slab.c 117.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119 120 121 122 123 124

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
125
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
146
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
147 148 149 150 151 152 153

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
154
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
155
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
156
			 SLAB_CACHE_DMA | \
157
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
158
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
160
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
161
#else
162
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
163
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
164
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
166
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

188
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
189 190
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
191 192
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
209
	struct rcu_head head;
210
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
211
	void *addr;
L
Linus Torvalds 已提交
212 213
};

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
252
	spinlock_t lock;
253
	void *entry[];	/*
A
Andrew Morton 已提交
254 255 256 257
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
258 259
};

A
Andrew Morton 已提交
260 261 262
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
263 264 265 266
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
267
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
268 269 270
};

/*
271
 * The slab lists for all objects.
L
Linus Torvalds 已提交
272 273
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
274 275 276 277 278
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
279
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
280 281 282
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
283 284
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
285 286
};

287 288 289
/*
 * Need this for bootstrapping a per node allocator.
 */
290
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
291
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
292
#define	CACHE_CACHE 0
293 294
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
295

296 297 298 299
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
300
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
301
static void cache_reap(struct work_struct *unused);
302

303
/*
A
Andrew Morton 已提交
304 305
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
306
 */
307
static __always_inline int index_of(const size_t size)
308
{
309 310
	extern void __bad_size(void);

311 312 313 314 315 316 317 318
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
319
#include <linux/kmalloc_sizes.h>
320
#undef CACHE
321
		__bad_size();
322
	} else
323
		__bad_size();
324 325 326
	return 0;
}

327 328
static int slab_early_init = 1;

329 330
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
331

P
Pekka Enberg 已提交
332
static void kmem_list3_init(struct kmem_list3 *parent)
333 334 335 336 337 338
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
339
	parent->colour_next = 0;
340 341 342 343 344
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
345 346 347 348
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
349 350
	} while (0)

A
Andrew Morton 已提交
351 352
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
353 354 355 356
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
357 358 359 360 361

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
362 363 364
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
365
 *
A
Adrian Bunk 已提交
366
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
367 368 369 370 371 372 373 374 375 376
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
377
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
378 379 380 381 382
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
383 384
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
385
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
386
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
387 388 389 390 391
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
392 393 394 395 396 397 398 399 400
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
401
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
402 403 404
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
405
#define	STATS_INC_NODEFREES(x)	do { } while (0)
406
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
407
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
408 409 410 411 412 413 414 415
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
416 417
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
418
 * 0		: objp
419
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
420 421
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
422
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
423
 * 		redzone word.
424 425
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
426 427
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
428
 */
429
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
430
{
431
	return cachep->obj_offset;
L
Linus Torvalds 已提交
432 433
}

434
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
435
{
436
	return cachep->obj_size;
L
Linus Torvalds 已提交
437 438
}

439
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
440 441
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
442 443
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
444 445
}

446
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
447 448 449
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
450 451
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
452
					      REDZONE_ALIGN);
453 454
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
455 456
}

457
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
458 459
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
460
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
461 462 463 464
}

#else

465 466
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
467 468
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
469 470 471 472
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

473
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
474 475 476 477 478 479 480
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
481 482 483 484 485 486 487
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
488 489 490 491
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
492
 */
493 494 495 496 497 498 499
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
500
	page = compound_head(page);
501
	BUG_ON(!PageSlab(page));
502 503 504 505 506 507 508 509 510 511
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
512
	BUG_ON(!PageSlab(page));
513 514
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
515

516 517
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
518
	struct page *page = virt_to_head_page(obj);
519 520 521 522 523
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
524
	struct page *page = virt_to_head_page(obj);
525 526 527
	return page_get_slab(page);
}

528 529 530 531 532 533
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

534 535 536 537 538 539 540 541
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
542
{
543 544
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
545 546
}

A
Andrew Morton 已提交
547 548 549
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
567
	{NULL,}
L
Linus Torvalds 已提交
568 569 570 571
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
572
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
573
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
574
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
575 576

/* internal cache of cache description objs */
577
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
578
static struct kmem_cache cache_cache = {
579
	.nodelists = cache_cache_nodelists,
P
Pekka Enberg 已提交
580 581 582
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
583
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
584
	.name = "kmem_cache",
L
Linus Torvalds 已提交
585 586
};

587 588
#define BAD_ALIEN_MAGIC 0x01020304ul

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
	PARTIAL_AC,
	PARTIAL_L3,
	EARLY,
	FULL
} g_cpucache_up;

/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up >= EARLY;
}

609 610 611 612 613 614 615 616
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
617 618 619 620
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
621
 */
622 623 624
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

625
static void init_node_lock_keys(int q)
626
{
627 628
	struct cache_sizes *s = malloc_sizes;

629 630 631 632 633 634 635 636 637 638
	if (g_cpucache_up != FULL)
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct array_cache **alc;
		struct kmem_list3 *l3;
		int r;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
639
			continue;
640 641 642 643 644 645 646 647 648 649
		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
		alc = l3->alien;
		/*
		 * FIXME: This check for BAD_ALIEN_MAGIC
		 * should go away when common slab code is taught to
		 * work even without alien caches.
		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
		 * for alloc_alien_cache,
		 */
		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
650
			continue;
651 652 653 654
		for_each_node(r) {
			if (alc[r])
				lockdep_set_class(&alc[r]->lock,
					&on_slab_alc_key);
655
		}
656 657
	}
}
658 659 660 661 662 663 664 665

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
666
#else
667 668 669 670
static void init_node_lock_keys(int q)
{
}

671
static inline void init_lock_keys(void)
672 673 674 675
{
}
#endif

676
/*
677
 * Guard access to the cache-chain.
678
 */
I
Ingo Molnar 已提交
679
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
680 681
static struct list_head cache_chain;

682
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
683

684
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
685 686 687 688
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
689 690
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
691 692 693 694 695
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
696 697 698
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
699
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
700
#endif
701 702 703
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
704 705 706 707
	while (size > csizep->cs_size)
		csizep++;

	/*
708
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
709 710 711
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
712
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
713 714
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
715
#endif
L
Linus Torvalds 已提交
716 717 718
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
719
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
720 721 722 723
{
	return __find_general_cachep(size, gfpflags);
}

724
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
725
{
726 727
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
728

A
Andrew Morton 已提交
729 730 731
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
732 733 734 735 736 737 738
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
739

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
788 789
}

790
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
791

A
Andrew Morton 已提交
792 793
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
794 795
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
796
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
797 798 799
	dump_stack();
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

816 817 818 819 820 821 822
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
823
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
824 825 826 827 828

static void init_reap_node(int cpu)
{
	int node;

829
	node = next_node(cpu_to_mem(cpu), node_online_map);
830
	if (node == MAX_NUMNODES)
831
		node = first_node(node_online_map);
832

833
	per_cpu(slab_reap_node, cpu) = node;
834 835 836 837
}

static void next_reap_node(void)
{
838
	int node = __this_cpu_read(slab_reap_node);
839 840 841 842

