mmu.c 54.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
23
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
24
#include <trace/events/kvm.h>
25
#include <asm/pgalloc.h>
26
#include <asm/cacheflush.h>
27 28
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
29
#include <asm/kvm_mmio.h>
30
#include <asm/kvm_asm.h>
31
#include <asm/kvm_emulate.h>
32
#include <asm/virt.h>
33
#include <asm/system_misc.h>
34 35

#include "trace.h"
36

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46
#define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
47
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
48

49 50 51 52 53 54
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55 56 57 58 59 60 61 62 63 64 65
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66
}
67

68
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
69
{
70
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
71 72
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

93 94 95 96 97
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

98 99 100 101 102 103 104 105 106 107 108
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
109
	if (!pmd_thp_or_huge(*pmd))
110 111 112 113 114 115 116
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

149
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
150
{
151 152
	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
	stage2_pgd_clear(pgd);
153
	kvm_tlb_flush_vmid_ipa(kvm, addr);
154
	stage2_pud_free(pud_table);
155
	put_page(virt_to_page(pgd));
156 157
}

158
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
159
{
160 161 162
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
	VM_BUG_ON(stage2_pud_huge(*pud));
	stage2_pud_clear(pud);
163
	kvm_tlb_flush_vmid_ipa(kvm, addr);
164
	stage2_pmd_free(pmd_table);
165 166
	put_page(virt_to_page(pud));
}
167

168
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
169
{
170
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
171
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
172 173 174
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
175 176 177
	put_page(virt_to_page(pmd));
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
 */
198
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199
		       phys_addr_t addr, phys_addr_t end)
200
{
201 202 203 204 205 206
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
207 208
			pte_t old_pte = *pte;

209 210
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
211 212

			/* No need to invalidate the cache for device mappings */
213
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214 215 216
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
217 218 219
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

220 221
	if (stage2_pte_table_empty(start_pte))
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
222 223
}

224
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225
		       phys_addr_t addr, phys_addr_t end)
226
{
227 228
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
229

230
	start_pmd = pmd = stage2_pmd_offset(pud, addr);
231
	do {
232
		next = stage2_pmd_addr_end(addr, end);
233
		if (!pmd_none(*pmd)) {
234
			if (pmd_thp_or_huge(*pmd)) {
235 236
				pmd_t old_pmd = *pmd;

237 238
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
239 240 241

				kvm_flush_dcache_pmd(old_pmd);

242 243
				put_page(virt_to_page(pmd));
			} else {
244
				unmap_stage2_ptes(kvm, pmd, addr, next);
245
			}
246
		}
247
	} while (pmd++, addr = next, addr != end);
248

249 250
	if (stage2_pmd_table_empty(start_pmd))
		clear_stage2_pud_entry(kvm, pud, start_addr);
251
}
252

253
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254 255 256 257
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
258

259
	start_pud = pud = stage2_pud_offset(pgd, addr);
260
	do {
261 262 263
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud)) {
264 265
				pud_t old_pud = *pud;

266
				stage2_pud_clear(pud);
267
				kvm_tlb_flush_vmid_ipa(kvm, addr);
268
				kvm_flush_dcache_pud(old_pud);
269 270
				put_page(virt_to_page(pud));
			} else {
271
				unmap_stage2_pmds(kvm, pud, addr, next);
272 273
			}
		}
274
	} while (pud++, addr = next, addr != end);
275

276 277
	if (stage2_pud_table_empty(start_pud))
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
278 279
}

280 281 282 283 284 285 286 287 288 289 290 291
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
292 293 294 295 296
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

297
	assert_spin_locked(&kvm->mmu_lock);
298
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
299
	do {
300 301 302 303 304 305 306
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
307 308 309
		next = stage2_pgd_addr_end(addr, end);
		if (!stage2_pgd_none(*pgd))
			unmap_stage2_puds(kvm, pgd, addr, next);
310 311 312 313 314 315
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
316
	} while (pgd++, addr = next, addr != end);
317 318
}

