mmu.c 62.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */
6 7 8 9

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
10
#include <linux/hugetlb.h>
11
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
12
#include <trace/events/kvm.h>
13
#include <asm/pgalloc.h>
14
#include <asm/cacheflush.h>
15 16
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
17
#include <asm/kvm_mmio.h>
18
#include <asm/kvm_ras.h>
19
#include <asm/kvm_asm.h>
20
#include <asm/kvm_emulate.h>
21
#include <asm/virt.h>
22 23

#include "trace.h"
24

25
static pgd_t *boot_hyp_pgd;
26
static pgd_t *hyp_pgd;
27
static pgd_t *merged_hyp_pgd;
28 29
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

30 31 32 33
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

34 35
static unsigned long io_map_base;

36
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
37

38 39 40 41 42 43
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
44 45 46 47 48 49 50 51 52 53 54
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
55
}
56

57
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
58
{
59
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
60 61
}

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

82 83 84 85 86
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

87 88 89 90 91 92
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
93
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
94 95 96
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
97
	if (!pmd_thp_or_huge(*pmd))
98 99 100 101 102 103 104
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

105 106 107 108 109 110
/**
 * stage2_dissolve_pud() - clear and flush huge PUD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pud:	pud pointer for IPA
 *
111
 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
112 113 114 115 116 117 118 119 120 121 122
 */
static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
{
	if (!stage2_pud_huge(kvm, *pudp))
		return;

	stage2_pud_clear(kvm, pudp);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pudp));
}

123 124 125 126 127 128 129 130 131
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
132
		page = (void *)__get_free_page(GFP_PGTABLE_USER);
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

155
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
156
{
157 158
	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
	stage2_pgd_clear(kvm, pgd);
159
	kvm_tlb_flush_vmid_ipa(kvm, addr);
160
	stage2_pud_free(kvm, pud_table);
161
	put_page(virt_to_page(pgd));
162 163
}

164
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
165
{
166 167 168
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
	stage2_pud_clear(kvm, pud);
169
	kvm_tlb_flush_vmid_ipa(kvm, addr);
170
	stage2_pmd_free(kvm, pmd_table);
171 172
	put_page(virt_to_page(pud));
}
173

174
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
175
{
176
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
177
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
178 179
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
180
	free_page((unsigned long)pte_table);
181 182 183
	put_page(virt_to_page(pmd));
}

184 185 186 187 188 189 190 191 192 193 194 195
static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
{
	WRITE_ONCE(*ptep, new_pte);
	dsb(ishst);
}

static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
{
	WRITE_ONCE(*pmdp, new_pmd);
	dsb(ishst);
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
{
	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
}

static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
{
	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
	dsb(ishst);
}

static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
{
	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
	dsb(ishst);
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
232 233 234 235
 *
 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 * we then fully enforce cacheability of RAM, no matter what the guest
 * does.
236
 */
237
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
238
		       phys_addr_t addr, phys_addr_t end)
239
{
240 241 242 243 244 245
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
246 247
			pte_t old_pte = *pte;

248 249
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
250 251

			/* No need to invalidate the cache for device mappings */
252
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
253 254 255
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
256 257 258
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

259
	if (stage2_pte_table_empty(kvm, start_pte))
260
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
261 262
}

263
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
264
		       phys_addr_t addr, phys_addr_t end)
265
{
266 267
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
268

269
	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
270
	do {
271
		next = stage2_pmd_addr_end(kvm, addr, end);
272
		if (!pmd_none(*pmd)) {
273
			if (pmd_thp_or_huge(*pmd)) {
274 275
				pmd_t old_pmd = *pmd;

276 277
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
278 279 280

				kvm_flush_dcache_pmd(old_pmd);

281 282
				put_page(virt_to_page(pmd));
			} else {
283
				unmap_stage2_ptes(kvm, pmd, addr, next);
284
			}
285
		}
286
	} while (pmd++, addr = next, addr != end);
287

288
	if (stage2_pmd_table_empty(kvm, start_pmd))
289
		clear_stage2_pud_entry(kvm, pud, start_addr);
290
}
291

292
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
293 294 295 296
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
297

298
	start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
299
	do {
300 301 302
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud)) {
303 304
				pud_t old_pud = *pud;

305
				stage2_pud_clear(kvm, pud);
306
				kvm_tlb_flush_vmid_ipa(kvm, addr);
307
				kvm_flush_dcache_pud(old_pud);
308 309
				put_page(virt_to_page(pud));
			} else {
310
				unmap_stage2_pmds(kvm, pud, addr, next);
311 312
			}
		}
313
	} while (pud++, addr = next, addr != end);
314

