mmu.c 62.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
23
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
24
#include <trace/events/kvm.h>
25
#include <asm/pgalloc.h>
26
#include <asm/cacheflush.h>
27 28
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
29
#include <asm/kvm_mmio.h>
30
#include <asm/kvm_asm.h>
31
#include <asm/kvm_emulate.h>
32
#include <asm/virt.h>
33
#include <asm/system_misc.h>
34 35

#include "trace.h"
36

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46 47
static unsigned long io_map_base;

48
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
49

50 51 52 53 54 55
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 57 58 59 60 61 62 63 64 65 66
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67
}
68

69
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70
{
71
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
72 73
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

94 95 96 97 98
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

99 100 101 102 103 104 105 106 107 108 109
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
110
	if (!pmd_thp_or_huge(*pmd))
111 112 113 114 115 116 117
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/**
 * stage2_dissolve_pud() - clear and flush huge PUD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pud:	pud pointer for IPA
 *
 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
{
	if (!stage2_pud_huge(kvm, *pudp))
		return;

	stage2_pud_clear(kvm, pudp);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pudp));
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

169
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
170
{
171 172
	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
	stage2_pgd_clear(kvm, pgd);
173
	kvm_tlb_flush_vmid_ipa(kvm, addr);
174
	stage2_pud_free(kvm, pud_table);
175
	put_page(virt_to_page(pgd));
176 177
}

178
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
179
{
180 181 182
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
	stage2_pud_clear(kvm, pud);
183
	kvm_tlb_flush_vmid_ipa(kvm, addr);
184
	stage2_pmd_free(kvm, pmd_table);
185 186
	put_page(virt_to_page(pud));
}
187

188
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
189
{
190
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
191
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
192 193 194
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
195 196 197
	put_page(virt_to_page(pmd));
}

198 199 200 201 202 203 204 205 206 207 208 209
static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
{
	WRITE_ONCE(*ptep, new_pte);
	dsb(ishst);
}

static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
{
	WRITE_ONCE(*pmdp, new_pmd);
	dsb(ishst);
}

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
{
	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
}

static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
{
	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
	dsb(ishst);
}

static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
{
	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
	dsb(ishst);
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
246 247 248 249
 *
 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 * we then fully enforce cacheability of RAM, no matter what the guest
 * does.
250
 */
251
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
252
		       phys_addr_t addr, phys_addr_t end)
253
{
254 255 256 257 258 259
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
260 261
			pte_t old_pte = *pte;

262 263
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
264 265

			/* No need to invalidate the cache for device mappings */
266
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
267 268 269
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
270 271 272
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

273
	if (stage2_pte_table_empty(kvm, start_pte))
274
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
275 276
}

277
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
278
		       phys_addr_t addr, phys_addr_t end)
279
{
280 281
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
282

283
	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
284
	do {
285
		next = stage2_pmd_addr_end(kvm, addr, end);
286
		if (!pmd_none(*pmd)) {
287
			if (pmd_thp_or_huge(*pmd)) {
288 289
				pmd_t old_pmd = *pmd;

290 291
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
292 293 294

				kvm_flush_dcache_pmd(old_pmd);

295 296
				put_page(virt_to_page(pmd));
			} else {
297
				unmap_stage2_ptes(kvm, pmd, addr, next);
298
			}
299
		}
300
	} while (pmd++, addr = next, addr != end);
301

302
	if (stage2_pmd_table_empty(kvm, start_pmd))
303
		clear_stage2_pud_entry(kvm, pud, start_addr);
304
}
305

306
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
307 308 309 310
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
311

312
	start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
313
	do {
314 315 316
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud)) {
317 318
				pud_t old_pud = *pud;

319
				stage2_pud_clear(kvm, pud);
320
				kvm_tlb_flush_vmid_ipa(kvm, addr);
321
				kvm_flush_dcache_pud(old_pud);
322 323
				put_page(virt_to_page(pud));
			} else {
324
				unmap_stage2_pmds(kvm, pud, addr, next);
325 326
			}
		}
327
	} while (pud++, addr = next, addr != end);
328

329
	if (stage2_pud_table_empty(kvm, start_pud))
330
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
345 346 347 348 349
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

350
	assert_spin_locked(&kvm->mmu_lock);
351 352
	WARN_ON(size & ~PAGE_MASK);

