irq-gic-v3.c 51.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 5 6
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

7 8
#define pr_fmt(fmt)	"GICv3: " fmt

9
#include <linux/acpi.h>
10
#include <linux/cpu.h>
11
#include <linux/cpu_pm.h>
12 13
#include <linux/delay.h>
#include <linux/interrupt.h>
14
#include <linux/irqdomain.h>
15 16 17 18
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/percpu.h>
19
#include <linux/refcount.h>
20 21
#include <linux/slab.h>

22
#include <linux/irqchip.h>
23
#include <linux/irqchip/arm-gic-common.h>
24
#include <linux/irqchip/arm-gic-v3.h>
25
#include <linux/irqchip/irq-partition-percpu.h>
26 27 28 29

#include <asm/cputype.h>
#include <asm/exception.h>
#include <asm/smp_plat.h>
30
#include <asm/virt.h>
31 32 33

#include "irq-gic-common.h"

34 35
#define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)

36 37
#define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)

38 39 40
struct redist_region {
	void __iomem		*redist_base;
	phys_addr_t		phys_base;
41
	bool			single_redist;
42 43
};

44
struct gic_chip_data {
45
	struct fwnode_handle	*fwnode;
46
	void __iomem		*dist_base;
47 48
	struct redist_region	*redist_regions;
	struct rdists		rdists;
49 50
	struct irq_domain	*domain;
	u64			redist_stride;
51
	u32			nr_redist_regions;
52
	u64			flags;
53
	bool			has_rss;
54
	unsigned int		ppi_nr;
55
	struct partition_desc	**ppi_descs;
56 57 58
};

static struct gic_chip_data gic_data __read_mostly;
59
static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
60

61
#define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
62
#define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
63 64
#define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/*
 * The behaviours of RPR and PMR registers differ depending on the value of
 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
 * distributor and redistributors depends on whether security is enabled in the
 * GIC.
 *
 * When security is enabled, non-secure priority values from the (re)distributor
 * are presented to the GIC CPUIF as follow:
 *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
 *
 * If SCR_EL3.FIQ == 1, the values writen to/read from PMR and RPR at non-secure
 * EL1 are subject to a similar operation thus matching the priorities presented
 * from the (re)distributor when security is enabled.
 *
 * see GICv3/GICv4 Architecture Specification (IHI0069D):
 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
 *   priorities.
 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
 *   interrupt.
 *
 * For now, we only support pseudo-NMIs if we have non-secure view of
 * priorities.
 */
static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);

90 91 92 93 94 95 96 97 98
/*
 * Global static key controlling whether an update to PMR allowing more
 * interrupts requires to be propagated to the redistributor (DSB SY).
 * And this needs to be exported for modules to be able to enable
 * interrupts...
 */
DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
EXPORT_SYMBOL(gic_pmr_sync);

99
/* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
100
static refcount_t *ppi_nmi_refs;
101

102
static struct gic_kvm_info gic_v3_kvm_info;
103
static DEFINE_PER_CPU(bool, has_rss);
104

105
#define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
106 107
#define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
108 109 110 111 112
#define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)

/* Our default, arbitrary priority value. Linux only uses one anyway. */
#define DEFAULT_PMR_VALUE	0xf0

113 114 115
enum gic_intid_range {
	PPI_RANGE,
	SPI_RANGE,
116
	EPPI_RANGE,
117
	ESPI_RANGE,
118 119 120 121 122 123 124 125 126 127 128
	LPI_RANGE,
	__INVALID_RANGE__
};

static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
{
	switch (hwirq) {
	case 16 ... 31:
		return PPI_RANGE;
	case 32 ... 1019:
		return SPI_RANGE;
129 130
	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
		return EPPI_RANGE;
131 132
	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
		return ESPI_RANGE;
133 134 135 136 137 138 139 140 141 142 143 144
	case 8192 ... GENMASK(23, 0):
		return LPI_RANGE;
	default:
		return __INVALID_RANGE__;
	}
}

static enum gic_intid_range get_intid_range(struct irq_data *d)
{
	return __get_intid_range(d->hwirq);
}

145 146 147 148 149 150 151
static inline unsigned int gic_irq(struct irq_data *d)
{
	return d->hwirq;
}

static inline int gic_irq_in_rdist(struct irq_data *d)
{
152 153
	enum gic_intid_range range = get_intid_range(d);
	return range == PPI_RANGE || range == EPPI_RANGE;
154 155 156 157
}

static inline void __iomem *gic_dist_base(struct irq_data *d)
{
158 159
	switch (get_intid_range(d)) {
	case PPI_RANGE:
160
	case EPPI_RANGE:
161
		/* SGI+PPI -> SGI_base for this CPU */
162 163
		return gic_data_rdist_sgi_base();

164
	case SPI_RANGE:
165
	case ESPI_RANGE:
166
		/* SPI -> dist_base */
167 168
		return gic_data.dist_base;

169 170 171
	default:
		return NULL;
	}
172 173 174 175 176 177 178 179 180 181 182 183 184 185
}

static void gic_do_wait_for_rwp(void __iomem *base)
{
	u32 count = 1000000;	/* 1s! */

	while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
		count--;
		if (!count) {
			pr_err_ratelimited("RWP timeout, gone fishing\n");
			return;
		}
		cpu_relax();
		udelay(1);
186
	}
187 188 189 190 191 192 193 194 195 196 197 198 199 200
}

/* Wait for completion of a distributor change */
static void gic_dist_wait_for_rwp(void)
{
	gic_do_wait_for_rwp(gic_data.dist_base);
}

/* Wait for completion of a redistributor change */
static void gic_redist_wait_for_rwp(void)
{
	gic_do_wait_for_rwp(gic_data_rdist_rd_base());
}

201
#ifdef CONFIG_ARM64
202 203 204

static u64 __maybe_unused gic_read_iar(void)
{
205
	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
206 207 208 209
		return gic_read_iar_cavium_thunderx();
	else
		return gic_read_iar_common();
}
210
#endif
211

212
static void gic_enable_redist(bool enable)
213 214 215 216 217
{
	void __iomem *rbase;
	u32 count = 1000000;	/* 1s! */
	u32 val;

218 219 220
	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
		return;

221 222 223
	rbase = gic_data_rdist_rd_base();

	val = readl_relaxed(rbase + GICR_WAKER);
224 225 226 227 228
	if (enable)
		/* Wake up this CPU redistributor */
		val &= ~GICR_WAKER_ProcessorSleep;
	else
		val |= GICR_WAKER_ProcessorSleep;
229 230
	writel_relaxed(val, rbase + GICR_WAKER);

231 232 233 234 235 236
	if (!enable) {		/* Check that GICR_WAKER is writeable */
		val = readl_relaxed(rbase + GICR_WAKER);
		if (!(val & GICR_WAKER_ProcessorSleep))
			return;	/* No PM support in this redistributor */
	}

237
	while (--count) {
238
		val = readl_relaxed(rbase + GICR_WAKER);
239
		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
240
			break;
241 242
		cpu_relax();
		udelay(1);
243
	}
244 245 246
	if (!count)
		pr_err_ratelimited("redistributor failed to %s...\n",
				   enable ? "wakeup" : "sleep");
247 248 249 250 251
}

