mmu.c 63.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
23
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
24
#include <trace/events/kvm.h>
25
#include <asm/pgalloc.h>
26
#include <asm/cacheflush.h>
27 28
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
29
#include <asm/kvm_mmio.h>
30
#include <asm/kvm_ras.h>
31
#include <asm/kvm_asm.h>
32
#include <asm/kvm_emulate.h>
33
#include <asm/virt.h>
34 35

#include "trace.h"
36

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46 47
static unsigned long io_map_base;

48
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
49

50 51 52 53 54 55
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 57 58 59 60 61 62 63 64 65 66
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67
}
68

69
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70
{
71
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
72 73
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

94 95 96 97 98
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

99 100 101 102 103 104
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
105
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
106 107 108
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
109
	if (!pmd_thp_or_huge(*pmd))
110 111 112 113 114 115 116
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

117 118 119 120 121 122
/**
 * stage2_dissolve_pud() - clear and flush huge PUD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pud:	pud pointer for IPA
 *
123
 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
124 125 126 127 128 129 130 131 132 133 134
 */
static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
{
	if (!stage2_pud_huge(kvm, *pudp))
		return;

	stage2_pud_clear(kvm, pudp);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pudp));
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

167
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
168
{
169 170
	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
	stage2_pgd_clear(kvm, pgd);
171
	kvm_tlb_flush_vmid_ipa(kvm, addr);
172
	stage2_pud_free(kvm, pud_table);
173
	put_page(virt_to_page(pgd));
174 175
}

176
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
177
{
178 179 180
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
	stage2_pud_clear(kvm, pud);
181
	kvm_tlb_flush_vmid_ipa(kvm, addr);
182
	stage2_pmd_free(kvm, pmd_table);
183 184
	put_page(virt_to_page(pud));
}
185

186
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
187
{
188
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
189
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
190 191
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
192
	free_page((unsigned long)pte_table);
193 194 195
	put_page(virt_to_page(pmd));
}

196 197 198 199 200 201 202 203 204 205 206 207
static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
{
	WRITE_ONCE(*ptep, new_pte);
	dsb(ishst);
}

static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
{
	WRITE_ONCE(*pmdp, new_pmd);
	dsb(ishst);
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
{
	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
}

static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
{
	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
	dsb(ishst);
}

static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
{
	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
	dsb(ishst);
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
244 245 246 247
 *
 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 * we then fully enforce cacheability of RAM, no matter what the guest
 * does.
248
 */
249
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
250
		       phys_addr_t addr, phys_addr_t end)
251
{
252 253 254 255 256 257
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
258 259
			pte_t old_pte = *pte;

260 261
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
262 263

			/* No need to invalidate the cache for device mappings */
264
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
265 266 267
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
268 269 270
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

271
	if (stage2_pte_table_empty(kvm, start_pte))
272
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
273 274
}

275
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
276
		       phys_addr_t addr, phys_addr_t end)
277
{
278 279
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
280

281
	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
282
	do {
283
		next = stage2_pmd_addr_end(kvm, addr, end);
284
		if (!pmd_none(*pmd)) {
285
			if (pmd_thp_or_huge(*pmd)) {
286 287
				pmd_t old_pmd = *pmd;

288 289
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
290 291 292

				kvm_flush_dcache_pmd(old_pmd);

293 294
				put_page(virt_to_page(pmd));
			} else {
295
				unmap_stage2_ptes(kvm, pmd, addr, next);
296
			}
297
		}
298
	} while (pmd++, addr = next, addr != end);
299

300
	if (stage2_pmd_table_empty(kvm, start_pmd))
301
		clear_stage2_pud_entry(kvm, pud, start_addr);
302
}
303

304
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
305 306 307 308
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
309

310
	start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
311
	do {
312 313 314
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud)) {
315 316
				pud_t old_pud = *pud;

317
				stage2_pud_clear(kvm, pud);
318
				kvm_tlb_flush_vmid_ipa(kvm, addr);
319
				kvm_flush_dcache_pud(old_pud);
320 321
				put_page(virt_to_page(pud));
			} else {
322
				unmap_stage2_pmds(kvm, pud, addr, next);
323 324
			}
		}
325
	} while (pud++, addr = next, addr != end);
326

327
	if (stage2_pud_table_empty(kvm, start_pud))
328
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
329 330
}

331 332 333 334 335 336 337 338 339 340 341 342
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
343 344 345 346 347
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

348
	assert_spin_locked(&kvm->mmu_lock);
349 350
	WARN_ON(size & ~PAGE_MASK);