315
	if (stage2_pud_table_empty(kvm, start_pud))
316
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
317 318
}

319 320 321 322 323 324 325 326 327 328 329 330
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
331 332 333 334 335
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

336
	assert_spin_locked(&kvm->mmu_lock);
337 338
	WARN_ON(size & ~PAGE_MASK);

339
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
340
	do {
341 342 343 344 345 346 347
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
348 349
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
350
			unmap_stage2_puds(kvm, pgd, addr, next);
351 352 353 354 355 356
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
357
	} while (pgd++, addr = next, addr != end);
358 359
}

360 361 362 363 364 365 366
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
367
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
368
			kvm_flush_dcache_pte(*pte);
369 370 371 372 373 374 375 376 377
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

378
	pmd = stage2_pmd_offset(kvm, pud, addr);
379
	do {
380
		next = stage2_pmd_addr_end(kvm, addr, end);
381
		if (!pmd_none(*pmd)) {
382
			if (pmd_thp_or_huge(*pmd))
383 384
				kvm_flush_dcache_pmd(*pmd);
			else
385 386 387 388 389 390 391 392 393 394 395
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

396
	pud = stage2_pud_offset(kvm, pgd, addr);
397
	do {
398 399 400
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud))
401 402
				kvm_flush_dcache_pud(*pud);
			else
403 404 405 406 407 408 409 410 411 412 413 414 415
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

416
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
417
	do {
418 419
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
420
			stage2_flush_puds(kvm, pgd, addr, next);
421 422 423 424 425 426 427 428 429 430
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
431
static void stage2_flush_vm(struct kvm *kvm)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

524 525 526 527 528 529 530
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}

static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
			      phys_addr_t start, u64 size)
531 532 533 534 535 536 537 538 539
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
540
	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
541 542 543 544 545 546 547
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

548 549 550 551 552 553 554 555 556 557
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}

static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}

558
/**
559
 * free_hyp_pgds - free Hyp-mode page tables
560
 *
561 562
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
563
 * PAGE_OFFSET), or device mappings in the idmap range.
564
 *
565 566
 * boot_hyp_pgd should only map the idmap range, and is only used in
 * the extended idmap case.
567
 */
568
void free_hyp_pgds(void)
569
{
570 571
	pgd_t *id_pgd;

572
	mutex_lock(&kvm_hyp_pgd_mutex);
573

574 575 576 577 578 579 580 581 582 583
	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;

	if (id_pgd) {
		/* In case we never called hyp_mmu_init() */
		if (!io_map_base)
			io_map_base = hyp_idmap_start;
		unmap_hyp_idmap_range(id_pgd, io_map_base,
				      hyp_idmap_start + PAGE_SIZE - io_map_base);
	}

584 585 586 587 588
	if (boot_hyp_pgd) {
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

589
	if (hyp_pgd) {
590 591
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
592

593
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
594
		hyp_pgd = NULL;
595
	}
596 597 598 599 600
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
601

602 603 604 605
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
606 607
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
608 609 610 611
{
	pte_t *pte;
	unsigned long addr;

612 613
	addr = start;
	do {
614
		pte = pte_offset_kernel(pmd, addr);
615
		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
616
		get_page(virt_to_page(pte));
617
		pfn++;
618
	} while (addr += PAGE_SIZE, addr != end);
619 620 621
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
622 623
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
624 625 626 627 628
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

629 630
	addr = start;
	do {
631
		pmd = pmd_offset(pud, addr);
632 633 634 635

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
636
			pte = pte_alloc_one_kernel(NULL);
637 638 639 640
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
641
			kvm_pmd_populate(pmd, pte);
642
			get_page(virt_to_page(pmd));
643 644 645 646
		}

		next = pmd_addr_end(addr, end);

647 648
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
649
	} while (addr = next, addr != end);
650 651 652 653

	return 0;
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
673
			kvm_pud_populate(pud, pmd);
674 675 676 677 678 679 680 681 682 683 684 685 686
			get_page(virt_to_page(pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

687
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
688 689
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
690 691 692 693 694 695 696
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
697 698 699
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
700
		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
701

702 703 704 705
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
706 707 708
				err = -ENOMEM;
				goto out;
			}
709
			kvm_pgd_populate(pgd, pud);
710
			get_page(virt_to_page(pgd));
711 712 713
		}

		next = pgd_addr_end(addr, end);
714
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
715 716
		if (err)
			goto out;
717
		pfn += (next - addr) >> PAGE_SHIFT;
718
	} while (addr = next, addr != end);
719 720 721 722 723
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

724 725 726 727 728 729 730 731 732 733 734
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