/*
 * Routines to disable, enable, EOI and route interrupts
 */
252 253 254 255 256 257 258
static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
{
	switch (get_intid_range(d)) {
	case PPI_RANGE:
	case SPI_RANGE:
		*index = d->hwirq;
		return offset;
259 260 261 262 263 264 265 266
	case EPPI_RANGE:
		/*
		 * Contrary to the ESPI range, the EPPI range is contiguous
		 * to the PPI range in the registers, so let's adjust the
		 * displacement accordingly. Consistency is overrated.
		 */
		*index = d->hwirq - EPPI_BASE_INTID + 32;
		return offset;
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	case ESPI_RANGE:
		*index = d->hwirq - ESPI_BASE_INTID;
		switch (offset) {
		case GICD_ISENABLER:
			return GICD_ISENABLERnE;
		case GICD_ICENABLER:
			return GICD_ICENABLERnE;
		case GICD_ISPENDR:
			return GICD_ISPENDRnE;
		case GICD_ICPENDR:
			return GICD_ICPENDRnE;
		case GICD_ISACTIVER:
			return GICD_ISACTIVERnE;
		case GICD_ICACTIVER:
			return GICD_ICACTIVERnE;
		case GICD_IPRIORITYR:
			return GICD_IPRIORITYRnE;
		case GICD_ICFGR:
			return GICD_ICFGRnE;
		case GICD_IROUTER:
			return GICD_IROUTERnE;
		default:
			break;
		}
		break;
292 293 294 295 296 297 298 299 300
	default:
		break;
	}

	WARN_ON(1);
	*index = d->hwirq;
	return offset;
}

301 302 303
static int gic_peek_irq(struct irq_data *d, u32 offset)
{
	void __iomem *base;
304 305 306 307
	u32 index, mask;

	offset = convert_offset_index(d, offset, &index);
	mask = 1 << (index % 32);
308 309 310 311 312 313

	if (gic_irq_in_rdist(d))
		base = gic_data_rdist_sgi_base();
	else
		base = gic_data.dist_base;

314
	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
315 316
}

317 318 319 320
static void gic_poke_irq(struct irq_data *d, u32 offset)
{
	void (*rwp_wait)(void);
	void __iomem *base;
321 322 323 324
	u32 index, mask;

	offset = convert_offset_index(d, offset, &index);
	mask = 1 << (index % 32);
325 326 327 328 329 330 331 332 333

	if (gic_irq_in_rdist(d)) {
		base = gic_data_rdist_sgi_base();
		rwp_wait = gic_redist_wait_for_rwp;
	} else {
		base = gic_data.dist_base;
		rwp_wait = gic_dist_wait_for_rwp;
	}

334
	writel_relaxed(mask, base + offset + (index / 32) * 4);
335 336 337 338 339 340 341 342
	rwp_wait();
}

static void gic_mask_irq(struct irq_data *d)
{
	gic_poke_irq(d, GICD_ICENABLER);
}

343 344 345
static void gic_eoimode1_mask_irq(struct irq_data *d)
{
	gic_mask_irq(d);
346 347 348 349 350 351 352 353
	/*
	 * When masking a forwarded interrupt, make sure it is
	 * deactivated as well.
	 *
	 * This ensures that an interrupt that is getting
	 * disabled/masked will not get "stuck", because there is
	 * noone to deactivate it (guest is being terminated).
	 */
354
	if (irqd_is_forwarded_to_vcpu(d))
355
		gic_poke_irq(d, GICD_ICACTIVER);
356 357
}

358 359 360 361 362
static void gic_unmask_irq(struct irq_data *d)
{
	gic_poke_irq(d, GICD_ISENABLER);
}

363 364 365 366 367 368
static inline bool gic_supports_nmi(void)
{
	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
	       static_branch_likely(&supports_pseudo_nmis);
}

369 370 371 372 373
static int gic_irq_set_irqchip_state(struct irq_data *d,
				     enum irqchip_irq_state which, bool val)
{
	u32 reg;

374
	if (d->hwirq >= 8192) /* PPI/SPI only */
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
		return -EINVAL;

	switch (which) {
	case IRQCHIP_STATE_PENDING:
		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
		break;

	case IRQCHIP_STATE_ACTIVE:
		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
		break;

	case IRQCHIP_STATE_MASKED:
		reg = val ? GICD_ICENABLER : GICD_ISENABLER;
		break;

	default:
		return -EINVAL;
	}

	gic_poke_irq(d, reg);
	return 0;
}

static int gic_irq_get_irqchip_state(struct irq_data *d,
				     enum irqchip_irq_state which, bool *val)
{
401
	if (d->hwirq >= 8192) /* PPI/SPI only */
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		return -EINVAL;

	switch (which) {
	case IRQCHIP_STATE_PENDING:
		*val = gic_peek_irq(d, GICD_ISPENDR);
		break;

	case IRQCHIP_STATE_ACTIVE:
		*val = gic_peek_irq(d, GICD_ISACTIVER);
		break;

	case IRQCHIP_STATE_MASKED:
		*val = !gic_peek_irq(d, GICD_ISENABLER);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

424 425 426
static void gic_irq_set_prio(struct irq_data *d, u8 prio)
{
	void __iomem *base = gic_dist_base(d);
427
	u32 offset, index;
428

429 430 431
	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);

	writeb_relaxed(prio, base + offset + index);
432 433
}

434 435 436 437 438
static u32 gic_get_ppi_index(struct irq_data *d)
{
	switch (get_intid_range(d)) {
	case PPI_RANGE:
		return d->hwirq - 16;
439 440
	case EPPI_RANGE:
		return d->hwirq - EPPI_BASE_INTID + 16;
441 442 443 444 445
	default:
		unreachable();
	}
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static int gic_irq_nmi_setup(struct irq_data *d)
{
	struct irq_desc *desc = irq_to_desc(d->irq);

	if (!gic_supports_nmi())
		return -EINVAL;

	if (gic_peek_irq(d, GICD_ISENABLER)) {
		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
		return -EINVAL;
	}

	/*
	 * A secondary irq_chip should be in charge of LPI request,
	 * it should not be possible to get there
	 */
	if (WARN_ON(gic_irq(d) >= 8192))
		return -EINVAL;

	/* desc lock should already be held */
466 467 468
	if (gic_irq_in_rdist(d)) {
		u32 idx = gic_get_ppi_index(d);

469
		/* Setting up PPI as NMI, only switch handler for first NMI */
470 471
		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
			refcount_set(&ppi_nmi_refs[idx], 1);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
		}
	} else {
		desc->handle_irq = handle_fasteoi_nmi;
	}

	gic_irq_set_prio(d, GICD_INT_NMI_PRI);

	return 0;
}

static void gic_irq_nmi_teardown(struct irq_data *d)
{
	struct irq_desc *desc = irq_to_desc(d->irq);

	if (WARN_ON(!gic_supports_nmi()))
		return;

	if (gic_peek_irq(d, GICD_ISENABLER)) {
		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
		return;
	}

	/*
	 * A secondary irq_chip should be in charge of LPI request,
	 * it should not be possible to get there
	 */
	if (WARN_ON(gic_irq(d) >= 8192))
		return;

	/* desc lock should already be held */
503 504 505
	if (gic_irq_in_rdist(d)) {
		u32 idx = gic_get_ppi_index(d);

506
		/* Tearing down NMI, only switch handler for last NMI */
507
		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
508 509 510 511 512 513 514 515
			desc->handle_irq = handle_percpu_devid_irq;
	} else {
		desc->handle_irq = handle_fasteoi_irq;
	}

	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
}

516 517 518 519 520
static void gic_eoi_irq(struct irq_data *d)
{
	gic_write_eoir(gic_irq(d));
}

521 522 523
static void gic_eoimode1_eoi_irq(struct irq_data *d)
{
	/*
524 525
	 * No need to deactivate an LPI, or an interrupt that
	 * is is getting forwarded to a vcpu.
526
	 */
527
	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
528 529 530 531
		return;
	gic_write_dir(gic_irq(d));
}