351
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
352
	do {
353 354 355 356 357 358 359
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
360 361
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
362
			unmap_stage2_puds(kvm, pgd, addr, next);
363 364 365 366 367 368
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
369
	} while (pgd++, addr = next, addr != end);
370 371
}

372 373 374 375 376 377 378
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
379
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
380
			kvm_flush_dcache_pte(*pte);
381 382 383 384 385 386 387 388 389
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

390
	pmd = stage2_pmd_offset(kvm, pud, addr);
391
	do {
392
		next = stage2_pmd_addr_end(kvm, addr, end);
393
		if (!pmd_none(*pmd)) {
394
			if (pmd_thp_or_huge(*pmd))
395 396
				kvm_flush_dcache_pmd(*pmd);
			else
397 398 399 400 401 402 403 404 405 406 407
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

408
	pud = stage2_pud_offset(kvm, pgd, addr);
409
	do {
410 411 412
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud))
413 414
				kvm_flush_dcache_pud(*pud);
			else
415 416 417 418 419 420 421 422 423 424 425 426 427
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

428
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
429
	do {
430 431
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
432
			stage2_flush_puds(kvm, pgd, addr, next);
433 434 435 436 437 438 439 440 441 442
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
443
static void stage2_flush_vm(struct kvm *kvm)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

536 537 538 539 540 541 542
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}

static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
			      phys_addr_t start, u64 size)
543 544 545 546 547 548 549 550 551
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
552
	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
553 554 555 556 557 558 559
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

560 561 562 563 564 565 566 567 568 569
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}

static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}

570
/**
571
 * free_hyp_pgds - free Hyp-mode page tables
572
 *
573 574
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
575
 * PAGE_OFFSET), or device mappings in the idmap range.
576
 *
577 578
 * boot_hyp_pgd should only map the idmap range, and is only used in
 * the extended idmap case.
579
 */
580
void free_hyp_pgds(void)
581
{
582 583
	pgd_t *id_pgd;

584
	mutex_lock(&kvm_hyp_pgd_mutex);
585

586 587 588 589 590 591 592 593 594 595
	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;

	if (id_pgd) {
		/* In case we never called hyp_mmu_init() */
		if (!io_map_base)
			io_map_base = hyp_idmap_start;
		unmap_hyp_idmap_range(id_pgd, io_map_base,
				      hyp_idmap_start + PAGE_SIZE - io_map_base);
	}

596 597 598 599 600
	if (boot_hyp_pgd) {
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

601
	if (hyp_pgd) {
602 603
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
604

605
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
606
		hyp_pgd = NULL;
607
	}
608 609 610 611 612
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
613

614 615 616 617
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
618 619
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
620 621 622 623
{
	pte_t *pte;
	unsigned long addr;

624 625
	addr = start;
	do {
626
		pte = pte_offset_kernel(pmd, addr);
627
		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
628
		get_page(virt_to_page(pte));
629
		pfn++;
630
	} while (addr += PAGE_SIZE, addr != end);
631 632 633
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
634 635
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
636 637 638 639 640
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

641 642
	addr = start;
	do {
643
		pmd = pmd_offset(pud, addr);
644 645 646 647

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
648
			pte = pte_alloc_one_kernel(NULL);
649 650 651 652
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
653
			kvm_pmd_populate(pmd, pte);
654
			get_page(virt_to_page(pmd));
655 656 657 658
		}

		next = pmd_addr_end(addr, end);

659 660
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
661
	} while (addr = next, addr != end);
662 663 664 665

	return 0;
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
685
			kvm_pud_populate(pud, pmd);
686 687 688 689 690 691 692 693 694 695 696 697 698
			get_page(virt_to_page(pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

699
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
700 701
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
702 703 704 705 706 707 708
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
709 710 711
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
712
		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
713

714 715 716 717
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
718 719 720
				err = -ENOMEM;
				goto out;
			}
721
			kvm_pgd_populate(pgd, pud);
722
			get_page(virt_to_page(pgd));
723 724 725
		}

		next = pgd_addr_end(addr, end);
726
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
727 728
		if (err)
			goto out;
729
		pfn += (next - addr) >> PAGE_SHIFT;
730
	} while (addr = next, addr != end);
731 732 733 734 735
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

736 737 738 739 740 741 742 743 744 745 746
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

747
/**
748
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
749 750
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
751
 * @prot:	The protection to be applied to this range
752
 *
753 754 755
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
756
 */
757
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
758
{
759 760
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
761 762
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
763

764 765 766
	if (is_kernel_in_hyp_mode())
		return 0;

