mmu.c 53.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
23
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
24
#include <trace/events/kvm.h>
25
#include <asm/pgalloc.h>
26
#include <asm/cacheflush.h>
27 28
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
29
#include <asm/kvm_mmio.h>
30
#include <asm/kvm_asm.h>
31
#include <asm/kvm_emulate.h>
32
#include <asm/virt.h>
33
#include <asm/system_misc.h>
34 35

#include "trace.h"
36

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46
#define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
47
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
48

49 50 51 52 53 54
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55 56 57 58 59 60 61 62 63 64 65
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66
}
67

68
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
69
{
70
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
71 72
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

93 94 95 96 97
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

98 99 100 101 102 103 104 105 106 107 108
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
109
	if (!pmd_thp_or_huge(*pmd))
110 111 112 113 114 115 116
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

149
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
150
{
151 152
	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
	stage2_pgd_clear(pgd);
153
	kvm_tlb_flush_vmid_ipa(kvm, addr);
154
	stage2_pud_free(pud_table);
155
	put_page(virt_to_page(pgd));
156 157
}

158
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
159
{
160 161 162
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
	VM_BUG_ON(stage2_pud_huge(*pud));
	stage2_pud_clear(pud);
163
	kvm_tlb_flush_vmid_ipa(kvm, addr);
164
	stage2_pmd_free(pmd_table);
165 166
	put_page(virt_to_page(pud));
}
167

168
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
169
{
170
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
171
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
172 173 174
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
175 176 177
	put_page(virt_to_page(pmd));
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
 */
198
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199
		       phys_addr_t addr, phys_addr_t end)
200
{
201 202 203 204 205 206
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
207 208
			pte_t old_pte = *pte;

209 210
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
211 212

			/* No need to invalidate the cache for device mappings */
213
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214 215 216
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
217 218 219
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

220 221
	if (stage2_pte_table_empty(start_pte))
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
222 223
}

224
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225
		       phys_addr_t addr, phys_addr_t end)
226
{
227 228
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
229

230
	start_pmd = pmd = stage2_pmd_offset(pud, addr);
231
	do {
232
		next = stage2_pmd_addr_end(addr, end);
233
		if (!pmd_none(*pmd)) {
234
			if (pmd_thp_or_huge(*pmd)) {
235 236
				pmd_t old_pmd = *pmd;

237 238
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
239 240 241

				kvm_flush_dcache_pmd(old_pmd);

242 243
				put_page(virt_to_page(pmd));
			} else {
244
				unmap_stage2_ptes(kvm, pmd, addr, next);
245
			}
246
		}
247
	} while (pmd++, addr = next, addr != end);
248

249 250
	if (stage2_pmd_table_empty(start_pmd))
		clear_stage2_pud_entry(kvm, pud, start_addr);
251
}
252

253
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254 255 256 257
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
258

259
	start_pud = pud = stage2_pud_offset(pgd, addr);
260
	do {
261 262 263
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud)) {
264 265
				pud_t old_pud = *pud;

266
				stage2_pud_clear(pud);
267
				kvm_tlb_flush_vmid_ipa(kvm, addr);
268
				kvm_flush_dcache_pud(old_pud);
269 270
				put_page(virt_to_page(pud));
			} else {
271
				unmap_stage2_pmds(kvm, pud, addr, next);
272 273
			}
		}
274
	} while (pud++, addr = next, addr != end);
275

276 277
	if (stage2_pud_table_empty(start_pud))
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
278 279
}

280 281 282 283 284 285 286 287 288 289 290 291
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
292 293 294 295 296
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

297
	assert_spin_locked(&kvm->mmu_lock);
298
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
299
	do {
300 301 302 303 304 305 306
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
307 308 309
		next = stage2_pgd_addr_end(addr, end);
		if (!stage2_pgd_none(*pgd))
			unmap_stage2_puds(kvm, pgd, addr, next);
310 311 312 313 314 315
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
316
	} while (pgd++, addr = next, addr != end);
317 318
}

319 320 321 322 323 324 325
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
326
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
327
			kvm_flush_dcache_pte(*pte);
328 329 330 331 332 333 334 335 336
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