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
843
	__this_cpu_write(slab_reap_node, node);
844 845 846 847 848 849 850
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
851 852 853 854 855 856 857
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
858
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
859
{
860
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
861 862 863 864 865 866

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
867
	if (keventd_up() && reap_work->work.func == NULL) {
868
		init_reap_node(cpu);
869
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
870 871
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
872 873 874
	}
}

875
static struct array_cache *alloc_arraycache(int node, int entries,
876
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
877
{
P
Pekka Enberg 已提交
878
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
879 880
	struct array_cache *nc = NULL;

881
	nc = kmalloc_node(memsize, gfp, node);
882 883
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
884
	 * However, when such objects are allocated or transferred to another
885 886 887 888 889
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
890 891 892 893 894
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
895
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
896 897 898 899
	}
	return nc;
}

900 901 902 903 904 905 906 907 908 909
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
910
	int nr = min3(from->avail, max, to->limit - to->avail);
911 912 913 914 915 916 917 918 919 920 921 922

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

923 924 925 926 927
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

928
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

948
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
949 950 951 952 953 954 955
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

956
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
957
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
958

959
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
960 961
{
	struct array_cache **ac_ptr;
962
	int memsize = sizeof(void *) * nr_node_ids;
963 964 965 966
	int i;

	if (limit > 1)
		limit = 12;
967
	ac_ptr = kzalloc_node(memsize, gfp, node);
968 969
	if (ac_ptr) {
		for_each_node(i) {
970
			if (i == node || !node_online(i))
971
				continue;
972
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
973
			if (!ac_ptr[i]) {
974
				for (i--; i >= 0; i--)
975 976 977 978 979 980 981 982 983
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
984
static void free_alien_cache(struct array_cache **ac_ptr)
985 986 987 988 989 990
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
991
	    kfree(ac_ptr[i]);
992 993 994
	kfree(ac_ptr);
}

995
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
996
				struct array_cache *ac, int node)
997 998 999 1000 1001
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1002 1003 1004 1005 1006
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1007 1008
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1009

1010
		free_block(cachep, ac->entry, ac->avail, node);
1011 1012 1013 1014 1015
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1016 1017 1018 1019 1020
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1021
	int node = __this_cpu_read(slab_reap_node);
1022 1023 1024

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1025 1026

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1027 1028 1029 1030 1031 1032
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1033 1034
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1035
{
P
Pekka Enberg 已提交
1036
	int i = 0;
1037 1038 1039 1040
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1041
		ac = alien[i];
1042 1043 1044 1045 1046 1047 1048
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1049

1050
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1051 1052 1053 1054 1055
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1056 1057
	int node;

1058
	node = numa_mem_id();
1059 1060 1061 1062 1063

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1064
	if (likely(slabp->nodeid == node))
1065 1066
		return 0;

P
Pekka Enberg 已提交
1067
	l3 = cachep->nodelists[node];
1068 1069 1070
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1071
		spin_lock(&alien->lock);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1085 1086
#endif

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
 * Must hold cache_chain_mutex.
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

	list_for_each_entry(cachep, &cache_chain, next) {
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1133 1134 1135 1136
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1137
	int node = cpu_to_mem(cpu);
1138
	const struct cpumask *mask = cpumask_of_node(node);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1160
		if (!cpumask_empty(mask)) {
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1199
{
1200
	struct kmem_cache *cachep;
1201
	struct kmem_list3 *l3 = NULL;
1202
	int node = cpu_to_mem(cpu);
1203
	int err;
L
Linus Torvalds 已提交
1204

1205 1206 1207 1208 1209 1210
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1211 1212 1213
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1225
					cachep->batchcount, GFP_KERNEL);
1226 1227 1228 1229 1230
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1231
				0xbaadf00d, GFP_KERNEL);
1232 1233
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1234
				goto bad;
1235
			}
1236 1237
		}
		if (use_alien_caches) {
1238
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1239 1240 1241
			if (!alien) {
				kfree(shared);
				kfree(nc);
1242
				goto bad;
1243
			}
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1258
#ifdef CONFIG_NUMA
1259 1260 1261
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1262
		}
1263 1264 1265 1266 1267
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
1268 1269
	init_node_lock_keys(node);

1270 1271
	return 0;
bad:
1272
	cpuup_canceled(cpu);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1285
		mutex_lock(&cache_chain_mutex);
1286
		err = cpuup_prepare(cpu);
1287
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1288 1289
		break;
	case CPU_ONLINE:
1290
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1291 1292 1293
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1294
  	case CPU_DOWN_PREPARE:
1295
  	case CPU_DOWN_PREPARE_FROZEN:
1296 1297 1298 1299 1300 1301
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1302
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1303
		/* Now the cache_reaper is guaranteed to be not running. */
1304
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1305 1306
  		break;
  	case CPU_DOWN_FAILED:
1307
  	case CPU_DOWN_FAILED_FROZEN:
1308 1309
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1310
	case CPU_DEAD:
1311
	case CPU_DEAD_FROZEN:
1312 1313 1314 1315 1316 1317 1318 1319
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1320
		/* fall through */
1321
#endif
L
Linus Torvalds 已提交
1322
	case CPU_UP_CANCELED:
1323
	case CPU_UP_CANCELED_FROZEN:
1324
		mutex_lock(&cache_chain_mutex);
1325
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1326
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1327 1328
		break;
	}
1329
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1330 1331
}

1332 1333 1334
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
 * Must hold cache_chain_mutex.
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

	list_for_each_entry(cachep, &cache_chain, next) {
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
		mutex_lock(&cache_chain_mutex);
		ret = init_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_GOING_OFFLINE:
		mutex_lock(&cache_chain_mutex);
		ret = drain_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1396
	return notifier_from_errno(ret);
1397 1398 1399
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1400 1401 1402
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1403 1404
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1405 1406 1407
{
	struct kmem_list3 *ptr;

1408
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1409 1410 1411
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1412 1413 1414 1415 1416
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1417 1418 1419 1420
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1437 1438 1439
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444 1445
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1446
	int i;
1447
	int order;
P
Pekka Enberg 已提交
1448
	int node;
1449

1450
	if (num_possible_nodes() == 1)
1451 1452
		use_alien_caches = 0;

1453 1454 1455 1456 1457
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1458
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1459 1460 1461 1462 1463

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
1464
	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
1465 1466 1467 1468
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1469 1470 1471
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1472 1473 1474
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1475
	 * 2) Create the first kmalloc cache.
1476
	 *    The struct kmem_cache for the new cache is allocated normally.
1477 1478 1479
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1480 1481
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1482 1483 1484
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1485 1486
	 */

1487
	node = numa_mem_id();
P
Pekka Enberg 已提交
1488

L
Linus Torvalds 已提交
1489 1490 1491 1492 1493
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1494
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1495