319 320 321 322 323 324 325
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
326
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
327
			kvm_flush_dcache_pte(*pte);
328 329 330 331 332 333 334 335 336
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

337
	pmd = stage2_pmd_offset(pud, addr);
338
	do {
339
		next = stage2_pmd_addr_end(addr, end);
340
		if (!pmd_none(*pmd)) {
341
			if (pmd_thp_or_huge(*pmd))
342 343
				kvm_flush_dcache_pmd(*pmd);
			else
344 345 346 347 348 349 350 351 352 353 354
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

355
	pud = stage2_pud_offset(pgd, addr);
356
	do {
357 358 359
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud))
360 361
				kvm_flush_dcache_pud(*pud);
			else
362 363 364 365 366 367 368 369 370 371 372 373 374
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

375
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
376
	do {
377
		next = stage2_pgd_addr_end(addr, end);
378 379 380 381 382 383 384 385 386 387 388
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
389
static void stage2_flush_vm(struct kvm *kvm)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
	pgd = pgdp + pgd_index(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

500
/**
501
 * free_hyp_pgds - free Hyp-mode page tables
502
 *
503 504 505 506 507 508
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 * VMALLOC_START to VMALLOC_END).
 *
 * boot_hyp_pgd should only map two pages for the init code.
509
 */
510
void free_hyp_pgds(void)
511
{
512
	mutex_lock(&kvm_hyp_pgd_mutex);
513

514 515 516 517 518 519
	if (boot_hyp_pgd) {
		unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

520
	if (hyp_pgd) {
521
		unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
522 523 524 525
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
		unmap_hyp_range(hyp_pgd, kern_hyp_va(VMALLOC_START),
				VMALLOC_END - VMALLOC_START);
526

527
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
528
		hyp_pgd = NULL;
529
	}
530 531 532 533 534
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
535

536 537 538 539
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
540 541
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
542 543 544 545
{
	pte_t *pte;
	unsigned long addr;

546 547
	addr = start;
	do {
548 549
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
550
		get_page(virt_to_page(pte));
551
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
552
		pfn++;
553
	} while (addr += PAGE_SIZE, addr != end);
554 555 556
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
557 558
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
559 560 561 562 563
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

564 565
	addr = start;
	do {
566
		pmd = pmd_offset(pud, addr);
567 568 569 570

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
571
			pte = pte_alloc_one_kernel(NULL, addr);
572 573 574 575 576
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
577
			get_page(virt_to_page(pmd));
578
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
579 580 581 582
		}

		next = pmd_addr_end(addr, end);

583 584
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
585
	} while (addr = next, addr != end);
586 587 588 589

	return 0;
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
			pud_populate(NULL, pud, pmd);
			get_page(virt_to_page(pud));
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

624
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
625 626
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
627 628 629 630 631 632 633
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
634 635 636
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
637
		pgd = pgdp + ((addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1));
638

639 640 641 642
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
643 644 645
				err = -ENOMEM;
				goto out;
			}
646 647 648
			pgd_populate(NULL, pgd, pud);
			get_page(virt_to_page(pgd));
			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
649 650 651
		}

		next = pgd_addr_end(addr, end);
652
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
653 654
		if (err)
			goto out;
655
		pfn += (next - addr) >> PAGE_SHIFT;
656
	} while (addr = next, addr != end);
657 658 659 660 661
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

662 663 664 665 666 667 668 669 670 671 672
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

673
/**
674
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
675 676
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
677
 * @prot:	The protection to be applied to this range
678
 *
679 680 681
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
682
 */
683
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
684
{
685 686
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
687 688
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
689

690 691 692
	if (is_kernel_in_hyp_mode())
		return 0;

693 694
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
695

696 697
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
698

699
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
700 701
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
702
					    __phys_to_pfn(phys_addr),
703
					    prot);
704 705 706 707 708
		if (err)
			return err;
	}

	return 0;
709 710 711
}

/**
712
 * create_hyp_io_mappings - Map IO into both kernel and HYP
713
 * @phys_addr:	The physical start address which gets mapped
714 715
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
716
 * @haddr:	HYP VA for this mapping
717
 */
718
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
719 720
			   void __iomem **kaddr,
			   void __iomem **haddr)
721
{
722
	unsigned long start, end;
723
	int ret;
724