337
	pmd = stage2_pmd_offset(pud, addr);
338
	do {
339
		next = stage2_pmd_addr_end(addr, end);
340
		if (!pmd_none(*pmd)) {
341
			if (pmd_thp_or_huge(*pmd))
342 343
				kvm_flush_dcache_pmd(*pmd);
			else
344 345 346 347 348 349 350 351 352 353 354
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

355
	pud = stage2_pud_offset(pgd, addr);
356
	do {
357 358 359
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud))
360 361
				kvm_flush_dcache_pud(*pud);
			else
362 363 364 365 366 367 368 369 370 371 372 373 374
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

375
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
376
	do {
377
		next = stage2_pgd_addr_end(addr, end);
378 379 380 381 382 383 384 385 386 387 388
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
389
static void stage2_flush_vm(struct kvm *kvm)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
	pgd = pgdp + pgd_index(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

500
/**
501
 * free_hyp_pgds - free Hyp-mode page tables
502
 *
503 504 505 506 507 508
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 * VMALLOC_START to VMALLOC_END).
 *
 * boot_hyp_pgd should only map two pages for the init code.
509
 */
510
void free_hyp_pgds(void)
511
{
512
	mutex_lock(&kvm_hyp_pgd_mutex);
513

514 515 516 517 518 519
	if (boot_hyp_pgd) {
		unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

520
	if (hyp_pgd) {
521
		unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
522 523 524 525
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
		unmap_hyp_range(hyp_pgd, kern_hyp_va(VMALLOC_START),
				VMALLOC_END - VMALLOC_START);
526

527
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
528
		hyp_pgd = NULL;
529
	}
530 531 532 533 534
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
535

536 537 538 539
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
540 541
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
542 543 544 545
{
	pte_t *pte;
	unsigned long addr;

546 547
	addr = start;
	do {
548 549
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
550
		get_page(virt_to_page(pte));
551
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
552
		pfn++;
553
	} while (addr += PAGE_SIZE, addr != end);
554 555 556
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
557 558
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
559 560 561 562 563
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

564 565
	addr = start;
	do {
566
		pmd = pmd_offset(pud, addr);
567 568 569 570

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
571
			pte = pte_alloc_one_kernel(NULL, addr);
572 573 574 575 576
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
577
			get_page(virt_to_page(pmd));
578
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
579 580 581 582
		}

		next = pmd_addr_end(addr, end);

583 584
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
585
	} while (addr = next, addr != end);
586 587 588 589

	return 0;
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
			pud_populate(NULL, pud, pmd);
			get_page(virt_to_page(pud));
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

624
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
625 626
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
627 628 629 630 631 632 633
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
634 635 636
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
637
		pgd = pgdp + ((addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1));
638

639 640 641 642
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
643 644 645
				err = -ENOMEM;
				goto out;
			}
646 647 648
			pgd_populate(NULL, pgd, pud);
			get_page(virt_to_page(pgd));
			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
649 650 651
		}

		next = pgd_addr_end(addr, end);
652
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
653 654
		if (err)
			goto out;
655
		pfn += (next - addr) >> PAGE_SHIFT;
656
	} while (addr = next, addr != end);
657 658 659 660 661
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

662 663 664 665 666 667 668 669 670 671 672
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

673
/**
674
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
675 676
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
677
 * @prot:	The protection to be applied to this range
678
 *
679 680 681
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
682
 */
683
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
684
{
685 686
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
687 688
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
689

690 691 692
	if (is_kernel_in_hyp_mode())
		return 0;

693 694
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
695

696 697
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
698

699
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
700 701
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
702
					    __phys_to_pfn(phys_addr),
703
					    prot);
704 705 706 707 708
		if (err)
			return err;
	}

	return 0;
709 710 711
}

/**
712 713 714
 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 * @from:	The kernel start VA of the range
 * @to:		The kernel end VA of the range (exclusive)
715
 * @phys_addr:	The physical start address which gets mapped
716 717 718
 *
 * The resulting HYP VA is the same as the kernel VA, modulo
 * HYP_PAGE_OFFSET.
719
 */
720
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
721
{
M
Marc Zyngier 已提交
722 723
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
724