353
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
354
	do {
355 356 357 358 359 360 361
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
362 363
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
364
			unmap_stage2_puds(kvm, pgd, addr, next);
365 366 367 368 369 370
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
371
	} while (pgd++, addr = next, addr != end);
372 373
}

374 375 376 377 378 379 380
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
381
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
382
			kvm_flush_dcache_pte(*pte);
383 384 385 386 387 388 389 390 391
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

392
	pmd = stage2_pmd_offset(kvm, pud, addr);
393
	do {
394
		next = stage2_pmd_addr_end(kvm, addr, end);
395
		if (!pmd_none(*pmd)) {
396
			if (pmd_thp_or_huge(*pmd))
397 398
				kvm_flush_dcache_pmd(*pmd);
			else
399 400 401 402 403 404 405 406 407 408 409
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

410
	pud = stage2_pud_offset(kvm, pgd, addr);
411
	do {
412 413 414
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
			if (stage2_pud_huge(kvm, *pud))
415 416
				kvm_flush_dcache_pud(*pud);
			else
417 418 419 420 421 422 423 424 425 426 427 428 429
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

430
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
431
	do {
432 433
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (!stage2_pgd_none(kvm, *pgd))
434
			stage2_flush_puds(kvm, pgd, addr, next);
435 436 437 438 439 440 441 442 443 444
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
445
static void stage2_flush_vm(struct kvm *kvm)
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

538 539 540 541 542 543 544
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}

static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
			      phys_addr_t start, u64 size)
545 546 547 548 549 550 551 552 553
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
554
	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
555 556 557 558 559 560 561
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

562 563 564 565 566 567 568 569 570 571
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}

static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}

572
/**
573
 * free_hyp_pgds - free Hyp-mode page tables
574
 *
575 576
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
577
 * PAGE_OFFSET), or device mappings in the idmap range.
578
 *
579 580
 * boot_hyp_pgd should only map the idmap range, and is only used in
 * the extended idmap case.
581
 */
582
void free_hyp_pgds(void)
583
{
584 585
	pgd_t *id_pgd;

586
	mutex_lock(&kvm_hyp_pgd_mutex);
587

588 589 590 591 592 593 594 595 596 597
	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;

	if (id_pgd) {
		/* In case we never called hyp_mmu_init() */
		if (!io_map_base)
			io_map_base = hyp_idmap_start;
		unmap_hyp_idmap_range(id_pgd, io_map_base,
				      hyp_idmap_start + PAGE_SIZE - io_map_base);
	}

598 599 600 601 602
	if (boot_hyp_pgd) {
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

603
	if (hyp_pgd) {
604 605
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
606

607
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
608
		hyp_pgd = NULL;
609
	}
610 611 612 613 614
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
615

616 617 618 619
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
620 621
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
622 623 624 625
{
	pte_t *pte;
	unsigned long addr;

626 627
	addr = start;
	do {
628
		pte = pte_offset_kernel(pmd, addr);
629
		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
630
		get_page(virt_to_page(pte));
631
		pfn++;
632
	} while (addr += PAGE_SIZE, addr != end);
633 634 635
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
636 637
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
638 639 640 641 642
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

643 644
	addr = start;
	do {
645
		pmd = pmd_offset(pud, addr);
646 647 648 649

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
650
			pte = pte_alloc_one_kernel(NULL);
651 652 653 654
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
655
			kvm_pmd_populate(pmd, pte);
656
			get_page(virt_to_page(pmd));
657 658 659 660
		}

		next = pmd_addr_end(addr, end);

661 662
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
663
	} while (addr = next, addr != end);
664 665 666 667

	return 0;
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
687
			kvm_pud_populate(pud, pmd);
688 689 690 691 692 693 694 695 696 697 698 699 700
			get_page(virt_to_page(pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

701
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
702 703
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
704 705 706 707 708 709 710
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
711 712 713
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
714
		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
715

716 717 718 719
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
720 721 722
				err = -ENOMEM;
				goto out;
			}
723
			kvm_pgd_populate(pgd, pud);
724
			get_page(virt_to_page(pgd));
725 726 727
		}

		next = pgd_addr_end(addr, end);
728
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
729 730
		if (err)
			goto out;
731
		pfn += (next - addr) >> PAGE_SHIFT;
732
	} while (addr = next, addr != end);
733 734 735 736 737
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

738 739 740 741 742 743 744 745 746 747 748
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

749
/**
750
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
751 752
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
753
 * @prot:	The protection to be applied to this range
754
 *
755 756 757
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
758
 */
759
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
760
{
761 762
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
763 764
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
765

