rt2800pci.c 33.5 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
46
#include "rt2800lib.h"
47
#include "rt2800.h"
48 49 50 51 52
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
53
static int modparam_nohwcrypt = 0;
54 55 56 57 58 59 60 61
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

62 63 64 65 66 67
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

68
	for (i = 0; i < 200; i++) {
69
		rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70 71 72 73 74 75 76 77 78 79 80 81 82

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

83 84
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 86
}

87
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 89
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
90
	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91 92

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93 94

	iounmap(base_addr);
95 96 97 98 99
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
100
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101

102
#ifdef CONFIG_PCI
103 104 105 106 107
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

108
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

130
	rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
131 132 133 134 135 136 137
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

138
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
139 140 141 142

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
143 144 145 146 147 148 149 150 151 152 153 154
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
155 156 157 158 159 160 161 162 163
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

164 165
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
166
	return rt2800_efuse_detect(rt2x00dev);
167 168
}

169
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170
{
171
	rt2800_read_eeprom_efuse(rt2x00dev);
172 173 174 175 176 177
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

178 179 180 181 182
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

183 184 185
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
186
#endif /* CONFIG_PCI */
187 188 189 190 191 192 193 194 195

/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

196
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
197 198 199 200 201 202 203 204 205
				    const u8 *data, const size_t len)
{
	u32 reg;

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
206
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
207 208 209 210

	/*
	 * Write firmware to device.
	 */
211
	rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
212
				   data, len);
213

214 215
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
216

217 218
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
246
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
247 248 249 250 251 252 253 254 255 256
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
257 258 259 260 261 262 263

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
		rt2800_register_write(rt2x00dev, RX_CRX_IDX,
				      entry->entry_idx);
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;
	u32 reg;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
280 281 282 283
	rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
284 285

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
286 287 288 289
	rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
290 291

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
292 293 294 295
	rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
296 297

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
298 299 300 301
	rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
302 303

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
304 305 306 307
	rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
	rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
308 309 310 311

	/*
	 * Enable global DMA configuration
	 */
312
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
313 314 315
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
316
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
317

318
	rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
319 320 321 322 323 324 325 326 327 328 329 330

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

331
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
332
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
I
Ivo van Doorn 已提交
333
			   (state == STATE_RADIO_RX_ON));
334
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
335 336 337 338 339
}

static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
340 341
	int mask = (state == STATE_RADIO_IRQ_ON) ||
		   (state == STATE_RADIO_IRQ_ON_ISR);
342 343 344 345 346 347 348
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
349 350
		rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
351 352
	}

353
	rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
354 355
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
356
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
357 358 359 360 361 362 363 364
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
365 366 367 368
	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
369 370 371
	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
372
	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
373 374
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);

	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);

	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);

	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);

	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);

	return 0;
}

407 408
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
409
	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
410
		     rt2800pci_init_queues(rt2x00dev)))
411 412
		return -EIO;

413
	return rt2800_enable_radio(rt2x00dev);
414 415 416 417 418 419
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

420
	rt2800_disable_radio(rt2x00dev);
421

422
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
423

424
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
425 426 427 428 429 430 431
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
432
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
433

434 435
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
436 437 438 439 440 441 442 443 444 445
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	/*
	 * Always put the device to sleep (even when we intend to wakeup!)
	 * if the device is booting and wasn't asleep it will return
	 * failure when attempting to wakeup.
	 */
I
Ivo van Doorn 已提交
446
	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2);
447 448

	if (state == STATE_AWAKE) {
449
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		/*
		 * Before the radio can be enabled, the device first has
		 * to be woken up. After that it needs a bit of time
		 * to be fully awake and then the radio can be enabled.
		 */
		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
		msleep(1);
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_RX_ON:
	case STATE_RADIO_RX_OFF:
		rt2800pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
485
	case STATE_RADIO_IRQ_ON_ISR:
486
	case STATE_RADIO_IRQ_OFF:
487
	case STATE_RADIO_IRQ_OFF_ISR:
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
511
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
512
{
513
	return (__le32 *) entry->skb->data;
514 515
}

516
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
517 518
				    struct txentry_desc *txdesc)
{
519 520
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
521
	__le32 *txd = entry_priv->desc;
522 523
	u32 word;

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

	rt2x00_desc_read(txd, 1, &word);
540
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
541 542 543 544
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
545
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
546 547 548 549 550 551
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
552
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
553 554 555 556 557 558 559
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
560 561 562 563 564 565