725 726 727
	if (is_kernel_in_hyp_mode())
		return 0;

728 729 730 731
	/* Check for a valid kernel IO mapping */
	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
		return -EINVAL;

732
	return __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD, start, end,
733
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
734 735
}

736 737 738 739
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
740 741 742
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
743 744 745 746 747 748 749 750 751 752 753 754 755
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

756 757 758
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
	if (!pgd)
759 760
		return -ENOMEM;

761 762 763 764
	kvm->arch.pgd = pgd;
	return 0;
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
820
	down_read(&current->mm->mmap_sem);
821 822 823 824 825 826 827
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
828
	up_read(&current->mm->mmap_sem);
829 830 831
	srcu_read_unlock(&kvm->srcu, idx);
}

832 833 834 835 836 837 838 839 840 841
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
842
	void *pgd = NULL;
843

844
	spin_lock(&kvm->mmu_lock);
845 846
	if (kvm->arch.pgd) {
		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
847
		pgd = READ_ONCE(kvm->arch.pgd);
848 849
		kvm->arch.pgd = NULL;
	}
850 851
	spin_unlock(&kvm->mmu_lock);

852
	/* Free the HW pgd, one page at a time */
853 854
	if (pgd)
		free_pages_exact(pgd, S2_PGD_SIZE);
855 856
}

857
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
858
			     phys_addr_t addr)
859 860 861 862
{
	pgd_t *pgd;
	pud_t *pud;

863 864
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
	if (WARN_ON(stage2_pgd_none(*pgd))) {
865 866 867
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
868
		stage2_pgd_populate(pgd, pud);
869 870 871
		get_page(virt_to_page(pgd));
	}

872
	return stage2_pud_offset(pgd, addr);
873 874 875 876 877 878 879 880 881
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
882 883 884
	if (!pud)
		return NULL;

885
	if (stage2_pud_none(*pud)) {
886
		if (!cache)
887
			return NULL;
888
		pmd = mmu_memory_cache_alloc(cache);
889
		stage2_pud_populate(pud, pmd);
890
		get_page(virt_to_page(pud));
891 892
	}

893
	return stage2_pmd_offset(pud, addr);
894 895 896 897 898 899 900 901 902
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
903

904 905 906 907 908 909 910 911 912 913 914 915
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
916 917
	if (pmd_present(old_pmd)) {
		pmd_clear(pmd);
918
		kvm_tlb_flush_vmid_ipa(kvm, addr);
919
	} else {
920
		get_page(virt_to_page(pmd));
921 922 923
	}

	kvm_set_pmd(pmd, *new_pmd);
924 925 926
	return 0;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pmd_t *pmdp;
	pte_t *ptep;

	pmdp = stage2_get_pmd(kvm, NULL, addr);
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

	if (pmd_thp_or_huge(*pmdp))
		return kvm_s2pmd_exec(pmdp);

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

	return kvm_s2pte_exec(ptep);
}

946
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
947 948
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
949 950 951
{
	pmd_t *pmd;
	pte_t *pte, old_pte;
952 953 954 955
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
956

957
	/* Create stage-2 page table mapping - Levels 0 and 1 */
958 959 960 961 962 963 964 965 966
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

967 968 969 970 971 972 973
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

974
	/* Create stage-2 page mappings - Level 2 */
975 976 977 978 979 980
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
981 982 983
	}

	pte = pte_offset_kernel(pmd, addr);
984 985 986 987 988 989

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
990 991
	if (pte_present(old_pte)) {
		kvm_set_pte(pte, __pte(0));
992
		kvm_tlb_flush_vmid_ipa(kvm, addr);
993
	} else {
994
		get_page(virt_to_page(pte));
995
	}
996

997
	kvm_set_pte(pte, *new_pte);
998 999 1000
	return 0;
}

1001 1002 1003 1004 1005 1006 1007
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1008 1009
	return 0;
}
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1031
			  phys_addr_t pa, unsigned long size, bool writable)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1042
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1043