766 767 768
	if (is_kernel_in_hyp_mode())
		return 0;

769 770
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
771

772 773
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
774

775
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
776 777
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
778
					    __phys_to_pfn(phys_addr),
779
					    prot);
780 781 782 783 784
		if (err)
			return err;
	}

	return 0;
785 786
}

787 788
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
					unsigned long *haddr, pgprot_t prot)
789
{
790 791 792
	pgd_t *pgd = hyp_pgd;
	unsigned long base;
	int ret = 0;
793

794
	mutex_lock(&kvm_hyp_pgd_mutex);
795

796 797 798 799 800 801 802 803 804 805
	/*
	 * This assumes that we we have enough space below the idmap
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
806

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

	if (__kvm_cpu_uses_extended_idmap())
		pgd = boot_hyp_pgd;

	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
				    base, base + size,
827
				    __phys_to_pfn(phys_addr), prot);
828 829 830
	if (ret)
		goto out;

831
	*haddr = base + offset_in_page(phys_addr);
832 833

out:
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
862 863 864
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
891 892 893
		return ret;
	}

894
	*haddr = (void *)addr;
895
	return 0;
896 897
}

898 899 900 901
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
902 903 904
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
905 906 907 908 909 910 911 912 913 914 915 916 917
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

918
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
919
	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
920
	if (!pgd)
921 922
		return -ENOMEM;

923 924 925 926
	kvm->arch.pgd = pgd;
	return 0;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
982
	down_read(&current->mm->mmap_sem);
983 984 985 986 987 988 989
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
990
	up_read(&current->mm->mmap_sem);
991 992 993
	srcu_read_unlock(&kvm->srcu, idx);
}

994 995 996 997 998 999 1000 1001 1002 1003
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
1004
	void *pgd = NULL;
1005

1006
	spin_lock(&kvm->mmu_lock);
1007
	if (kvm->arch.pgd) {
1008
		unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1009
		pgd = READ_ONCE(kvm->arch.pgd);
1010 1011
		kvm->arch.pgd = NULL;
	}
1012 1013
	spin_unlock(&kvm->mmu_lock);

1014
	/* Free the HW pgd, one page at a time */
1015
	if (pgd)
1016
		free_pages_exact(pgd, stage2_pgd_size(kvm));
1017 1018
}

1019
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1020
			     phys_addr_t addr)
1021 1022 1023 1024
{
	pgd_t *pgd;
	pud_t *pud;

1025 1026
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
	if (stage2_pgd_none(kvm, *pgd)) {
1027 1028 1029
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
1030
		stage2_pgd_populate(kvm, pgd, pud);
1031 1032 1033
		get_page(virt_to_page(pgd));
	}

1034
	return stage2_pud_offset(kvm, pgd, addr);
1035 1036 1037 1038 1039 1040 1041 1042 1043
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
1044
	if (!pud || stage2_pud_huge(kvm, *pud))
1045 1046
		return NULL;

1047
	if (stage2_pud_none(kvm, *pud)) {
1048
		if (!cache)
1049
			return NULL;
1050
		pmd = mmu_memory_cache_alloc(cache);
1051
		stage2_pud_populate(kvm, pud, pmd);
1052
		get_page(virt_to_page(pud));
1053 1054
	}

1055
	return stage2_pmd_offset(kvm, pud, addr);
1056 1057 1058 1059 1060 1061 1062 1063 1064
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
1065

1066
	old_pmd = *pmd;
1067
	if (pmd_present(old_pmd)) {
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		/*
		 * Multiple vcpus faulting on the same PMD entry, can
		 * lead to them sequentially updating the PMD with the
		 * same value. Following the break-before-make
		 * (pmd_clear() followed by tlb_flush()) process can
		 * hinder forward progress due to refaults generated
		 * on missing translations.
		 *
		 * Skip updating the page table if the entry is
		 * unchanged.
		 */
		if (pmd_val(old_pmd) == pmd_val(*new_pmd))
			return 0;

		/*
		 * Mapping in huge pages should only happen through a
		 * fault.  If a page is merged into a transparent huge
		 * page, the individual subpages of that huge page
		 * should be unmapped through MMU notifiers before we
		 * get here.
		 *
		 * Merging of CompoundPages is not supported; they
		 * should become splitting first, unmapped, merged,
		 * and mapped back in on-demand.
		 */
		VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));

