kvm-s390.c 82.8 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <linux/bitmap.h>
30
#include <asm/asm-offsets.h>
31
#include <asm/lowcore.h>
32
#include <asm/etr.h>
33
#include <asm/pgtable.h>
34
#include <asm/gmap.h>
35
#include <asm/nmi.h>
36
#include <asm/switch_to.h>
37
#include <asm/isc.h>
38
#include <asm/sclp.h>
39 40
#include <asm/cpacf.h>
#include <asm/etr.h>
41
#include "kvm-s390.h"
42 43
#include "gaccess.h"

44 45 46 47
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

48 49
#define CREATE_TRACE_POINTS
#include "trace.h"
50
#include "trace-s390.h"
51

52
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
53 54 55
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
56

57 58 59 60
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
61
	{ "exit_null", VCPU_STAT(exit_null) },
62 63 64 65
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
66 67 68
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
69
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
70
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
71
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
72
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
73
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
74
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
75
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
76 77
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
78
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
79
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
80 81 82 83 84 85 86
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
87
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
88 89 90 91 92
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
93
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
94 95
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
96
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
97 98
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
99
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
100
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
101
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
102
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
103
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
104
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
105 106
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
107
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
108 109
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
110
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
111 112 113
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
114 115 116
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
117
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
118
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
119
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
120 121 122
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
123 124 125
	{ NULL }
};

126
/* upper facilities limit for kvm */
127 128 129
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
130
};
131

132
unsigned long kvm_s390_fac_list_mask_size(void)
133
{
134 135
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
136 137
}

138 139
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
140 141
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
142

143
static struct gmap_notifier gmap_notifier;
144
debug_info_t *kvm_s390_dbf;
145

146
/* Section: not file related */
147
int kvm_arch_hardware_enable(void)
148 149
{
	/* every s390 is virtualization enabled ;-) */
150
	return 0;
151 152
}

153 154
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
173 174
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
175 176 177 178 179 180 181 182 183
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

184 185
int kvm_arch_hardware_setup(void)
{
186 187
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
188 189
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
190 191 192 193 194
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
195
	gmap_unregister_ipte_notifier(&gmap_notifier);
196 197
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
198 199
}

200 201 202 203 204
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

221 222
static void kvm_s390_cpu_feat_init(void)
{
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

251 252 253 254
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
}

255 256
int kvm_arch_init(void *opaque)
{
257 258 259 260 261 262 263 264 265
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

266 267
	kvm_s390_cpu_feat_init();

268 269
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
270 271
}

272 273 274 275 276
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

277 278 279 280 281 282 283 284 285
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

286
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
287
{
288 289
	int r;

290
	switch (ext) {
291
	case KVM_CAP_S390_PSW:
292
	case KVM_CAP_S390_GMAP:
293
	case KVM_CAP_SYNC_MMU:
294 295 296
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
297
	case KVM_CAP_ASYNC_PF:
298
	case KVM_CAP_SYNC_REGS:
299
	case KVM_CAP_ONE_REG:
300
	case KVM_CAP_ENABLE_CAP:
301
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
302
	case KVM_CAP_IOEVENTFD:
303
	case KVM_CAP_DEVICE_CTRL:
304
	case KVM_CAP_ENABLE_CAP_VM:
305
	case KVM_CAP_S390_IRQCHIP:
306
	case KVM_CAP_VM_ATTRIBUTES:
307
	case KVM_CAP_MP_STATE:
308
	case KVM_CAP_S390_INJECT_IRQ:
309
	case KVM_CAP_S390_USER_SIGP:
310
	case KVM_CAP_S390_USER_STSI:
311
	case KVM_CAP_S390_SKEYS:
312
	case KVM_CAP_S390_IRQ_STATE:
313 314
		r = 1;
		break;
315 316 317
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
318 319
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
320 321 322
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
323
		break;
324 325 326
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
327
	case KVM_CAP_S390_COW:
328
		r = MACHINE_HAS_ESOP;
329
		break;
330 331 332
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
333 334 335
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
336
	default:
337
		r = 0;
338
	}
339
	return r;
340 341
}

342 343 344 345 346 347 348 349 350 351 352 353
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