767 768
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
769

770 771
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
772

773
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
774 775
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
776
					    __phys_to_pfn(phys_addr),
777
					    prot);
778 779 780 781 782
		if (err)
			return err;
	}

	return 0;
783 784
}

785 786
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
					unsigned long *haddr, pgprot_t prot)
787
{
788 789 790
	pgd_t *pgd = hyp_pgd;
	unsigned long base;
	int ret = 0;
791

792
	mutex_lock(&kvm_hyp_pgd_mutex);
793

794 795 796 797 798 799 800 801 802 803
	/*
	 * This assumes that we we have enough space below the idmap
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
804

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

	if (__kvm_cpu_uses_extended_idmap())
		pgd = boot_hyp_pgd;

	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
				    base, base + size,
825
				    __phys_to_pfn(phys_addr), prot);
826 827 828
	if (ret)
		goto out;

829
	*haddr = base + offset_in_page(phys_addr);
830 831

out:
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
860 861 862
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
889 890 891
		return ret;
	}

892
	*haddr = (void *)addr;
893
	return 0;
894 895
}

896 897 898 899
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
900 901
 * Allocates only the stage-2 HW PGD level table(s) of size defined by
 * stage2_pgd_size(kvm).
902 903 904 905 906 907
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
908
	phys_addr_t pgd_phys;
909 910 911 912 913 914 915
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

916
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
917
	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
918
	if (!pgd)
919 920
		return -ENOMEM;

921 922 923 924
	pgd_phys = virt_to_phys(pgd);
	if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
		return -EINVAL;

925
	kvm->arch.pgd = pgd;
926
	kvm->arch.pgd_phys = pgd_phys;
927 928 929
	return 0;
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
985
	down_read(&current->mm->mmap_sem);
986 987 988 989 990 991 992
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
993
	up_read(&current->mm->mmap_sem);
994 995 996
	srcu_read_unlock(&kvm->srcu, idx);
}

997 998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
1007
	void *pgd = NULL;
1008

1009
	spin_lock(&kvm->mmu_lock);
1010
	if (kvm->arch.pgd) {
1011
		unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1012
		pgd = READ_ONCE(kvm->arch.pgd);
1013
		kvm->arch.pgd = NULL;
1014
		kvm->arch.pgd_phys = 0;
1015
	}
1016 1017
	spin_unlock(&kvm->mmu_lock);

1018
	/* Free the HW pgd, one page at a time */
1019
	if (pgd)
1020
		free_pages_exact(pgd, stage2_pgd_size(kvm));
1021 1022
}

1023
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1024
			     phys_addr_t addr)
1025 1026 1027 1028
{
	pgd_t *pgd;
	pud_t *pud;

1029 1030
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
	if (stage2_pgd_none(kvm, *pgd)) {
1031 1032 1033
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
1034
		stage2_pgd_populate(kvm, pgd, pud);
1035 1036 1037
		get_page(virt_to_page(pgd));
	}

1038
	return stage2_pud_offset(kvm, pgd, addr);
1039 1040 1041 1042 1043 1044 1045 1046 1047
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
1048
	if (!pud || stage2_pud_huge(kvm, *pud))
1049 1050
		return NULL;

1051
	if (stage2_pud_none(kvm, *pud)) {
1052
		if (!cache)
1053
			return NULL;
1054
		pmd = mmu_memory_cache_alloc(cache);
1055
		stage2_pud_populate(kvm, pud, pmd);
1056
		get_page(virt_to_page(pud));
1057 1058
	}

1059
	return stage2_pmd_offset(kvm, pud, addr);
1060 1061 1062 1063 1064 1065 1066
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

1067
retry:
1068 1069
	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
1070

1071
	old_pmd = *pmd;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	/*
	 * Multiple vcpus faulting on the same PMD entry, can
	 * lead to them sequentially updating the PMD with the
	 * same value. Following the break-before-make
	 * (pmd_clear() followed by tlb_flush()) process can
	 * hinder forward progress due to refaults generated
	 * on missing translations.
	 *
	 * Skip updating the page table if the entry is
	 * unchanged.
	 */
	if (pmd_val(old_pmd) == pmd_val(*new_pmd))
		return 0;