735
/**
736
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
737 738
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
739
 * @prot:	The protection to be applied to this range
740
 *
741 742 743
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
744
 */
745
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
746
{
747 748
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
749 750
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
751

752 753 754
	if (is_kernel_in_hyp_mode())
		return 0;

755 756
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
757

758 759
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
760

761
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
762 763
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
764
					    __phys_to_pfn(phys_addr),
765
					    prot);
766 767 768 769 770
		if (err)
			return err;
	}

	return 0;
771 772
}

773 774
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
					unsigned long *haddr, pgprot_t prot)
775
{
776 777 778
	pgd_t *pgd = hyp_pgd;
	unsigned long base;
	int ret = 0;
779

780
	mutex_lock(&kvm_hyp_pgd_mutex);
781

782 783 784 785 786 787 788 789 790 791
	/*
	 * This assumes that we we have enough space below the idmap
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

	if (__kvm_cpu_uses_extended_idmap())
		pgd = boot_hyp_pgd;

	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
				    base, base + size,
813
				    __phys_to_pfn(phys_addr), prot);
814 815 816
	if (ret)
		goto out;

817
	*haddr = base + offset_in_page(phys_addr);
818 819

out:
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
848 849 850
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
877 878 879
		return ret;
	}

880
	*haddr = (void *)addr;
881
	return 0;
882 883
}

884 885 886 887
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
888 889
 * Allocates only the stage-2 HW PGD level table(s) of size defined by
 * stage2_pgd_size(kvm).
890 891 892 893 894 895
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
896
	phys_addr_t pgd_phys;
897 898 899 900 901 902 903
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

904
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
905
	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
906
	if (!pgd)
907 908
		return -ENOMEM;

909 910 911 912
	pgd_phys = virt_to_phys(pgd);
	if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
		return -EINVAL;

913
	kvm->arch.pgd = pgd;
914
	kvm->arch.pgd_phys = pgd_phys;
915 916 917
	return 0;
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
973
	down_read(&current->mm->mmap_sem);
974 975 976 977 978 979 980
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
981
	up_read(&current->mm->mmap_sem);
982 983 984
	srcu_read_unlock(&kvm->srcu, idx);
}

985 986 987 988 989 990 991 992 993 994
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
995
	void *pgd = NULL;
996

997
	spin_lock(&kvm->mmu_lock);
998
	if (kvm->arch.pgd) {
999
		unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1000
		pgd = READ_ONCE(kvm->arch.pgd);
1001
		kvm->arch.pgd = NULL;
1002
		kvm->arch.pgd_phys = 0;
1003
	}
1004 1005
	spin_unlock(&kvm->mmu_lock);

1006
	/* Free the HW pgd, one page at a time */
1007
	if (pgd)
1008
		free_pages_exact(pgd, stage2_pgd_size(kvm));
1009 1010
}

1011
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1012
			     phys_addr_t addr)
1013 1014 1015 1016
{
	pgd_t *pgd;
	pud_t *pud;

1017 1018
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
	if (stage2_pgd_none(kvm, *pgd)) {
1019 1020 1021
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
1022
		stage2_pgd_populate(kvm, pgd, pud);
1023 1024 1025
		get_page(virt_to_page(pgd));
	}

1026
	return stage2_pud_offset(kvm, pgd, addr);
1027 1028 1029 1030 1031 1032 1033 1034 1035
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
1036
	if (!pud || stage2_pud_huge(kvm, *pud))
1037 1038
		return NULL;

1039
	if (stage2_pud_none(kvm, *pud)) {
1040
		if (!cache)
1041
			return NULL;
1042
		pmd = mmu_memory_cache_alloc(cache);
1043
		stage2_pud_populate(kvm, pud, pmd);
1044
		get_page(virt_to_page(pud));
1045 1046
	}

1047
	return stage2_pmd_offset(kvm, pud, addr);
1048 1049 1050 1051 1052 1053 1054
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

1055
retry:
1056 1057
	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
1058

1059
	old_pmd = *pmd;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	/*
	 * Multiple vcpus faulting on the same PMD entry, can
	 * lead to them sequentially updating the PMD with the
	 * same value. Following the break-before-make
	 * (pmd_clear() followed by tlb_flush()) process can
	 * hinder forward progress due to refaults generated
	 * on missing translations.
	 *
	 * Skip updating the page table if the entry is
	 * unchanged.
	 */
	if (pmd_val(old_pmd) == pmd_val(*new_pmd))
		return 0;