354
		if (test_and_clear_guest_dirty(gmap->mm, address))
355
			mark_page_dirty(kvm, cur_gfn);
356 357
		if (fatal_signal_pending(current))
			return;
358
		cond_resched();
359 360 361
	}
}

362
/* Section: vm related */
363 364
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

365 366 367 368 369 370
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
371 372
	int r;
	unsigned long n;
373
	struct kvm_memslots *slots;
374 375 376 377 378 379 380 381 382
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

383 384
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
403 404
}

405 406 407 408 409 410 411 412
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
413
	case KVM_CAP_S390_IRQCHIP:
414
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
415 416 417
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
418
	case KVM_CAP_S390_USER_SIGP:
419
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
420 421 422
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
423
	case KVM_CAP_S390_VECTOR_REGISTERS:
424
		mutex_lock(&kvm->lock);
425
		if (kvm->created_vcpus) {
426 427
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
428 429
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
430 431 432
			r = 0;
		} else
			r = -EINVAL;
433
		mutex_unlock(&kvm->lock);
434 435
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
436
		break;
437 438 439
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
440
		if (kvm->created_vcpus) {
441 442
			r = -EBUSY;
		} else if (test_facility(64)) {
443 444
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
445 446 447 448 449 450
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
451
	case KVM_CAP_S390_USER_STSI:
452
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
453 454 455
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
456 457 458 459 460 461 462
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

463 464 465 466 467 468 469
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
470
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
471 472
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
473 474 475 476 477 478 479 480 481 482
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
483 484 485 486 487
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
488
		ret = -ENXIO;
489
		if (!sclp.has_cmma)
490 491
			break;

492
		ret = -EBUSY;
493
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
494
		mutex_lock(&kvm->lock);
495
		if (!kvm->created_vcpus) {
496 497 498 499 500 501
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
502 503 504
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
505 506 507 508
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

509
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
510 511
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
512
		s390_reset_cmma(kvm->arch.gmap->mm);
513 514 515 516
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
517 518 519 520 521 522 523 524 525
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

526 527
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
528 529
			return -E2BIG;

530 531 532 533 534 535 536
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

537 538
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
539
		if (!kvm->created_vcpus) {
540 541 542 543 544 545 546 547 548 549 550 551 552
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
553 554 555
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
556 557
		break;
	}
558 559 560 561 562 563 564
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

565 566 567 568 569 570 571
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

572
	if (!test_kvm_facility(kvm, 76))
573 574 575 576 577 578 579 580 581
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
582
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
583 584 585 586 587 588
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
589
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
590 591 592 593 594
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
595
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
596 597 598 599 600
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
601
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
602 603 604 605 606 607 608 609 610 611 612 613 614 615
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

616 617 618 619 620 621 622 623 624 625
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
626
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
627 628 629 630 631 632

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
633
	u64 gtod;
634 635 636 637

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

638
	kvm_s390_set_tod_clock(kvm, gtod);
639
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
671
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
672 673 674 675 676 677

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
678
	u64 gtod;
679

680
	gtod = kvm_s390_get_tod_clock_fast(kvm);
681 682
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
683
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

709 710 711
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
712
	u16 lowest_ibc, unblocked_ibc;
713 714 715
	int ret = 0;

	mutex_lock(&kvm->lock);
716
	if (kvm->created_vcpus) {
717 718 719 720 721 722 723 724 725 726
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
727
		kvm->arch.model.cpuid = proc->cpuid;
728 729 730 731 732 733 734 735 736 737
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
738
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
739 740 741 742 743 744 745 746 747
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

771 772 773 774 775 776 777 778 779 780
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

781 782 783 784 785 786 787 788
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
789 790 791
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
792 793 794
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
795 796 797 798 799 800 801 802 803 804 805 806 807 808
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
809
	proc->cpuid = kvm->arch.model.cpuid;
810
	proc->ibc = kvm->arch.model.ibc;
811 812
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
831
	mach->ibc = sclp.ibc;
832
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
833
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
834
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
835
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
836 837 838 839 840 841 842
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
887 888 889 890 891 892 893 894 895 896 897
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
898 899 900 901 902 903
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
904 905 906 907 908 909
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
910 911 912 913
	}
	return ret;
}