1095
		pmd_clear(pmd);
1096
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1097
	} else {
1098
		get_page(virt_to_page(pmd));
1099 1100 1101
	}

	kvm_set_pmd(pmd, *new_pmd);
1102 1103 1104
	return 0;
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			       phys_addr_t addr, const pud_t *new_pudp)
{
	pud_t *pudp, old_pud;

	pudp = stage2_get_pud(kvm, cache, addr);
	VM_BUG_ON(!pudp);

	old_pud = *pudp;

	/*
	 * A large number of vcpus faulting on the same stage 2 entry,
	 * can lead to a refault due to the
	 * stage2_pud_clear()/tlb_flush(). Skip updating the page
	 * tables if there is no change.
	 */
	if (pud_val(old_pud) == pud_val(*new_pudp))
		return 0;

	if (stage2_pud_present(kvm, old_pud)) {
		stage2_pud_clear(kvm, pudp);
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	} else {
		get_page(virt_to_page(pudp));
	}

	kvm_set_pud(pudp, *new_pudp);
	return 0;
}

1135 1136 1137 1138 1139 1140 1141 1142
/*
 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
 * true if a valid and present leaf-entry is found. A pointer to the
 * leaf-entry is returned in the appropriate level variable - pudpp,
 * pmdpp, ptepp.
 */
static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1143
{
1144
	pud_t *pudp;
1145 1146 1147
	pmd_t *pmdp;
	pte_t *ptep;

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	*pudpp = NULL;
	*pmdpp = NULL;
	*ptepp = NULL;

	pudp = stage2_get_pud(kvm, NULL, addr);
	if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
		return false;

	if (stage2_pud_huge(kvm, *pudp)) {
		*pudpp = pudp;
		return true;
	}

	pmdp = stage2_pmd_offset(kvm, pudp, addr);
1162 1163 1164
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

1165 1166 1167 1168
	if (pmd_thp_or_huge(*pmdp)) {
		*pmdpp = pmdp;
		return true;
	}
1169 1170 1171 1172 1173

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	*ptepp = ptep;
	return true;
}

static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;
	bool found;

	found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
	if (!found)
		return false;

	if (pudp)
		return kvm_s2pud_exec(pudp);
	else if (pmdp)
		return kvm_s2pmd_exec(pmdp);
	else
		return kvm_s2pte_exec(ptep);
1195 1196
}

1197
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1198 1199
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
1200
{
1201
	pud_t *pud;
1202 1203
	pmd_t *pmd;
	pte_t *pte, old_pte;
1204 1205 1206 1207
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
1208

1209
	/* Create stage-2 page table mapping - Levels 0 and 1 */
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	pud = stage2_get_pud(kvm, cache, addr);
	if (!pud) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

	/*
	 * While dirty page logging - dissolve huge PUD, then continue
	 * on to allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pud(kvm, addr, pud);

	if (stage2_pud_none(kvm, *pud)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pmd = mmu_memory_cache_alloc(cache);
		stage2_pud_populate(kvm, pud, pmd);
		get_page(virt_to_page(pud));
	}

	pmd = stage2_pmd_offset(kvm, pud, addr);
1235 1236 1237 1238 1239 1240 1241 1242
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

1243 1244 1245 1246 1247 1248 1249
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

1250
	/* Create stage-2 page mappings - Level 2 */
1251 1252 1253 1254
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
1255
		kvm_pmd_populate(pmd, pte);
1256
		get_page(virt_to_page(pmd));
1257 1258 1259
	}

	pte = pte_offset_kernel(pmd, addr);
1260 1261 1262 1263 1264 1265

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1266
	if (pte_present(old_pte)) {
1267 1268 1269 1270
		/* Skip page table update if there is no change */
		if (pte_val(old_pte) == pte_val(*new_pte))
			return 0;

1271
		kvm_set_pte(pte, __pte(0));
1272
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1273
	} else {
1274
		get_page(virt_to_page(pte));
1275
	}
1276

1277
	kvm_set_pte(pte, *new_pte);
1278 1279 1280
	return 0;
}

1281 1282 1283 1284 1285 1286 1287
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1288 1289
	return 0;
}
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1301

1302 1303 1304 1305 1306
static int stage2_pudp_test_and_clear_young(pud_t *pud)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pud);
}

1307 1308 1309 1310 1311 1312 1313 1314 1315
/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1316
			  phys_addr_t pa, unsigned long size, bool writable)
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1327
		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1328