1074
	if (pmd_present(old_pmd)) {
1075
		/*
1076 1077 1078 1079 1080 1081 1082 1083
		 * If we already have PTE level mapping for this block,
		 * we must unmap it to avoid inconsistent TLB state and
		 * leaking the table page. We could end up in this situation
		 * if the memory slot was marked for dirty logging and was
		 * reverted, leaving PTE level mappings for the pages accessed
		 * during the period. So, unmap the PTE level mapping for this
		 * block and retry, as we could have released the upper level
		 * table in the process.
1084
		 *
1085 1086
		 * Normal THP split/merge follows mmu_notifier callbacks and do
		 * get handled accordingly.
1087
		 */
1088 1089 1090 1091
		if (!pmd_thp_or_huge(old_pmd)) {
			unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
			goto retry;
		}
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
		/*
		 * Mapping in huge pages should only happen through a
		 * fault.  If a page is merged into a transparent huge
		 * page, the individual subpages of that huge page
		 * should be unmapped through MMU notifiers before we
		 * get here.
		 *
		 * Merging of CompoundPages is not supported; they
		 * should become splitting first, unmapped, merged,
		 * and mapped back in on-demand.
		 */
1103
		WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1104
		pmd_clear(pmd);
1105
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1106
	} else {
1107
		get_page(virt_to_page(pmd));
1108 1109 1110
	}

	kvm_set_pmd(pmd, *new_pmd);
1111 1112 1113
	return 0;
}

1114 1115 1116 1117 1118
static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			       phys_addr_t addr, const pud_t *new_pudp)
{
	pud_t *pudp, old_pud;

1119
retry:
1120 1121 1122 1123 1124 1125 1126
	pudp = stage2_get_pud(kvm, cache, addr);
	VM_BUG_ON(!pudp);

	old_pud = *pudp;

	/*
	 * A large number of vcpus faulting on the same stage 2 entry,
1127 1128
	 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
	 * Skip updating the page tables if there is no change.
1129 1130 1131 1132 1133
	 */
	if (pud_val(old_pud) == pud_val(*new_pudp))
		return 0;

	if (stage2_pud_present(kvm, old_pud)) {
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		/*
		 * If we already have table level mapping for this block, unmap
		 * the range for this block and retry.
		 */
		if (!stage2_pud_huge(kvm, old_pud)) {
			unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
			goto retry;
		}

		WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		stage2_pud_clear(kvm, pudp);
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	} else {
		get_page(virt_to_page(pudp));
	}

	kvm_set_pud(pudp, *new_pudp);
	return 0;
}

1154 1155 1156 1157 1158 1159 1160 1161
/*
 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
 * true if a valid and present leaf-entry is found. A pointer to the
 * leaf-entry is returned in the appropriate level variable - pudpp,
 * pmdpp, ptepp.
 */
static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1162
{
1163
	pud_t *pudp;
1164 1165 1166
	pmd_t *pmdp;
	pte_t *ptep;

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	*pudpp = NULL;
	*pmdpp = NULL;
	*ptepp = NULL;

	pudp = stage2_get_pud(kvm, NULL, addr);
	if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
		return false;

	if (stage2_pud_huge(kvm, *pudp)) {
		*pudpp = pudp;
		return true;
	}

	pmdp = stage2_pmd_offset(kvm, pudp, addr);
1181 1182 1183
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

1184 1185 1186 1187
	if (pmd_thp_or_huge(*pmdp)) {
		*pmdpp = pmdp;
		return true;
	}
1188 1189 1190 1191 1192

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	*ptepp = ptep;
	return true;
}

static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;
	bool found;

	found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
	if (!found)
		return false;

	if (pudp)
		return kvm_s2pud_exec(pudp);
	else if (pmdp)
		return kvm_s2pmd_exec(pmdp);
	else
		return kvm_s2pte_exec(ptep);
1214 1215
}

1216
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1217 1218
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
1219
{
1220
	pud_t *pud;
1221 1222
	pmd_t *pmd;
	pte_t *pte, old_pte;
1223 1224 1225 1226
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
1227

1228
	/* Create stage-2 page table mapping - Levels 0 and 1 */
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	pud = stage2_get_pud(kvm, cache, addr);
	if (!pud) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

	/*
	 * While dirty page logging - dissolve huge PUD, then continue
	 * on to allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pud(kvm, addr, pud);

	if (stage2_pud_none(kvm, *pud)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pmd = mmu_memory_cache_alloc(cache);
		stage2_pud_populate(kvm, pud, pmd);
		get_page(virt_to_page(pud));
	}

	pmd = stage2_pmd_offset(kvm, pud, addr);
1254 1255 1256 1257 1258 1259 1260 1261
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

1262 1263 1264 1265 1266 1267 1268
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