E
Eric Dumazet 已提交
1496
	/*
1497
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1498
	 */
1499 1500
	cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
				  nr_node_ids * sizeof(struct kmem_list3 *);
E
Eric Dumazet 已提交
1501 1502 1503
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1504 1505
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1506 1507
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1508

1509 1510 1511 1512 1513 1514
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1515
	BUG_ON(!cache_cache.num);
1516
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1517 1518 1519
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1525 1526 1527 1528
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1529 1530 1531
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1532 1533 1534
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1535
					NULL);
1536

A
Andrew Morton 已提交
1537
	if (INDEX_AC != INDEX_L3) {
1538
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1539 1540 1541 1542
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1543
				NULL);
A
Andrew Morton 已提交
1544
	}
1545

1546 1547
	slab_early_init = 0;

L
Linus Torvalds 已提交
1548
	while (sizes->cs_size != ULONG_MAX) {
1549 1550
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1551 1552 1553
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1554 1555
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1556
		if (!sizes->cs_cachep) {
1557
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1558 1559 1560
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1561
					NULL);
A
Andrew Morton 已提交
1562
		}
1563 1564 1565
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1566 1567 1568 1569
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1570
					NULL);
1571
#endif
L
Linus Torvalds 已提交
1572 1573 1574 1575 1576
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1577
		struct array_cache *ptr;
1578

1579
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1580

1581 1582
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1583
		       sizeof(struct arraycache_init));
1584 1585 1586 1587 1588
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1589
		cache_cache.array[smp_processor_id()] = ptr;
1590

1591
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1592

1593
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1594
		       != &initarray_generic.cache);
1595
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1596
		       sizeof(struct arraycache_init));
1597 1598 1599 1600 1601
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1602
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1603
		    ptr;
L
Linus Torvalds 已提交
1604
	}
1605 1606
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1607 1608
		int nid;

1609
		for_each_online_node(nid) {
1610
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1611

1612
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1613
				  &initkmem_list3[SIZE_AC + nid], nid);
1614 1615 1616

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1617
					  &initkmem_list3[SIZE_L3 + nid], nid);
1618 1619 1620
			}
		}
	}
L
Linus Torvalds 已提交
1621

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	g_cpucache_up = EARLY;
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1635

L
Linus Torvalds 已提交
1636 1637 1638
	/* Done! */
	g_cpucache_up = FULL;

P
Pekka Enberg 已提交
1639 1640 1641
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

A
Andrew Morton 已提交
1642 1643 1644
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1645 1646 1647
	 */
	register_cpu_notifier(&cpucache_notifier);

1648 1649 1650 1651 1652 1653 1654 1655
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1656 1657 1658
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663 1664 1665
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1666 1667
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1668
	 */
1669
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1670
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1682
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1683 1684
{
	struct page *page;
1685
	int nr_pages;
L
Linus Torvalds 已提交
1686 1687
	int i;

1688
#ifndef CONFIG_MMU
1689 1690 1691
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1692
	 */
1693
	flags |= __GFP_COMP;
1694
#endif
1695

1696
	flags |= cachep->gfpflags;
1697 1698
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1699

L
Linus Torvalds 已提交
1700
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
L
Linus Torvalds 已提交
1701 1702 1703
	if (!page)
		return NULL;

1704
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1705
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1706 1707 1708 1709 1710
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1711 1712
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1713

1714 1715 1716 1717 1718 1719 1720 1721
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1722

1723
	return page_address(page);
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728
}

/*
 * Interface to system's page release.
 */
1729
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1730
{
P
Pekka Enberg 已提交
1731
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1732 1733 1734
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1735
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1736

1737 1738 1739 1740 1741 1742
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1743
	while (i--) {
N
Nick Piggin 已提交
1744 1745
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1755
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1756
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1766
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1767
			    unsigned long caller)
L
Linus Torvalds 已提交
1768
{
1769
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1770

1771
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1772

P
Pekka Enberg 已提交
1773
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1774 1775
		return;

P
Pekka Enberg 已提交
1776 1777 1778 1779
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1780 1781 1782 1783 1784 1785 1786
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1787
				*addr++ = svalue;
L
Linus Torvalds 已提交
1788 1789 1790 1791 1792 1793 1794
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1795
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1796 1797 1798
}
#endif

1799
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1800
{
1801 1802
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1803 1804

	memset(addr, val, size);
P
Pekka Enberg 已提交
1805
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1811 1812 1813
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1814
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1815 1816 1817 1818 1819
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1820
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1821
	}
L
Linus Torvalds 已提交
1822
	printk("\n");
D
Dave Jones 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1837 1838 1839 1840 1841
}
#endif

#if DEBUG

1842
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1848
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1849 1850
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1851 1852 1853 1854
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1855
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1856
		print_symbol("(%s)",
A
Andrew Morton 已提交
1857
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1858 1859
		printk("\n");
	}
1860 1861
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1862
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1863 1864
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1865 1866
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1867 1868 1869 1870
		dump_line(realobj, i, limit);
	}
}

1871
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1872 1873 1874 1875 1876
{
	char *realobj;
	int size, i;
	int lines = 0;

1877 1878
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1879

P
Pekka Enberg 已提交
1880
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1881
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1882
		if (i == size - 1)
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887 1888
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1889
				printk(KERN_ERR
1890 1891
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1892 1893 1894
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1895
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1896
			limit = 16;
P
Pekka Enberg 已提交
1897 1898
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1911
		struct slab *slabp = virt_to_slab(objp);
1912
		unsigned int objnr;
L
Linus Torvalds 已提交
1913

1914
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1915
		if (objnr) {
1916
			objp = index_to_obj(cachep, slabp, objnr - 1);
1917
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1918
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1919
			       realobj, size);
L
Linus Torvalds 已提交
1920 1921
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1922
		if (objnr + 1 < cachep->num) {
1923
			objp = index_to_obj(cachep, slabp, objnr + 1);
1924
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1925
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1926
			       realobj, size);
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931 1932
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1933
#if DEBUG
R
Rabin Vincent 已提交
1934
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1935 1936 1937
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1938
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1939 1940 1941

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1942 1943
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1944
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1945
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1946 1947 1948 1949 1950 1951 1952 1953 1954
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1955
					   "was overwritten");
L
Linus Torvalds 已提交
1956 1957
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1958
					   "was overwritten");
L
Linus Torvalds 已提交
1959 1960
		}
	}
1961
}
L
Linus Torvalds 已提交
1962
#else
R
Rabin Vincent 已提交
1963
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1964 1965
{
}
L
Linus Torvalds 已提交
1966 1967
#endif

1968 1969 1970 1971 1972
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1973
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1974 1975
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1976
 */
1977
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1978 1979 1980
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1981
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1982 1983 1984
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1985
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1986 1987 1988 1989 1990
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1991 1992
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1993 1994 1995
	}
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2017
/**
2018 2019 2020 2021 2022 2023 2024
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2025 2026 2027 2028 2029
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2030
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2031
			size_t size, size_t align, unsigned long flags)
2032
{
2033
	unsigned long offslab_limit;
2034
	size_t left_over = 0;
2035
	int gfporder;
2036

