rt2800pci.c 33.3 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
46
#include "rt2800lib.h"
47
#include "rt2800.h"
48 49 50 51 52
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
53
static int modparam_nohwcrypt = 0;
54 55 56 57 58 59 60 61
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

62 63 64 65 66 67
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

68
	for (i = 0; i < 200; i++) {
69
		rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70 71 72 73 74 75 76 77 78 79 80 81 82

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

83 84
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 86
}

87
#ifdef CONFIG_RT2800PCI_SOC
88 89 90 91 92 93 94 95 96 97
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
	u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
98
#endif /* CONFIG_RT2800PCI_SOC */
99 100 101 102 103 104 105

#ifdef CONFIG_RT2800PCI_PCI
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

106
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

128
	rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
129 130 131 132 133 134 135
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

136
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
137 138 139 140

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
141 142 143 144 145 146 147 148 149 150 151 152
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
153 154 155 156 157 158 159 160 161
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

162 163
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
164
	return rt2800_efuse_detect(rt2x00dev);
165 166
}

167
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
168
{
169
	rt2800_read_eeprom_efuse(rt2x00dev);
170 171 172 173 174 175
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

176 177 178 179 180
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

181 182 183 184 185 186 187 188 189 190 191 192 193
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
#endif /* CONFIG_RT2800PCI_PCI */

/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

194
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
195 196 197 198 199 200 201 202 203
				    const u8 *data, const size_t len)
{
	u32 reg;

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
204
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
205 206 207 208

	/*
	 * Write firmware to device.
	 */
209
	rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
210
				   data, len);
211

212 213
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
214

215 216
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
244
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
245 246 247 248 249 250 251 252 253 254
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
255 256 257 258 259 260 261

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
		rt2800_register_write(rt2x00dev, RX_CRX_IDX,
				      entry->entry_idx);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;
	u32 reg;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
278 279 280 281
	rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
282 283

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
284 285 286 287
	rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
288 289

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
290 291 292 293
	rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
294 295

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
296 297 298 299
	rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
300 301

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
302 303 304 305
	rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
	rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
306 307 308 309

	/*
	 * Enable global DMA configuration
	 */
310
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
311 312 313
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
314
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
315

316
	rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
317 318 319 320 321 322 323 324 325 326 327 328

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

329
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
330 331 332
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
			   (state == STATE_RADIO_RX_ON) ||
			   (state == STATE_RADIO_RX_ON_LINK));
333
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
334 335 336 337 338
}

static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
339 340
	int mask = (state == STATE_RADIO_IRQ_ON) ||
		   (state == STATE_RADIO_IRQ_ON_ISR);
341 342 343 344 345 346 347
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
348 349
		rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
350 351
	}

352
	rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
353 354
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
355
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
356 357 358 359 360 361 362 363
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
364 365 366 367
	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
368 369 370
	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
371
	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
372 373
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);

	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);

	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);

	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);

	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);

	return 0;
}

406 407
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
408
	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
409
		     rt2800pci_init_queues(rt2x00dev)))
410 411
		return -EIO;

412
	return rt2800_enable_radio(rt2x00dev);
413 414 415 416 417 418
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

419
	rt2800_disable_radio(rt2x00dev);
420

421
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
422

423
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
424 425 426 427 428 429 430
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
431
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
432

433 434
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
435 436 437 438 439 440 441 442 443 444
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	/*
	 * Always put the device to sleep (even when we intend to wakeup!)
	 * if the device is booting and wasn't asleep it will return
	 * failure when attempting to wakeup.
	 */
I
Ivo van Doorn 已提交
445
	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2);
446 447

	if (state == STATE_AWAKE) {
448
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		/*
		 * Before the radio can be enabled, the device first has
		 * to be woken up. After that it needs a bit of time
		 * to be fully awake and then the radio can be enabled.
		 */
		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
		msleep(1);
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_RX_ON:
	case STATE_RADIO_RX_ON_LINK:
	case STATE_RADIO_RX_OFF:
	case STATE_RADIO_RX_OFF_LINK:
		rt2800pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
486
	case STATE_RADIO_IRQ_ON_ISR:
487
	case STATE_RADIO_IRQ_OFF:
488
	case STATE_RADIO_IRQ_OFF_ISR:
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
512
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
513
{
514
	return (__le32 *) entry->skb->data;
515 516
}

517
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
518 519
				    struct txentry_desc *txdesc)
{
520 521
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
522
	__le32 *txd = entry_priv->desc;
523 524
	u32 word;

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

	rt2x00_desc_read(txd, 1, &word);
541
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
542 543 544 545
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
546
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
547 548 549 550 551 552
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
553
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
554 555 556 557 558 559 560
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
561 562 563 564 565 566

