free-space-cache.c 107.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
J
Josef Bacik 已提交
2 3 4 5
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 */

6
#include <linux/pagemap.h>
J
Josef Bacik 已提交
7
#include <linux/sched.h>
8
#include <linux/sched/signal.h>
9
#include <linux/slab.h>
10
#include <linux/math64.h>
11
#include <linux/ratelimit.h>
12
#include <linux/error-injection.h>
13
#include <linux/sched/mm.h>
J
Josef Bacik 已提交
14
#include "ctree.h"
15 16
#include "free-space-cache.h"
#include "transaction.h"
17
#include "disk-io.h"
18
#include "extent_io.h"
19
#include "inode-map.h"
20
#include "volumes.h"
21
#include "space-info.h"
22
#include "delalloc-space.h"
23
#include "block-group.h"
24
#include "discard.h"
25

26
#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
27 28
#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
#define FORCE_EXTENT_THRESHOLD	SZ_1M
J
Josef Bacik 已提交
29

30 31 32 33 34 35
struct btrfs_trim_range {
	u64 start;
	u64 bytes;
	struct list_head list;
};

36 37
static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
				struct btrfs_free_space *bitmap_info);
38
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
39
			   struct btrfs_free_space *info);
40 41
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info);
42 43 44 45
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
			     struct btrfs_trans_handle *trans,
			     struct btrfs_io_ctl *io_ctl,
			     struct btrfs_path *path);
J
Josef Bacik 已提交
46

47 48 49
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
					       struct btrfs_path *path,
					       u64 offset)
50
{
51
	struct btrfs_fs_info *fs_info = root->fs_info;
52 53 54 55 56 57
	struct btrfs_key key;
	struct btrfs_key location;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	struct inode *inode = NULL;
58
	unsigned nofs_flag;
59 60 61
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
62
	key.offset = offset;
63 64 65 66 67 68
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ERR_PTR(ret);
	if (ret > 0) {
69
		btrfs_release_path(path);
70 71 72 73 74 75 76 77
		return ERR_PTR(-ENOENT);
	}

	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_free_space_key(leaf, header, &disk_key);
	btrfs_disk_key_to_cpu(&location, &disk_key);
78
	btrfs_release_path(path);
79

80 81 82 83 84
	/*
	 * We are often under a trans handle at this point, so we need to make
	 * sure NOFS is set to keep us from deadlocking.
	 */
	nofs_flag = memalloc_nofs_save();
D
David Sterba 已提交
85
	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
86
	btrfs_release_path(path);
87
	memalloc_nofs_restore(nofs_flag);
88 89 90
	if (IS_ERR(inode))
		return inode;

A
Al Viro 已提交
91
	mapping_set_gfp_mask(inode->i_mapping,
92 93
			mapping_gfp_constraint(inode->i_mapping,
			~(__GFP_FS | __GFP_HIGHMEM)));
94

95 96 97
	return inode;
}

98
struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
99
		struct btrfs_path *path)
100
{
101
	struct btrfs_fs_info *fs_info = block_group->fs_info;
102
	struct inode *inode = NULL;
103
	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
104 105 106 107 108 109 110 111

	spin_lock(&block_group->lock);
	if (block_group->inode)
		inode = igrab(block_group->inode);
	spin_unlock(&block_group->lock);
	if (inode)
		return inode;

112
	inode = __lookup_free_space_inode(fs_info->tree_root, path,
113
					  block_group->start);
114 115 116
	if (IS_ERR(inode))
		return inode;

117
	spin_lock(&block_group->lock);
118
	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
119
		btrfs_info(fs_info, "Old style space inode found, converting.");
120 121
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
			BTRFS_INODE_NODATACOW;
122 123 124
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
	}

125
	if (!block_group->iref) {
126 127 128 129 130 131 132 133
		block_group->inode = igrab(inode);
		block_group->iref = 1;
	}
	spin_unlock(&block_group->lock);

	return inode;
}

134 135 136 137
static int __create_free_space_inode(struct btrfs_root *root,
				     struct btrfs_trans_handle *trans,
				     struct btrfs_path *path,
				     u64 ino, u64 offset)
138 139 140 141 142 143
{
	struct btrfs_key key;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
144
	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
145 146
	int ret;

147
	ret = btrfs_insert_empty_inode(trans, root, path, ino);
148 149 150
	if (ret)
		return ret;