725 726 727 728 729
	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
730
		*haddr = *kaddr;
731
		return 0;
732
	}
733

734

735 736
	start = kern_hyp_va((unsigned long)*kaddr);
	end = kern_hyp_va((unsigned long)*kaddr + size);
737
	ret = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD, start, end,
738
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
739 740 741 742 743 744 745 746 747

	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)start;
	return 0;
748 749
}

750 751 752 753
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
754 755 756
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
757 758 759 760 761 762 763 764 765 766 767 768 769
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

770 771 772
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
	if (!pgd)
773 774
		return -ENOMEM;

775 776 777 778
	kvm->arch.pgd = pgd;
	return 0;
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
834
	down_read(&current->mm->mmap_sem);
835 836 837 838 839 840 841
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
842
	up_read(&current->mm->mmap_sem);
843 844 845
	srcu_read_unlock(&kvm->srcu, idx);
}

846 847 848 849 850 851 852 853 854 855
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
856
	void *pgd = NULL;
857

858
	spin_lock(&kvm->mmu_lock);
859 860
	if (kvm->arch.pgd) {
		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
861
		pgd = READ_ONCE(kvm->arch.pgd);
862 863
		kvm->arch.pgd = NULL;
	}
864 865
	spin_unlock(&kvm->mmu_lock);

866
	/* Free the HW pgd, one page at a time */
867 868
	if (pgd)
		free_pages_exact(pgd, S2_PGD_SIZE);
869 870
}

871
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
872
			     phys_addr_t addr)
873 874 875 876
{
	pgd_t *pgd;
	pud_t *pud;

877 878
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
	if (WARN_ON(stage2_pgd_none(*pgd))) {
879 880 881
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
882
		stage2_pgd_populate(pgd, pud);
883 884 885
		get_page(virt_to_page(pgd));
	}

886
	return stage2_pud_offset(pgd, addr);
887 888 889 890 891 892 893 894 895
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
896 897 898
	if (!pud)
		return NULL;

899
	if (stage2_pud_none(*pud)) {
900
		if (!cache)
901
			return NULL;
902
		pmd = mmu_memory_cache_alloc(cache);
903
		stage2_pud_populate(pud, pmd);
904
		get_page(virt_to_page(pud));
905 906
	}

907
	return stage2_pmd_offset(pud, addr);
908 909 910 911 912 913 914 915 916
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
917

918 919 920 921 922 923 924 925 926 927 928 929
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
930 931
	if (pmd_present(old_pmd)) {
		pmd_clear(pmd);
932
		kvm_tlb_flush_vmid_ipa(kvm, addr);
933
	} else {
934
		get_page(virt_to_page(pmd));
935 936 937
	}

	kvm_set_pmd(pmd, *new_pmd);
938 939 940
	return 0;
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pmd_t *pmdp;
	pte_t *ptep;

	pmdp = stage2_get_pmd(kvm, NULL, addr);
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

	if (pmd_thp_or_huge(*pmdp))
		return kvm_s2pmd_exec(pmdp);

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

	return kvm_s2pte_exec(ptep);
}

960
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
961 962
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
963 964 965
{
	pmd_t *pmd;
	pte_t *pte, old_pte;
966 967 968 969
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
970

971
	/* Create stage-2 page table mapping - Levels 0 and 1 */
972 973 974 975 976 977 978 979 980
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

981 982 983 984 985 986 987
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

988
	/* Create stage-2 page mappings - Level 2 */
989 990 991 992 993 994
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
995 996 997
	}

	pte = pte_offset_kernel(pmd, addr);
998 999 1000 1001 1002 1003

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1004 1005
	if (pte_present(old_pte)) {
		kvm_set_pte(pte, __pte(0));
1006
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1007
	} else {
1008
		get_page(virt_to_page(pte));
1009
	}
1010