914 915 916 917 918
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
919
	case KVM_S390_VM_MEM_CTRL:
920
		ret = kvm_s390_set_mem_control(kvm, attr);
921
		break;
922 923 924
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
925 926 927
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
928 929 930
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
931 932 933 934 935 936 937 938 939 940
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
941 942 943 944 945 946
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
947 948 949
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
950 951 952
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
953 954 955 956 957 958
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
959 960 961 962 963 964 965
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
966 967 968 969
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
970 971
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
972
		case KVM_S390_VM_MEM_LIMIT_SIZE:
973 974 975 976 977 978 979
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
980 981 982 983 984 985 986 987 988 989 990
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
991 992 993 994
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
995 996
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
997
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
998 999
			ret = 0;
			break;
1000 1001
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1002 1003 1004 1005 1006
		default:
			ret = -ENXIO;
			break;
		}
		break;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1020 1021 1022 1023 1024 1025 1026 1027
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1052
	down_read(&current->mm->mmap_sem);
1053 1054 1055 1056
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1057
			break;
1058 1059
		}

1060 1061
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1062
			break;
1063
	}
1064 1065 1066 1067 1068 1069 1070 1071
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
	}
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1105 1106 1107
	r = s390_enable_skey();
	if (r)
		goto out;
1108

1109
	down_read(&current->mm->mmap_sem);
1110 1111 1112 1113
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1114
			break;
1115 1116 1117 1118 1119
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1120
			break;
1121 1122
		}

1123
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1124
		if (r)
1125
			break;
1126
	}
1127
	up_read(&current->mm->mmap_sem);
1128 1129 1130 1131 1132
out:
	kvfree(keys);
	return r;
}

1133 1134 1135 1136 1137
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1138
	struct kvm_device_attr attr;
1139 1140 1141
	int r;

	switch (ioctl) {
1142 1143 1144 1145 1146 1147 1148 1149 1150
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1151 1152 1153 1154 1155 1156 1157 1158
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1159 1160 1161 1162 1163 1164 1165
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1166
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1167 1168 1169
		}
		break;
	}
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1211
	default:
1212
		r = -ENOTTY;
1213 1214 1215 1216 1217
	}

	return r;
}

1218 1219 1220
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1221
	u32 cc = 0;
1222

1223
	memset(config, 0, 128);
1224 1225 1226 1227
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1228
		"0: ipm %0\n"
1229
		"srl %0,28\n"
1230 1231 1232
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1245
	if (test_facility(12)) {
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1267
static u64 kvm_s390_get_initial_cpuid(void)
1268
{
1269 1270 1271 1272 1273
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1274 1275
}

1276
static void kvm_s390_crypto_init(struct kvm *kvm)
1277
{
1278
	if (!test_kvm_facility(kvm, 76))
1279
		return;
1280

1281
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1282
	kvm_s390_set_crycb_format(kvm);
1283

1284 1285 1286 1287 1288 1289 1290
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1291 1292
}

1293 1294 1295
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1296
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1297 1298 1299 1300 1301
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1302
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1303
{
1304
	gfp_t alloc_flags = GFP_KERNEL;
1305
	int i, rc;
1306
	char debug_name[16];
1307
	static unsigned long sca_offset;
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1320 1321
	rc = s390_enable_sie();
	if (rc)
1322
		goto out_err;
1323

1324 1325
	rc = -ENOMEM;

J
Janosch Frank 已提交
1326 1327
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1328
	kvm->arch.use_esca = 0; /* start with basic SCA */
1329 1330
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1331
	rwlock_init(&kvm->arch.sca_lock);
1332
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1333
	if (!kvm->arch.sca)
1334
		goto out_err;
1335
	spin_lock(&kvm_lock);
1336
	sca_offset += 16;
1337
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1338
		sca_offset = 0;
1339 1340
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1341
	spin_unlock(&kvm_lock);
1342 1343 1344

	sprintf(debug_name, "kvm-%u", current->pid);

1345
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1346
	if (!kvm->arch.dbf)
1347
		goto out_err;
1348

1349 1350 1351
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1352
		goto out_err;
1353

