinity *part;
		int n;

		part = &parts[part_idx];

		part->partition_id = of_node_to_fwnode(child_part);

1770 1771
		pr_info("GIC: PPI partition %pOFn[%d] { ",
			child_part, part_idx);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

		n = of_property_count_elems_of_size(child_part, "affinity",
						    sizeof(u32));
		WARN_ON(n <= 0);

		for (i = 0; i < n; i++) {
			int err, cpu;
			u32 cpu_phandle;
			struct device_node *cpu_node;

			err = of_property_read_u32_index(child_part, "affinity",
							 i, &cpu_phandle);
			if (WARN_ON(err))
				continue;

			cpu_node = of_find_node_by_phandle(cpu_phandle);
			if (WARN_ON(!cpu_node))
				continue;

1791 1792
			cpu = of_cpu_node_to_id(cpu_node);
			if (WARN_ON(cpu < 0))
1793 1794
				continue;

1795
			pr_cont("%pOF[%d] ", cpu_node, cpu);
1796 1797 1798 1799 1800 1801 1802 1803

			cpumask_set_cpu(cpu, &part->mask);
		}

		pr_cont("}\n");
		part_idx++;
	}

1804
	for (i = 0; i < gic_data.ppi_nr; i++) {
1805 1806 1807 1808 1809 1810
		unsigned int irq;
		struct partition_desc *desc;
		struct irq_fwspec ppi_fwspec = {
			.fwnode		= gic_data.fwnode,
			.param_count	= 3,
			.param		= {
1811
				[0]	= GIC_IRQ_TYPE_PARTITION,
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
				[1]	= i,
				[2]	= IRQ_TYPE_NONE,
			},
		};

		irq = irq_create_fwspec_mapping(&ppi_fwspec);
		if (WARN_ON(!irq))
			continue;
		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
					     irq, &partition_domain_ops);
		if (WARN_ON(!desc))
			continue;

		gic_data.ppi_descs[i] = desc;
	}
1827 1828 1829

out_put_node:
	of_node_put(parts_node);
1830 1831
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
static void __init gic_of_setup_kvm_info(struct device_node *node)
{
	int ret;
	struct resource r;
	u32 gicv_idx;

	gic_v3_kvm_info.type = GIC_V3;

	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
	if (!gic_v3_kvm_info.maint_irq)
		return;

	if (of_property_read_u32(node, "#redistributor-regions",
				 &gicv_idx))
		gicv_idx = 1;

	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
	ret = of_address_to_resource(node, gicv_idx, &r);
	if (!ret)
		gic_v3_kvm_info.vcpu = r;

1853
	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1854
	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1855 1856 1857
	gic_set_kvm_info(&gic_v3_kvm_info);
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
static int __init gic_of_init(struct device_node *node, struct device_node *parent)
{
	void __iomem *dist_base;
	struct redist_region *rdist_regs;
	u64 redist_stride;
	u32 nr_redist_regions;
	int err, i;

	dist_base = of_iomap(node, 0);
	if (!dist_base) {
1868
		pr_err("%pOF: unable to map gic dist registers\n", node);
1869 1870 1871 1872 1873
		return -ENXIO;
	}

	err = gic_validate_dist_version(dist_base);
	if (err) {
1874
		pr_err("%pOF: no distributor detected, giving up\n", node);
1875 1876 1877 1878 1879 1880
		goto out_unmap_dist;
	}

	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
		nr_redist_regions = 1;

K
Kees Cook 已提交
1881 1882
	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
			     GFP_KERNEL);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	if (!rdist_regs) {
		err = -ENOMEM;
		goto out_unmap_dist;
	}

	for (i = 0; i < nr_redist_regions; i++) {
		struct resource res;
		int ret;

		ret = of_address_to_resource(node, 1 + i, &res);
		rdist_regs[i].redist_base = of_iomap(node, 1 + i);
		if (ret || !rdist_regs[i].redist_base) {
1895
			pr_err("%pOF: couldn't map region %d\n", node, i);
1896 1897 1898 1899 1900 1901 1902 1903 1904
			err = -ENODEV;
			goto out_unmap_rdist;
		}
		rdist_regs[i].phys_base = res.start;
	}

	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
		redist_stride = 0;

1905 1906
	gic_enable_of_quirks(node, gic_quirks, &gic_data);