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
567 568 569 570 571
}

/*
 * TX data initialization
 */
572
static void rt2800pci_kick_tx_queue(struct data_queue *queue)
573
{
574
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
575
	struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
576
	unsigned int qidx;
577

578
	if (queue->qid == QID_MGMT)
579 580
		qidx = 5;
	else
581
		qidx = queue->qid;
582

583
	rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
584 585
}

586
static void rt2800pci_kill_tx_queue(struct data_queue *queue)
587
{
588
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
589 590
	u32 reg;

591
	if (queue->qid == QID_BEACON) {
592
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
593 594 595
		return;
	}

596
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
597 598 599 600
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
601
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
602 603 604 605 606 607 608 609 610 611
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
612 613 614 615 616
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
617 618
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

619 620 621 622 623
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
624
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
625

626
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
627 628 629 630 631 632 633 634 635 636 637 638 639 640
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

641
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
642 643
		rxdesc->dev_flags |= RXDONE_MY_BSS;

644
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
645 646 647
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
648
	 * Process the RXWI structure that is at the start of the buffer.
649
	 */
650
	rt2800_process_rxwi(entry, rxdesc);
651 652 653 654 655
}

/*
 * Interrupt functions.
 */
656 657 658 659 660 661 662 663
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	struct queue_entry *entry;
	u32 status;
	u8 qid;

	while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) {
		/* Now remove the tx status from the FIFO */
		if (kfifo_out(&rt2x00dev->txstatus_fifo, &status,
			      sizeof(status)) != sizeof(status)) {
			WARN_ON(1);
			break;
		}

679
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		if (qid >= QID_RX) {
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
			WARNING(rt2x00dev, "Got TX status report with "
					   "unexpected pid %u, dropping", qid);
			break;
		}

		queue = rt2x00queue_get_queue(rt2x00dev, qid);
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
			WARNING(rt2x00dev, "Got TX status for an unavailable "
					   "queue %u, dropping", qid);
			break;
		}

		if (rt2x00queue_empty(queue)) {
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
			WARNING(rt2x00dev, "Got TX status for an empty "
					   "queue %u, dropping", qid);
			break;
		}

		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
		rt2800_txdone_entry(entry, status);
	}
}

static void rt2800pci_txstatus_tasklet(unsigned long data)
{
	rt2800pci_txdone((struct rt2x00_dev *)data);
}

721
static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
722 723
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
724
	u32 reg = rt2x00dev->irqvalue[0];
725 726

	/*
727 728 729 730 731 732 733 734 735 736 737 738 739
	 * 1 - Pre TBTT interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		rt2x00lib_pretbtt(rt2x00dev);

	/*
	 * 2 - Beacondone interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		rt2x00lib_beacondone(rt2x00dev);

	/*
	 * 3 - Rx ring done interrupt.
740 741 742 743
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		rt2x00pci_rxdone(rt2x00dev);

744
	/*
745
	 * 4 - Auto wakeup interrupt.
746
	 */
747 748 749
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		rt2800pci_wakeup(rt2x00dev);

750 751 752 753
	/* Enable interrupts again. */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
					      STATE_RADIO_IRQ_ON_ISR);

754 755 756
	return IRQ_HANDLED;
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
	 * can also be read while the interrupt thread gets executed.
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
780
	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

		if (kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				" drop tx status report.\n");
			break;
		}

		if (kfifo_in(&rt2x00dev->txstatus_fifo, &status,
			     sizeof(status)) != sizeof(status)) {
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				"drop tx status report.\n");
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

804 805 806 807
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;
808
	irqreturn_t ret = IRQ_HANDLED;
809 810 811 812 813 814 815 816 817 818 819

	/* Read status and ACK all interrupts */
	rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

820 821
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
		rt2800pci_txstatus_interrupt(rt2x00dev);
822

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
	    rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
	    rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
	    rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
		/*
		 * All other interrupts are handled in the interrupt thread.
		 * Store irqvalue for use in the interrupt thread.
		 */
		rt2x00dev->irqvalue[0] = reg;

		/*
		 * Disable interrupts, will be enabled again in the
		 * interrupt thread.
		*/
		rt2x00dev->ops->lib->set_device_state(rt2x00dev,
						      STATE_RADIO_IRQ_OFF_ISR);
839