532 533
static int gic_set_type(struct irq_data *d, unsigned int type)
{
534
	enum gic_intid_range range;
535 536 537
	unsigned int irq = gic_irq(d);
	void (*rwp_wait)(void);
	void __iomem *base;
538
	u32 offset, index;
539
	int ret;
540 541 542 543 544

	/* Interrupt configuration for SGIs can't be changed */
	if (irq < 16)
		return -EINVAL;

545 546
	range = get_intid_range(d);

547
	/* SPIs have restrictions on the supported types */
548 549
	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
550 551 552 553 554 555 556 557 558 559
		return -EINVAL;

	if (gic_irq_in_rdist(d)) {
		base = gic_data_rdist_sgi_base();
		rwp_wait = gic_redist_wait_for_rwp;
	} else {
		base = gic_data.dist_base;
		rwp_wait = gic_dist_wait_for_rwp;
	}

560
	offset = convert_offset_index(d, GICD_ICFGR, &index);
561

562
	ret = gic_configure_irq(index, type, base + offset, rwp_wait);
563
	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
564
		/* Misconfigured PPIs are usually not fatal */
565
		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
566 567 568 569
		ret = 0;
	}

	return ret;
570 571
}

572 573
static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
{
574 575 576 577
	if (vcpu)
		irqd_set_forwarded_to_vcpu(d);
	else
		irqd_clr_forwarded_to_vcpu(d);
578 579 580
	return 0;
}

581
static u64 gic_mpidr_to_affinity(unsigned long mpidr)
582 583 584
{
	u64 aff;

585
	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
586 587 588 589 590 591 592
	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
	       MPIDR_AFFINITY_LEVEL(mpidr, 0));

	return aff;
}

593 594 595 596 597 598 599 600 601 602 603 604
static void gic_deactivate_unhandled(u32 irqnr)
{
	if (static_branch_likely(&supports_deactivate_key)) {
		if (irqnr < 8192)
			gic_write_dir(irqnr);
	} else {
		gic_write_eoir(irqnr);
	}
}

static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
{
605
	bool irqs_enabled = interrupts_enabled(regs);
606 607
	int err;

608 609 610
	if (irqs_enabled)
		nmi_enter();

611 612 613 614 615 616 617 618 619 620 621
	if (static_branch_likely(&supports_deactivate_key))
		gic_write_eoir(irqnr);
	/*
	 * Leave the PSR.I bit set to prevent other NMIs to be
	 * received while handling this one.
	 * PSR.I will be restored when we ERET to the
	 * interrupted context.
	 */
	err = handle_domain_nmi(gic_data.domain, irqnr, regs);
	if (err)
		gic_deactivate_unhandled(irqnr);
622 623 624

	if (irqs_enabled)
		nmi_exit();
625 626
}

627 628
static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
{
629
	u32 irqnr;
630

631
	irqnr = gic_read_iar();
632

633 634 635 636 637 638
	if (gic_supports_nmi() &&
	    unlikely(gic_read_rpr() == GICD_INT_NMI_PRI)) {
		gic_handle_nmi(irqnr, regs);
		return;
	}

639 640 641 642 643
	if (gic_prio_masking_enabled()) {
		gic_pmr_mask_irqs();
		gic_arch_enable_irqs();
	}

644 645 646 647 648 649
	/* Check for special IDs first */
	if ((irqnr >= 1020 && irqnr <= 1023))
		return;

	/* Treat anything but SGIs in a uniform way */
	if (likely(irqnr > 15)) {
650
		int err;
651

652 653 654 655 656 657 658 659
		if (static_branch_likely(&supports_deactivate_key))
			gic_write_eoir(irqnr);
		else
			isb();

		err = handle_domain_irq(gic_data.domain, irqnr, regs);
		if (err) {
			WARN_ONCE(true, "Unexpected interrupt received!\n");
660
			gic_deactivate_unhandled(irqnr);
661
		}
662 663 664 665 666 667
		return;
	}
	if (irqnr < 16) {
		gic_write_eoir(irqnr);
		if (static_branch_likely(&supports_deactivate_key))
			gic_write_dir(irqnr);
668
#ifdef CONFIG_SMP
669 670 671 672 673 674 675 676
		/*
		 * Unlike GICv2, we don't need an smp_rmb() here.
		 * The control dependency from gic_read_iar to
		 * the ISB in gic_write_eoir is enough to ensure
		 * that any shared data read by handle_IPI will
		 * be read after the ACK.
		 */
		handle_IPI(irqnr, regs);
677
#else
678
		WARN_ONCE(true, "Unexpected SGI received!\n");
679
#endif
680
	}
681 682
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static u32 gic_get_pribits(void)
{
	u32 pribits;

	pribits = gic_read_ctlr();
	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
	pribits++;

	return pribits;
}

static bool gic_has_group0(void)
{
	u32 val;
698 699 700
	u32 old_pmr;

	old_pmr = gic_read_pmr();
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

	/*
	 * Let's find out if Group0 is under control of EL3 or not by
	 * setting the highest possible, non-zero priority in PMR.
	 *
	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
	 * order for the CPU interface to set bit 7, and keep the
	 * actual priority in the non-secure range. In the process, it
	 * looses the least significant bit and the actual priority
	 * becomes 0x80. Reading it back returns 0, indicating that
	 * we're don't have access to Group0.
	 */
	gic_write_pmr(BIT(8 - gic_get_pribits()));
	val = gic_read_pmr();

716 717
	gic_write_pmr(old_pmr);

718 719 720
	return val != 0;
}

721 722 723 724 725
static void __init gic_dist_init(void)
{
	unsigned int i;
	u64 affinity;
	void __iomem *base = gic_data.dist_base;
726
	u32 val;
727 728 729 730 731

	/* Disable the distributor */
	writel_relaxed(0, base + GICD_CTLR);
	gic_dist_wait_for_rwp();

732 733 734 735 736 737
	/*
	 * Configure SPIs as non-secure Group-1. This will only matter
	 * if the GIC only has a single security state. This will not
	 * do the right thing if the kernel is running in secure mode,
	 * but that's not the intended use case anyway.
	 */
738
	for (i = 32; i < GIC_LINE_NR; i += 32)
739 740
		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
	for (i = 0; i < GIC_ESPI_NR; i += 32) {
		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
	}

	for (i = 0; i < GIC_ESPI_NR; i += 32)
		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);

	for (i = 0; i < GIC_ESPI_NR; i += 16)
		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);

	for (i = 0; i < GIC_ESPI_NR; i += 4)
		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);

	/* Now do the common stuff, and wait for the distributor to drain */
	gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
758

759 760 761 762 763 764
	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
		pr_info("Enabling SGIs without active state\n");
		val |= GICD_CTLR_nASSGIreq;
	}

765
	/* Enable distributor with ARE, Group1 */
766
	writel_relaxed(val, base + GICD_CTLR);
767 768 769 770 771 772

	/*
	 * Set all global interrupts to the boot CPU only. ARE must be
	 * enabled.
	 */
	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
773
	for (i = 32; i < GIC_LINE_NR; i++)
774
		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
775 776 777

	for (i = 0; i < GIC_ESPI_NR; i++)
		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
778 779
}

780
static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
781
{
782
	int ret = -ENODEV;
783 784
	int i;

785 786
	for (i = 0; i < gic_data.nr_redist_regions; i++) {
		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
787
		u64 typer;
788 789 790 791 792 793 794 795 796 797
		u32 reg;

		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
		if (reg != GIC_PIDR2_ARCH_GICv3 &&
		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
			pr_warn("No redistributor present @%p\n", ptr);
			break;
		}

		do {
798
			typer = gic_read_typer(ptr + GICR_TYPER);
799 800
			ret = fn(gic_data.redist_regions + i, ptr);
			if (!ret)
801 802
				return 0;

803 804 805
			if (gic_data.redist_regions[i].single_redist)
				break;