2037
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2038 2039 2040
		unsigned int num;
		size_t remainder;

2041
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2042 2043
		if (!num)
			continue;
2044

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2057

2058
		/* Found something acceptable - save it away */
2059
		cachep->num = num;
2060
		cachep->gfporder = gfporder;
2061 2062
		left_over = remainder;

2063 2064 2065 2066 2067 2068 2069 2070
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2071 2072 2073 2074
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2075
		if (gfporder >= slab_break_gfp_order)
2076 2077
			break;

2078 2079 2080
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2081
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2082 2083 2084 2085 2086
			break;
	}
	return left_over;
}

2087
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2088
{
2089
	if (g_cpucache_up == FULL)
2090
		return enable_cpucache(cachep, gfp);
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2112
			kmalloc(sizeof(struct arraycache_init), gfp);
2113 2114 2115 2116 2117 2118

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2119
			for_each_online_node(node) {
2120 2121
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2122
						gfp, node);
2123 2124 2125 2126 2127
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2128
	cachep->nodelists[numa_mem_id()]->next_reap =
2129 2130 2131 2132 2133 2134 2135 2136 2137
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2138
	return 0;
2139 2140
}

L
Linus Torvalds 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2151
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2152 2153
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2154 2155
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2168
struct kmem_cache *
L
Linus Torvalds 已提交
2169
kmem_cache_create (const char *name, size_t size, size_t align,
2170
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2171 2172
{
	size_t left_over, slab_size, ralign;
2173
	struct kmem_cache *cachep = NULL, *pc;
2174
	gfp_t gfp;
L
Linus Torvalds 已提交
2175 2176 2177 2178

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2179
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2180
	    size > KMALLOC_MAX_SIZE) {
2181
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2182
				name);
P
Pekka Enberg 已提交
2183 2184
		BUG();
	}
L
Linus Torvalds 已提交
2185

2186
	/*
2187
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2188
	 * cpu_online_mask as well.  Please see cpuup_callback
2189
	 */
2190 2191 2192 2193
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2194

2195
	list_for_each_entry(pc, &cache_chain, next) {
2196 2197 2198 2199 2200 2201 2202 2203
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2204
		res = probe_kernel_address(pc->name, tmp);
2205
		if (res) {
2206 2207
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2208
			       pc->buffer_size);
2209 2210 2211
			continue;
		}

P
Pekka Enberg 已提交
2212
		if (!strcmp(pc->name, name)) {
2213 2214
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2215 2216 2217 2218 2219
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2229 2230
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2231
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2232 2233 2234 2235 2236 2237 2238
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2239 2240
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2241
	 */
2242
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2243

A
Andrew Morton 已提交
2244 2245
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2246 2247 2248
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2249 2250 2251
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2252 2253
	}

A
Andrew Morton 已提交
2254 2255
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2256 2257
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2258 2259 2260 2261
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2262 2263
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2264
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2265 2266 2267 2268
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2269 2270

	/*
D
David Woodhouse 已提交
2271 2272 2273
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2274
	 */
D
David Woodhouse 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2285

2286
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2287 2288 2289
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2290
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2291 2292 2293
	if (ralign < align) {
		ralign = align;
	}
2294 2295
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2296
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2297
	/*
2298
	 * 4) Store it.
L
Linus Torvalds 已提交
2299 2300 2301
	 */
	align = ralign;

2302 2303 2304 2305 2306
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2307
	/* Get cache's description obj. */
2308
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2309
	if (!cachep)
2310
		goto oops;
L
Linus Torvalds 已提交
2311

2312
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
L
Linus Torvalds 已提交
2313
#if DEBUG
2314
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2315

2316 2317 2318 2319
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2320 2321
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2322 2323
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2324 2325
	}
	if (flags & SLAB_STORE_USER) {
2326
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2327 2328
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2329
		 */
D
David Woodhouse 已提交
2330 2331 2332 2333
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2334 2335
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2336
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
C
Carsten Otte 已提交
2337 2338
	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2339 2340 2341 2342 2343
		size = PAGE_SIZE;
	}
#endif
#endif

2344 2345 2346
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2347 2348
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2349
	 */
2350 2351
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2352 2353 2354 2355 2356 2357 2358 2359
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2360
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2361 2362

	if (!cachep->num) {
2363 2364
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2365 2366
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2367
		goto oops;
L
Linus Torvalds 已提交
2368
	}
P
Pekka Enberg 已提交
2369 2370
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2383 2384
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2385 2386 2387 2388 2389 2390 2391 2392 2393

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2394 2395 2396 2397 2398 2399
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2400
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2401 2402 2403
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2404
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2405
		cachep->gfpflags |= GFP_DMA;
2406
	cachep->buffer_size = size;
2407
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2408

2409
	if (flags & CFLGS_OFF_SLAB) {
2410
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2411 2412 2413 2414 2415 2416 2417
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2418
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2419
	}
L
Linus Torvalds 已提交
2420 2421 2422
	cachep->ctor = ctor;
	cachep->name = name;

2423
	if (setup_cpu_cache(cachep, gfp)) {
2424 2425 2426 2427
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2428 2429 2430

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2431
oops:
L
Linus Torvalds 已提交
2432 2433
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2434
		      name);
2435 2436 2437 2438
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2454
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2455 2456 2457
{
#ifdef CONFIG_SMP
	check_irq_off();
2458
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2459 2460
#endif
}
2461

2462
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2463 2464 2465 2466 2467 2468 2469
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2470 2471 2472 2473
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2474
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2475 2476
#endif

2477 2478 2479 2480
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2481 2482
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2483
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2484
	struct array_cache *ac;
2485
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2486 2487

	check_irq_off();
2488
	ac = cpu_cache_get(cachep);
2489 2490 2491
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2492 2493 2494
	ac->avail = 0;
}

2495
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2496
{
2497 2498 2499
	struct kmem_list3 *l3;
	int node;

2500
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2501
	check_irq_on();
P
Pekka Enberg 已提交
2502
	for_each_online_node(node) {
2503
		l3 = cachep->nodelists[node];
2504 2505 2506 2507 2508 2509 2510
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2511
			drain_array(cachep, l3, l3->shared, 1, node);
2512
	}
L
Linus Torvalds 已提交
2513 2514
}

2515 2516 2517 2518 2519 2520 2521 2522
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2523
{
2524 2525
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2526 2527
	struct slab *slabp;

2528 2529
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2530

2531
		spin_lock_irq(&l3->list_lock);
2532
		p = l3->slabs_free.prev;
2533 2534 2535 2536
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2537

2538
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2539
#if DEBUG
2540
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2541 2542
#endif
		list_del(&slabp->list);
2543 2544 2545 2546 2547
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2548
		spin_unlock_irq(&l3->list_lock);
2549 2550
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2551
	}
2552 2553
out:
	return nr_freed;
L
Linus Torvalds 已提交
2554 2555
}