1354
	/* Populate the facility mask initially. */
1355
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1356
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1357 1358
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1359
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1360
		else
1361
			kvm->arch.model.fac_mask[i] = 0UL;
1362 1363
	}

1364
	/* Populate the facility list initially. */
1365 1366
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1367 1368
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1369 1370 1371
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1372
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1373
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1374

1375
	kvm_s390_crypto_init(kvm);
1376

1377
	spin_lock_init(&kvm->arch.float_int.lock);
1378 1379
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1380
	init_waitqueue_head(&kvm->arch.ipte_wq);
1381
	mutex_init(&kvm->arch.ipte_mutex);
1382

1383
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1384
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1385

1386 1387
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1388
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1389
	} else {
1390 1391 1392 1393 1394
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1395
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1396
		if (!kvm->arch.gmap)
1397
			goto out_err;
1398
		kvm->arch.gmap->private = kvm;
1399
		kvm->arch.gmap->pfault_enabled = 0;
1400
	}
1401 1402

	kvm->arch.css_support = 0;
1403
	kvm->arch.use_irqchip = 0;
1404
	kvm->arch.epoch = 0;
1405

1406
	spin_lock_init(&kvm->arch.start_stop_lock);
1407
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1408

1409
	return 0;
1410
out_err:
1411
	free_page((unsigned long)kvm->arch.sie_page2);
1412
	debug_unregister(kvm->arch.dbf);
1413
	sca_dispose(kvm);
1414
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1415
	return rc;
1416 1417
}

1418 1419 1420
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1421
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1422
	kvm_s390_clear_local_irqs(vcpu);
1423
	kvm_clear_async_pf_completion_queue(vcpu);
1424
	if (!kvm_is_ucontrol(vcpu->kvm))
1425
		sca_del_vcpu(vcpu);
1426 1427 1428 1429

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1430
	if (vcpu->kvm->arch.use_cmma)
1431
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1432
	free_page((unsigned long)(vcpu->arch.sie_block));
1433

1434
	kvm_vcpu_uninit(vcpu);
1435
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1436 1437 1438 1439 1440
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1441
	struct kvm_vcpu *vcpu;
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1452 1453
}

1454 1455
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1456
	kvm_free_vcpus(kvm);
1457
	sca_dispose(kvm);
1458
	debug_unregister(kvm->arch.dbf);
1459
	free_page((unsigned long)kvm->arch.sie_page2);
1460 1461
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1462
	kvm_s390_destroy_adapters(kvm);
1463
	kvm_s390_clear_float_irqs(kvm);
1464
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1465 1466 1467
}

/* Section: vcpu related */
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1478 1479
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1480
	read_lock(&vcpu->kvm->arch.sca_lock);
1481 1482
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1483

1484
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1485
		sca->cpu[vcpu->vcpu_id].sda = 0;
1486 1487 1488 1489
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1490
		sca->cpu[vcpu->vcpu_id].sda = 0;
1491
	}
1492
	read_unlock(&vcpu->kvm->arch.sca_lock);
1493 1494
}

1495
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1496
{
1497 1498 1499
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1500

1501
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1502 1503
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1504
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1505
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1506
	} else {
1507
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1508

1509
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1510 1511
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1512
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1513
	}
1514
	read_unlock(&vcpu->kvm->arch.sca_lock);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1568 1569
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1570
	return 0;
1571 1572 1573 1574
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1575 1576 1577 1578
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1579
	if (!sclp.has_esca || !sclp.has_64bscao)
1580 1581 1582 1583 1584 1585 1586
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1587 1588
}

1589 1590
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1591 1592
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1593 1594
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1595
				    KVM_SYNC_ACRS |
1596 1597 1598
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1599 1600
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1601 1602 1603 1604
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1605
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1606 1607
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1608 1609 1610 1611

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1612 1613 1614
	return 0;
}

1615 1616 1617 1618
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1619
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1620
	vcpu->arch.cputm_start = get_tod_clock_fast();
1621
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1622 1623 1624 1625 1626 1627
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1628
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1629 1630
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1631
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1664 1665 1666
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1667
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1668
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1669 1670
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1671
	vcpu->arch.sie_block->cputm = cputm;
1672
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1673
	preempt_enable();
1674 1675
}