806 807 808 809 810 811 812 813 814 815
			if (gic_data.redist_stride) {
				ptr += gic_data.redist_stride;
			} else {
				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
				if (typer & GICR_TYPER_VLPIS)
					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
			}
		} while (!(typer & GICR_TYPER_LAST));
	}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
	return ret ? -ENODEV : 0;
}

static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
{
	unsigned long mpidr = cpu_logical_map(smp_processor_id());
	u64 typer;
	u32 aff;

	/*
	 * Convert affinity to a 32bit value that can be matched to
	 * GICR_TYPER bits [63:32].
	 */
	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
	       MPIDR_AFFINITY_LEVEL(mpidr, 0));

	typer = gic_read_typer(ptr + GICR_TYPER);
	if ((typer >> 32) == aff) {
		u64 offset = ptr - region->redist_base;
837
		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
		gic_data_rdist_rd_base() = ptr;
		gic_data_rdist()->phys_base = region->phys_base + offset;

		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
			smp_processor_id(), mpidr,
			(int)(region - gic_data.redist_regions),
			&gic_data_rdist()->phys_base);
		return 0;
	}

	/* Try next one */
	return 1;
}

static int gic_populate_rdist(void)
{
	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
		return 0;

857
	/* We couldn't even deal with ourselves... */
858
	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
859 860
	     smp_processor_id(),
	     (unsigned long)cpu_logical_map(smp_processor_id()));
861 862 863
	return -ENODEV;
}

864 865
static int __gic_update_rdist_properties(struct redist_region *region,
					 void __iomem *ptr)
866 867
{
	u64 typer = gic_read_typer(ptr + GICR_TYPER);
868

869
	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
870 871 872 873 874 875 876 877 878 879 880 881 882

	/* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
					   gic_data.rdists.has_rvpeid);

	/* Detect non-sensical configurations */
	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
		gic_data.rdists.has_direct_lpi = false;
		gic_data.rdists.has_vlpis = false;
		gic_data.rdists.has_rvpeid = false;
	}

883
	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
884 885 886 887

	return 1;
}

888
static void gic_update_rdist_properties(void)
889
{
890 891 892 893 894
	gic_data.ppi_nr = UINT_MAX;
	gic_iterate_rdists(__gic_update_rdist_properties);
	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
		gic_data.ppi_nr = 0;
	pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
895
	pr_info("%sVLPI support, %sdirect LPI support, %sRVPEID support\n",
896
		!gic_data.rdists.has_vlpis ? "no " : "",
897 898
		!gic_data.rdists.has_direct_lpi ? "no " : "",
		!gic_data.rdists.has_rvpeid ? "no " : "");
899 900
}

901 902 903 904 905 906
/* Check whether it's single security state view */
static inline bool gic_dist_security_disabled(void)
{
	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
}

907 908
static void gic_cpu_sys_reg_init(void)
{
909 910 911
	int i, cpu = smp_processor_id();
	u64 mpidr = cpu_logical_map(cpu);
	u64 need_rss = MPIDR_RS(mpidr);
912
	bool group0;
913
	u32 pribits;
914

915 916 917 918 919 920 921 922 923
	/*
	 * Need to check that the SRE bit has actually been set. If
	 * not, it means that SRE is disabled at EL2. We're going to
	 * die painfully, and there is nothing we can do about it.
	 *
	 * Kindly inform the luser.
	 */
	if (!gic_enable_sre())
		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
924

925
	pribits = gic_get_pribits();
926

927
	group0 = gic_has_group0();
928

929
	/* Set priority mask register */
930
	if (!gic_prio_masking_enabled()) {
931
		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
932 933 934 935 936 937 938 939 940
	} else {
		/*
		 * Mismatch configuration with boot CPU, the system is likely
		 * to die as interrupt masking will not work properly on all
		 * CPUs
		 */
		WARN_ON(gic_supports_nmi() && group0 &&
			!gic_dist_security_disabled());
	}
941

942 943 944 945 946 947 948 949
	/*
	 * Some firmwares hand over to the kernel with the BPR changed from
	 * its reset value (and with a value large enough to prevent
	 * any pre-emptive interrupts from working at all). Writing a zero
	 * to BPR restores is reset value.
	 */
	gic_write_bpr1(0);

950
	if (static_branch_likely(&supports_deactivate_key)) {
951 952 953 954 955 956
		/* EOI drops priority only (mode 1) */
		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
	} else {
		/* EOI deactivates interrupt too (mode 0) */
		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
	}
957

958 959 960 961 962 963 964
	/* Always whack Group0 before Group1 */
	if (group0) {
		switch(pribits) {
		case 8:
		case 7:
			write_gicreg(0, ICC_AP0R3_EL1);
			write_gicreg(0, ICC_AP0R2_EL1);
965
		/* Fall through */
966 967
		case 6:
			write_gicreg(0, ICC_AP0R1_EL1);
968
		/* Fall through */
969 970 971 972 973 974 975
		case 5:
		case 4:
			write_gicreg(0, ICC_AP0R0_EL1);
		}

		isb();
	}
976

977
	switch(pribits) {
978 979 980 981
	case 8:
	case 7:
		write_gicreg(0, ICC_AP1R3_EL1);
		write_gicreg(0, ICC_AP1R2_EL1);
982
		/* Fall through */
983 984
	case 6:
		write_gicreg(0, ICC_AP1R1_EL1);
985
		/* Fall through */
986 987 988 989 990 991 992
	case 5:
	case 4:
		write_gicreg(0, ICC_AP1R0_EL1);
	}

	isb();

993 994
	/* ... and let's hit the road... */
	gic_write_grpen1(1);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

	/* Keep the RSS capability status in per_cpu variable */
	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);

	/* Check all the CPUs have capable of sending SGIs to other CPUs */
	for_each_online_cpu(i) {
		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);

		need_rss |= MPIDR_RS(cpu_logical_map(i));
		if (need_rss && (!have_rss))
			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
				cpu, (unsigned long)mpidr,
				i, (unsigned long)cpu_logical_map(i));
	}

	/**
	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
	 * UNPREDICTABLE choice of :
	 *   - The write is ignored.
	 *   - The RS field is treated as 0.
	 */
	if (need_rss && (!gic_data.has_rss))
		pr_crit_once("RSS is required but GICD doesn't support it\n");
1019 1020
}

1021 1022 1023 1024 1025 1026 1027 1028
static bool gicv3_nolpi;

static int __init gicv3_nolpi_cfg(char *buf)
{
	return strtobool(buf, &gicv3_nolpi);
}
early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);

1029 1030
static int gic_dist_supports_lpis(void)
{
1031 1032 1033
	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
		!gicv3_nolpi);
1034 1035
}

1036 1037 1038
static void gic_cpu_init(void)
{
	void __iomem *rbase;
1039
	int i;
1040 1041 1042 1043 1044

	/* Register ourselves with the rest of the world */
	if (gic_populate_rdist())
		return;

1045
	gic_enable_redist(true);
1046

1047 1048 1049 1050 1051
	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
	     "Distributor has extended ranges, but CPU%d doesn't\n",
	     smp_processor_id());

1052 1053
	rbase = gic_data_rdist_sgi_base();

1054
	/* Configure SGIs/PPIs as non-secure Group-1 */
1055 1056
	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1057

1058
	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1059

1060 1061
	/* initialise system registers */
	gic_cpu_sys_reg_init();
1062 1063 1064
}

#ifdef CONFIG_SMP
1065

1066 1067 1068
#define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
#define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)

1069
static int gic_starting_cpu(unsigned int cpu)
1070
{
1071
	gic_cpu_init();
1072 1073 1074 1075

	if (gic_dist_supports_lpis())
		its_cpu_init();