1269
	/* Create stage-2 page mappings - Level 2 */
1270 1271 1272 1273
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
1274
		kvm_pmd_populate(pmd, pte);
1275
		get_page(virt_to_page(pmd));
1276 1277 1278
	}

	pte = pte_offset_kernel(pmd, addr);
1279 1280 1281 1282 1283 1284

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1285
	if (pte_present(old_pte)) {
1286 1287 1288 1289
		/* Skip page table update if there is no change */
		if (pte_val(old_pte) == pte_val(*new_pte))
			return 0;

1290
		kvm_set_pte(pte, __pte(0));
1291
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1292
	} else {
1293
		get_page(virt_to_page(pte));
1294
	}
1295

1296
	kvm_set_pte(pte, *new_pte);
1297 1298 1299
	return 0;
}

1300 1301 1302 1303 1304 1305 1306
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1307 1308
	return 0;
}
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1320

1321 1322 1323 1324 1325
static int stage2_pudp_test_and_clear_young(pud_t *pud)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pud);
}

1326 1327 1328 1329 1330 1331 1332 1333 1334
/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1335
			  phys_addr_t pa, unsigned long size, bool writable)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1346
		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1347

1348
		if (writable)
1349
			pte = kvm_s2pte_mkwrite(pte);
1350

1351 1352 1353
		ret = mmu_topup_memory_cache(&cache,
					     kvm_mmu_cache_min_pages(kvm),
					     KVM_NR_MEM_OBJS);
1354 1355 1356
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1357 1358
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1371
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1372
{
D
Dan Williams 已提交
1373
	kvm_pfn_t pfn = *pfnp;
1374
	gfn_t gfn = *ipap >> PAGE_SHIFT;
1375
	struct page *page = pfn_to_page(pfn);
1376

1377
	/*
1378
	 * PageTransCompoundMap() returns true for THP and
1379 1380 1381 1382
	 * hugetlbfs. Make sure the adjustment is done only for THP
	 * pages.
	 */
	if (!PageHuge(page) && PageTransCompoundMap(page)) {
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
1439
 * kvm:		kvm instance for the VM
1440 1441 1442 1443
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
1444 1445
static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
			   phys_addr_t addr, phys_addr_t end)
1446 1447 1448 1449
{
	pmd_t *pmd;
	phys_addr_t next;

1450
	pmd = stage2_pmd_offset(kvm, pud, addr);
1451 1452

	do {
1453
		next = stage2_pmd_addr_end(kvm, addr, end);
1454
		if (!pmd_none(*pmd)) {
1455
			if (pmd_thp_or_huge(*pmd)) {
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
1466 1467 1468 1469 1470
 * stage2_wp_puds - write protect PGD range
 * @pgd:	pointer to pgd entry
 * @addr:	range start address
 * @end:	range end address
 */
1471 1472
static void  stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
			    phys_addr_t addr, phys_addr_t end)
1473 1474 1475 1476
{
	pud_t *pud;
	phys_addr_t next;

1477
	pud = stage2_pud_offset(kvm, pgd, addr);
1478
	do {
1479 1480
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
1481 1482 1483 1484 1485 1486
			if (stage2_pud_huge(kvm, *pud)) {
				if (!kvm_s2pud_readonly(pud))
					kvm_set_s2pud_readonly(pud);
			} else {
				stage2_wp_pmds(kvm, pud, addr, next);
			}
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1502
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1503 1504 1505 1506
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1507 1508
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1509 1510 1511
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1512
		 */
1513 1514 1515
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1516 1517 1518
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (stage2_pgd_present(kvm, *pgd))
			stage2_wp_puds(kvm, pgd, addr, next);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1529
 * all present PUD, PMD and PTEs are write protected in the memory region.
1530 1531 1532 1533 1534 1535 1536
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1537 1538
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1539 1540 1541 1542 1543 1544 1545 1546
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1547 1548

/**
1549
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1550 1551 1552 1553 1554 1555 1556 1557 1558
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1559
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1560 1561 1562 1563 1564 1565 1566 1567 1568
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1584
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1585
{
1586
	__clean_dcache_guest_page(pfn, size);
1587 1588
}

1589
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1590
{
1591
	__invalidate_icache_guest_page(pfn, size);
1592 1593
}

1594 1595 1596
static void kvm_send_hwpoison_signal(unsigned long address,
				     struct vm_area_struct *vma)
{
1597
	short lsb;
1598 1599

	if (is_vm_hugetlb_page(vma))
1600
		lsb = huge_page_shift(hstate_vma(vma));
1601
	else
1602
		lsb = PAGE_SHIFT;
1603