1329
		if (writable)
1330
			pte = kvm_s2pte_mkwrite(pte);
1331

1332 1333 1334
		ret = mmu_topup_memory_cache(&cache,
					     kvm_mmu_cache_min_pages(kvm),
					     KVM_NR_MEM_OBJS);
1335 1336 1337
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1338 1339
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1352
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1353
{
D
Dan Williams 已提交
1354
	kvm_pfn_t pfn = *pfnp;
1355
	gfn_t gfn = *ipap >> PAGE_SHIFT;
1356
	struct page *page = pfn_to_page(pfn);
1357

1358
	/*
1359
	 * PageTransCompoundMap() returns true for THP and
1360 1361 1362 1363
	 * hugetlbfs. Make sure the adjustment is done only for THP
	 * pages.
	 */
	if (!PageHuge(page) && PageTransCompoundMap(page)) {
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1399 1400 1401 1402 1403 1404 1405 1406
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
1428
 * kvm:		kvm instance for the VM
1429 1430 1431 1432
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
1433 1434
static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
			   phys_addr_t addr, phys_addr_t end)
1435 1436 1437 1438
{
	pmd_t *pmd;
	phys_addr_t next;

1439
	pmd = stage2_pmd_offset(kvm, pud, addr);
1440 1441

	do {
1442
		next = stage2_pmd_addr_end(kvm, addr, end);
1443
		if (!pmd_none(*pmd)) {
1444
			if (pmd_thp_or_huge(*pmd)) {
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
1462 1463
static void  stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
			    phys_addr_t addr, phys_addr_t end)
1464 1465 1466 1467
{
	pud_t *pud;
	phys_addr_t next;

1468
	pud = stage2_pud_offset(kvm, pgd, addr);
1469
	do {
1470 1471
		next = stage2_pud_addr_end(kvm, addr, end);
		if (!stage2_pud_none(kvm, *pud)) {
1472 1473 1474 1475 1476 1477
			if (stage2_pud_huge(kvm, *pud)) {
				if (!kvm_s2pud_readonly(pud))
					kvm_set_s2pud_readonly(pud);
			} else {
				stage2_wp_pmds(kvm, pud, addr, next);
			}
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1493
	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1494 1495 1496 1497
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1498 1499
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1500 1501 1502
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1503
		 */
1504 1505 1506
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1507 1508 1509
		next = stage2_pgd_addr_end(kvm, addr, end);
		if (stage2_pgd_present(kvm, *pgd))
			stage2_wp_puds(kvm, pgd, addr, next);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1520
 * all present PUD, PMD and PTEs are write protected in the memory region.
1521 1522 1523 1524 1525 1526 1527
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1528 1529
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1530 1531 1532 1533 1534 1535 1536 1537
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1538 1539

/**
1540
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1541 1542 1543 1544 1545 1546 1547 1548 1549
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1550
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1551 1552 1553 1554 1555 1556 1557 1558 1559
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1560

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1575
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1576
{
1577
	__clean_dcache_guest_page(pfn, size);
1578 1579
}

1580
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1581
{
1582
	__invalidate_icache_guest_page(pfn, size);
1583 1584
}

1585 1586 1587
static void kvm_send_hwpoison_signal(unsigned long address,
				     struct vm_area_struct *vma)
{
1588
	short lsb;
1589 1590

	if (is_vm_hugetlb_page(vma))
1591
		lsb = huge_page_shift(hstate_vma(vma));
1592
	else
1593
		lsb = PAGE_SHIFT;
1594

1595
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1596 1597
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
static bool fault_supports_stage2_pmd_mappings(struct kvm_memory_slot *memslot,
					       unsigned long hva)
{
	gpa_t gpa_start, gpa_end;
	hva_t uaddr_start, uaddr_end;
	size_t size;

	size = memslot->npages * PAGE_SIZE;

	gpa_start = memslot->base_gfn << PAGE_SHIFT;
	gpa_end = gpa_start + size;

	uaddr_start = memslot->userspace_addr;
	uaddr_end = uaddr_start + size;