1076
	return 0;
1077 1078 1079
}

static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1080
				   unsigned long cluster_id)
1081
{
1082
	int next_cpu, cpu = *base_cpu;
1083
	unsigned long mpidr = cpu_logical_map(cpu);
1084 1085 1086 1087 1088
	u16 tlist = 0;

	while (cpu < nr_cpu_ids) {
		tlist |= 1 << (mpidr & 0xf);

1089 1090
		next_cpu = cpumask_next(cpu, mask);
		if (next_cpu >= nr_cpu_ids)
1091
			goto out;
1092
		cpu = next_cpu;
1093 1094 1095

		mpidr = cpu_logical_map(cpu);

1096
		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1097 1098 1099 1100 1101 1102 1103 1104 1105
			cpu--;
			goto out;
		}
	}
out:
	*base_cpu = cpu;
	return tlist;
}

1106 1107 1108 1109
#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)

1110 1111 1112 1113
static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
{
	u64 val;

1114 1115 1116 1117
	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1118
	       MPIDR_TO_SGI_RS(cluster_id)		|
1119
	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1120

1121
	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	gic_write_sgi1r(val);
}

static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
{
	int cpu;

	if (WARN_ON(irq >= 16))
		return;

	/*
	 * Ensure that stores to Normal memory are visible to the
	 * other CPUs before issuing the IPI.
	 */
1136
	wmb();
1137

1138
	for_each_cpu(cpu, mask) {
1139
		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		u16 tlist;

		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
		gic_send_sgi(cluster_id, tlist, irq);
	}

	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
	isb();
}

static void gic_smp_init(void)
{
	set_smp_cross_call(gic_raise_softirq);
1153
	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
T
Thomas Gleixner 已提交
1154 1155
				  "irqchip/arm/gicv3:starting",
				  gic_starting_cpu, NULL);
1156 1157 1158 1159 1160
}

static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
			    bool force)
{
1161
	unsigned int cpu;
1162
	u32 offset, index;
1163 1164 1165 1166
	void __iomem *reg;
	int enabled;
	u64 val;

1167 1168 1169 1170 1171
	if (force)
		cpu = cpumask_first(mask_val);
	else
		cpu = cpumask_any_and(mask_val, cpu_online_mask);

1172 1173 1174
	if (cpu >= nr_cpu_ids)
		return -EINVAL;

1175 1176 1177 1178 1179 1180 1181 1182
	if (gic_irq_in_rdist(d))
		return -EINVAL;

	/* If interrupt was enabled, disable it first */
	enabled = gic_peek_irq(d, GICD_ISENABLER);
	if (enabled)
		gic_mask_irq(d);

1183 1184
	offset = convert_offset_index(d, GICD_IROUTER, &index);
	reg = gic_dist_base(d) + offset + (index * 8);
1185 1186
	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));

1187
	gic_write_irouter(val, reg);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	/*
	 * If the interrupt was enabled, enabled it again. Otherwise,
	 * just wait for the distributor to have digested our changes.
	 */
	if (enabled)
		gic_unmask_irq(d);
	else
		gic_dist_wait_for_rwp();

1198 1199
	irq_data_update_effective_affinity(d, cpumask_of(cpu));

1200
	return IRQ_SET_MASK_OK_DONE;
1201 1202 1203 1204 1205 1206
}
#else
#define gic_set_affinity	NULL
#define gic_smp_init()		do { } while(0)
#endif

1207 1208 1209 1210 1211
#ifdef CONFIG_CPU_PM
static int gic_cpu_pm_notifier(struct notifier_block *self,
			       unsigned long cmd, void *v)
{
	if (cmd == CPU_PM_EXIT) {
1212 1213
		if (gic_dist_security_disabled())
			gic_enable_redist(true);
1214
		gic_cpu_sys_reg_init();
1215
	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
		gic_write_grpen1(0);
		gic_enable_redist(false);
	}
	return NOTIFY_OK;
}

static struct notifier_block gic_cpu_pm_notifier_block = {
	.notifier_call = gic_cpu_pm_notifier,
};

static void gic_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
}

#else
static inline void gic_cpu_pm_init(void) { }
#endif /* CONFIG_CPU_PM */

1235 1236 1237 1238 1239 1240 1241
static struct irq_chip gic_chip = {
	.name			= "GICv3",
	.irq_mask		= gic_mask_irq,
	.irq_unmask		= gic_unmask_irq,
	.irq_eoi		= gic_eoi_irq,
	.irq_set_type		= gic_set_type,
	.irq_set_affinity	= gic_set_affinity,
1242 1243
	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1244 1245
	.irq_nmi_setup		= gic_irq_nmi_setup,
	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1246 1247 1248
	.flags			= IRQCHIP_SET_TYPE_MASKED |
				  IRQCHIP_SKIP_SET_WAKE |
				  IRQCHIP_MASK_ON_SUSPEND,
1249 1250
};

1251 1252 1253 1254 1255 1256 1257 1258 1259
static struct irq_chip gic_eoimode1_chip = {
	.name			= "GICv3",
	.irq_mask		= gic_eoimode1_mask_irq,
	.irq_unmask		= gic_unmask_irq,
	.irq_eoi		= gic_eoimode1_eoi_irq,
	.irq_set_type		= gic_set_type,
	.irq_set_affinity	= gic_set_affinity,
	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1260
	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1261 1262
	.irq_nmi_setup		= gic_irq_nmi_setup,
	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1263 1264 1265
	.flags			= IRQCHIP_SET_TYPE_MASKED |
				  IRQCHIP_SKIP_SET_WAKE |
				  IRQCHIP_MASK_ON_SUSPEND,
1266 1267
};

1268 1269 1270
static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
			      irq_hw_number_t hw)
{
1271 1272
	struct irq_chip *chip = &gic_chip;

1273
	if (static_branch_likely(&supports_deactivate_key))
1274 1275
		chip = &gic_eoimode1_chip;

1276 1277
	switch (__get_intid_range(hw)) {
	case PPI_RANGE:
1278
	case EPPI_RANGE:
1279
		irq_set_percpu_devid(irq);
1280
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1281
				    handle_percpu_devid_irq, NULL, NULL);
1282
		irq_set_status_flags(irq, IRQ_NOAUTOEN);
1283 1284 1285
		break;

	case SPI_RANGE:
1286
	case ESPI_RANGE:
1287
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1288
				    handle_fasteoi_irq, NULL, NULL);
1289
		irq_set_probe(irq);
1290
		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
1291 1292 1293
		break;

	case LPI_RANGE:
1294 1295
		if (!gic_dist_supports_lpis())
			return -EPERM;
1296
		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1297
				    handle_fasteoi_irq, NULL, NULL);
1298 1299 1300 1301
		break;

	default:
		return -EPERM;
1302 1303
	}

1304 1305 1306
	return 0;
}

1307 1308
#define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)

1309 1310 1311 1312
static int gic_irq_domain_translate(struct irq_domain *d,
				    struct irq_fwspec *fwspec,
				    unsigned long *hwirq,
				    unsigned int *type)
1313
{
1314 1315 1316
	if (is_of_node(fwspec->fwnode)) {
		if (fwspec->param_count < 3)
			return -EINVAL;
1317

1318 1319 1320 1321 1322 1323 1324
		switch (fwspec->param[0]) {
		case 0:			/* SPI */
			*hwirq = fwspec->param[1] + 32;
			break;
		case 1:			/* PPI */
			*hwirq = fwspec->param[1] + 16;
			break;
1325 1326 1327
		case 2:			/* ESPI */
			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
			break;
1328 1329 1330
		case 3:			/* EPPI */
			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
			break;
1331 1332 1333
		case GIC_IRQ_TYPE_LPI:	/* LPI */
			*hwirq = fwspec->param[1];
			break;
1334 1335 1336 1337 1338 1339 1340
		case GIC_IRQ_TYPE_PARTITION:
			*hwirq = fwspec->param[1];
			if (fwspec->param[1] >= 16)
				*hwirq += EPPI_BASE_INTID - 16;
			else
				*hwirq += 16;
			break;
1341 1342 1343
		default:
			return -EINVAL;
		}
1344 1345