1011
	kvm_set_pte(pte, *new_pte);
1012 1013 1014
	return 0;
}

1015 1016 1017 1018 1019 1020 1021
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1022 1023
	return 0;
}
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1045
			  phys_addr_t pa, unsigned long size, bool writable)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1056
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1057

1058
		if (writable)
1059
			pte = kvm_s2pte_mkwrite(pte);
1060

1061 1062
		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
						KVM_NR_MEM_OBJS);
1063 1064 1065
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1066 1067
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1080
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1081
{
D
Dan Williams 已提交
1082
	kvm_pfn_t pfn = *pfnp;
1083 1084
	gfn_t gfn = *ipap >> PAGE_SHIFT;

1085
	if (PageTransCompoundMap(pfn_to_page(pfn))) {
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1121 1122 1123 1124 1125 1126 1127 1128
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

1159
	pmd = stage2_pmd_offset(pud, addr);
1160 1161

	do {
1162
		next = stage2_pmd_addr_end(addr, end);
1163
		if (!pmd_none(*pmd)) {
1164
			if (pmd_thp_or_huge(*pmd)) {
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

1187
	pud = stage2_pud_offset(pgd, addr);
1188
	do {
1189 1190
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
1191
			/* TODO:PUD not supported, revisit later if supported */
1192
			BUG_ON(stage2_pud_huge(*pud));
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
			stage2_wp_pmds(pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1209
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1210 1211 1212 1213
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1214 1215
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1216 1217 1218
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1219
		 */
1220 1221 1222
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1223 1224
		next = stage2_pgd_addr_end(addr, end);
		if (stage2_pgd_present(*pgd))
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
			stage2_wp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 * all present PMD and PTEs are write protected in the memory region.
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1244 1245
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1246 1247 1248 1249 1250 1251 1252 1253
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1254 1255

/**
1256
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1257 1258 1259 1260 1261 1262 1263 1264 1265
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1266
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1267 1268 1269 1270 1271 1272 1273 1274 1275
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1276

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1291
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1292
{
1293
	__clean_dcache_guest_page(pfn, size);
1294 1295
}

1296
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1297
{
1298
	__invalidate_icache_guest_page(pfn, size);
1299 1300
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
static void kvm_send_hwpoison_signal(unsigned long address,
				     struct vm_area_struct *vma)
{
	siginfo_t info;

	info.si_signo   = SIGBUS;
	info.si_errno   = 0;
	info.si_code    = BUS_MCEERR_AR;
	info.si_addr    = (void __user *)address;

	if (is_vm_hugetlb_page(vma))
		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
	else
		info.si_addr_lsb = PAGE_SHIFT;

	send_sig_info(SIGBUS, &info, current);
}

1319
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1320
			  struct kvm_memory_slot *memslot, unsigned long hva,
1321 1322 1323
			  unsigned long fault_status)
{
	int ret;
1324
	bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1325
	unsigned long mmu_seq;
1326 1327
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1328
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1329
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1330
	kvm_pfn_t pfn;
1331
	pgprot_t mem_type = PAGE_S2;
1332 1333
	bool logging_active = memslot_is_logging(memslot);
	unsigned long flags = 0;
1334

1335
	write_fault = kvm_is_write_fault(vcpu);
1336 1337 1338 1339
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1340 1341 1342 1343
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1344 1345 1346
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1347 1348 1349 1350 1351 1352
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1353
	if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1354 1355
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1356 1357
	} else {
		/*
1358 1359 1360 1361 1362 1363 1364
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1365
		 */
1366 1367
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1368
			force_pte = true;
1369 1370 1371
	}
	up_read(&current->mm->mmap_sem);

1372
	/* We need minimum second+third level pages */
1373 1374
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1390
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1391 1392 1393 1394
	if (pfn == KVM_PFN_ERR_HWPOISON) {
		kvm_send_hwpoison_signal(hva, vma);
		return 0;
	}
1395
	if (is_error_noslot_pfn(pfn))
1396 1397
		return -EFAULT;

1398
	if (kvm_is_device_pfn(pfn)) {
1399
		mem_type = PAGE_S2_DEVICE;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1417