1044
		if (writable)
1045
			pte = kvm_s2pte_mkwrite(pte);
1046

1047 1048
		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
						KVM_NR_MEM_OBJS);
1049 1050 1051
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1052 1053
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1066
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1067
{
D
Dan Williams 已提交
1068
	kvm_pfn_t pfn = *pfnp;
1069 1070
	gfn_t gfn = *ipap >> PAGE_SHIFT;

1071
	if (PageTransCompoundMap(pfn_to_page(pfn))) {
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1107 1108 1109 1110 1111 1112 1113 1114
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

1145
	pmd = stage2_pmd_offset(pud, addr);
1146 1147

	do {
1148
		next = stage2_pmd_addr_end(addr, end);
1149
		if (!pmd_none(*pmd)) {
1150
			if (pmd_thp_or_huge(*pmd)) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

1173
	pud = stage2_pud_offset(pgd, addr);
1174
	do {
1175 1176
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
1177
			/* TODO:PUD not supported, revisit later if supported */
1178
			BUG_ON(stage2_pud_huge(*pud));
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
			stage2_wp_pmds(pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1195
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1196 1197 1198 1199
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1200 1201
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1202 1203 1204
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1205
		 */
1206 1207 1208
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1209 1210
		next = stage2_pgd_addr_end(addr, end);
		if (stage2_pgd_present(*pgd))
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
			stage2_wp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 * all present PMD and PTEs are write protected in the memory region.
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1230 1231
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1232 1233 1234 1235 1236 1237 1238 1239
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1240 1241

/**
1242
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1243 1244 1245 1246 1247 1248 1249 1250 1251
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1252
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1253 1254 1255 1256 1257 1258 1259 1260 1261
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1277
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1278
{
1279
	__clean_dcache_guest_page(pfn, size);
1280 1281
}

1282
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1283
{
1284
	__invalidate_icache_guest_page(pfn, size);
1285 1286
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
static void kvm_send_hwpoison_signal(unsigned long address,
				     struct vm_area_struct *vma)
{
	siginfo_t info;

	info.si_signo   = SIGBUS;
	info.si_errno   = 0;
	info.si_code    = BUS_MCEERR_AR;
	info.si_addr    = (void __user *)address;

	if (is_vm_hugetlb_page(vma))
		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
	else
		info.si_addr_lsb = PAGE_SHIFT;

	send_sig_info(SIGBUS, &info, current);
}

1305
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1306
			  struct kvm_memory_slot *memslot, unsigned long hva,
1307 1308 1309
			  unsigned long fault_status)
{
	int ret;
1310
	bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1311
	unsigned long mmu_seq;
1312 1313
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1314
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1315
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1316
	kvm_pfn_t pfn;
1317
	pgprot_t mem_type = PAGE_S2;
1318 1319
	bool logging_active = memslot_is_logging(memslot);
	unsigned long flags = 0;
1320

1321
	write_fault = kvm_is_write_fault(vcpu);
1322 1323 1324 1325
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1326 1327 1328 1329
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1330 1331 1332
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1333 1334 1335 1336 1337 1338
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1339
	if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1340 1341
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1342 1343
	} else {
		/*
1344 1345 1346 1347 1348 1349 1350
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1351
		 */
1352 1353
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1354
			force_pte = true;
1355 1356 1357
	}
	up_read(&current->mm->mmap_sem);

1358
	/* We need minimum second+third level pages */
1359 1360
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1376
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1377 1378 1379 1380
	if (pfn == KVM_PFN_ERR_HWPOISON) {
		kvm_send_hwpoison_signal(hva, vma);
		return 0;
	}
1381
	if (is_error_noslot_pfn(pfn))
1382 1383
		return -EFAULT;

1384
	if (kvm_is_device_pfn(pfn)) {
1385
		mem_type = PAGE_S2_DEVICE;
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1403

1404 1405
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1406
		goto out_unlock;
1407