1604
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1605 1606
}

1607 1608 1609
static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
					       unsigned long hva,
					       unsigned long map_size)
1610
{
1611
	gpa_t gpa_start;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	hva_t uaddr_start, uaddr_end;
	size_t size;

	size = memslot->npages * PAGE_SIZE;

	gpa_start = memslot->base_gfn << PAGE_SHIFT;

	uaddr_start = memslot->userspace_addr;
	uaddr_end = uaddr_start + size;

	/*
	 * Pages belonging to memslots that don't have the same alignment
1624 1625
	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1626 1627 1628 1629 1630
	 *
	 * Consider a layout like the following:
	 *
	 *    memslot->userspace_addr:
	 *    +-----+--------------------+--------------------+---+
1631
	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1632 1633 1634 1635
	 *    +-----+--------------------+--------------------+---+
	 *
	 *    memslot->base_gfn << PAGE_SIZE:
	 *      +---+--------------------+--------------------+-----+
1636
	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1637 1638
	 *      +---+--------------------+--------------------+-----+
	 *
1639
	 * If we create those stage-2 blocks, we'll end up with this incorrect
1640 1641 1642 1643 1644
	 * mapping:
	 *   d -> f
	 *   e -> g
	 *   f -> h
	 */
1645
	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1646 1647 1648 1649
		return false;

	/*
	 * Next, let's make sure we're not trying to map anything not covered
1650 1651
	 * by the memslot. This means we have to prohibit block size mappings
	 * for the beginning and end of a non-block aligned and non-block sized
1652 1653 1654 1655 1656 1657 1658 1659
	 * memory slot (illustrated by the head and tail parts of the
	 * userspace view above containing pages 'abcde' and 'xyz',
	 * respectively).
	 *
	 * Note that it doesn't matter if we do the check using the
	 * userspace_addr or the base_gfn, as both are equally aligned (per
	 * the check above) and equally sized.
	 */
1660 1661
	return (hva & ~(map_size - 1)) >= uaddr_start &&
	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1662 1663
}

1664
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1665
			  struct kvm_memory_slot *memslot, unsigned long hva,
1666 1667 1668
			  unsigned long fault_status)
{
	int ret;
1669 1670
	bool write_fault, writable, force_pte = false;
	bool exec_fault, needs_exec;
1671
	unsigned long mmu_seq;
1672 1673
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1674
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1675
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1676
	kvm_pfn_t pfn;
1677
	pgprot_t mem_type = PAGE_S2;
1678
	bool logging_active = memslot_is_logging(memslot);
1679
	unsigned long vma_pagesize, flags = 0;
1680

1681
	write_fault = kvm_is_write_fault(vcpu);
1682 1683 1684 1685
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1686 1687 1688 1689
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1690 1691 1692
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1693 1694 1695 1696 1697 1698
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1699
	vma_pagesize = vma_kernel_pagesize(vma);
1700 1701 1702 1703 1704 1705
	if (logging_active ||
	    !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
		force_pte = true;
		vma_pagesize = PAGE_SIZE;
	}

1706
	/*
1707 1708 1709 1710 1711
	 * The stage2 has a minimum of 2 level table (For arm64 see
	 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
	 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
	 * As for PUD huge maps, we must make sure that we have at least
	 * 3 levels, i.e, PMD is not folded.
1712
	 */
1713 1714
	if (vma_pagesize == PMD_SIZE ||
	    (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1715
		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1716 1717
	up_read(&current->mm->mmap_sem);

1718
	/* We need minimum second+third level pages */
1719
	ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1720
				     KVM_NR_MEM_OBJS);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1736
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1737 1738 1739 1740
	if (pfn == KVM_PFN_ERR_HWPOISON) {
		kvm_send_hwpoison_signal(hva, vma);
		return 0;
	}
1741
	if (is_error_noslot_pfn(pfn))
1742 1743
		return -EFAULT;

1744
	if (kvm_is_device_pfn(pfn)) {
1745
		mem_type = PAGE_S2_DEVICE;
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1762

1763 1764
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1765
		goto out_unlock;
1766

1767 1768 1769 1770 1771
	if (vma_pagesize == PAGE_SIZE && !force_pte) {
		/*
		 * Only PMD_SIZE transparent hugepages(THP) are
		 * currently supported. This code will need to be
		 * updated to support other THP sizes.
1772 1773 1774
		 *
		 * Make sure the host VA and the guest IPA are sufficiently
		 * aligned and that the block is contained within the memslot.
1775
		 */
1776 1777
		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
		    transparent_hugepage_adjust(&pfn, &fault_ipa))
1778 1779 1780 1781 1782
			vma_pagesize = PMD_SIZE;
	}

	if (writable)
		kvm_set_pfn_dirty(pfn);
1783

1784 1785 1786 1787 1788 1789
	if (fault_status != FSC_PERM)
		clean_dcache_guest_page(pfn, vma_pagesize);

	if (exec_fault)
		invalidate_icache_guest_page(pfn, vma_pagesize);