151 152 153 154
	/* We inline crc's for the free disk space cache */
	if (ino != BTRFS_FREE_INO_OBJECTID)
		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;

155 156 157 158
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159
	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160 161 162 163 164 165 166
			     sizeof(*inode_item));
	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
	btrfs_set_inode_size(leaf, inode_item, 0);
	btrfs_set_inode_nbytes(leaf, inode_item, 0);
	btrfs_set_inode_uid(leaf, inode_item, 0);
	btrfs_set_inode_gid(leaf, inode_item, 0);
	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167
	btrfs_set_inode_flags(leaf, inode_item, flags);
168 169
	btrfs_set_inode_nlink(leaf, inode_item, 1);
	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170
	btrfs_set_inode_block_group(leaf, inode_item, offset);
171
	btrfs_mark_buffer_dirty(leaf);
172
	btrfs_release_path(path);
173 174

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175
	key.offset = offset;
176 177 178 179
	key.type = 0;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(struct btrfs_free_space_header));
	if (ret < 0) {
180
		btrfs_release_path(path);
181 182
		return ret;
	}
183

184 185 186
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
187
	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188 189
	btrfs_set_free_space_key(leaf, header, &disk_key);
	btrfs_mark_buffer_dirty(leaf);
190
	btrfs_release_path(path);
191 192 193 194

	return 0;
}

195
int create_free_space_inode(struct btrfs_trans_handle *trans,
196
			    struct btrfs_block_group *block_group,
197 198 199 200 201
			    struct btrfs_path *path)
{
	int ret;
	u64 ino;

202
	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
203 204 205
	if (ret < 0)
		return ret;

206
	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
207
					 ino, block_group->start);
208 209
}

210
int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
211
				       struct btrfs_block_rsv *rsv)
212
{
213
	u64 needed_bytes;
214
	int ret;
215 216

	/* 1 for slack space, 1 for updating the inode */
217 218
	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
		btrfs_calc_metadata_size(fs_info, 1);
219

220 221 222 223 224 225
	spin_lock(&rsv->lock);
	if (rsv->reserved < needed_bytes)
		ret = -ENOSPC;
	else
		ret = 0;
	spin_unlock(&rsv->lock);
226
	return ret;
227 228
}

229
int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
230
				    struct btrfs_block_group *block_group,
231 232
				    struct inode *inode)
{
233
	struct btrfs_root *root = BTRFS_I(inode)->root;
234
	int ret = 0;
235
	bool locked = false;
236 237

	if (block_group) {
238 239 240 241 242 243
		struct btrfs_path *path = btrfs_alloc_path();

		if (!path) {
			ret = -ENOMEM;
			goto fail;
		}
244
		locked = true;
245 246 247 248
		mutex_lock(&trans->transaction->cache_write_mutex);
		if (!list_empty(&block_group->io_list)) {
			list_del_init(&block_group->io_list);

249
			btrfs_wait_cache_io(trans, block_group, path);
250 251 252 253 254 255 256 257 258 259
			btrfs_put_block_group(block_group);
		}

		/*
		 * now that we've truncated the cache away, its no longer
		 * setup or written
		 */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
260
		btrfs_free_path(path);
261
	}
262

263
	btrfs_i_size_write(BTRFS_I(inode), 0);
264
	truncate_pagecache(inode, 0);
265 266

	/*
267 268
	 * We skip the throttling logic for free space cache inodes, so we don't
	 * need to check for -EAGAIN.
269 270 271
	 */
	ret = btrfs_truncate_inode_items(trans, root, inode,
					 0, BTRFS_EXTENT_DATA_KEY);
272 273
	if (ret)
		goto fail;
274

275
	ret = btrfs_update_inode(trans, root, inode);
276 277

fail:
278 279
	if (locked)
		mutex_unlock(&trans->transaction->cache_write_mutex);
280
	if (ret)
281
		btrfs_abort_transaction(trans, ret);
282

283
	return ret;
284 285
}

286
static void readahead_cache(struct inode *inode)
287 288 289 290 291 292
{
	struct file_ra_state *ra;
	unsigned long last_index;

	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
293
		return;
294 295

	file_ra_state_init(ra, inode->i_mapping);
296
	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
297 298 299 300 301 302

	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);

	kfree(ra);
}

303
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
304
		       int write)
305
{
306 307 308
	int num_pages;
	int check_crcs = 0;