2556
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2557
static int __cache_shrink(struct kmem_cache *cachep)
2558 2559 2560 2561 2562 2563 2564 2565 2566
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2567 2568 2569 2570 2571 2572 2573
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2574 2575 2576 2577
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2578 2579 2580 2581 2582 2583 2584
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2585
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2586
{
2587
	int ret;
2588
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2589

2590
	get_online_cpus();
2591 2592 2593
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2594
	put_online_cpus();
2595
	return ret;
L
Linus Torvalds 已提交
2596 2597 2598 2599 2600 2601 2602
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2603
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2604 2605 2606 2607 2608 2609 2610 2611
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
L
Lucas De Marchi 已提交
2612
 * The caller must guarantee that no one will allocate memory from the cache
L
Linus Torvalds 已提交
2613 2614
 * during the kmem_cache_destroy().
 */
2615
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2616
{
2617
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2618 2619

	/* Find the cache in the chain of caches. */
2620
	get_online_cpus();
I
Ingo Molnar 已提交
2621
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2622 2623 2624 2625 2626 2627
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2628
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2629
		mutex_unlock(&cache_chain_mutex);
2630
		put_online_cpus();
2631
		return;
L
Linus Torvalds 已提交
2632 2633 2634
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2635
		rcu_barrier();
L
Linus Torvalds 已提交
2636

2637
	__kmem_cache_destroy(cachep);
2638
	mutex_unlock(&cache_chain_mutex);
2639
	put_online_cpus();
L
Linus Torvalds 已提交
2640 2641 2642
}
EXPORT_SYMBOL(kmem_cache_destroy);

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2654
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2655 2656
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2657 2658
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2659

L
Linus Torvalds 已提交
2660 2661
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2662
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2663
					      local_flags, nodeid);
2664 2665 2666 2667 2668 2669
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2670 2671
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2672 2673 2674
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2675
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2676 2677 2678 2679
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2680
	slabp->s_mem = objp + colour_off;
2681
	slabp->nodeid = nodeid;
2682
	slabp->free = 0;
L
Linus Torvalds 已提交
2683 2684 2685 2686 2687
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2688
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2689 2690
}

2691
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2692
			    struct slab *slabp)
L
Linus Torvalds 已提交
2693 2694 2695 2696
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2697
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2710 2711 2712
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2713 2714
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2715
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2716 2717 2718 2719

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2720
					   " end of an object");
L
Linus Torvalds 已提交
2721 2722
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2723
					   " start of an object");
L
Linus Torvalds 已提交
2724
		}
A
Andrew Morton 已提交
2725 2726
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2727
			kernel_map_pages(virt_to_page(objp),
2728
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2729 2730
#else
		if (cachep->ctor)
2731
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2732
#endif
P
Pekka Enberg 已提交
2733
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2734
	}
P
Pekka Enberg 已提交
2735
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2736 2737
}

2738
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2739
{
2740 2741 2742 2743 2744 2745
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2746 2747
}

A
Andrew Morton 已提交
2748 2749
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2750
{
2751
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2765 2766
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2767
{
2768
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2769 2770 2771 2772 2773

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2774
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2775
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2776
				"'%s', objp %p\n", cachep->name, objp);
2777 2778 2779 2780 2781 2782 2783 2784
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2785 2786 2787
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2788
 * virtual address for kfree, ksize, and slab debugging.
2789 2790 2791
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2792
{
2793
	int nr_pages;
L
Linus Torvalds 已提交
2794 2795
	struct page *page;

2796
	page = virt_to_page(addr);
2797

2798
	nr_pages = 1;
2799
	if (likely(!PageCompound(page)))
2800 2801
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2802
	do {
2803 2804
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2805
		page++;
2806
	} while (--nr_pages);
L
Linus Torvalds 已提交
2807 2808 2809 2810 2811 2812
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2813 2814
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2815
{
P
Pekka Enberg 已提交
2816 2817 2818
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2819
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2820

A
Andrew Morton 已提交
2821 2822 2823
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2824
	 */
C
Christoph Lameter 已提交
2825 2826
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2827

2828
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2829
	check_irq_off();
2830 2831
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2832 2833

	/* Get colour for the slab, and cal the next value. */
2834 2835 2836 2837 2838
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2839

2840
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2853 2854 2855
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2856
	 */
2857
	if (!objp)
2858
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2859
	if (!objp)
L
Linus Torvalds 已提交
2860 2861 2862
		goto failed;

	/* Get slab management. */
2863
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2864
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2865
	if (!slabp)
L
Linus Torvalds 已提交
2866 2867
		goto opps1;

2868
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2869

C
Christoph Lameter 已提交
2870
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2871 2872 2873 2874

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2875
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2876 2877

	/* Make slab active. */
2878
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2879
	STATS_INC_GROWN(cachep);
2880 2881
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2882
	return 1;
A
Andrew Morton 已提交
2883
opps1:
L
Linus Torvalds 已提交
2884
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2885
failed:
L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2902 2903
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2904 2905 2906
	}
}

2907 2908
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2909
	unsigned long long redzone1, redzone2;
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2925
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2926 2927 2928
			obj, redzone1, redzone2);
}

2929
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2930
				   void *caller)
L
Linus Torvalds 已提交
2931 2932 2933 2934 2935
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2936 2937
	BUG_ON(virt_to_cache(objp) != cachep);

2938
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2939
	kfree_debugcheck(objp);
2940
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2941

2942
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2943 2944

	if (cachep->flags & SLAB_RED_ZONE) {
2945
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2946 2947 2948 2949 2950 2951
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2952
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2953 2954

	BUG_ON(objnr >= cachep->num);
2955
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2956

2957 2958 2959
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2960 2961
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2962
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2963
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2964
			kernel_map_pages(virt_to_page(objp),
2965
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2976
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2977 2978 2979
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2980

L
Linus Torvalds 已提交
2981 2982 2983 2984 2985 2986 2987
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2988 2989 2990 2991
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2992
		for (i = 0;
2993
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2994
		     i++) {
A
Andrew Morton 已提交
2995
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2996
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2997
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3009
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3010 3011 3012 3013
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3014 3015
	int node;

3016
retry:
L
Linus Torvalds 已提交
3017
	check_irq_off();
3018
	node = numa_mem_id();
3019
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3020 3021
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3022 3023 3024 3025
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3026 3027 3028
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3029
	l3 = cachep->nodelists[node];
3030 3031 3032

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3033

3034
	/* See if we can refill from the shared array */
3035 3036
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3037
		goto alloc_done;
3038
	}
3039

L
Linus Torvalds 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3055 3056 3057 3058 3059 3060

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3061
		BUG_ON(slabp->inuse >= cachep->num);
3062