1907 1908
	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
			     redist_stride, &node->fwnode);
1909 1910 1911 1912
	if (err)
		goto out_unmap_rdist;

	gic_populate_ppi_partitions(node);
1913

1914
	if (static_branch_likely(&supports_deactivate_key))
1915
		gic_of_setup_kvm_info(node);
1916
	return 0;
1917

1918
out_unmap_rdist:
1919 1920 1921 1922
	for (i = 0; i < nr_redist_regions; i++)
		if (rdist_regs[i].redist_base)
			iounmap(rdist_regs[i].redist_base);
	kfree(rdist_regs);
1923 1924 1925 1926 1927 1928
out_unmap_dist:
	iounmap(dist_base);
	return err;
}

IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
1929 1930

#ifdef CONFIG_ACPI
1931 1932 1933 1934 1935 1936
static struct
{
	void __iomem *dist_base;
	struct redist_region *redist_regs;
	u32 nr_redist_regions;
	bool single_redist;
1937
	int enabled_rdists;
1938 1939 1940
	u32 maint_irq;
	int maint_irq_mode;
	phys_addr_t vcpu_base;
1941
} acpi_data __initdata;
1942 1943 1944 1945 1946 1947

static void __init
gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
{
	static int count = 0;

1948 1949 1950
	acpi_data.redist_regs[count].phys_base = phys_base;
	acpi_data.redist_regs[count].redist_base = redist_base;
	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
1951 1952
	count++;
}
1953 1954

static int __init
1955
gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
			   const unsigned long end)
{
	struct acpi_madt_generic_redistributor *redist =
			(struct acpi_madt_generic_redistributor *)header;
	void __iomem *redist_base;

	redist_base = ioremap(redist->base_address, redist->length);
	if (!redist_base) {
		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
		return -ENOMEM;
	}

1968
	gic_acpi_register_redist(redist->base_address, redist_base);
1969 1970 1971
	return 0;
}

1972
static int __init
1973
gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
1974 1975 1976 1977
			 const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
				(struct acpi_madt_generic_interrupt *)header;
1978
	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1979 1980 1981
	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
	void __iomem *redist_base;

1982 1983 1984 1985
	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	redist_base = ioremap(gicc->gicr_base_address, size);
	if (!redist_base)
		return -ENOMEM;

	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
	return 0;
}

static int __init gic_acpi_collect_gicr_base(void)
{
	acpi_tbl_entry_handler redist_parser;
	enum acpi_madt_type type;

1999
	if (acpi_data.single_redist) {
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
		redist_parser = gic_acpi_parse_madt_gicc;
	} else {
		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
		redist_parser = gic_acpi_parse_madt_redist;
	}

	/* Collect redistributor base addresses in GICR entries */
	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
		return 0;

	pr_info("No valid GICR entries exist\n");
	return -ENODEV;
}

2015
static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2016 2017 2018 2019 2020 2021
				  const unsigned long end)
{
	/* Subtable presence means that redist exists, that's it */
	return 0;
}

2022
static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2023 2024 2025 2026 2027 2028 2029 2030 2031
				      const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
				(struct acpi_madt_generic_interrupt *)header;

	/*
	 * If GICC is enabled and has valid gicr base address, then it means
	 * GICR base is presented via GICC
	 */
2032 2033
	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
		acpi_data.enabled_rdists++;
2034
		return 0;
2035
	}
2036

2037 2038 2039 2040 2041 2042 2043
	/*
	 * It's perfectly valid firmware can pass disabled GICC entry, driver
	 * should not treat as errors, skip the entry instead of probe fail.
	 */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	return -ENODEV;
}

static int __init gic_acpi_count_gicr_regions(void)
{
	int count;

	/*
	 * Count how many redistributor regions we have. It is not allowed
	 * to mix redistributor description, GICR and GICC subtables have to be
	 * mutually exclusive.
	 */
	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
				      gic_acpi_match_gicr, 0);
	if (count > 0) {
2059
		acpi_data.single_redist = false;
2060 2061 2062 2063 2064
		return count;
	}

	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
				      gic_acpi_match_gicc, 0);
2065
	if (count > 0) {
2066
		acpi_data.single_redist = true;
2067 2068
		count = acpi_data.enabled_rdists;
	}
2069 2070 2071 2072

	return count;
}

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
					   struct acpi_probe_entry *ape)
{
	struct acpi_madt_generic_distributor *dist;
	int count;

	dist = (struct acpi_madt_generic_distributor *)header;
	if (dist->version != ape->driver_data)
		return false;