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	/*
	 * If we took an execution fault we have made the
	 * icache/dcache coherent above and should now let the s2
	 * mapping be executable.
	 *
	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
	 * execute permissions, and we preserve whatever we have.
	 */
	needs_exec = exec_fault ||
		(fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	if (vma_pagesize == PUD_SIZE) {
		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);

		new_pud = kvm_pud_mkhuge(new_pud);
		if (writable)
			new_pud = kvm_s2pud_mkwrite(new_pud);

		if (needs_exec)
			new_pud = kvm_s2pud_mkexec(new_pud);

		ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
	} else if (vma_pagesize == PMD_SIZE) {
1813 1814 1815 1816
		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);

		new_pmd = kvm_pmd_mkhuge(new_pmd);

1817
		if (writable)
1818
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1819

1820
		if (needs_exec)
1821
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1822

1823 1824
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1825
		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1826

1827
		if (writable) {
1828
			new_pte = kvm_s2pte_mkwrite(new_pte);
1829
			mark_page_dirty(kvm, gfn);
1830
		}
1831

1832
		if (needs_exec)
1833
			new_pte = kvm_s2pte_mkexec(new_pte);
1834

1835
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1836
	}
1837

1838
out_unlock:
1839
	spin_unlock(&kvm->mmu_lock);
1840
	kvm_set_pfn_accessed(pfn);
1841
	kvm_release_pfn_clean(pfn);
1842
	return ret;
1843 1844
}

1845 1846 1847 1848
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1849 1850
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1851 1852 1853
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
1854
	pud_t *pud;
1855 1856
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1857
	kvm_pfn_t pfn;
1858 1859 1860 1861 1862 1863
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

1864
	if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1865 1866
		goto out;

1867 1868 1869 1870 1871
	if (pud) {		/* HugeTLB */
		*pud = kvm_s2pud_mkyoung(*pud);
		pfn = kvm_pud_pfn(*pud);
		pfn_valid = true;
	} else	if (pmd) {	/* THP, HugeTLB */
1872 1873 1874
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
1875 1876 1877 1878
	} else {
		*pte = pte_mkyoung(*pte);	/* Just a page... */
		pfn = pte_pfn(*pte);
		pfn_valid = true;
1879 1880 1881 1882 1883 1884 1885 1886
	}

out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1899 1900
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1901 1902 1903
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1904 1905
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1906 1907 1908
	gfn_t gfn;
	int ret, idx;

1909 1910 1911
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1912
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1913

1914 1915 1916 1917 1918 1919
	/* Synchronous External Abort? */
	if (kvm_vcpu_dabt_isextabt(vcpu)) {
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1920
		if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1921 1922
			return 1;

1923 1924 1925 1926
		if (unlikely(!is_iabt)) {
			kvm_inject_vabt(vcpu);
			return 1;
		}
1927 1928
	}

1929 1930
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1931 1932

	/* Check the stage-2 fault is trans. fault or write fault */
1933 1934
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1935 1936 1937 1938
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1939 1940 1941 1942 1943 1944
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1945 1946
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1947
	write_fault = kvm_is_write_fault(vcpu);
1948
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1949 1950
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1951
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1952 1953 1954 1955
			ret = 1;
			goto out_unlock;
		}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1972 1973 1974 1975 1976 1977 1978
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1979
		ret = io_mem_abort(vcpu, run, fault_ipa);
1980 1981 1982
		goto out_unlock;
	}

1983
	/* Userspace should not be able to register out-of-bounds IPAs */
1984
	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1985

1986 1987 1988 1989 1990 1991
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1992
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1993 1994 1995 1996 1997
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1998 1999
}

2000 2001 2002 2003
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
2004 2005
					    gpa_t gpa, u64 size,
					    void *data),
2006
			     void *data)
2007 2008 2009
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
2010
	int ret = 0;
2011 2012 2013 2014 2015 2016

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
2017
		gfn_t gpa;
2018 2019 2020 2021 2022 2023 2024

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

2025 2026
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2027
	}
2028 2029

	return ret;
2030 2031
}

2032
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2033
{
2034
	unmap_stage2_range(kvm, gpa, size);
2035
	return 0;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

2049
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2050 2051 2052
{
	pte_t *pte = (pte_t *)data;