L
Linus Torvalds 已提交
3063 3064 3065 3066 3067
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3068
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3069
							    node);
L
Linus Torvalds 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3081
must_grow:
L
Linus Torvalds 已提交
3082
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3083
alloc_done:
3084
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3085 3086 3087

	if (unlikely(!ac->avail)) {
		int x;
3088
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3089

A
Andrew Morton 已提交
3090
		/* cache_grow can reenable interrupts, then ac could change. */
3091
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3092
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3093 3094
			return NULL;

A
Andrew Morton 已提交
3095
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3096 3097 3098
			goto retry;
	}
	ac->touched = 1;
3099
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3100 3101
}

A
Andrew Morton 已提交
3102 3103
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3104 3105 3106 3107 3108 3109 3110 3111
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3112 3113
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3114
{
P
Pekka Enberg 已提交
3115
	if (!objp)
L
Linus Torvalds 已提交
3116
		return objp;
P
Pekka Enberg 已提交
3117
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3118
#ifdef CONFIG_DEBUG_PAGEALLOC
3119
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3120
			kernel_map_pages(virt_to_page(objp),
3121
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3133 3134 3135 3136
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3137
			printk(KERN_ERR
3138
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3139 3140
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3141 3142 3143 3144
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3145 3146 3147 3148 3149
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3150
		slabp = page_get_slab(virt_to_head_page(objp));
3151 3152 3153 3154
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3155
	objp += obj_offset(cachep);
3156
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3157
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3158 3159
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3160
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3161
		       objp, (int)ARCH_SLAB_MINALIGN);
3162
	}
L
Linus Torvalds 已提交
3163 3164 3165 3166 3167 3168
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3169
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3170 3171
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3172
		return false;
3173

3174
	return should_failslab(obj_size(cachep), flags, cachep->flags);
3175 3176
}

3177
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3178
{
P
Pekka Enberg 已提交
3179
	void *objp;
L
Linus Torvalds 已提交
3180 3181
	struct array_cache *ac;

3182
	check_irq_off();
3183

3184
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3185 3186 3187
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3188
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3189 3190 3191
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
3192 3193 3194 3195 3196
		/*
		 * the 'ac' may be updated by cache_alloc_refill(),
		 * and kmemleak_erase() requires its correct value.
		 */
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3197
	}
3198 3199 3200 3201 3202
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3203 3204
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3205 3206 3207
	return objp;
}

3208
#ifdef CONFIG_NUMA
3209
/*
3210
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3211 3212 3213 3214 3215 3216 3217 3218
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3219
	if (in_interrupt() || (flags & __GFP_THISNODE))
3220
		return NULL;
3221
	nid_alloc = nid_here = numa_mem_id();
3222
	get_mems_allowed();
3223
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3224
		nid_alloc = cpuset_slab_spread_node();
3225 3226
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
3227
	put_mems_allowed();
3228
	if (nid_alloc != nid_here)
3229
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3230 3231 3232
	return NULL;
}

3233 3234
/*
 * Fallback function if there was no memory available and no objects on a
3235 3236 3237 3238 3239
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3240
 */
3241
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3242
{
3243 3244
	struct zonelist *zonelist;
	gfp_t local_flags;
3245
	struct zoneref *z;
3246 3247
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3248
	void *obj = NULL;
3249
	int nid;
3250 3251 3252 3253

	if (flags & __GFP_THISNODE)
		return NULL;

3254
	get_mems_allowed();
3255
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3256
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3257

3258 3259 3260 3261 3262
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3263 3264
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3265

3266
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3267
			cache->nodelists[nid] &&
3268
			cache->nodelists[nid]->free_objects) {
3269 3270
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3271 3272 3273
				if (obj)
					break;
		}
3274 3275
	}

3276
	if (!obj) {
3277 3278 3279 3280 3281 3282
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3283 3284 3285
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3286
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3287 3288
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3305
				/* cache_grow already freed obj */
3306 3307 3308
				obj = NULL;
			}
		}
3309
	}
3310
	put_mems_allowed();
3311 3312 3313
	return obj;
}

3314 3315
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3316
 */
3317
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3318
				int nodeid)
3319 3320
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3321 3322 3323 3324 3325 3326 3327 3328
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3329
retry:
3330
	check_irq_off();
P
Pekka Enberg 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3350
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3351 3352 3353 3354 3355
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3356
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3357
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3358
	else
P
Pekka Enberg 已提交
3359
		list_add(&slabp->list, &l3->slabs_partial);
3360

P
Pekka Enberg 已提交
3361 3362
	spin_unlock(&l3->list_lock);
	goto done;
3363

A
Andrew Morton 已提交
3364
must_grow:
P
Pekka Enberg 已提交
3365
	spin_unlock(&l3->list_lock);
3366
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3367 3368
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3369

3370
	return fallback_alloc(cachep, flags);
3371

A
Andrew Morton 已提交
3372
done:
P
Pekka Enberg 已提交
3373
	return obj;
3374
}
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;
3394
	int slab_node = numa_mem_id();
3395

3396
	flags &= gfp_allowed_mask;
3397

3398 3399
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3400
	if (slab_should_failslab(cachep, flags))
3401 3402
		return NULL;

3403 3404 3405
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

3406
	if (nodeid == -1)
3407
		nodeid = slab_node;
3408 3409 3410 3411 3412 3413 3414

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3415
	if (nodeid == slab_node) {
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3431 3432
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3433

P
Pekka Enberg 已提交
3434 3435 3436
	if (likely(ptr))
		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));

3437 3438 3439
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3459 3460
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3481
	flags &= gfp_allowed_mask;
3482

3483 3484
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3485
	if (slab_should_failslab(cachep, flags))
3486 3487
		return NULL;

3488 3489 3490 3491 3492
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3493 3494
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3495 3496
	prefetchw(objp);

P
Pekka Enberg 已提交
3497 3498 3499
	if (likely(objp))
		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));

3500 3501 3502
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3503 3504
	return objp;
}
3505 3506 3507 3508

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3509
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3510
		       int node)
L
Linus Torvalds 已提交
3511 3512
{
	int i;
3513
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3519
		slabp = virt_to_slab(objp);
3520
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3521
		list_del(&slabp->list);
3522
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3523
		check_slabp(cachep, slabp);
3524
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3525
		STATS_DEC_ACTIVE(cachep);
3526
		l3->free_objects++;
L
Linus Torvalds 已提交
3527 3528 3529 3530
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3531 3532
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3533 3534 3535 3536 3537 3538
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3539 3540
				slab_destroy(cachep, slabp);
			} else {
3541
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3542 3543 3544 3545 3546 3547
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3548
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3549 3550 3551 3552
		}
	}
}

3553
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3554 3555
{
	int batchcount;
3556
	struct kmem_list3 *l3;
3557
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3558 3559 3560 3561 3562 3563