		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1346

1347 1348 1349 1350 1351 1352
		/*
		 * Make it clear that broken DTs are... broken.
		 * Partitionned PPIs are an unfortunate exception.
		 */
		WARN_ON(*type == IRQ_TYPE_NONE &&
			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1353
		return 0;
1354 1355
	}

1356 1357 1358 1359 1360 1361
	if (is_fwnode_irqchip(fwspec->fwnode)) {
		if(fwspec->param_count != 2)
			return -EINVAL;

		*hwirq = fwspec->param[0];
		*type = fwspec->param[1];
1362 1363

		WARN_ON(*type == IRQ_TYPE_NONE);
1364 1365 1366
		return 0;
	}

1367
	return -EINVAL;
1368 1369
}

1370 1371 1372 1373 1374 1375
static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
				unsigned int nr_irqs, void *arg)
{
	int i, ret;
	irq_hw_number_t hwirq;
	unsigned int type = IRQ_TYPE_NONE;
1376
	struct irq_fwspec *fwspec = arg;
1377

1378
	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1379 1380 1381
	if (ret)
		return ret;

1382 1383 1384 1385 1386
	for (i = 0; i < nr_irqs; i++) {
		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
		if (ret)
			return ret;
	}
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

	return 0;
}

static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
				unsigned int nr_irqs)
{
	int i;

	for (i = 0; i < nr_irqs; i++) {
		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
		irq_set_handler(virq + i, NULL);
		irq_domain_reset_irq_data(d);
	}
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static int gic_irq_domain_select(struct irq_domain *d,
				 struct irq_fwspec *fwspec,
				 enum irq_domain_bus_token bus_token)
{
	/* Not for us */
        if (fwspec->fwnode != d->fwnode)
		return 0;

	/* If this is not DT, then we have a single domain */
	if (!is_of_node(fwspec->fwnode))
		return 1;

	/*
	 * If this is a PPI and we have a 4th (non-null) parameter,
	 * then we need to match the partition domain.
	 */
	if (fwspec->param_count >= 4 &&
1420 1421
	    fwspec->param[0] == 1 && fwspec->param[3] != 0 &&
	    gic_data.ppi_descs)
1422 1423 1424 1425 1426
		return d == partition_get_domain(gic_data.ppi_descs[fwspec->param[1]]);

	return d == gic_data.domain;
}

1427
static const struct irq_domain_ops gic_irq_domain_ops = {
1428
	.translate = gic_irq_domain_translate,
1429 1430
	.alloc = gic_irq_domain_alloc,
	.free = gic_irq_domain_free,
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	.select = gic_irq_domain_select,
};

static int partition_domain_translate(struct irq_domain *d,
				      struct irq_fwspec *fwspec,
				      unsigned long *hwirq,
				      unsigned int *type)
{
	struct device_node *np;
	int ret;

1442 1443 1444
	if (!gic_data.ppi_descs)
		return -ENOMEM;

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	np = of_find_node_by_phandle(fwspec->param[3]);
	if (WARN_ON(!np))
		return -EINVAL;

	ret = partition_translate_id(gic_data.ppi_descs[fwspec->param[1]],
				     of_node_to_fwnode(np));
	if (ret < 0)
		return ret;

	*hwirq = ret;
	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;

	return 0;
}

static const struct irq_domain_ops partition_domain_ops = {
	.translate = partition_domain_translate,
	.select = gic_irq_domain_select,
1463 1464
};

1465 1466 1467 1468 1469 1470 1471 1472 1473
static bool gic_enable_quirk_msm8996(void *data)
{
	struct gic_chip_data *d = data;

	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;

	return true;
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
static bool gic_enable_quirk_hip06_07(void *data)
{
	struct gic_chip_data *d = data;

	/*
	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
	 * not being an actual ARM implementation). The saving grace is
	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
	 * HIP07 doesn't even have a proper IIDR, and still pretends to
	 * have ESPI. In both cases, put them right.
	 */
	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
		/* Zero both ESPI and the RES0 field next to it... */
		d->rdists.gicd_typer &= ~GENMASK(9, 8);
		return true;
	}

	return false;
}

static const struct gic_quirk gic_quirks[] = {
	{
		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
		.compatible = "qcom,msm8996-gic-v3",
		.init	= gic_enable_quirk_msm8996,
	},
	{
		.desc	= "GICv3: HIP06 erratum 161010803",
		.iidr	= 0x0204043b,
		.mask	= 0xffffffff,
		.init	= gic_enable_quirk_hip06_07,
	},
	{
		.desc	= "GICv3: HIP07 erratum 161010803",
		.iidr	= 0x00000000,
		.mask	= 0xffffffff,
		.init	= gic_enable_quirk_hip06_07,
	},
	{
	}
};

1516 1517
static void gic_enable_nmi_support(void)
{
1518 1519
	int i;

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	if (!gic_prio_masking_enabled())
		return;

	if (gic_has_group0() && !gic_dist_security_disabled()) {
		pr_warn("SCR_EL3.FIQ is cleared, cannot enable use of pseudo-NMIs\n");
		return;
	}

	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
	if (!ppi_nmi_refs)
		return;

	for (i = 0; i < gic_data.ppi_nr; i++)
1533 1534
		refcount_set(&ppi_nmi_refs[i], 0);

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	/*
	 * Linux itself doesn't use 1:N distribution, so has no need to
	 * set PMHE. The only reason to have it set is if EL3 requires it
	 * (and we can't change it).
	 */
	if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
		static_branch_enable(&gic_pmr_sync);

	pr_info("%s ICC_PMR_EL1 synchronisation\n",
		static_branch_unlikely(&gic_pmr_sync) ? "Forcing" : "Relaxing");

1546
	static_branch_enable(&supports_pseudo_nmis);
1547 1548 1549 1550 1551

	if (static_branch_likely(&supports_deactivate_key))
		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
	else
		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1552 1553
}

1554 1555 1556 1557 1558
static int __init gic_init_bases(void __iomem *dist_base,
				 struct redist_region *rdist_regs,
				 u32 nr_redist_regions,
				 u64 redist_stride,
				 struct fwnode_handle *handle)
1559
{
1560
	u32 typer;
1561 1562
	int err;

1563
	if (!is_hyp_mode_available())
1564
		static_branch_disable(&supports_deactivate_key);
1565

1566
	if (static_branch_likely(&supports_deactivate_key))
1567 1568
		pr_info("GIC: Using split EOI/Deactivate mode\n");

1569
	gic_data.fwnode = handle;
1570
	gic_data.dist_base = dist_base;
1571 1572
	gic_data.redist_regions = rdist_regs;
	gic_data.nr_redist_regions = nr_redist_regions;
1573 1574 1575 1576 1577
	gic_data.redist_stride = redist_stride;

	/*
	 * Find out how many interrupts are supported.
	 */
1578
	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1579
	gic_data.rdists.gicd_typer = typer;
1580 1581 1582 1583

	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
			  gic_quirks, &gic_data);

1584 1585
	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1586 1587 1588

	gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);

1589 1590
	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
						 &gic_data);
1591
	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1592
	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1593
	gic_data.rdists.has_rvpeid = true;
1594 1595
	gic_data.rdists.has_vlpis = true;
	gic_data.rdists.has_direct_lpi = true;
1596