840 841 842 843 844 845 846 847 848 849
		/*
		 * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
		 * tx status reports.
		 */
		rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
		rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);

		ret = IRQ_WAKE_THREAD;
	}
850

851
	return ret;
852 853
}

854 855 856
/*
 * Device probe functions.
 */
857 858 859 860 861
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
862
	if (rt2x00_is_soc(rt2x00dev))
863
		rt2800pci_read_eeprom_soc(rt2x00dev);
864 865 866 867
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
868 869 870 871

	return rt2800_validate_eeprom(rt2x00dev);
}

872 873 874 875 876 877 878 879 880 881 882
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

883
	retval = rt2800_init_eeprom(rt2x00dev);
884 885 886 887 888 889
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
890
	retval = rt2800_probe_hw_mode(rt2x00dev);
891 892 893 894 895 896 897 898 899 900
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);

901 902 903 904 905 906
	/*
	 * This device has a pre tbtt interrupt and thus fetches
	 * a new beacon directly prior to transmission.
	 */
	__set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);

907 908 909
	/*
	 * This device requires firmware.
	 */
910
	if (!rt2x00_is_soc(rt2x00dev))
911 912 913
		__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
914
	__set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
915 916
	if (!modparam_nohwcrypt)
		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
917
	__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
918 919 920 921 922 923 924 925 926

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
I
Ivo van Doorn 已提交
946
	.flush			= rt2x00mac_flush,
947 948
};

949 950 951 952 953 954 955 956 957 958
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,
	.regbusy_read		= rt2x00pci_regbusy_read,
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
959
	.drv_get_txwi		= rt2800pci_get_txwi,
960 961
};

962 963
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
964
	.irq_handler_thread	= rt2800pci_interrupt_thread,
965
	.txstatus_tasklet       = rt2800pci_txstatus_tasklet,
966 967
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
968 969
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
970 971 972 973 974
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
975 976 977 978
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
979
	.write_tx_desc		= rt2800pci_write_tx_desc,
980
	.write_tx_data		= rt2800_write_tx_data,
981
	.write_beacon		= rt2800_write_beacon,
982 983 984
	.kick_tx_queue		= rt2800pci_kick_tx_queue,
	.kill_tx_queue		= rt2800pci_kill_tx_queue,
	.fill_rxdone		= rt2800pci_fill_rxdone,
985 986 987 988 989 990 991
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
992 993 994
};

static const struct data_queue_desc rt2800pci_queue_rx = {
995
	.entry_num		= 128,
996 997 998 999 1000 1001
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
1002
	.entry_num		= 64,
1003 1004 1005 1006 1007 1008
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
1009
	.entry_num		= 8,
1010 1011 1012 1013 1014 1015
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1016 1017 1018 1019 1020 1021
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1022
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1023 1024 1025 1026
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
1027
	.drv			= &rt2800pci_rt2800_ops,
1028
	.hw			= &rt2800pci_mac80211_ops,
1029
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1030
	.debugfs		= &rt2800_rt2x00debug,
1031 1032 1033 1034 1035 1036
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1037
#ifdef CONFIG_RT2800PCI_PCI
1038
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1039 1040 1041 1042
	{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1043 1044 1045 1046 1047 1048 1049
	{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1050 1051
	{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
#ifdef CONFIG_RT2800PCI_RT30XX
1052 1053 1054
	{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1055 1056 1057 1058 1059
	{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
#endif
#ifdef CONFIG_RT2800PCI_RT35XX
	{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1060 1061
	{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1062
	{ PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1063
#endif
1064 1065
	{ 0, }
};
1066
#endif /* CONFIG_RT2800PCI_PCI */
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
#ifdef CONFIG_RT2800PCI_PCI
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
#endif /* CONFIG_RT2800PCI_PCI */
MODULE_LICENSE("GPL");

1078
#ifdef CONFIG_RT2800PCI_SOC
1079 1080
static int rt2800soc_probe(struct platform_device *pdev)
{
1081
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1082
}
1083 1084 1085 1086 1087 1088 1089

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1090
	.probe		= rt2800soc_probe,
1091 1092 1093 1094
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1095
#endif /* CONFIG_RT2800PCI_SOC */
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

#ifdef CONFIG_RT2800PCI_PCI
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
#endif /* CONFIG_RT2800PCI_PCI */

static int __init rt2800pci_init(void)
{
	int ret = 0;

1112
#ifdef CONFIG_RT2800PCI_SOC
1113 1114 1115 1116 1117 1118 1119
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
#ifdef CONFIG_RT2800PCI_PCI
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1120
#ifdef CONFIG_RT2800PCI_SOC
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
#ifdef CONFIG_RT2800PCI_PCI
	pci_unregister_driver(&rt2800pci_driver);
#endif
1135
#ifdef CONFIG_RT2800PCI_SOC
1136 1137 1138 1139 1140 1141
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);