1086
	if (pmd_present(old_pmd)) {
1087
		/*
1088 1089 1090 1091 1092 1093 1094 1095
		 * If we already have PTE level mapping for this block,
		 * we must unmap it to avoid inconsistent TLB state and
		 * leaking the table page. We could end up in this situation
		 * if the memory slot was marked for dirty logging and was
		 * reverted, leaving PTE level mappings for the pages accessed
		 * during the period. So, unmap the PTE level mapping for this
		 * block and retry, as we could have released the upper level
		 * table in the process.
1096
		 *
1097 1098
		 * Normal THP split/merge follows mmu_notifier callbacks and do
		 * get handled accordingly.
1099
		 */
1100 1101 1102 1103
		if (!pmd_thp_or_huge(old_pmd)) {
			unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
			goto retry;
		}
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
		/*
		 * Mapping in huge pages should only happen through a
		 * fault.  If a page is merged into a transparent huge
		 * page, the individual subpages of that huge page
		 * should be unmapped through MMU notifiers before we
		 * get here.
		 *
		 * Merging of CompoundPages is not supported; they
		 * should become splitting first, unmapped, merged,
		 * and mapped back in on-demand.
		 */
1115
		WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1116
		pmd_clear(pmd);
1117
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1118
	} else {
1119
		get_page(virt_to_page(pmd));
1120 1121 1122
	}

	kvm_set_pmd(pmd, *new_pmd);
1123 1124 1125
	return 0;
}

1126 1127 1128 1129 1130
static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			       phys_addr_t addr, const pud_t *new_pudp)
{
	pud_t *pudp, old_pud;

1131
retry:
1132 1133 1134 1135 1136 1137 1138
	pudp = stage2_get_pud(kvm, cache, addr);
	VM_BUG_ON(!pudp);

	old_pud = *pudp;

	/*
	 * A large number of vcpus faulting on the same stage 2 entry,
1139 1140
	 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
	 * Skip updating the page tables if there is no change.
1141 1142 1143 1144 1145
	 */
	if (pud_val(old_pud) == pud_val(*new_pudp))
		return 0;

	if (stage2_pud_present(kvm, old_pud)) {
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		/*
		 * If we already have table level mapping for this block, unmap
		 * the range for this block and retry.
		 */
		if (!stage2_pud_huge(kvm, old_pud)) {
			unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
			goto retry;
		}

		WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		stage2_pud_clear(kvm, pudp);
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	} else {
		get_page(virt_to_page(pudp));
	}

	kvm_set_pud(pudp, *new_pudp);
	return 0;
}

1166 1167 1168 1169 1170 1171 1172 1173
/*
 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
 * true if a valid and present leaf-entry is found. A pointer to the
 * leaf-entry is returned in the appropriate level variable - pudpp,
 * pmdpp, ptepp.
 */
static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1174
{
1175
	pud_t *pudp;
1176 1177 1178
	pmd_t *pmdp;
	pte_t *ptep;

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	*pudpp = NULL;
	*pmdpp = NULL;
	*ptepp = NULL;

	pudp = stage2_get_pud(kvm, NULL, addr);
	if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
		return false;

	if (stage2_pud_huge(kvm, *pudp)) {
		*pudpp = pudp;
		return true;
	}

	pmdp = stage2_pmd_offset(kvm, pudp, addr);
1193 1194 1195
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

1196 1197 1198 1199
	if (pmd_thp_or_huge(*pmdp)) {
		*pmdpp = pmdp;
		return true;
	}
1200 1201 1202 1203 1204

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	*ptepp = ptep;
	return true;
}

static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;
	bool found;

	found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
	if (!found)
		return false;

	if (pudp)
		return kvm_s2pud_exec(pudp);
	else if (pmdp)
		return kvm_s2pmd_exec(pmdp);
	else
		return kvm_s2pte_exec(ptep);
1226 1227
}

1228
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1229 1230
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
1231
{
1232
	pud_t *pud;
1233 1234
	pmd_t *pmd;
	pte_t *pte, old_pte;
1235 1236 1237 1238
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
1239

1240
	/* Create stage-2 page table mapping - Levels 0 and 1 */
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	pud = stage2_get_pud(kvm, cache, addr);
	if (!pud) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

	/*
	 * While dirty page logging - dissolve huge PUD, then continue
	 * on to allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pud(kvm, addr, pud);

	if (stage2_pud_none(kvm, *pud)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pmd = mmu_memory_cache_alloc(cache);
		stage2_pud_populate(kvm, pud, pmd);
		get_page(virt_to_page(pud));
	}

	pmd = stage2_pmd_offset(kvm, pud, addr);
1266 1267 1268 1269 1270 1271 1272 1273
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

1274 1275 1276 1277 1278 1279 1280
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

1281
	/* Create stage-2 page mappings - Level 2 */
1282 1283 1284 1285
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
1286
		kvm_pmd_populate(pmd, pte);
1287
		get_page(virt_to_page(pmd));
1288 1289 1290
	}

	pte = pte_offset_kernel(pmd, addr);
1291 1292 1293 1294 1295 1296

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1297
	if (pte_present(old_pte)) {
1298 1299 1300 1301
		/* Skip page table update if there is no change */
		if (pte_val(old_pte) == pte_val(*new_pte))
			return 0;