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3564
	l3 = cachep->nodelists[node];
3565
	spin_lock(&l3->list_lock);
3566 3567
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3568
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3569 3570 3571
		if (max) {
			if (batchcount > max)
				batchcount = max;
3572
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3573
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3574 3575 3576 3577 3578
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3579
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3580
free_done:
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585
#if STATS
	{
		int i = 0;
		struct list_head *p;

3586 3587
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3599
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3600
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3601
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3602 3603 3604
}

/*
A
Andrew Morton 已提交
3605 3606
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3607
 */
3608 3609
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
    void *caller)
L
Linus Torvalds 已提交
3610
{
3611
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3612 3613

	check_irq_off();
3614
	kmemleak_free_recursive(objp, cachep->flags);
3615
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3616

P
Pekka Enberg 已提交
3617 3618
	kmemcheck_slab_free(cachep, objp, obj_size(cachep));

3619 3620 3621 3622 3623 3624 3625
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3626
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3627 3628
		return;

L
Linus Torvalds 已提交
3629 3630
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3631
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3632 3633 3634 3635
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3636
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3648
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3649
{
E
Eduard - Gabriel Munteanu 已提交
3650 3651
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3652 3653
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3654 3655

	return ret;
L
Linus Torvalds 已提交
3656 3657 3658
}
EXPORT_SYMBOL(kmem_cache_alloc);

3659
#ifdef CONFIG_TRACING
3660 3661
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
E
Eduard - Gabriel Munteanu 已提交
3662
{
3663 3664 3665 3666 3667 3668 3669
	void *ret;

	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	trace_kmalloc(_RET_IP_, ret,
		      size, slab_buffer_size(cachep), flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3670
}
3671
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3672 3673
#endif

L
Linus Torvalds 已提交
3674
#ifdef CONFIG_NUMA
3675 3676
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3677 3678 3679
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3680 3681 3682
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3683 3684

	return ret;
3685
}
L
Linus Torvalds 已提交
3686 3687
EXPORT_SYMBOL(kmem_cache_alloc_node);

3688
#ifdef CONFIG_TRACING
3689 3690 3691 3692
void *kmem_cache_alloc_node_trace(size_t size,
				  struct kmem_cache *cachep,
				  gfp_t flags,
				  int nodeid)
E
Eduard - Gabriel Munteanu 已提交
3693
{
3694 3695 3696
	void *ret;

	ret = __cache_alloc_node(cachep, flags, nodeid,
E
Eduard - Gabriel Munteanu 已提交
3697
				  __builtin_return_address(0));
3698 3699 3700 3701
	trace_kmalloc_node(_RET_IP_, ret,
			   size, slab_buffer_size(cachep),
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3702
}
3703
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3704 3705
#endif

3706 3707
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3708
{
3709
	struct kmem_cache *cachep;
3710 3711

	cachep = kmem_find_general_cachep(size, flags);
3712 3713
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3714
	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3715
}
3716

3717
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3718 3719 3720 3721 3722
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3723
EXPORT_SYMBOL(__kmalloc_node);
3724 3725

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3726
		int node, unsigned long caller)
3727
{
3728
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3729 3730 3731 3732 3733 3734 3735 3736
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3737
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3738
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3739 3740

/**
3741
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3742
 * @size: how many bytes of memory are required.
3743
 * @flags: the type of memory to allocate (see kmalloc).
3744
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3745
 */
3746 3747
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3748
{
3749
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3750
	void *ret;
L
Linus Torvalds 已提交
3751

3752 3753 3754 3755 3756 3757
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3758 3759
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3760 3761
	ret = __cache_alloc(cachep, flags, caller);

3762 3763
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3764 3765

	return ret;
3766 3767 3768
}


3769
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3770 3771
void *__kmalloc(size_t size, gfp_t flags)
{
3772
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3773 3774 3775
}
EXPORT_SYMBOL(__kmalloc);

3776
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3777
{
3778
	return __do_kmalloc(size, flags, (void *)caller);
3779 3780
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3781 3782 3783 3784 3785 3786 3787

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3788 3789
#endif

L
Linus Torvalds 已提交
3790 3791 3792 3793 3794 3795 3796 3797
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3798
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3799 3800 3801 3802
{
	unsigned long flags;

	local_irq_save(flags);
3803
	debug_check_no_locks_freed(objp, obj_size(cachep));
3804 3805
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3806
	__cache_free(cachep, objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3807
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3808

3809
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3810 3811 3812 3813 3814 3815 3816
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3817 3818
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3819 3820 3821 3822 3823
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3824
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3825 3826
	unsigned long flags;

3827 3828
	trace_kfree(_RET_IP_, objp);

3829
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3830 3831 3832
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3833
	c = virt_to_cache(objp);
3834
	debug_check_no_locks_freed(objp, obj_size(c));
3835
	debug_check_no_obj_freed(objp, obj_size(c));
3836
	__cache_free(c, (void *)objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3837 3838 3839 3840
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3841
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3842
{
3843
	return obj_size(cachep);
L
Linus Torvalds 已提交
3844 3845 3846
}
EXPORT_SYMBOL(kmem_cache_size);

3847
/*
S
Simon Arlott 已提交
3848
 * This initializes kmem_list3 or resizes various caches for all nodes.
3849
 */
3850
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3851 3852 3853
{
	int node;
	struct kmem_list3 *l3;
3854
	struct array_cache *new_shared;
3855
	struct array_cache **new_alien = NULL;
3856

3857
	for_each_online_node(node) {
3858

3859
                if (use_alien_caches) {
3860
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3861 3862 3863
                        if (!new_alien)
                                goto fail;
                }
3864

3865 3866 3867
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3868
				cachep->shared*cachep->batchcount,
3869
					0xbaadf00d, gfp);
3870 3871 3872 3873
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3874
		}
3875

A
Andrew Morton 已提交
3876 3877
		l3 = cachep->nodelists[node];
		if (l3) {
3878 3879
			struct array_cache *shared = l3->shared;

3880 3881
			spin_lock_irq(&l3->list_lock);

3882
			if (shared)
3883 3884
				free_block(cachep, shared->entry,
						shared->avail, node);
3885

3886 3887
			l3->shared = new_shared;
			if (!l3->alien) {
3888 3889 3890
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3891
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3892
					cachep->batchcount + cachep->num;
3893
			spin_unlock_irq(&l3->list_lock);
3894
			kfree(shared);
3895 3896 3897
			free_alien_cache(new_alien);
			continue;
		}
3898
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3899 3900 3901
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3902
			goto fail;
3903
		}
3904 3905 3906

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3907
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3908
		l3->shared = new_shared;
3909
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3910
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3911
					cachep->batchcount + cachep->num;
3912 3913
		cachep->nodelists[node] = l3;
	}
3914
	return 0;
3915

A
Andrew Morton 已提交
3916
fail:
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3932
	return -ENOMEM;
3933 3934
}