1597
	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1598 1599 1600 1601
		err = -ENOMEM;
		goto out_free;
	}

1602 1603 1604 1605
	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
	pr_info("Distributor has %sRange Selector support\n",
		gic_data.has_rss ? "" : "no ");

1606 1607 1608 1609 1610 1611
	if (typer & GICD_TYPER_MBIS) {
		err = mbi_init(handle, gic_data.domain);
		if (err)
			pr_err("Failed to initialize MBIs\n");
	}

1612 1613
	set_handle_irq(gic_handle_irq);

1614
	gic_update_rdist_properties();
1615

1616 1617 1618
	gic_smp_init();
	gic_dist_init();
	gic_cpu_init();
1619
	gic_cpu_pm_init();
1620

1621 1622 1623
	if (gic_dist_supports_lpis()) {
		its_init(handle, &gic_data.rdists, gic_data.domain);
		its_cpu_init();
1624 1625 1626
	} else {
		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
			gicv2m_init(handle, gic_data.domain);
1627 1628
	}

1629
	gic_enable_nmi_support();
1630

1631 1632 1633 1634 1635
	return 0;

out_free:
	if (gic_data.domain)
		irq_domain_remove(gic_data.domain);
1636
	free_percpu(gic_data.rdists.rdist);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	return err;
}

static int __init gic_validate_dist_version(void __iomem *dist_base)
{
	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;

	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
		return -ENODEV;

	return 0;
}

1650
/* Create all possible partitions at boot time */
1651
static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1652 1653 1654 1655 1656 1657
{
	struct device_node *parts_node, *child_part;
	int part_idx = 0, i;
	int nr_parts;
	struct partition_affinity *parts;

1658
	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1659 1660 1661
	if (!parts_node)
		return;

1662 1663 1664 1665
	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
	if (!gic_data.ppi_descs)
		return;

1666 1667 1668
	nr_parts = of_get_child_count(parts_node);

	if (!nr_parts)
1669
		goto out_put_node;
1670

K
Kees Cook 已提交
1671
	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1672
	if (WARN_ON(!parts))
1673
		goto out_put_node;
1674 1675 1676 1677 1678 1679 1680 1681 1682

	for_each_child_of_node(parts_node, child_part) {
		struct partition_affinity *part;
		int n;

		part = &parts[part_idx];

		part->partition_id = of_node_to_fwnode(child_part);

1683 1684
		pr_info("GIC: PPI partition %pOFn[%d] { ",
			child_part, part_idx);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

		n = of_property_count_elems_of_size(child_part, "affinity",
						    sizeof(u32));
		WARN_ON(n <= 0);

		for (i = 0; i < n; i++) {
			int err, cpu;
			u32 cpu_phandle;
			struct device_node *cpu_node;

			err = of_property_read_u32_index(child_part, "affinity",
							 i, &cpu_phandle);
			if (WARN_ON(err))
				continue;

			cpu_node = of_find_node_by_phandle(cpu_phandle);
			if (WARN_ON(!cpu_node))
				continue;

1704 1705
			cpu = of_cpu_node_to_id(cpu_node);
			if (WARN_ON(cpu < 0))
1706 1707
				continue;

1708
			pr_cont("%pOF[%d] ", cpu_node, cpu);
1709 1710 1711 1712 1713 1714 1715 1716

			cpumask_set_cpu(cpu, &part->mask);
		}

		pr_cont("}\n");
		part_idx++;
	}

1717
	for (i = 0; i < gic_data.ppi_nr; i++) {
1718 1719 1720 1721 1722 1723
		unsigned int irq;
		struct partition_desc *desc;
		struct irq_fwspec ppi_fwspec = {
			.fwnode		= gic_data.fwnode,
			.param_count	= 3,
			.param		= {
1724
				[0]	= GIC_IRQ_TYPE_PARTITION,
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
				[1]	= i,
				[2]	= IRQ_TYPE_NONE,
			},
		};

		irq = irq_create_fwspec_mapping(&ppi_fwspec);
		if (WARN_ON(!irq))
			continue;
		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
					     irq, &partition_domain_ops);
		if (WARN_ON(!desc))
			continue;

		gic_data.ppi_descs[i] = desc;
	}
1740 1741 1742

out_put_node:
	of_node_put(parts_node);
1743 1744
}

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
static void __init gic_of_setup_kvm_info(struct device_node *node)
{
	int ret;
	struct resource r;
	u32 gicv_idx;

	gic_v3_kvm_info.type = GIC_V3;

	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
	if (!gic_v3_kvm_info.maint_irq)
		return;

	if (of_property_read_u32(node, "#redistributor-regions",
				 &gicv_idx))
		gicv_idx = 1;

	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
	ret = of_address_to_resource(node, gicv_idx, &r);
	if (!ret)
		gic_v3_kvm_info.vcpu = r;

1766
	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1767 1768 1769
	gic_set_kvm_info(&gic_v3_kvm_info);
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
static int __init gic_of_init(struct device_node *node, struct device_node *parent)
{
	void __iomem *dist_base;
	struct redist_region *rdist_regs;
	u64 redist_stride;
	u32 nr_redist_regions;
	int err, i;

	dist_base = of_iomap(node, 0);
	if (!dist_base) {
1780
		pr_err("%pOF: unable to map gic dist registers\n", node);
1781 1782 1783 1784 1785
		return -ENXIO;
	}

	err = gic_validate_dist_version(dist_base);
	if (err) {
1786
		pr_err("%pOF: no distributor detected, giving up\n", node);
1787 1788 1789 1790 1791 1792
		goto out_unmap_dist;
	}

	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
		nr_redist_regions = 1;

K
Kees Cook 已提交
1793 1794
	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
			     GFP_KERNEL);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	if (!rdist_regs) {
		err = -ENOMEM;
		goto out_unmap_dist;
	}

	for (i = 0; i < nr_redist_regions; i++) {
		struct resource res;
		int ret;

		ret = of_address_to_resource(node, 1 + i, &res);
		rdist_regs[i].redist_base = of_iomap(node, 1 + i);
		if (ret || !rdist_regs[i].redist_base) {
1807
			pr_err("%pOF: couldn't map region %d\n", node, i);
1808 1809 1810 1811 1812 1813 1814 1815 1816
			err = -ENODEV;
			goto out_unmap_rdist;
		}
		rdist_regs[i].phys_base = res.start;
	}

	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
		redist_stride = 0;

1817 1818
	gic_enable_of_quirks(node, gic_quirks, &gic_data);

1819 1820
	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
			     redist_stride, &node->fwnode);
1821 1822 1823 1824
	if (err)
		goto out_unmap_rdist;

	gic_populate_ppi_partitions(node);
1825

1826
	if (static_branch_likely(&supports_deactivate_key))
1827
		gic_of_setup_kvm_info(node);
1828
	return 0;
1829

1830
out_unmap_rdist:
1831 1832 1833 1834
	for (i = 0; i < nr_redist_regions; i++)
		if (rdist_regs[i].redist_base)
			iounmap(rdist_regs[i].redist_base);
	kfree(rdist_regs);
1835 1836 1837 1838 1839 1840
out_unmap_dist:
	iounmap(dist_base);
	return err;
}

IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
1841 1842

#ifdef CONFIG_ACPI
1843 1844 1845 1846 1847 1848
static struct
{
	void __iomem *dist_base;
	struct redist_region *redist_regs;
	u32 nr_redist_regions;
	bool single_redist;
1849
	int enabled_rdists;
1850 1851 1852
	u32 maint_irq;
	int maint_irq_mode;
	phys_addr_t vcpu_base;
1853
} acpi_data __initdata;
1854 1855 1856 1857 1858 1859

static void __init
gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
{
	static int count = 0;