309
	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
310

311
	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
312 313
		check_crcs = 1;

314
	/* Make sure we can fit our crcs and generation into the first page */
315
	if (write && check_crcs &&
316
	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
317 318
		return -ENOSPC;

319
	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
320

321
	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
322 323
	if (!io_ctl->pages)
		return -ENOMEM;
324 325

	io_ctl->num_pages = num_pages;
326
	io_ctl->fs_info = btrfs_sb(inode->i_sb);
327
	io_ctl->check_crcs = check_crcs;
328
	io_ctl->inode = inode;
329

330 331
	return 0;
}
332
ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
333

334
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
335 336
{
	kfree(io_ctl->pages);
337
	io_ctl->pages = NULL;
338 339
}

340
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
341 342 343 344 345 346 347
{
	if (io_ctl->cur) {
		io_ctl->cur = NULL;
		io_ctl->orig = NULL;
	}
}

348
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
349
{
350
	ASSERT(io_ctl->index < io_ctl->num_pages);
351
	io_ctl->page = io_ctl->pages[io_ctl->index++];
352
	io_ctl->cur = page_address(io_ctl->page);
353
	io_ctl->orig = io_ctl->cur;
354
	io_ctl->size = PAGE_SIZE;
355
	if (clear)
356
		clear_page(io_ctl->cur);
357 358
}

359
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
360 361 362 363 364 365
{
	int i;

	io_ctl_unmap_page(io_ctl);

	for (i = 0; i < io_ctl->num_pages; i++) {
366 367 368
		if (io_ctl->pages[i]) {
			ClearPageChecked(io_ctl->pages[i]);
			unlock_page(io_ctl->pages[i]);
369
			put_page(io_ctl->pages[i]);
370
		}
371 372 373
	}
}

374
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
375 376
{
	struct page *page;
377
	struct inode *inode = io_ctl->inode;
378 379 380 381 382 383 384 385 386 387 388 389 390
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
	int i;

	for (i = 0; i < io_ctl->num_pages; i++) {
		page = find_or_create_page(inode->i_mapping, i, mask);
		if (!page) {
			io_ctl_drop_pages(io_ctl);
			return -ENOMEM;
		}
		io_ctl->pages[i] = page;
		if (uptodate && !PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
391 392 393 394 395 396
			if (page->mapping != inode->i_mapping) {
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					  "free space cache page truncated");
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
397
			if (!PageUptodate(page)) {
398 399
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					   "error reading free space cache");
400 401 402 403 404 405
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
		}
	}

406 407 408 409 410
	for (i = 0; i < io_ctl->num_pages; i++) {
		clear_page_dirty_for_io(io_ctl->pages[i]);
		set_page_extent_mapped(io_ctl->pages[i]);
	}

411 412 413
	return 0;
}

414
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
415
{
A
Al Viro 已提交
416
	__le64 *val;
417 418 419 420

	io_ctl_map_page(io_ctl, 1);

	/*
421 422
	 * Skip the csum areas.  If we don't check crcs then we just have a
	 * 64bit chunk at the front of the first page.
423
	 */
424 425 426 427 428 429 430
	if (io_ctl->check_crcs) {
		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
431 432 433 434 435 436

	val = io_ctl->cur;
	*val = cpu_to_le64(generation);
	io_ctl->cur += sizeof(u64);
}

437
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
438
{
A
Al Viro 已提交
439
	__le64 *gen;
440

441 442 443 444 445 446 447 448 449 450 451 452
	/*
	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
	 * chunk at the front of the first page.
	 */
	if (io_ctl->check_crcs) {
		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
		io_ctl->size -= sizeof(u64) +
			(sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
453 454 455

	gen = io_ctl->cur;
	if (le64_to_cpu(*gen) != generation) {
456
		btrfs_err_rl(io_ctl->fs_info,
457 458
			"space cache generation (%llu) does not match inode (%llu)",
				*gen, generation);
459 460 461 462
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}
	io_ctl->cur += sizeof(u64);
463 464 465
	return 0;
}

466
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
467 468 469 470 471 472 473 474 475 476 477
{
	u32 *tmp;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_unmap_page(io_ctl);
		return;
	}

	if (index == 0)
478
		offset = sizeof(u32) * io_ctl->num_pages;
479

480 481
	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
	btrfs_crc32c_final(crc, (u8 *)&crc);
482
	io_ctl_unmap_page(io_ctl);
483
	tmp = page_address(io_ctl->pages[0]);
484 485 486 487
	tmp += index;
	*tmp = crc;
}