1302
		kvm_set_pte(pte, __pte(0));
1303
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1304
	} else {
1305
		get_page(virt_to_page(pte));
1306
	}
1307

1308
	kvm_set_pte(pte, *new_pte);
1309 1310 1311
	return 0;
}

1312 1313 1314 1315 1316 1317 1318
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1319 1320
	return 0;
}
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1332

1333 1334 1335 1336 1337
static int stage2_pudp_test_and_clear_young(pud_t *pud)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pud);
}

1338 1339 1340 1341 1342 1343 1344 1345 1346
/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1347
			  phys_addr_t pa, unsigned long size, bool writable)
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1358
		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1359

1360
		if (writable)
1361
			pte = kvm_s2pte_mkwrite(pte);
1362

1363 1364 1365
		ret = mmu_topup_memory_cache(&cache,
					     kvm_mmu_cache_min_pages(kvm),
					     KVM_NR_MEM_OBJS);
1366 1367 1368
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1369 1370
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1383
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1384
{
D
Dan Williams 已提交
1385
	kvm_pfn_t pfn = *pfnp;
1386
	gfn_t gfn = *ipap >> PAGE_SHIFT;
1387
	struct page *page = pfn_to_page(pfn);
1388

1389
	/*
1390
	 * PageTransCompoundMap() returns true for THP and
1391 1392 1393 1394
	 * hugetlbfs. Make sure the adjustment is done only for THP
	 * pages.
	 */
	if (!PageHuge(page) && PageTransCompoundMap(page)) {
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
1451
 * kvm:		kvm instance for the VM
1452 1453 1454 1455
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
1456 1457
static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
			   phys_addr_t addr, phys_addr_t end)
1458 1459 1460 1461
{
	pmd_t *pmd;
	phys_addr_t next;

1462
	pmd = stage2_pmd_offset(kvm, pud, addr);
1463 1464

	do {
1465
		next = stage2_pmd_addr_end(kvm, addr, end);
1466
		if (!pmd_none(*pmd)) {
1467
			if (pmd_thp_or_huge(*pmd)) {
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
1478 1479 1480 1481 1482
 * stage2_wp_puds - write protect PGD range
 * @pgd:	pointer to pgd entry
 * @addr:	range start address
 * @end:	range end address
 */
1483 1484
static void  stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
			    phys_addr_t addr, phys_addr_t end)
1485 1486 1487 1488
{
	pud_t *pud;
	phys_addr_t next;

1489
	pud = stage2_pud_offset(kvm, pgd, addr);
1490
	do {
1491 1492
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
1493 1494 1495 1496 1497 1498
			if (stage2_pud_huge(kvm, *pud)) {
				if (!kvm_s2pud_readonly(pud))
					kvm_set_s2pud_readonly(pud);
			} else {
				stage2_wp_pmds(kvm, pud, addr, next);
			}
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1514
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1515 1516 1517 1518
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1519 1520
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1521 1522 1523
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1524
		 */
1525 1526 1527
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1528 1529 1530
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (stage2_pgd_present(kvm, *pgd))
			stage2_wp_puds(kvm, pgd, addr, next);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1541
 * all present PUD, PMD and PTEs are write protected in the memory region.
1542 1543 1544 1545 1546 1547 1548
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1549 1550
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1551 1552 1553 1554 1555 1556 1557 1558
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1559 1560

/**
1561
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1562 1563 1564 1565 1566 1567 1568 1569 1570
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1571
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1572 1573 1574 1575 1576 1577 1578 1579 1580
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1596
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1597
{
1598
	__clean_dcache_guest_page(pfn, size);
1599 1600
}

1601
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1602
{
1603
	__invalidate_icache_guest_page(pfn, size);
1604 1605
}

1606 1607 1608
static void kvm_send_hwpoison_signal(unsigned long address,
				     struct vm_area_struct *vma)
{
1609
	short lsb;
1610 1611

	if (is_vm_hugetlb_page(vma))
1612
		lsb = huge_page_shift(hstate_vma(vma));
1613
	else
1614
		lsb = PAGE_SHIFT;
1615

1616
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1617 1618
}

1619 1620 1621
static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
					       unsigned long hva,
					       unsigned long map_size)
1622
{
1623
	gpa_t gpa_start;
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	hva_t uaddr_start, uaddr_end;
	size_t size;

	size = memslot->npages * PAGE_SIZE;

	gpa_start = memslot->base_gfn << PAGE_SHIFT;

	uaddr_start = memslot->userspace_addr;
	uaddr_end = uaddr_start + size;