	/*
	 * Pages belonging to memslots that don't have the same alignment
	 * within a PMD for userspace and IPA cannot be mapped with stage-2
	 * PMD entries, because we'll end up mapping the wrong pages.
	 *
	 * Consider a layout like the following:
	 *
	 *    memslot->userspace_addr:
	 *    +-----+--------------------+--------------------+---+
	 *    |abcde|fgh  Stage-1 PMD    |    Stage-1 PMD   tv|xyz|
	 *    +-----+--------------------+--------------------+---+
	 *
	 *    memslot->base_gfn << PAGE_SIZE:
	 *      +---+--------------------+--------------------+-----+
	 *      |abc|def  Stage-2 PMD    |    Stage-2 PMD     |tvxyz|
	 *      +---+--------------------+--------------------+-----+
	 *
	 * If we create those stage-2 PMDs, we'll end up with this incorrect
	 * mapping:
	 *   d -> f
	 *   e -> g
	 *   f -> h
	 */
	if ((gpa_start & ~S2_PMD_MASK) != (uaddr_start & ~S2_PMD_MASK))
		return false;

	/*
	 * Next, let's make sure we're not trying to map anything not covered
	 * by the memslot. This means we have to prohibit PMD size mappings
	 * for the beginning and end of a non-PMD aligned and non-PMD sized
	 * memory slot (illustrated by the head and tail parts of the
	 * userspace view above containing pages 'abcde' and 'xyz',
	 * respectively).
	 *
	 * Note that it doesn't matter if we do the check using the
	 * userspace_addr or the base_gfn, as both are equally aligned (per
	 * the check above) and equally sized.
	 */
	return (hva & S2_PMD_MASK) >= uaddr_start &&
	       (hva & S2_PMD_MASK) + S2_PMD_SIZE <= uaddr_end;
}

1655
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1656
			  struct kvm_memory_slot *memslot, unsigned long hva,
1657 1658 1659
			  unsigned long fault_status)
{
	int ret;
1660 1661
	bool write_fault, writable, force_pte = false;
	bool exec_fault, needs_exec;
1662
	unsigned long mmu_seq;
1663 1664
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1665
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1666
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1667
	kvm_pfn_t pfn;
1668
	pgprot_t mem_type = PAGE_S2;
1669
	bool logging_active = memslot_is_logging(memslot);
1670
	unsigned long vma_pagesize, flags = 0;
1671

1672
	write_fault = kvm_is_write_fault(vcpu);
1673 1674 1675 1676
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1677 1678 1679 1680
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1681 1682 1683 1684 1685 1686
	if (!fault_supports_stage2_pmd_mappings(memslot, hva))
		force_pte = true;

	if (logging_active)
		force_pte = true;

1687 1688 1689
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1690 1691 1692 1693 1694 1695
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1696
	vma_pagesize = vma_kernel_pagesize(vma);
1697 1698 1699 1700 1701 1702
	/*
	 * PUD level may not exist for a VM but PMD is guaranteed to
	 * exist.
	 */
	if ((vma_pagesize == PMD_SIZE ||
	     (vma_pagesize == PUD_SIZE && kvm_stage2_has_pud(kvm))) &&
1703
	    !force_pte) {
1704
		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1705 1706 1707
	}
	up_read(&current->mm->mmap_sem);

1708
	/* We need minimum second+third level pages */
1709
	ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1710
				     KVM_NR_MEM_OBJS);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1726
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1727 1728 1729 1730
	if (pfn == KVM_PFN_ERR_HWPOISON) {
		kvm_send_hwpoison_signal(hva, vma);
		return 0;
	}
1731
	if (is_error_noslot_pfn(pfn))
1732 1733
		return -EFAULT;

1734
	if (kvm_is_device_pfn(pfn)) {
1735
		mem_type = PAGE_S2_DEVICE;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1752

1753 1754
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1755
		goto out_unlock;
1756

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	if (vma_pagesize == PAGE_SIZE && !force_pte) {
		/*
		 * Only PMD_SIZE transparent hugepages(THP) are
		 * currently supported. This code will need to be
		 * updated to support other THP sizes.
		 */
		if (transparent_hugepage_adjust(&pfn, &fault_ipa))
			vma_pagesize = PMD_SIZE;
	}

	if (writable)
		kvm_set_pfn_dirty(pfn);
1769

1770 1771 1772 1773 1774 1775
	if (fault_status != FSC_PERM)
		clean_dcache_guest_page(pfn, vma_pagesize);

	if (exec_fault)
		invalidate_icache_guest_page(pfn, vma_pagesize);