1676
/* update and get the cpu timer - can also be called from other VCPU threads */
1677 1678
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1679
	unsigned int seq;
1680 1681 1682 1683 1684
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1699
	return value;
1700 1701
}

1702 1703
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1704
	/* Save host register state */
1705
	save_fpu_regs();
1706 1707
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1708

1709 1710 1711 1712
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1713
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1714
	if (test_fp_ctl(current->thread.fpu.fpc))
1715
		/* User space provided an invalid FPC, let's clear it */
1716 1717 1718
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1719
	restore_access_regs(vcpu->run->s.regs.acrs);
1720
	gmap_enable(vcpu->arch.gmap);
1721
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1722
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1723
		__start_cpu_timer_accounting(vcpu);
1724
	vcpu->cpu = cpu;
1725 1726 1727 1728
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1729
	vcpu->cpu = -1;
1730
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1731
		__stop_cpu_timer_accounting(vcpu);
1732
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1733
	gmap_disable(vcpu->arch.gmap);
1734

1735
	/* Save guest register state */
1736
	save_fpu_regs();
1737
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1738

1739 1740 1741
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1742 1743

	save_access_regs(vcpu->run->s.regs.acrs);
1744 1745 1746 1747 1748 1749 1750 1751
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1752
	kvm_s390_set_prefix(vcpu, 0);
1753
	kvm_s390_set_cpu_timer(vcpu, 0);
1754 1755 1756 1757 1758
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1759 1760 1761
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1762
	vcpu->arch.sie_block->gbea = 1;
1763
	vcpu->arch.sie_block->pp = 0;
1764 1765
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1766 1767
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1768
	kvm_s390_clear_local_irqs(vcpu);
1769 1770
}

1771
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1772
{
1773
	mutex_lock(&vcpu->kvm->lock);
1774
	preempt_disable();
1775
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1776
	preempt_enable();
1777
	mutex_unlock(&vcpu->kvm->lock);
1778
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1779
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1780
		sca_add_vcpu(vcpu);
1781 1782
	}

1783 1784
}

1785 1786
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1787
	if (!test_kvm_facility(vcpu->kvm, 76))
1788 1789
		return;

1790 1791 1792 1793 1794 1795 1796
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1797 1798 1799
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1817 1818 1819 1820 1821
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1822
	if (test_kvm_facility(vcpu->kvm, 7))
1823
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1824 1825
}

1826 1827
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1828
	int rc = 0;
1829

1830 1831
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1832 1833
						    CPUSTAT_STOPPED);

1834
	if (test_kvm_facility(vcpu->kvm, 78))
1835
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1836
	else if (test_kvm_facility(vcpu->kvm, 8))
1837
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1838

1839 1840
	kvm_s390_vcpu_setup_model(vcpu);

1841 1842 1843
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1844 1845
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1846
	if (test_kvm_facility(vcpu->kvm, 73))
1847 1848
		vcpu->arch.sie_block->ecb |= 0x10;

1849
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1850
		vcpu->arch.sie_block->ecb2 |= 0x08;
1851 1852 1853
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1854 1855
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1856
	if (sclp.has_siif)
1857
		vcpu->arch.sie_block->eca |= 1;
1858
	if (sclp.has_sigpif)
1859
		vcpu->arch.sie_block->eca |= 0x10000000U;
1860 1861
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1862
	if (test_kvm_facility(vcpu->kvm, 129)) {
1863 1864 1865
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1866
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1867
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1868 1869
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1870

1871
	if (vcpu->kvm->arch.use_cmma) {
1872 1873 1874
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1875
	}
1876
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1877
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1878

1879 1880
	kvm_s390_vcpu_crypto_setup(vcpu);

1881
	return rc;
1882 1883 1884 1885 1886
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1887
	struct kvm_vcpu *vcpu;
1888
	struct sie_page *sie_page;
1889 1890
	int rc = -EINVAL;

1891
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1892 1893 1894
		goto out;

	rc = -ENOMEM;
1895

1896
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1897
	if (!vcpu)
1898
		goto out;
1899

1900 1901
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1902 1903
		goto out_free_cpu;