1408 1409
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1410 1411

	if (hugetlb) {
1412
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1413 1414
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
1415
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1416 1417
			kvm_set_pfn_dirty(pfn);
		}
1418 1419

		if (fault_status != FSC_PERM)
1420
			clean_dcache_guest_page(pfn, PMD_SIZE);
1421 1422 1423

		if (exec_fault) {
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1424
			invalidate_icache_guest_page(pfn, PMD_SIZE);
1425 1426 1427 1428
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pmd = kvm_s2pmd_mkexec(new_pmd);
1429
		}
1430

1431 1432
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1433
		pte_t new_pte = pfn_pte(pfn, mem_type);
1434

1435
		if (writable) {
1436
			new_pte = kvm_s2pte_mkwrite(new_pte);
1437
			kvm_set_pfn_dirty(pfn);
1438
			mark_page_dirty(kvm, gfn);
1439
		}
1440 1441

		if (fault_status != FSC_PERM)
1442
			clean_dcache_guest_page(pfn, PAGE_SIZE);
1443 1444 1445

		if (exec_fault) {
			new_pte = kvm_s2pte_mkexec(new_pte);
1446
			invalidate_icache_guest_page(pfn, PAGE_SIZE);
1447 1448 1449 1450
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pte = kvm_s2pte_mkexec(new_pte);
1451
		}
1452

1453
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1454
	}
1455

1456
out_unlock:
1457
	spin_unlock(&kvm->mmu_lock);
1458
	kvm_set_pfn_accessed(pfn);
1459
	kvm_release_pfn_clean(pfn);
1460
	return ret;
1461 1462
}

1463 1464 1465 1466
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1467 1468
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1469 1470 1471 1472 1473
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1474
	kvm_pfn_t pfn;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		goto out;

1485
	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
		goto out;
	}

	pte = pte_offset_kernel(pmd, fault_ipa);
	if (pte_none(*pte))		/* Nothing there either */
		goto out;

	*pte = pte_mkyoung(*pte);	/* Just a page... */
	pfn = pte_pfn(*pte);
	pfn_valid = true;
out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1517 1518
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1519 1520 1521
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1522 1523
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1524 1525 1526
	gfn_t gfn;
	int ret, idx;

1527 1528 1529
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1530
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1531

1532 1533 1534 1535 1536 1537
	/* Synchronous External Abort? */
	if (kvm_vcpu_dabt_isextabt(vcpu)) {
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1538 1539 1540
		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
			return 1;

1541 1542 1543 1544
		if (unlikely(!is_iabt)) {
			kvm_inject_vabt(vcpu);
			return 1;
		}
1545 1546
	}

1547 1548
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1549 1550

	/* Check the stage-2 fault is trans. fault or write fault */
1551 1552
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1553 1554 1555 1556
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1557 1558 1559 1560 1561 1562
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1563 1564
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1565
	write_fault = kvm_is_write_fault(vcpu);
1566
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1567 1568
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1569
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1570 1571 1572 1573
			ret = 1;
			goto out_unlock;
		}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1590 1591 1592 1593 1594 1595 1596
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1597
		ret = io_mem_abort(vcpu, run, fault_ipa);
1598 1599 1600
		goto out_unlock;
	}

1601 1602 1603
	/* Userspace should not be able to register out-of-bounds IPAs */
	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);

1604 1605 1606 1607 1608 1609
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1610
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1611 1612 1613 1614 1615
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1616 1617
}

1618 1619 1620 1621
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
1622 1623
					    gpa_t gpa, u64 size,
					    void *data),
1624
			     void *data)
1625 1626 1627
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1628
	int ret = 0;
1629 1630 1631 1632 1633 1634

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
1635
		gfn_t gpa;
1636 1637 1638 1639 1640 1641 1642

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

1643 1644
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1645
	}
1646 1647

	return ret;
1648 1649
}

1650
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1651
{
1652
	unmap_stage2_range(kvm, gpa, size);
1653
	return 0;
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1679
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1680 1681 1682
{
	pte_t *pte = (pte_t *)data;

1683
	WARN_ON(size != PAGE_SIZE);
1684 1685 1686 1687 1688 1689 1690 1691
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1692
	return 0;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