488
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
489 490 491 492 493 494 495 496 497 498 499 500 501
{
	u32 *tmp, val;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_map_page(io_ctl, 0);
		return 0;
	}

	if (index == 0)
		offset = sizeof(u32) * io_ctl->num_pages;

502
	tmp = page_address(io_ctl->pages[0]);
503 504 505 506
	tmp += index;
	val = *tmp;

	io_ctl_map_page(io_ctl, 0);
507 508
	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
	btrfs_crc32c_final(crc, (u8 *)&crc);
509
	if (val != crc) {
510
		btrfs_err_rl(io_ctl->fs_info,
511
			"csum mismatch on free space cache");
512 513 514 515
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}

516 517 518
	return 0;
}

519
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
			    void *bitmap)
{
	struct btrfs_free_space_entry *entry;

	if (!io_ctl->cur)
		return -ENOSPC;

	entry = io_ctl->cur;
	entry->offset = cpu_to_le64(offset);
	entry->bytes = cpu_to_le64(bytes);
	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
		BTRFS_FREE_SPACE_EXTENT;
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
		return 0;

538
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539 540 541 542 543 544 545 546 547 548

	/* No more pages to map */
	if (io_ctl->index >= io_ctl->num_pages)
		return 0;

	/* map the next page */
	io_ctl_map_page(io_ctl, 1);
	return 0;
}

549
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
550 551 552 553 554 555 556 557 558
{
	if (!io_ctl->cur)
		return -ENOSPC;

	/*
	 * If we aren't at the start of the current page, unmap this one and
	 * map the next one if there is any left.
	 */
	if (io_ctl->cur != io_ctl->orig) {
559
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
560 561 562 563 564
		if (io_ctl->index >= io_ctl->num_pages)
			return -ENOSPC;
		io_ctl_map_page(io_ctl, 0);
	}

565
	copy_page(io_ctl->cur, bitmap);
566
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
567 568 569 570 571
	if (io_ctl->index < io_ctl->num_pages)
		io_ctl_map_page(io_ctl, 0);
	return 0;
}

572
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
573
{
574 575 576 577 578 579 580 581
	/*
	 * If we're not on the boundary we know we've modified the page and we
	 * need to crc the page.
	 */
	if (io_ctl->cur != io_ctl->orig)
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
	else
		io_ctl_unmap_page(io_ctl);
582 583 584

	while (io_ctl->index < io_ctl->num_pages) {
		io_ctl_map_page(io_ctl, 1);
585
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
586 587 588
	}
}

589
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
590
			    struct btrfs_free_space *entry, u8 *type)
591 592
{
	struct btrfs_free_space_entry *e;
593 594 595 596 597 598 599
	int ret;

	if (!io_ctl->cur) {
		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
		if (ret)
			return ret;
	}
600 601 602 603

	e = io_ctl->cur;
	entry->offset = le64_to_cpu(e->offset);
	entry->bytes = le64_to_cpu(e->bytes);
604
	*type = e->type;
605 606 607 608
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
609
		return 0;
610 611 612

	io_ctl_unmap_page(io_ctl);

613
	return 0;
614 615
}

616
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
617
			      struct btrfs_free_space *entry)
618
{
619 620 621 622 623 624
	int ret;

	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
	if (ret)
		return ret;

625
	copy_page(entry->bitmap, io_ctl->cur);
626
	io_ctl_unmap_page(io_ctl);
627 628

	return 0;
629 630
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/*
 * Since we attach pinned extents after the fact we can have contiguous sections
 * of free space that are split up in entries.  This poses a problem with the
 * tree logging stuff since it could have allocated across what appears to be 2
 * entries since we would have merged the entries when adding the pinned extents
 * back to the free space cache.  So run through the space cache that we just
 * loaded and merge contiguous entries.  This will make the log replay stuff not
 * blow up and it will make for nicer allocator behavior.
 */
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_free_space *e, *prev = NULL;
	struct rb_node *n;

again:
	spin_lock(&ctl->tree_lock);
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
		e = rb_entry(n, struct btrfs_free_space, offset_index);
		if (!prev)
			goto next;
		if (e->bitmap || prev->bitmap)
			goto next;
		if (prev->offset + prev->bytes == e->offset) {
			unlink_free_space(ctl, prev);
			unlink_free_space(ctl, e);
			prev->bytes += e->bytes;
			kmem_cache_free(btrfs_free_space_cachep, e);
			link_free_space(ctl, prev);
			prev = NULL;
			spin_unlock(&ctl->tree_lock);
			goto again;
		}
next:
		prev = e;
	}
	spin_unlock(&ctl->tree_lock);
}