1904 1905 1906
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1907 1908 1909 1910
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1911
	vcpu->arch.sie_block->icpua = id;
1912 1913
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1914
	vcpu->arch.local_int.wq = &vcpu->wq;
1915
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1916
	seqcount_init(&vcpu->arch.cputm_seqcount);
1917

1918 1919
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1920
		goto out_free_sie_block;
1921
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1922
		 vcpu->arch.sie_block);
1923
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1924 1925

	return vcpu;
1926 1927
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1928
out_free_cpu:
1929
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1930
out:
1931 1932 1933 1934 1935
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1936
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1937 1938
}

1939
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1940
{
1941
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1942
	exit_sie(vcpu);
1943 1944
}

1945
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1946
{
1947
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1948 1949
}

1950 1951
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1952
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1953
	exit_sie(vcpu);
1954 1955 1956 1957
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1958
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1959 1960
}

1961 1962 1963 1964 1965 1966
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1967
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1968 1969 1970 1971
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1972 1973
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1974
{
1975 1976
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1977 1978
}

1979 1980 1981 1982 1983 1984 1985 1986
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1987
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1988
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1989
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1990 1991 1992 1993
		}
	}
}

1994 1995 1996 1997 1998 1999 2000
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2001 2002 2003 2004 2005 2006
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2007 2008 2009 2010 2011 2012 2013 2014
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2015
	case KVM_REG_S390_CPU_TIMER:
2016
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2017 2018 2019 2020 2021 2022
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2035 2036 2037 2038
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2039 2040 2041 2042
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2054
	__u64 val;
2055 2056

	switch (reg->id) {
2057 2058 2059 2060 2061 2062 2063 2064
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2065
	case KVM_REG_S390_CPU_TIMER:
2066 2067 2068
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2069 2070 2071 2072 2073
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2074 2075 2076
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2077 2078
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2079 2080 2081 2082 2083 2084 2085 2086 2087
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2088 2089 2090 2091
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2092 2093 2094 2095
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2096 2097 2098 2099 2100 2101
	default:
		break;
	}

	return r;
}
2102

2103 2104 2105 2106 2107 2108 2109 2110
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2111
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2112 2113 2114 2115 2116
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2117
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2118 2119 2120 2121 2122 2123
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2124
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2125
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2126
	restore_access_regs(vcpu->run->s.regs.acrs);
2127 2128 2129 2130 2131 2132
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2133
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2134 2135 2136 2137 2138 2139
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2140 2141
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2142 2143
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2144 2145 2146 2147 2148
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2149 2150 2151 2152 2153
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2154 2155 2156 2157 2158 2159 2160
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2161 2162 2163 2164 2165 2166 2167
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2168
	if (!is_vcpu_stopped(vcpu))
2169
		rc = -EBUSY;
2170 2171 2172 2173
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2174 2175 2176 2177 2178 2179 2180 2181 2182
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2183 2184 2185 2186
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2187 2188
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2189
{
2190 2191 2192 2193 2194
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2195
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2196
		return -EINVAL;
2197 2198
	if (!sclp.has_gpere)
		return -EINVAL;
2199 2200 2201 2202

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2203
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2204 2205 2206 2207

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2208
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2209 2210 2211 2212 2213 2214
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2215
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2216 2217 2218
	}

	return rc;
2219 2220
}

2221 2222 2223
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2224 2225 2226
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2227 2228 2229 2230 2231
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2252 2253
}

2254 2255 2256 2257 2258
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2259 2260
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2261
retry:
2262
	kvm_s390_vcpu_request_handled(vcpu);
2263 2264
	if (!vcpu->requests)
		return 0;
2265 2266 2267 2268 2269 2270 2271
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2272
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2273 2274
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2275
				      kvm_s390_get_prefix(vcpu),
2276 2277 2278
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2279
		goto retry;
2280
	}
2281

2282 2283 2284 2285 2286
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2287 2288 2289
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2290
			atomic_or(CPUSTAT_IBS,
2291 2292 2293
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2294
	}
2295 2296 2297 2298

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2299
			atomic_andnot(CPUSTAT_IBS,
2300 2301 2302 2303 2304
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2305 2306 2307
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2308 2309 2310
	return 0;
}