	/*
	 * Pages belonging to memslots that don't have the same alignment
1636 1637
	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1638 1639 1640 1641 1642
	 *
	 * Consider a layout like the following:
	 *
	 *    memslot->userspace_addr:
	 *    +-----+--------------------+--------------------+---+
1643
	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1644 1645 1646 1647
	 *    +-----+--------------------+--------------------+---+
	 *
	 *    memslot->base_gfn << PAGE_SIZE:
	 *      +---+--------------------+--------------------+-----+
1648
	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1649 1650
	 *      +---+--------------------+--------------------+-----+
	 *
1651
	 * If we create those stage-2 blocks, we'll end up with this incorrect
1652 1653 1654 1655 1656
	 * mapping:
	 *   d -> f
	 *   e -> g
	 *   f -> h
	 */
1657
	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1658 1659 1660 1661
		return false;

	/*
	 * Next, let's make sure we're not trying to map anything not covered
1662 1663
	 * by the memslot. This means we have to prohibit block size mappings
	 * for the beginning and end of a non-block aligned and non-block sized
1664 1665 1666 1667 1668 1669 1670 1671
	 * memory slot (illustrated by the head and tail parts of the
	 * userspace view above containing pages 'abcde' and 'xyz',
	 * respectively).
	 *
	 * Note that it doesn't matter if we do the check using the
	 * userspace_addr or the base_gfn, as both are equally aligned (per
	 * the check above) and equally sized.
	 */
1672 1673
	return (hva & ~(map_size - 1)) >= uaddr_start &&
	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1674 1675
}

1676
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1677
			  struct kvm_memory_slot *memslot, unsigned long hva,
1678 1679 1680
			  unsigned long fault_status)
{
	int ret;
1681 1682
	bool write_fault, writable, force_pte = false;
	bool exec_fault, needs_exec;
1683
	unsigned long mmu_seq;
1684 1685
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1686
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1687
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1688
	kvm_pfn_t pfn;
1689
	pgprot_t mem_type = PAGE_S2;
1690
	bool logging_active = memslot_is_logging(memslot);
1691
	unsigned long vma_pagesize, flags = 0;
1692

1693
	write_fault = kvm_is_write_fault(vcpu);
1694 1695 1696 1697
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1698 1699 1700 1701
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1702 1703 1704
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1705 1706 1707 1708 1709 1710
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1711
	vma_pagesize = vma_kernel_pagesize(vma);
1712 1713 1714 1715 1716 1717
	if (logging_active ||
	    !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
		force_pte = true;
		vma_pagesize = PAGE_SIZE;
	}

1718
	/*
1719 1720 1721 1722 1723
	 * The stage2 has a minimum of 2 level table (For arm64 see
	 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
	 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
	 * As for PUD huge maps, we must make sure that we have at least
	 * 3 levels, i.e, PMD is not folded.
1724
	 */
1725 1726
	if (vma_pagesize == PMD_SIZE ||
	    (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1727
		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1728 1729
	up_read(&current->mm->mmap_sem);

1730
	/* We need minimum second+third level pages */
1731
	ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1732
				     KVM_NR_MEM_OBJS);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1748
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1749 1750 1751 1752
	if (pfn == KVM_PFN_ERR_HWPOISON) {
		kvm_send_hwpoison_signal(hva, vma);
		return 0;
	}
1753
	if (is_error_noslot_pfn(pfn))
1754 1755
		return -EFAULT;

1756
	if (kvm_is_device_pfn(pfn)) {
1757
		mem_type = PAGE_S2_DEVICE;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1774

1775 1776
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1777
		goto out_unlock;
1778

1779 1780 1781 1782 1783
	if (vma_pagesize == PAGE_SIZE && !force_pte) {
		/*
		 * Only PMD_SIZE transparent hugepages(THP) are
		 * currently supported. This code will need to be
		 * updated to support other THP sizes.
1784 1785 1786
		 *
		 * Make sure the host VA and the guest IPA are sufficiently
		 * aligned and that the block is contained within the memslot.
1787
		 */
1788 1789
		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
		    transparent_hugepage_adjust(&pfn, &fault_ipa))
1790 1791 1792 1793 1794
			vma_pagesize = PMD_SIZE;
	}

	if (writable)
		kvm_set_pfn_dirty(pfn);
1795

1796 1797 1798 1799 1800 1801
	if (fault_status != FSC_PERM)
		clean_dcache_guest_page(pfn, vma_pagesize);

	if (exec_fault)
		invalidate_icache_guest_page(pfn, vma_pagesize);