	/* We need to do that exercise anyway, the sooner the better */
2084
	count = gic_acpi_count_gicr_regions();
2085 2086 2087
	if (count <= 0)
		return false;

2088
	acpi_data.nr_redist_regions = count;
2089 2090 2091
	return true;
}

2092
static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
						const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
		(struct acpi_madt_generic_interrupt *)header;
	int maint_irq_mode;
	static int first_madt = true;

	/* Skip unusable CPUs */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;

	if (first_madt) {
		first_madt = false;

		acpi_data.maint_irq = gicc->vgic_interrupt;
		acpi_data.maint_irq_mode = maint_irq_mode;
		acpi_data.vcpu_base = gicc->gicv_base_address;

		return 0;
	}

	/*
	 * The maintenance interrupt and GICV should be the same for every CPU
	 */
	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
	    (acpi_data.vcpu_base != gicc->gicv_base_address))
		return -EINVAL;

	return 0;
}

static bool __init gic_acpi_collect_virt_info(void)
{
	int count;

	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
				      gic_acpi_parse_virt_madt_gicc, 0);

	return (count > 0);
}

2138
#define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
#define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
#define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)

static void __init gic_acpi_setup_kvm_info(void)
{
	int irq;

	if (!gic_acpi_collect_virt_info()) {
		pr_warn("Unable to get hardware information used for virtualization\n");
		return;
	}

	gic_v3_kvm_info.type = GIC_V3;

	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
				acpi_data.maint_irq_mode,
				ACPI_ACTIVE_HIGH);
	if (irq <= 0)
		return;

	gic_v3_kvm_info.maint_irq = irq;

	if (acpi_data.vcpu_base) {
		struct resource *vcpu = &gic_v3_kvm_info.vcpu;

		vcpu->flags = IORESOURCE_MEM;
		vcpu->start = acpi_data.vcpu_base;
		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
	}

2169
	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2170
	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2171 2172
	gic_set_kvm_info(&gic_v3_kvm_info);
}
2173 2174

static int __init
2175
gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2176 2177 2178
{
	struct acpi_madt_generic_distributor *dist;
	struct fwnode_handle *domain_handle;
2179
	size_t size;
2180
	int i, err;
2181 2182 2183

	/* Get distributor base address */
	dist = (struct acpi_madt_generic_distributor *)header;
2184 2185 2186
	acpi_data.dist_base = ioremap(dist->base_address,
				      ACPI_GICV3_DIST_MEM_SIZE);
	if (!acpi_data.dist_base) {
2187 2188 2189 2190
		pr_err("Unable to map GICD registers\n");
		return -ENOMEM;
	}

2191
	err = gic_validate_dist_version(acpi_data.dist_base);
2192
	if (err) {
2193
		pr_err("No distributor detected at @%p, giving up\n",
2194
		       acpi_data.dist_base);
2195 2196 2197
		goto out_dist_unmap;
	}

2198 2199 2200
	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
	if (!acpi_data.redist_regs) {
2201 2202 2203 2204
		err = -ENOMEM;
		goto out_dist_unmap;
	}

2205 2206
	err = gic_acpi_collect_gicr_base();
	if (err)
2207 2208
		goto out_redist_unmap;

2209
	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2210 2211 2212 2213 2214
	if (!domain_handle) {
		err = -ENOMEM;
		goto out_redist_unmap;
	}

2215 2216
	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
			     acpi_data.nr_redist_regions, 0, domain_handle);
2217 2218 2219 2220
	if (err)
		goto out_fwhandle_free;

	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2221

2222
	if (static_branch_likely(&supports_deactivate_key))
2223
		gic_acpi_setup_kvm_info();
2224

2225 2226 2227 2228 2229
	return 0;

out_fwhandle_free:
	irq_domain_free_fwnode(domain_handle);
out_redist_unmap:
2230 2231 2232 2233
	for (i = 0; i < acpi_data.nr_redist_regions; i++)
		if (acpi_data.redist_regs[i].redist_base)
			iounmap(acpi_data.redist_regs[i].redist_base);
	kfree(acpi_data.redist_regs);
2234
out_dist_unmap:
2235
	iounmap(acpi_data.dist_base);
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	return err;
}
IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
		     gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
		     gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
		     gic_acpi_init);
#endif