1860 1861 1862
	acpi_data.redist_regs[count].phys_base = phys_base;
	acpi_data.redist_regs[count].redist_base = redist_base;
	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
1863 1864
	count++;
}
1865 1866

static int __init
1867
gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
			   const unsigned long end)
{
	struct acpi_madt_generic_redistributor *redist =
			(struct acpi_madt_generic_redistributor *)header;
	void __iomem *redist_base;

	redist_base = ioremap(redist->base_address, redist->length);
	if (!redist_base) {
		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
		return -ENOMEM;
	}

1880
	gic_acpi_register_redist(redist->base_address, redist_base);
1881 1882 1883
	return 0;
}

1884
static int __init
1885
gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
1886 1887 1888 1889
			 const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
				(struct acpi_madt_generic_interrupt *)header;
1890
	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1891 1892 1893
	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
	void __iomem *redist_base;

1894 1895 1896 1897
	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	redist_base = ioremap(gicc->gicr_base_address, size);
	if (!redist_base)
		return -ENOMEM;

	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
	return 0;
}

static int __init gic_acpi_collect_gicr_base(void)
{
	acpi_tbl_entry_handler redist_parser;
	enum acpi_madt_type type;

1911
	if (acpi_data.single_redist) {
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
		redist_parser = gic_acpi_parse_madt_gicc;
	} else {
		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
		redist_parser = gic_acpi_parse_madt_redist;
	}

	/* Collect redistributor base addresses in GICR entries */
	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
		return 0;

	pr_info("No valid GICR entries exist\n");
	return -ENODEV;
}

1927
static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
1928 1929 1930 1931 1932 1933
				  const unsigned long end)
{
	/* Subtable presence means that redist exists, that's it */
	return 0;
}

1934
static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
1935 1936 1937 1938 1939 1940 1941 1942 1943
				      const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
				(struct acpi_madt_generic_interrupt *)header;

	/*
	 * If GICC is enabled and has valid gicr base address, then it means
	 * GICR base is presented via GICC
	 */
1944 1945
	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
		acpi_data.enabled_rdists++;
1946
		return 0;
1947
	}
1948

1949 1950 1951 1952 1953 1954 1955
	/*
	 * It's perfectly valid firmware can pass disabled GICC entry, driver
	 * should not treat as errors, skip the entry instead of probe fail.
	 */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	return -ENODEV;
}

static int __init gic_acpi_count_gicr_regions(void)
{
	int count;

	/*
	 * Count how many redistributor regions we have. It is not allowed
	 * to mix redistributor description, GICR and GICC subtables have to be
	 * mutually exclusive.
	 */
	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
				      gic_acpi_match_gicr, 0);
	if (count > 0) {
1971
		acpi_data.single_redist = false;
1972 1973 1974 1975 1976
		return count;
	}

	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
				      gic_acpi_match_gicc, 0);
1977
	if (count > 0) {
1978
		acpi_data.single_redist = true;
1979 1980
		count = acpi_data.enabled_rdists;
	}
1981 1982 1983 1984

	return count;
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
					   struct acpi_probe_entry *ape)
{
	struct acpi_madt_generic_distributor *dist;
	int count;

	dist = (struct acpi_madt_generic_distributor *)header;
	if (dist->version != ape->driver_data)
		return false;

	/* We need to do that exercise anyway, the sooner the better */
1996
	count = gic_acpi_count_gicr_regions();
1997 1998 1999
	if (count <= 0)
		return false;

2000
	acpi_data.nr_redist_regions = count;
2001 2002 2003
	return true;
}

2004
static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
						const unsigned long end)
{
	struct acpi_madt_generic_interrupt *gicc =
		(struct acpi_madt_generic_interrupt *)header;
	int maint_irq_mode;
	static int first_madt = true;

	/* Skip unusable CPUs */
	if (!(gicc->flags & ACPI_MADT_ENABLED))
		return 0;

	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;

	if (first_madt) {
		first_madt = false;

		acpi_data.maint_irq = gicc->vgic_interrupt;
		acpi_data.maint_irq_mode = maint_irq_mode;
		acpi_data.vcpu_base = gicc->gicv_base_address;

		return 0;
	}

	/*
	 * The maintenance interrupt and GICV should be the same for every CPU
	 */
	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
	    (acpi_data.vcpu_base != gicc->gicv_base_address))
		return -EINVAL;

	return 0;
}

static bool __init gic_acpi_collect_virt_info(void)
{
	int count;

	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
				      gic_acpi_parse_virt_madt_gicc, 0);

	return (count > 0);
}

2050
#define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
#define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
#define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)

static void __init gic_acpi_setup_kvm_info(void)
{
	int irq;

	if (!gic_acpi_collect_virt_info()) {
		pr_warn("Unable to get hardware information used for virtualization\n");
		return;
	}

	gic_v3_kvm_info.type = GIC_V3;

	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
				acpi_data.maint_irq_mode,
				ACPI_ACTIVE_HIGH);
	if (irq <= 0)
		return;

	gic_v3_kvm_info.maint_irq = irq;

	if (acpi_data.vcpu_base) {
		struct resource *vcpu = &gic_v3_kvm_info.vcpu;

		vcpu->flags = IORESOURCE_MEM;
		vcpu->start = acpi_data.vcpu_base;
		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
	}

2081
	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2082 2083
	gic_set_kvm_info(&gic_v3_kvm_info);
}
2084 2085 2086 2087 2088 2089

static int __init
gic_acpi_init(struct acpi_subtable_header *header, const unsigned long end)
{
	struct acpi_madt_generic_distributor *dist;
	struct fwnode_handle *domain_handle;
2090
	size_t size;
2091
	int i, err;
2092 2093 2094

	/* Get distributor base address */
	dist = (struct acpi_madt_generic_distributor *)header;
2095 2096 2097
	acpi_data.dist_base = ioremap(dist->base_address,
				      ACPI_GICV3_DIST_MEM_SIZE);
	if (!acpi_data.dist_base) {
2098 2099 2100 2101
		pr_err("Unable to map GICD registers\n");
		return -ENOMEM;
	}

2102
	err = gic_validate_dist_version(acpi_data.dist_base);
2103
	if (err) {
2104
		pr_err("No distributor detected at @%p, giving up\n",
2105
		       acpi_data.dist_base);
2106 2107 2108
		goto out_dist_unmap;
	}

2109 2110 2111
	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
	if (!acpi_data.redist_regs) {
2112 2113 2114 2115
		err = -ENOMEM;
		goto out_dist_unmap;
	}

2116 2117
	err = gic_acpi_collect_gicr_base();
	if (err)
2118 2119
		goto out_redist_unmap;

2120
	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2121 2122 2123 2124 2125
	if (!domain_handle) {
		err = -ENOMEM;
		goto out_redist_unmap;
	}

2126 2127
	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
			     acpi_data.nr_redist_regions, 0, domain_handle);
2128 2129 2130 2131
	if (err)
		goto out_fwhandle_free;

	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2132

2133
	if (static_branch_likely(&supports_deactivate_key))
2134
		gic_acpi_setup_kvm_info();
2135

2136 2137 2138 2139 2140
	return 0;

out_fwhandle_free:
	irq_domain_free_fwnode(domain_handle);
out_redist_unmap:
2141 2142 2143 2144
	for (i = 0; i < acpi_data.nr_redist_regions; i++)
		if (acpi_data.redist_regs[i].redist_base)
			iounmap(acpi_data.redist_regs[i].redist_base);
	kfree(acpi_data.redist_regs);
2145
out_dist_unmap:
2146
	iounmap(acpi_data.dist_base);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	return err;
}
IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
		     gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
		     gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
		     gic_acpi_init);
#endif