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	/*
	 * If we took an execution fault we have made the
	 * icache/dcache coherent above and should now let the s2
	 * mapping be executable.
	 *
	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
	 * execute permissions, and we preserve whatever we have.
	 */
	needs_exec = exec_fault ||
		(fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	if (vma_pagesize == PUD_SIZE) {
		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);

		new_pud = kvm_pud_mkhuge(new_pud);
		if (writable)
			new_pud = kvm_s2pud_mkwrite(new_pud);

		if (needs_exec)
			new_pud = kvm_s2pud_mkexec(new_pud);

		ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
	} else if (vma_pagesize == PMD_SIZE) {
1825 1826 1827 1828
		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);

		new_pmd = kvm_pmd_mkhuge(new_pmd);

1829
		if (writable)
1830
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1831

1832
		if (needs_exec)
1833
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1834

1835 1836
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1837
		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1838

1839
		if (writable) {
1840
			new_pte = kvm_s2pte_mkwrite(new_pte);
1841
			mark_page_dirty(kvm, gfn);
1842
		}
1843

1844
		if (needs_exec)
1845
			new_pte = kvm_s2pte_mkexec(new_pte);
1846

1847
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1848
	}
1849

1850
out_unlock:
1851
	spin_unlock(&kvm->mmu_lock);
1852
	kvm_set_pfn_accessed(pfn);
1853
	kvm_release_pfn_clean(pfn);
1854
	return ret;
1855 1856
}

1857 1858 1859 1860
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1861 1862
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1863 1864 1865
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
1866
	pud_t *pud;
1867 1868
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1869
	kvm_pfn_t pfn;
1870 1871 1872 1873 1874 1875
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

1876
	if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1877 1878
		goto out;

1879 1880 1881 1882 1883
	if (pud) {		/* HugeTLB */
		*pud = kvm_s2pud_mkyoung(*pud);
		pfn = kvm_pud_pfn(*pud);
		pfn_valid = true;
	} else	if (pmd) {	/* THP, HugeTLB */
1884 1885 1886
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
1887 1888 1889 1890
	} else {
		*pte = pte_mkyoung(*pte);	/* Just a page... */
		pfn = pte_pfn(*pte);
		pfn_valid = true;
1891 1892 1893 1894 1895 1896 1897 1898
	}

out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1911 1912
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1913 1914 1915
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1916 1917
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1918 1919 1920
	gfn_t gfn;
	int ret, idx;

1921 1922 1923
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1924
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1925

1926 1927 1928 1929 1930 1931
	/* Synchronous External Abort? */
	if (kvm_vcpu_dabt_isextabt(vcpu)) {
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1932
		if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1933 1934
			return 1;

1935 1936 1937 1938
		if (unlikely(!is_iabt)) {
			kvm_inject_vabt(vcpu);
			return 1;
		}
1939 1940
	}

1941 1942
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1943 1944

	/* Check the stage-2 fault is trans. fault or write fault */
1945 1946
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1947 1948 1949 1950
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1951 1952 1953 1954 1955 1956
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1957 1958
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1959
	write_fault = kvm_is_write_fault(vcpu);
1960
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1961 1962
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1963
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1964 1965 1966 1967
			ret = 1;
			goto out_unlock;
		}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1984 1985 1986 1987 1988 1989 1990
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1991
		ret = io_mem_abort(vcpu, run, fault_ipa);
1992 1993 1994
		goto out_unlock;
	}

1995
	/* Userspace should not be able to register out-of-bounds IPAs */
1996
	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1997

1998 1999 2000 2001 2002 2003
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

2004
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2005 2006 2007 2008 2009
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
2010 2011
}

2012 2013 2014 2015
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
2016 2017
					    gpa_t gpa, u64 size,
					    void *data),
2018
			     void *data)
2019 2020 2021
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
2022
	int ret = 0;
2023 2024 2025 2026 2027 2028

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
2029
		gfn_t gpa;
2030 2031 2032 2033 2034 2035 2036

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

2037 2038
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2039
	}
2040 2041

	return ret;
2042 2043
}

2044
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2045
{
2046
	unmap_stage2_range(kvm, gpa, size);
2047
	return 0;
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

2061
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2062 2063 2064
{
	pte_t *pte = (pte_t *)data;

2065
	WARN_ON(size != PAGE_SIZE);
2066 2067 2068 2069 2070 2071 2072 2073
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
2074
	return 0;
2075 2076 2077
}