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
566 567 568 569 570
}

/*
 * TX data initialization
 */
571
static void rt2800pci_kick_tx_queue(struct data_queue *queue)
572
{
573
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
574
	struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
575
	unsigned int qidx;
576

577
	if (queue->qid == QID_MGMT)
578 579
		qidx = 5;
	else
580
		qidx = queue->qid;
581

582
	rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
583 584
}

585
static void rt2800pci_kill_tx_queue(struct data_queue *queue)
586
{
587
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
588 589
	u32 reg;

590
	if (queue->qid == QID_BEACON) {
591
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
592 593 594
		return;
	}

595
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
596 597 598 599
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
600
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
601 602 603 604 605 606 607 608 609 610
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
611 612 613 614 615
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
616 617
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

618 619 620 621 622
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
623
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
624

625
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
626 627 628 629 630 631 632 633 634 635 636 637 638 639
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

640
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
641 642
		rxdesc->dev_flags |= RXDONE_MY_BSS;

643
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
644 645 646
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
647
	 * Process the RXWI structure that is at the start of the buffer.
648
	 */
649
	rt2800_process_rxwi(entry, rxdesc);
650 651 652 653 654
}

/*
 * Interrupt functions.
 */
655 656 657 658 659 660 661 662
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	struct queue_entry *entry;
	u32 status;
	u8 qid;

	while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) {
		/* Now remove the tx status from the FIFO */
		if (kfifo_out(&rt2x00dev->txstatus_fifo, &status,
			      sizeof(status)) != sizeof(status)) {
			WARN_ON(1);
			break;
		}

678
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
		if (qid >= QID_RX) {
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
			WARNING(rt2x00dev, "Got TX status report with "
					   "unexpected pid %u, dropping", qid);
			break;
		}

		queue = rt2x00queue_get_queue(rt2x00dev, qid);
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
			WARNING(rt2x00dev, "Got TX status for an unavailable "
					   "queue %u, dropping", qid);
			break;
		}

		if (rt2x00queue_empty(queue)) {
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
			WARNING(rt2x00dev, "Got TX status for an empty "
					   "queue %u, dropping", qid);
			break;
		}

		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
		rt2800_txdone_entry(entry, status);
	}
}

static void rt2800pci_txstatus_tasklet(unsigned long data)
{
	rt2800pci_txdone((struct rt2x00_dev *)data);
}

720
static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
721 722
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
723
	u32 reg = rt2x00dev->irqvalue[0];
724 725

	/*
726 727 728 729 730 731 732 733 734 735 736 737 738
	 * 1 - Pre TBTT interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		rt2x00lib_pretbtt(rt2x00dev);

	/*
	 * 2 - Beacondone interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		rt2x00lib_beacondone(rt2x00dev);

	/*
	 * 3 - Rx ring done interrupt.
739 740 741 742
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		rt2x00pci_rxdone(rt2x00dev);

743
	/*
744
	 * 4 - Auto wakeup interrupt.
745
	 */
746 747 748
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		rt2800pci_wakeup(rt2x00dev);

749 750 751 752
	/* Enable interrupts again. */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
					      STATE_RADIO_IRQ_ON_ISR);

753 754 755
	return IRQ_HANDLED;
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
	 * can also be read while the interrupt thread gets executed.
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
779
	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

		if (kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				" drop tx status report.\n");
			break;
		}

		if (kfifo_in(&rt2x00dev->txstatus_fifo, &status,
			     sizeof(status)) != sizeof(status)) {
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				"drop tx status report.\n");
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

803 804 805 806
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;
807
	irqreturn_t ret = IRQ_HANDLED;
808 809 810 811 812 813 814 815 816 817 818

	/* Read status and ACK all interrupts */
	rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

819 820
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
		rt2800pci_txstatus_interrupt(rt2x00dev);
821

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
	    rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
	    rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
	    rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
		/*
		 * All other interrupts are handled in the interrupt thread.
		 * Store irqvalue for use in the interrupt thread.
		 */
		rt2x00dev->irqvalue[0] = reg;

		/*
		 * Disable interrupts, will be enabled again in the
		 * interrupt thread.
		*/
		rt2x00dev->ops->lib->set_device_state(rt2x00dev,
						      STATE_RADIO_IRQ_OFF_ISR);
838

839 840 841 842 843 844 845 846 847 848
		/*
		 * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
		 * tx status reports.
		 */
		rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
		rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);

		ret = IRQ_WAKE_THREAD;
	}
849

850
	return ret;
851 852
}

853 854 855
/*
 * Device probe functions.
 */
856 857 858 859 860
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
861
	if (rt2x00_is_soc(rt2x00dev))
862
		rt2800pci_read_eeprom_soc(rt2x00dev);
863 864 865 866
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
867 868 869 870

	return rt2800_validate_eeprom(rt2x00dev);
}

871 872 873 874 875 876 877 878 879 880 881
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