L
Linus Torvalds 已提交
3935
struct ccupdate_struct {
3936
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3937 3938 3939 3940 3941
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3942
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3943 3944 3945
	struct array_cache *old;

	check_irq_off();
3946
	old = cpu_cache_get(new->cachep);
3947

L
Linus Torvalds 已提交
3948 3949 3950 3951
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3952
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3953
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3954
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3955
{
3956
	struct ccupdate_struct *new;
3957
	int i;
L
Linus Torvalds 已提交
3958

3959
	new = kzalloc(sizeof(*new), gfp);
3960 3961 3962
	if (!new)
		return -ENOMEM;

3963
	for_each_online_cpu(i) {
3964
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3965
						batchcount, gfp);
3966
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3967
			for (i--; i >= 0; i--)
3968 3969
				kfree(new->new[i]);
			kfree(new);
3970
			return -ENOMEM;
L
Linus Torvalds 已提交
3971 3972
		}
	}
3973
	new->cachep = cachep;
L
Linus Torvalds 已提交
3974

3975
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3976

L
Linus Torvalds 已提交
3977 3978 3979
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3980
	cachep->shared = shared;
L
Linus Torvalds 已提交
3981

3982
	for_each_online_cpu(i) {
3983
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3984 3985
		if (!ccold)
			continue;
3986 3987 3988
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3989 3990
		kfree(ccold);
	}
3991
	kfree(new);
3992
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3993 3994
}

3995
/* Called with cache_chain_mutex held always */
3996
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3997 3998 3999 4000
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4001 4002
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4003 4004
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4005
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4006 4007 4008 4009
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4010
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4011
		limit = 1;
4012
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4013
		limit = 8;
4014
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4015
		limit = 24;
4016
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4017 4018 4019 4020
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4021 4022
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4023 4024 4025 4026 4027 4028 4029 4030
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4031
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4032 4033 4034
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4035 4036 4037
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4038 4039 4040 4041
	 */
	if (limit > 32)
		limit = 32;
#endif
4042
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4043 4044
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4045
		       cachep->name, -err);
4046
	return err;
L
Linus Torvalds 已提交
4047 4048
}

4049 4050
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4051 4052
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4053
 */
4054
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4055
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4056 4057 4058
{
	int tofree;

4059 4060
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4061 4062
	if (ac->touched && !force) {
		ac->touched = 0;
4063
	} else {
4064
		spin_lock_irq(&l3->list_lock);
4065 4066 4067 4068 4069 4070 4071 4072 4073
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4074
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4075 4076 4077 4078 4079
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4080
 * @w: work descriptor
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085 4086
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4087 4088
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4089
 */
4090
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4091
{
4092
	struct kmem_cache *searchp;
4093
	struct kmem_list3 *l3;
4094
	int node = numa_mem_id();
4095
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4096

4097
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4098
		/* Give up. Setup the next iteration. */
4099
		goto out;
L
Linus Torvalds 已提交
4100

4101
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4102 4103
		check_irq_on();

4104 4105 4106 4107 4108
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4109
		l3 = searchp->nodelists[node];
4110

4111
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4112

4113
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4114

4115 4116 4117 4118
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4119
		if (time_after(l3->next_reap, jiffies))
4120
			goto next;
L
Linus Torvalds 已提交
4121

4122
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4123

4124
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4125

4126
		if (l3->free_touched)
4127
			l3->free_touched = 0;
4128 4129
		else {
			int freed;
L
Linus Torvalds 已提交
4130

4131 4132 4133 4134
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4135
next:
L
Linus Torvalds 已提交
4136 4137 4138
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4139
	mutex_unlock(&cache_chain_mutex);
4140
	next_reap_node();
4141
out:
A
Andrew Morton 已提交
4142
	/* Set up the next iteration */
4143
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4144 4145
}

4146
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4147

4148
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4149
{
4150 4151 4152 4153
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4154
#if STATS
4155
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4156
#else
4157
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4158
#endif
4159 4160 4161 4162
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4163
#if STATS
4164
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4165
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4166
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4167
#endif
4168 4169 4170 4171 4172 4173 4174
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4175
	mutex_lock(&cache_chain_mutex);
4176 4177
	if (!n)
		print_slabinfo_header(m);
4178 4179

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4180 4181 4182 4183
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4184
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4185 4186 4187 4188
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4189
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4190 4191 4192 4193
}

static int s_show(struct seq_file *m, void *p)
{
4194
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4195 4196 4197 4198 4199
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4200
	const char *name;
L
Linus Torvalds 已提交
4201
	char *error = NULL;
4202 4203
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4204 4205 4206

	active_objs = 0;
	num_slabs = 0;
4207 4208 4209 4210 4211
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4212 4213
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4214

4215
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4216 4217 4218 4219 4220
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4221
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4222 4223 4224 4225 4226 4227 4228
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4229
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4230 4231 4232 4233 4234
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4235 4236
		if (l3->shared)
			shared_avail += l3->shared->avail;
4237

4238
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4239
	}
P
Pekka Enberg 已提交
4240 4241
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4242
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4243 4244
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4245
	name = cachep->name;
L
Linus Torvalds 已提交
4246 4247 4248 4249
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4250
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4251
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4252
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4253
		   cachep->limit, cachep->batchcount, cachep->shared);
4254
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4255
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4256
#if STATS
P
Pekka Enberg 已提交
4257
	{			/* list3 stats */
L
Linus Torvalds 已提交
4258 4259 4260 4261 4262 4263 4264
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4265
		unsigned long node_frees = cachep->node_frees;
4266
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4267

J
Joe Perches 已提交
4268 4269 4270 4271 4272
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4282
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4303
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4304 4305 4306 4307
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4318
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4319
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4320
{
P
Pekka Enberg 已提交
4321
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4322
	int limit, batchcount, shared, res;
4323
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4324

L
Linus Torvalds 已提交
4325 4326 4327 4328
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4329
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4340
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4341
	res = -EINVAL;
4342
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4343
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4344 4345
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4346
				res = 0;
L
Linus Torvalds 已提交
4347
			} else {
4348
				res = do_tune_cpucache(cachep, limit,
4349 4350
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4351 4352 4353 4354
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4355
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4356 4357 4358 4359
	if (res >= 0)
		res = count;
	return res;
}
4360

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4374 4375 4376 4377 4378
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4379
	return seq_list_start(&cache_chain, *pos);
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4430
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4431

4432
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4433
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4434
		if (modname[0])
4435 4436 4437 4438 4439 4440 4441 4442 4443
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4444
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4469
		list_for_each_entry(slabp, &l3->slabs_full, list)
4470
			handle_slab(n, cachep, slabp);
4471
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4498

4499 4500 4501
	return 0;
}

4502
static const struct seq_operations slabstats_op = {
4503 4504 4505 4506 4507
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4536
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4537 4538
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4539
#endif
4540 4541 4542
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4543 4544
#endif

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4557
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4558
{
4559 4560
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4561
		return 0;
L
Linus Torvalds 已提交
4562

4563
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4564
}
K
Kirill A. Shutemov 已提交
4565
EXPORT_SYMBOL(ksize);