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2338
{
2339 2340
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2341 2342
}

2343 2344 2345 2346
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2347
	struct kvm_s390_irq irq;
2348 2349

	if (start_token) {
2350 2351 2352
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2353 2354
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2355
		inti.parm64 = token;
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2402
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2403 2404 2405 2406 2407 2408
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2409 2410 2411
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2412 2413 2414 2415 2416 2417
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2418
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2419
{
2420
	int rc, cpuflags;
2421

2422 2423 2424 2425 2426 2427 2428
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2429 2430
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2431 2432 2433 2434

	if (need_resched())
		schedule();

2435
	if (test_cpu_flag(CIF_MCCK_PENDING))
2436 2437
		s390_handle_mcck();

2438 2439 2440 2441 2442
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2443

2444 2445 2446 2447
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2448 2449 2450 2451 2452
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2453
	vcpu->arch.sie_block->icptcode = 0;
2454 2455 2456
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2457

2458 2459 2460
	return 0;
}

2461 2462
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2463 2464 2465 2466
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2480
	rc = read_guest_instr(vcpu, &opcode, 1);
2481
	ilen = insn_length(opcode);
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2492 2493 2494
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2495 2496
}

2497 2498
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2499 2500 2501 2502
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2503 2504 2505
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2506 2507
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2522 2523 2524 2525 2526
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2527
		return -EREMOTE;
2528
	} else if (current->thread.gmap_pfault) {
2529
		trace_kvm_s390_major_guest_pfault(vcpu);
2530
		current->thread.gmap_pfault = 0;
2531 2532 2533
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2534
	}
2535
	return vcpu_post_run_fault_in_sie(vcpu);
2536 2537 2538 2539 2540 2541
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2542 2543 2544 2545 2546 2547
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2548 2549 2550 2551
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2552

2553
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2554 2555 2556 2557
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2558 2559
		local_irq_disable();
		__kvm_guest_enter();
2560
		__disable_cpu_timer_accounting(vcpu);
2561
		local_irq_enable();
2562 2563
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2564
		local_irq_disable();
2565
		__enable_cpu_timer_accounting(vcpu);
2566 2567
		__kvm_guest_exit();
		local_irq_enable();
2568
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2569 2570

		rc = vcpu_post_run(vcpu, exit_reason);
2571
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2572

2573
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2574
	return rc;
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2585 2586
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2587 2588
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2589
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2590 2591 2592 2593 2594 2595 2596 2597 2598
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2599 2600
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2611
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2612 2613 2614 2615 2616 2617 2618 2619 2620
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2621 2622
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2623
	int rc;
2624 2625
	sigset_t sigsaved;

2626 2627 2628 2629 2630
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2631 2632 2633
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2634 2635 2636
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2637
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2638 2639 2640
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2641

2642
	sync_regs(vcpu, kvm_run);
2643
	enable_cpu_timer_accounting(vcpu);
2644

2645
	might_fault();
2646
	rc = __vcpu_run(vcpu);
2647

2648 2649
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2650
		rc = -EINTR;
2651
	}
2652

2653 2654 2655 2656 2657
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2658
	if (rc == -EREMOTE) {
2659
		/* userspace support is needed, kvm_run has been prepared */
2660 2661
		rc = 0;
	}
2662

2663
	disable_cpu_timer_accounting(vcpu);
2664
	store_regs(vcpu, kvm_run);
2665

2666 2667 2668 2669
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2670
	return rc;
2671 2672 2673 2674 2675 2676 2677 2678
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2679
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2680
{
2681
	unsigned char archmode = 1;
2682
	freg_t fprs[NUM_FPRS];
2683
	unsigned int px;
2684
	u64 clkcomp, cputm;
2685
	int rc;
2686

2687
	px = kvm_s390_get_prefix(vcpu);
2688 2689
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2690
			return -EFAULT;
2691
		gpa = 0;
2692 2693
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2694
			return -EFAULT;
2695 2696 2697
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2698 2699 2700