1418 1419
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1420
		goto out_unlock;
1421

1422 1423
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1424 1425

	if (hugetlb) {
1426
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1427 1428
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
1429
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1430 1431
			kvm_set_pfn_dirty(pfn);
		}
1432 1433

		if (fault_status != FSC_PERM)
1434
			clean_dcache_guest_page(pfn, PMD_SIZE);
1435 1436 1437

		if (exec_fault) {
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1438
			invalidate_icache_guest_page(pfn, PMD_SIZE);
1439 1440 1441 1442
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pmd = kvm_s2pmd_mkexec(new_pmd);
1443
		}
1444

1445 1446
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1447
		pte_t new_pte = pfn_pte(pfn, mem_type);
1448

1449
		if (writable) {
1450
			new_pte = kvm_s2pte_mkwrite(new_pte);
1451
			kvm_set_pfn_dirty(pfn);
1452
			mark_page_dirty(kvm, gfn);
1453
		}
1454 1455

		if (fault_status != FSC_PERM)
1456
			clean_dcache_guest_page(pfn, PAGE_SIZE);
1457 1458 1459

		if (exec_fault) {
			new_pte = kvm_s2pte_mkexec(new_pte);
1460
			invalidate_icache_guest_page(pfn, PAGE_SIZE);
1461 1462 1463 1464
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pte = kvm_s2pte_mkexec(new_pte);
1465
		}
1466

1467
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1468
	}
1469

1470
out_unlock:
1471
	spin_unlock(&kvm->mmu_lock);
1472
	kvm_set_pfn_accessed(pfn);
1473
	kvm_release_pfn_clean(pfn);
1474
	return ret;
1475 1476
}

1477 1478 1479 1480
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1481 1482
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1483 1484 1485 1486 1487
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1488
	kvm_pfn_t pfn;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		goto out;

1499
	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
		goto out;
	}

	pte = pte_offset_kernel(pmd, fault_ipa);
	if (pte_none(*pte))		/* Nothing there either */
		goto out;

	*pte = pte_mkyoung(*pte);	/* Just a page... */
	pfn = pte_pfn(*pte);
	pfn_valid = true;
out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1531 1532
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1533 1534 1535
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1536 1537
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1538 1539 1540
	gfn_t gfn;
	int ret, idx;

1541 1542 1543
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1544
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1545

1546 1547 1548 1549 1550 1551
	/* Synchronous External Abort? */
	if (kvm_vcpu_dabt_isextabt(vcpu)) {
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1552 1553 1554
		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
			return 1;

1555 1556 1557 1558
		if (unlikely(!is_iabt)) {
			kvm_inject_vabt(vcpu);
			return 1;
		}
1559 1560
	}

1561 1562
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1563 1564

	/* Check the stage-2 fault is trans. fault or write fault */
1565 1566
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1567 1568 1569 1570
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1571 1572 1573 1574 1575 1576
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1577 1578
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1579
	write_fault = kvm_is_write_fault(vcpu);
1580
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1581 1582
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1583
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1584 1585 1586 1587
			ret = 1;
			goto out_unlock;
		}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1604 1605 1606 1607 1608 1609 1610
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1611
		ret = io_mem_abort(vcpu, run, fault_ipa);
1612 1613 1614
		goto out_unlock;
	}

1615 1616 1617
	/* Userspace should not be able to register out-of-bounds IPAs */
	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);

1618 1619 1620 1621 1622 1623
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1624
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1625 1626 1627 1628 1629
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1630 1631
}

1632 1633 1634 1635
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
1636 1637
					    gpa_t gpa, u64 size,
					    void *data),
1638
			     void *data)
1639 1640 1641
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1642
	int ret = 0;
1643 1644 1645 1646 1647 1648

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
1649
		gfn_t gpa;
1650 1651 1652 1653 1654 1655 1656

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

1657 1658
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1659
	}
1660 1661

	return ret;
1662 1663
}

1664
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1665
{
1666
	unmap_stage2_range(kvm, gpa, size);
1667
	return 0;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1693
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1694 1695 1696
{
	pte_t *pte = (pte_t *)data;