1709
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1710 1711 1712 1713
{
	pmd_t *pmd;
	pte_t *pte;

1714
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1715 1716 1717 1718
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1719 1720
	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
		return stage2_pmdp_test_and_clear_young(pmd);
1721 1722 1723 1724 1725

	pte = pte_offset_kernel(pmd, gpa);
	if (pte_none(*pte))
		return 0;

1726
	return stage2_ptep_test_and_clear_young(pte);
1727 1728
}

1729
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1730 1731 1732 1733
{
	pmd_t *pmd;
	pte_t *pte;

1734
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1735 1736 1737 1738
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1739
	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
		return pmd_young(*pmd);

	pte = pte_offset_kernel(pmd, gpa);
	if (!pte_none(*pte))		/* Just a page... */
		return pte_young(*pte);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
1751 1752
	if (!kvm->arch.pgd)
		return 0;
1753 1754 1755 1756 1757 1758
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1759 1760
	if (!kvm->arch.pgd)
		return 0;
1761 1762 1763 1764
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

1765 1766 1767 1768 1769
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1770 1771
phys_addr_t kvm_mmu_get_httbr(void)
{
1772 1773 1774 1775
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
1776 1777
}

1778 1779 1780 1781 1782
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1783 1784 1785 1786 1787
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
1788
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

1799 1800
int kvm_mmu_init(void)
{
1801 1802
	int err;

1803 1804 1805
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1806

1807 1808 1809 1810 1811
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1812

1813 1814
	kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_info("HYP VA range: %lx:%lx\n",
M
Marc Zyngier 已提交
1815
		 kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1816

M
Marc Zyngier 已提交
1817
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1818 1819
	    hyp_idmap_start <  kern_hyp_va(~0UL) &&
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1820 1821 1822 1823 1824 1825 1826 1827 1828
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

1829
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1830
	if (!hyp_pgd) {
1831
		kvm_err("Hyp mode PGD not allocated\n");
1832 1833 1834 1835
		err = -ENOMEM;
		goto out;
	}

1836 1837 1838 1839 1840 1841 1842 1843
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
1844

1845 1846 1847
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
1848

1849 1850 1851 1852 1853 1854 1855
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
1856 1857 1858 1859
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
1860 1861
	}

1862
	return 0;
1863
out:
1864
	free_hyp_pgds();
1865
	return err;
1866
}
1867 1868

void kvm_arch_commit_memory_region(struct kvm *kvm,
1869
				   const struct kvm_userspace_memory_region *mem,
1870
				   const struct kvm_memory_slot *old,
1871
				   const struct kvm_memory_slot *new,
1872 1873
				   enum kvm_mr_change change)
{
1874 1875 1876 1877 1878 1879 1880
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
1881 1882 1883 1884
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
1885
				   const struct kvm_userspace_memory_region *mem,
1886 1887
				   enum kvm_mr_change change)
{
1888 1889 1890 1891 1892
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

1893 1894
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
1895 1896
		return 0;

1897 1898 1899 1900 1901 1902 1903 1904
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
		return -EFAULT;

1905
	down_read(&current->mm->mmap_sem);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
1943 1944 1945 1946
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
1947

1948
			/* IO region dirty page logging not allowed */
1949 1950 1951 1952
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
1953

1954 1955 1956 1957 1958 1959 1960 1961 1962
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

1963
	if (change == KVM_MR_FLAGS_ONLY)
1964
		goto out;
1965

1966 1967
	spin_lock(&kvm->mmu_lock);
	if (ret)
1968
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1969 1970 1971
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
1972 1973
out:
	up_read(&current->mm->mmap_sem);
1974
	return ret;
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

1988
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1989 1990 1991 1992 1993
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
1994
	kvm_free_stage2_pgd(kvm);
1995 1996 1997 1998 1999
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2000 2001 2002 2003 2004 2005
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2006
}
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
	unsigned long hcr = vcpu_get_hcr(vcpu);

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
		vcpu_set_hcr(vcpu, hcr | HCR_TVM);
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
		vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}