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/*
	 * If we took an execution fault we have made the
	 * icache/dcache coherent above and should now let the s2
	 * mapping be executable.
	 *
	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
	 * execute permissions, and we preserve whatever we have.
	 */
	needs_exec = exec_fault ||
		(fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	if (vma_pagesize == PUD_SIZE) {
		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);

		new_pud = kvm_pud_mkhuge(new_pud);
		if (writable)
			new_pud = kvm_s2pud_mkwrite(new_pud);

		if (needs_exec)
			new_pud = kvm_s2pud_mkexec(new_pud);

		ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
	} else if (vma_pagesize == PMD_SIZE) {
1799 1800 1801 1802
		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);

		new_pmd = kvm_pmd_mkhuge(new_pmd);

1803
		if (writable)
1804
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1805

1806
		if (needs_exec)
1807
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1808

1809 1810
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1811
		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1812

1813
		if (writable) {
1814
			new_pte = kvm_s2pte_mkwrite(new_pte);
1815
			mark_page_dirty(kvm, gfn);
1816
		}
1817

1818
		if (needs_exec)
1819
			new_pte = kvm_s2pte_mkexec(new_pte);
1820

1821
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1822
	}
1823

1824
out_unlock:
1825
	spin_unlock(&kvm->mmu_lock);
1826
	kvm_set_pfn_accessed(pfn);
1827
	kvm_release_pfn_clean(pfn);
1828
	return ret;
1829 1830
}

1831 1832 1833 1834
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1835 1836
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1837 1838 1839
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
1840
	pud_t *pud;
1841 1842
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1843
	kvm_pfn_t pfn;
1844 1845 1846 1847 1848 1849
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

1850
	if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1851 1852
		goto out;

1853 1854 1855 1856 1857
	if (pud) {		/* HugeTLB */
		*pud = kvm_s2pud_mkyoung(*pud);
		pfn = kvm_pud_pfn(*pud);
		pfn_valid = true;
	} else	if (pmd) {	/* THP, HugeTLB */
1858 1859 1860
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
1861 1862 1863 1864
	} else {
		*pte = pte_mkyoung(*pte);	/* Just a page... */
		pfn = pte_pfn(*pte);
		pfn_valid = true;
1865 1866 1867 1868 1869 1870 1871 1872
	}

out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1885 1886
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1887 1888 1889
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1890 1891
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1892 1893 1894
	gfn_t gfn;
	int ret, idx;

1895 1896 1897
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1898
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1899

1900 1901 1902 1903 1904 1905
	/* Synchronous External Abort? */
	if (kvm_vcpu_dabt_isextabt(vcpu)) {
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1906 1907 1908
		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
			return 1;

1909 1910 1911 1912
		if (unlikely(!is_iabt)) {
			kvm_inject_vabt(vcpu);
			return 1;
		}
1913 1914
	}

1915 1916
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1917 1918

	/* Check the stage-2 fault is trans. fault or write fault */
1919 1920
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1921 1922 1923 1924
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1925 1926 1927 1928 1929 1930
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1931 1932
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1933
	write_fault = kvm_is_write_fault(vcpu);
1934
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1935 1936
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1937
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1938 1939 1940 1941
			ret = 1;
			goto out_unlock;
		}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1958 1959 1960 1961 1962 1963 1964
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1965
		ret = io_mem_abort(vcpu, run, fault_ipa);
1966 1967 1968
		goto out_unlock;
	}

1969
	/* Userspace should not be able to register out-of-bounds IPAs */
1970
	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1971

1972 1973 1974 1975 1976 1977
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1978
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1979 1980 1981 1982 1983
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1984 1985
}

1986 1987 1988 1989
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
1990 1991
					    gpa_t gpa, u64 size,
					    void *data),
1992
			     void *data)
1993 1994 1995
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1996
	int ret = 0;
1997 1998 1999 2000 2001 2002

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
2003
		gfn_t gpa;
2004 2005 2006 2007 2008 2009 2010

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

2011 2012
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2013
	}
2014 2015

	return ret;
2016 2017
}

2018
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2019
{
2020
	unmap_stage2_range(kvm, gpa, size);
2021
	return 0;
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

2035
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2036 2037 2038
{
	pte_t *pte = (pte_t *)data;

2039
	WARN_ON(size != PAGE_SIZE);
2040 2041 2042 2043 2044 2045 2046 2047
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
2048
	return 0;
2049 2050 2051
}