1697
	WARN_ON(size != PAGE_SIZE);
1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1706
	return 0;
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

1723
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1724 1725 1726 1727
{
	pmd_t *pmd;
	pte_t *pte;

1728
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1729 1730 1731 1732
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1733 1734
	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
		return stage2_pmdp_test_and_clear_young(pmd);
1735 1736 1737 1738 1739

	pte = pte_offset_kernel(pmd, gpa);
	if (pte_none(*pte))
		return 0;

1740
	return stage2_ptep_test_and_clear_young(pte);
1741 1742
}

1743
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1744 1745 1746 1747
{
	pmd_t *pmd;
	pte_t *pte;

1748
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1749 1750 1751 1752
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1753
	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
		return pmd_young(*pmd);

	pte = pte_offset_kernel(pmd, gpa);
	if (!pte_none(*pte))		/* Just a page... */
		return pte_young(*pte);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
1765 1766
	if (!kvm->arch.pgd)
		return 0;
1767 1768 1769 1770 1771 1772
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1773 1774
	if (!kvm->arch.pgd)
		return 0;
1775 1776 1777 1778
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

1779 1780 1781 1782 1783
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1784 1785
phys_addr_t kvm_mmu_get_httbr(void)
{
1786 1787 1788 1789
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
1790 1791
}

1792 1793 1794 1795 1796
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1797 1798 1799 1800 1801
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
1802
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

1813 1814
int kvm_mmu_init(void)
{
1815 1816
	int err;

1817
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1818
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1819
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1820
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1821
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1822

1823 1824 1825 1826 1827
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1828

1829 1830 1831 1832
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
1833

M
Marc Zyngier 已提交
1834
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1835 1836
	    hyp_idmap_start <  kern_hyp_va(~0UL) &&
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1837 1838 1839 1840 1841 1842 1843 1844 1845
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

1846
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1847
	if (!hyp_pgd) {
1848
		kvm_err("Hyp mode PGD not allocated\n");
1849 1850 1851 1852
		err = -ENOMEM;
		goto out;
	}

1853 1854 1855 1856 1857 1858 1859 1860
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
1861

1862 1863 1864
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
1865

1866 1867 1868 1869 1870 1871 1872
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
1873 1874 1875 1876
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
1877 1878
	}

1879
	return 0;
1880
out:
1881
	free_hyp_pgds();
1882
	return err;
1883
}
1884 1885

void kvm_arch_commit_memory_region(struct kvm *kvm,
1886
				   const struct kvm_userspace_memory_region *mem,
1887
				   const struct kvm_memory_slot *old,
1888
				   const struct kvm_memory_slot *new,
1889 1890
				   enum kvm_mr_change change)
{
1891 1892 1893 1894 1895 1896 1897
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
1898 1899 1900 1901
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
1902
				   const struct kvm_userspace_memory_region *mem,
1903 1904
				   enum kvm_mr_change change)
{
1905 1906 1907 1908 1909
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

1910 1911
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
1912 1913
		return 0;

1914 1915 1916 1917 1918 1919 1920 1921
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
		return -EFAULT;

1922
	down_read(&current->mm->mmap_sem);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
1960 1961 1962 1963
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
1964

1965
			/* IO region dirty page logging not allowed */
1966 1967 1968 1969
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
1970

1971 1972 1973 1974 1975 1976 1977 1978 1979
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

1980
	if (change == KVM_MR_FLAGS_ONLY)
1981
		goto out;
1982

1983 1984
	spin_lock(&kvm->mmu_lock);
	if (ret)
1985
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1986 1987 1988
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
1989 1990
out:
	up_read(&current->mm->mmap_sem);
1991
	return ret;
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

2005
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
2006 2007 2008 2009 2010
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2011
	kvm_free_stage2_pgd(kvm);
2012 2013 2014 2015 2016
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2017 2018 2019 2020 2021 2022
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2023
}
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2055
	unsigned long hcr = *vcpu_hcr(vcpu);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2070
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2088
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2089 2090 2091

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}