2053
	WARN_ON(size != PAGE_SIZE);
2054 2055 2056 2057 2058 2059 2060 2061
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
2062
	return 0;
2063 2064 2065
}


2066
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2067 2068
{
	unsigned long end = hva + PAGE_SIZE;
2069
	kvm_pfn_t pfn = pte_pfn(pte);
2070 2071 2072
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
2073
		return 0;
2074 2075

	trace_kvm_set_spte_hva(hva);
2076 2077 2078 2079 2080 2081

	/*
	 * We've moved a page around, probably through CoW, so let's treat it
	 * just like a translation fault and clean the cache to the PoC.
	 */
	clean_dcache_guest_page(pfn, PAGE_SIZE);
2082
	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2083
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2084 2085

	return 0;
2086 2087
}

2088
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2089
{
2090
	pud_t *pud;
2091 2092 2093
	pmd_t *pmd;
	pte_t *pte;

2094 2095
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2096 2097
		return 0;

2098 2099 2100
	if (pud)
		return stage2_pudp_test_and_clear_young(pud);
	else if (pmd)
2101
		return stage2_pmdp_test_and_clear_young(pmd);
2102 2103
	else
		return stage2_ptep_test_and_clear_young(pte);
2104 2105
}

2106
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2107
{
2108
	pud_t *pud;
2109 2110 2111
	pmd_t *pmd;
	pte_t *pte;

2112 2113
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2114 2115
		return 0;

2116 2117 2118
	if (pud)
		return kvm_s2pud_young(*pud);
	else if (pmd)
2119
		return pmd_young(*pmd);
2120
	else
2121 2122 2123 2124 2125
		return pte_young(*pte);
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
2126 2127
	if (!kvm->arch.pgd)
		return 0;
2128 2129 2130 2131 2132 2133
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
2134 2135
	if (!kvm->arch.pgd)
		return 0;
2136 2137 2138 2139
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

2140 2141 2142 2143 2144
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

2145 2146
phys_addr_t kvm_mmu_get_httbr(void)
{
2147 2148 2149 2150
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
2151 2152
}

2153 2154 2155 2156 2157
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

2158 2159 2160 2161 2162
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
2163
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

2174 2175
int kvm_mmu_init(void)
{
2176 2177
	int err;

2178
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2179
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2180
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2181
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2182
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2183

2184 2185 2186 2187 2188
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2189

2190 2191 2192 2193
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
2194

M
Marc Zyngier 已提交
2195
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2196
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2197
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2198 2199 2200 2201 2202 2203 2204 2205 2206
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

2207
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2208
	if (!hyp_pgd) {
2209
		kvm_err("Hyp mode PGD not allocated\n");
2210 2211 2212 2213
		err = -ENOMEM;
		goto out;
	}

2214 2215 2216 2217 2218 2219 2220 2221
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
2222

2223 2224 2225
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
2226

2227 2228 2229 2230 2231 2232 2233
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
2234 2235 2236 2237
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
2238 2239
	}

2240
	io_map_base = hyp_idmap_start;
2241
	return 0;
2242
out:
2243
	free_hyp_pgds();
2244
	return err;
2245
}
2246 2247

void kvm_arch_commit_memory_region(struct kvm *kvm,
2248
				   const struct kvm_userspace_memory_region *mem,
2249
				   const struct kvm_memory_slot *old,
2250
				   const struct kvm_memory_slot *new,
2251 2252
				   enum kvm_mr_change change)
{
2253 2254 2255 2256 2257 2258 2259
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
2260 2261 2262 2263
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2264
				   const struct kvm_userspace_memory_region *mem,
2265 2266
				   enum kvm_mr_change change)
{
2267 2268 2269 2270 2271
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

2272 2273
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
2274 2275
		return 0;

2276 2277 2278 2279 2280
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
2281
	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2282 2283
		return -EFAULT;

2284
	down_read(&current->mm->mmap_sem);
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
2313 2314 2315 2316
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
2317

2318
			/* IO region dirty page logging not allowed */
2319 2320 2321 2322
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

2333
	if (change == KVM_MR_FLAGS_ONLY)
2334
		goto out;
2335

2336 2337
	spin_lock(&kvm->mmu_lock);
	if (ret)
2338
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2339 2340 2341
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
2342 2343
out:
	up_read(&current->mm->mmap_sem);
2344
	return ret;
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

2358
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2359 2360 2361 2362 2363
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2364
	kvm_free_stage2_pgd(kvm);
2365 2366 2367 2368 2369
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2370 2371 2372 2373 2374 2375
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2376
}
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2408
	unsigned long hcr = *vcpu_hcr(vcpu);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2423
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2441
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2442 2443 2444

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}