2052
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2053 2054
{
	unsigned long end = hva + PAGE_SIZE;
2055
	kvm_pfn_t pfn = pte_pfn(pte);
2056 2057 2058
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
2059
		return 0;
2060 2061

	trace_kvm_set_spte_hva(hva);
2062 2063 2064 2065 2066 2067

	/*
	 * We've moved a page around, probably through CoW, so let's treat it
	 * just like a translation fault and clean the cache to the PoC.
	 */
	clean_dcache_guest_page(pfn, PAGE_SIZE);
2068
	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2069
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2070 2071

	return 0;
2072 2073
}

2074
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2075
{
2076
	pud_t *pud;
2077 2078 2079
	pmd_t *pmd;
	pte_t *pte;

2080 2081
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2082 2083
		return 0;

2084 2085 2086
	if (pud)
		return stage2_pudp_test_and_clear_young(pud);
	else if (pmd)
2087
		return stage2_pmdp_test_and_clear_young(pmd);
2088 2089
	else
		return stage2_ptep_test_and_clear_young(pte);
2090 2091
}

2092
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2093
{
2094
	pud_t *pud;
2095 2096 2097
	pmd_t *pmd;
	pte_t *pte;

2098 2099
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2100 2101
		return 0;

2102 2103 2104
	if (pud)
		return kvm_s2pud_young(*pud);
	else if (pmd)
2105
		return pmd_young(*pmd);
2106
	else
2107 2108 2109 2110 2111
		return pte_young(*pte);
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
2112 2113
	if (!kvm->arch.pgd)
		return 0;
2114 2115 2116 2117 2118 2119
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
2120 2121
	if (!kvm->arch.pgd)
		return 0;
2122 2123 2124 2125
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

2126 2127 2128 2129 2130
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

2131 2132
phys_addr_t kvm_mmu_get_httbr(void)
{
2133 2134 2135 2136
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
2137 2138
}

2139 2140 2141 2142 2143
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

2144 2145 2146 2147 2148
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
2149
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

2160 2161
int kvm_mmu_init(void)
{
2162 2163
	int err;

2164
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2165
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2166
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2167
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2168
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2169

2170 2171 2172 2173 2174
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2175

2176 2177 2178 2179
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
2180

M
Marc Zyngier 已提交
2181
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2182
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2183
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2184 2185 2186 2187 2188 2189 2190 2191 2192
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

2193
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2194
	if (!hyp_pgd) {
2195
		kvm_err("Hyp mode PGD not allocated\n");
2196 2197 2198 2199
		err = -ENOMEM;
		goto out;
	}

2200 2201 2202 2203 2204 2205 2206 2207
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
2208

2209 2210 2211
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
2212

2213 2214 2215 2216 2217 2218 2219
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
2220 2221 2222 2223
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
2224 2225
	}

2226
	io_map_base = hyp_idmap_start;
2227
	return 0;
2228
out:
2229
	free_hyp_pgds();
2230
	return err;
2231
}
2232 2233

void kvm_arch_commit_memory_region(struct kvm *kvm,
2234
				   const struct kvm_userspace_memory_region *mem,
2235
				   const struct kvm_memory_slot *old,
2236
				   const struct kvm_memory_slot *new,
2237 2238
				   enum kvm_mr_change change)
{
2239 2240 2241 2242 2243 2244 2245
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
2246 2247 2248 2249
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2250
				   const struct kvm_userspace_memory_region *mem,
2251 2252
				   enum kvm_mr_change change)
{
2253 2254 2255 2256 2257
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

2258 2259
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
2260 2261
		return 0;

2262 2263 2264 2265 2266
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
2267
	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2268 2269
		return -EFAULT;

2270
	down_read(&current->mm->mmap_sem);
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
2308 2309 2310 2311
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
2312

2313
			/* IO region dirty page logging not allowed */
2314 2315 2316 2317
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
2318

2319 2320 2321 2322 2323 2324 2325 2326 2327
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

2328
	if (change == KVM_MR_FLAGS_ONLY)
2329
		goto out;
2330

2331 2332
	spin_lock(&kvm->mmu_lock);
	if (ret)
2333
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2334 2335 2336
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
2337 2338
out:
	up_read(&current->mm->mmap_sem);
2339
	return ret;
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

2353
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
2354 2355 2356 2357 2358
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2359
	kvm_free_stage2_pgd(kvm);
2360 2361 2362 2363 2364
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2365 2366 2367 2368 2369 2370
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2371
}
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2403
	unsigned long hcr = *vcpu_hcr(vcpu);
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2418
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2436
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2437 2438 2439

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}