2078
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2079 2080
{
	unsigned long end = hva + PAGE_SIZE;
2081
	kvm_pfn_t pfn = pte_pfn(pte);
2082 2083 2084
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
2085
		return 0;
2086 2087

	trace_kvm_set_spte_hva(hva);
2088 2089 2090 2091 2092 2093

	/*
	 * We've moved a page around, probably through CoW, so let's treat it
	 * just like a translation fault and clean the cache to the PoC.
	 */
	clean_dcache_guest_page(pfn, PAGE_SIZE);
2094
	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2095
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2096 2097

	return 0;
2098 2099
}

2100
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2101
{
2102
	pud_t *pud;
2103 2104 2105
	pmd_t *pmd;
	pte_t *pte;

2106 2107
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2108 2109
		return 0;

2110 2111 2112
	if (pud)
		return stage2_pudp_test_and_clear_young(pud);
	else if (pmd)
2113
		return stage2_pmdp_test_and_clear_young(pmd);
2114 2115
	else
		return stage2_ptep_test_and_clear_young(pte);
2116 2117
}

2118
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2119
{
2120
	pud_t *pud;
2121 2122 2123
	pmd_t *pmd;
	pte_t *pte;

2124 2125
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2126 2127
		return 0;

2128 2129 2130
	if (pud)
		return kvm_s2pud_young(*pud);
	else if (pmd)
2131
		return pmd_young(*pmd);
2132
	else
2133 2134 2135 2136 2137
		return pte_young(*pte);
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
2138 2139
	if (!kvm->arch.pgd)
		return 0;
2140 2141 2142 2143 2144 2145
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
2146 2147
	if (!kvm->arch.pgd)
		return 0;
2148 2149 2150 2151
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

2152 2153 2154 2155 2156
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

2157 2158
phys_addr_t kvm_mmu_get_httbr(void)
{
2159 2160 2161 2162
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
2163 2164
}

2165 2166 2167 2168 2169
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

2170 2171 2172 2173 2174
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
2175
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

2186 2187
int kvm_mmu_init(void)
{
2188 2189
	int err;

2190
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2191
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2192
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2193
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2194
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2195

2196 2197 2198 2199 2200
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2201

2202 2203 2204 2205
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
2206

M
Marc Zyngier 已提交
2207
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2208
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2209
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2210 2211 2212 2213 2214 2215 2216 2217 2218
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

2219
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2220
	if (!hyp_pgd) {
2221
		kvm_err("Hyp mode PGD not allocated\n");
2222 2223 2224 2225
		err = -ENOMEM;
		goto out;
	}

2226 2227 2228 2229 2230 2231 2232 2233
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
2234

2235 2236 2237
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
2238

2239 2240 2241 2242 2243 2244 2245
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
2246 2247 2248 2249
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
2250 2251
	}

2252
	io_map_base = hyp_idmap_start;
2253
	return 0;
2254
out:
2255
	free_hyp_pgds();
2256
	return err;
2257
}
2258 2259

void kvm_arch_commit_memory_region(struct kvm *kvm,
2260
				   const struct kvm_userspace_memory_region *mem,
2261
				   const struct kvm_memory_slot *old,
2262
				   const struct kvm_memory_slot *new,
2263 2264
				   enum kvm_mr_change change)
{
2265 2266 2267 2268 2269 2270 2271
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
2272 2273 2274 2275
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2276
				   const struct kvm_userspace_memory_region *mem,
2277 2278
				   enum kvm_mr_change change)
{
2279 2280 2281 2282 2283
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

2284 2285
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
2286 2287
		return 0;

2288 2289 2290 2291 2292
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
2293
	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2294 2295
		return -EFAULT;

2296
	down_read(&current->mm->mmap_sem);
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
2334 2335 2336 2337
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
2338

2339
			/* IO region dirty page logging not allowed */
2340 2341 2342 2343
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
2344

2345 2346 2347 2348 2349 2350 2351 2352 2353
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

2354
	if (change == KVM_MR_FLAGS_ONLY)
2355
		goto out;
2356

2357 2358
	spin_lock(&kvm->mmu_lock);
	if (ret)
2359
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2360 2361 2362
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
2363 2364
out:
	up_read(&current->mm->mmap_sem);
2365
	return ret;
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

2379
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2380 2381 2382 2383 2384
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2385
	kvm_free_stage2_pgd(kvm);
2386 2387 2388 2389 2390
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2391 2392 2393 2394 2395 2396
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2397
}
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2429
	unsigned long hcr = *vcpu_hcr(vcpu);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2444
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2462
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2463 2464 2465

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}