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2701
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2702 2703 2704 2705
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2706
				     vcpu->run->s.regs.fprs, 128);
2707
	}
2708
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2709
			      vcpu->run->s.regs.gprs, 128);
2710
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2711
			      &vcpu->arch.sie_block->gpsw, 16);
2712
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2713
			      &px, 4);
2714
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2715
			      &vcpu->run->s.regs.fpc, 4);
2716
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2717
			      &vcpu->arch.sie_block->todpr, 4);
2718
	cputm = kvm_s390_get_cpu_timer(vcpu);
2719
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2720
			      &cputm, 8);
2721
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2722
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2723
			      &clkcomp, 8);
2724
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2725
			      &vcpu->run->s.regs.acrs, 64);
2726
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2727 2728
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2729 2730
}

2731 2732 2733 2734 2735 2736 2737
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2738
	save_fpu_regs();
2739
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2740 2741 2742 2743 2744
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2766 2767 2768 2769 2770
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2771
	 */
2772
	save_fpu_regs();
E
Eric Farman 已提交
2773 2774 2775 2776

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2777 2778 2779
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2780
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2795 2796
	if (!sclp.has_ibs)
		return;
2797
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2798
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2799 2800
}

2801 2802
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2803 2804 2805 2806 2807
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2808
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2809
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2810
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2830
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2831 2832 2833 2834
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2835
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2836
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2837
	return;
2838 2839 2840 2841
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2842 2843 2844 2845 2846 2847
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2848
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2849
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2850
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2851 2852
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2853
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2854
	kvm_s390_clear_stop_irq(vcpu);
2855

2856
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2874
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2875
	return;
2876 2877
}

2878 2879 2880 2881 2882 2883 2884 2885 2886
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2887 2888 2889
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2890
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2891 2892 2893 2894
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2895 2896 2897 2898 2899 2900 2901
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2928 2929
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2940 2941
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2963 2964 2965 2966 2967
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2968
	int idx;
2969
	long r;
2970

2971
	switch (ioctl) {
2972 2973 2974 2975 2976 2977 2978 2979 2980
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2981
	case KVM_S390_INTERRUPT: {
2982
		struct kvm_s390_interrupt s390int;
2983
		struct kvm_s390_irq s390irq;
2984

2985
		r = -EFAULT;
2986
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2987
			break;
2988 2989 2990
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2991
		break;
2992
	}
2993
	case KVM_S390_STORE_STATUS:
2994
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2995
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2996
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2997
		break;
2998 2999 3000
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3001
		r = -EFAULT;
3002
		if (copy_from_user(&psw, argp, sizeof(psw)))
3003 3004 3005
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3006 3007
	}
	case KVM_S390_INITIAL_RESET:
3008 3009
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3058
	case KVM_S390_VCPU_FAULT: {
3059
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3060 3061
		break;
	}
3062 3063 3064 3065 3066 3067 3068 3069 3070
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3071 3072 3073 3074 3075 3076 3077 3078 3079
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3112
	default:
3113
		r = -ENOTTY;
3114
	}
3115
	return r;
3116 3117
}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3131 3132
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3133 3134 3135 3136
{
	return 0;
}

3137
/* Section: memory related */
3138 3139
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3140
				   const struct kvm_userspace_memory_region *mem,
3141
				   enum kvm_mr_change change)
3142
{
3143 3144 3145 3146
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3147

3148
	if (mem->userspace_addr & 0xffffful)
3149 3150
		return -EINVAL;

3151
	if (mem->memory_size & 0xffffful)
3152 3153
		return -EINVAL;

3154 3155 3156
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3157 3158 3159 3160
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3161
				const struct kvm_userspace_memory_region *mem,
3162
				const struct kvm_memory_slot *old,
3163
				const struct kvm_memory_slot *new,
3164
				enum kvm_mr_change change)
3165
{
3166
	int rc;
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3178 3179 3180 3181

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3182
		pr_warn("failed to commit memory region\n");
3183
	return;
3184 3185
}

3186 3187 3188 3189 3190 3191 3192
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3193 3194 3195 3196 3197
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3198 3199
static int __init kvm_s390_init(void)
{
3200 3201
	int i;

3202 3203 3204 3205 3206
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3207 3208 3209 3210
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3211
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3212 3213 3214 3215 3216 3217 3218 3219 3220
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3221 3222 3223 3224 3225 3226 3227 3228 3229

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");