882
	retval = rt2800_init_eeprom(rt2x00dev);
883 884 885 886 887 888
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
889
	retval = rt2800_probe_hw_mode(rt2x00dev);
890 891 892 893 894 895 896 897 898 899
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);

900 901 902 903 904 905
	/*
	 * This device has a pre tbtt interrupt and thus fetches
	 * a new beacon directly prior to transmission.
	 */
	__set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);

906 907 908
	/*
	 * This device requires firmware.
	 */
909
	if (!rt2x00_is_soc(rt2x00dev))
910 911 912
		__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
913
	__set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
914
	__set_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags);
915 916
	if (!modparam_nohwcrypt)
		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
917
	__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
918 919 920 921 922 923 924 925 926

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
I
Ivo van Doorn 已提交
946
	.flush			= rt2x00mac_flush,
947
	.get_survey		= rt2800_get_survey,
948 949
};

950 951 952 953 954 955 956 957 958 959
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,
	.regbusy_read		= rt2x00pci_regbusy_read,
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
960
	.drv_get_txwi		= rt2800pci_get_txwi,
961 962
};

963 964
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
965
	.irq_handler_thread	= rt2800pci_interrupt_thread,
966
	.txstatus_tasklet       = rt2800pci_txstatus_tasklet,
967 968
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
969 970
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
971 972 973 974 975
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
976 977 978 979
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
980
	.write_tx_desc		= rt2800pci_write_tx_desc,
981
	.write_tx_data		= rt2800_write_tx_data,
982
	.write_beacon		= rt2800_write_beacon,
983 984 985
	.kick_tx_queue		= rt2800pci_kick_tx_queue,
	.kill_tx_queue		= rt2800pci_kill_tx_queue,
	.fill_rxdone		= rt2800pci_fill_rxdone,
986 987 988 989 990 991 992
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
993 994 995
};

static const struct data_queue_desc rt2800pci_queue_rx = {
996
	.entry_num		= 128,
997 998 999 1000 1001 1002
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
1003
	.entry_num		= 64,
1004 1005 1006 1007 1008 1009
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
1010
	.entry_num		= 8,
1011 1012 1013 1014 1015 1016
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1017 1018 1019 1020 1021 1022
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1023
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1024 1025 1026 1027
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
1028
	.drv			= &rt2800pci_rt2800_ops,
1029
	.hw			= &rt2800pci_mac80211_ops,
1030
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1031
	.debugfs		= &rt2800_rt2x00debug,
1032 1033 1034 1035 1036 1037
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1038
#ifdef CONFIG_PCI
1039
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1040 1041 1042 1043
	{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1044 1045 1046
	{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1047 1048 1049 1050 1051 1052 1053
	{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1054
	{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1055
	{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1056 1057 1058
#ifdef CONFIG_RT2800PCI_RT33XX
	{ PCI_DEVICE(0x1814, 0x3390), PCI_DEVICE_DATA(&rt2800pci_ops) },
#endif
1059 1060 1061
#ifdef CONFIG_RT2800PCI_RT35XX
	{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1062 1063
	{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1064
	{ PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1065
#endif
1066 1067
	{ 0, }
};
1068
#endif /* CONFIG_PCI */
1069 1070 1071 1072 1073

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1074
#ifdef CONFIG_PCI
1075 1076
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1077
#endif /* CONFIG_PCI */
1078 1079
MODULE_LICENSE("GPL");

1080
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1081 1082
static int rt2800soc_probe(struct platform_device *pdev)
{
1083
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1084
}
1085 1086 1087 1088 1089 1090 1091

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1092
	.probe		= rt2800soc_probe,
1093 1094 1095 1096
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1097
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1098

1099
#ifdef CONFIG_PCI
1100 1101 1102 1103 1104 1105 1106 1107
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
1108
#endif /* CONFIG_PCI */
1109 1110 1111 1112 1113

static int __init rt2800pci_init(void)
{
	int ret = 0;

1114
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1115 1116 1117 1118
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
1119
#ifdef CONFIG_PCI
1120 1121
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1122
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
1134
#ifdef CONFIG_PCI
1135 1136
	pci_unregister_driver(&rt2800pci_driver);
#endif
1137
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1138 1139 1140 1141 1142 1143
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);