669 670 671
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_path *path, u64 offset)
672
{
673
	struct btrfs_fs_info *fs_info = root->fs_info;
674 675
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
676
	struct btrfs_io_ctl io_ctl;
677
	struct btrfs_key key;
678
	struct btrfs_free_space *e, *n;
679
	LIST_HEAD(bitmaps);
680 681 682
	u64 num_entries;
	u64 num_bitmaps;
	u64 generation;
683
	u8 type;
684
	int ret = 0;
685 686

	/* Nothing in the space cache, goodbye */
687
	if (!i_size_read(inode))
688
		return 0;
689 690

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
691
	key.offset = offset;
692 693 694
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
695
	if (ret < 0)
696
		return 0;
697
	else if (ret > 0) {
698
		btrfs_release_path(path);
699
		return 0;
700 701
	}

702 703
	ret = -1;

704 705 706 707 708 709
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	num_entries = btrfs_free_space_entries(leaf, header);
	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
	generation = btrfs_free_space_generation(leaf, header);
710
	btrfs_release_path(path);
711

712
	if (!BTRFS_I(inode)->generation) {
713
		btrfs_info(fs_info,
714
			   "the free space cache file (%llu) is invalid, skip it",
715 716 717 718
			   offset);
		return 0;
	}

719
	if (BTRFS_I(inode)->generation != generation) {
720 721 722
		btrfs_err(fs_info,
			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
			  BTRFS_I(inode)->generation, generation);
723
		return 0;
724 725 726
	}

	if (!num_entries)
727
		return 0;
728

729
	ret = io_ctl_init(&io_ctl, inode, 0);
730 731 732
	if (ret)
		return ret;

733
	readahead_cache(inode);
734

735
	ret = io_ctl_prepare_pages(&io_ctl, true);
736 737
	if (ret)
		goto out;
738

739 740 741 742
	ret = io_ctl_check_crc(&io_ctl, 0);
	if (ret)
		goto free_cache;

743 744 745
	ret = io_ctl_check_generation(&io_ctl, generation);
	if (ret)
		goto free_cache;
746

747 748 749 750
	while (num_entries) {
		e = kmem_cache_zalloc(btrfs_free_space_cachep,
				      GFP_NOFS);
		if (!e)
751 752
			goto free_cache;

753 754 755 756 757 758
		ret = io_ctl_read_entry(&io_ctl, e, &type);
		if (ret) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
		}

759 760 761
		/*
		 * Sync discard ensures that the free space cache is always
		 * trimmed.  So when reading this in, the state should reflect
762 763
		 * that.  We also do this for async as a stop gap for lack of
		 * persistence.
764
		 */
765 766
		if (btrfs_test_opt(fs_info, DISCARD_SYNC) ||
		    btrfs_test_opt(fs_info, DISCARD_ASYNC))
767 768
			e->trim_state = BTRFS_TRIM_STATE_TRIMMED;

769 770 771
		if (!e->bytes) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
772
		}
773 774 775 776 777 778

		if (type == BTRFS_FREE_SPACE_EXTENT) {
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
779
				btrfs_err(fs_info,
780
					"Duplicate entries in free space cache, dumping");
781
				kmem_cache_free(btrfs_free_space_cachep, e);
782 783
				goto free_cache;
			}
784
		} else {
785
			ASSERT(num_bitmaps);
786
			num_bitmaps--;
787 788
			e->bitmap = kmem_cache_zalloc(
					btrfs_free_space_bitmap_cachep, GFP_NOFS);
789 790 791
			if (!e->bitmap) {
				kmem_cache_free(
					btrfs_free_space_cachep, e);
792 793
				goto free_cache;
			}
794 795 796 797 798 799
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			ctl->total_bitmaps++;
			ctl->op->recalc_thresholds(ctl);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
800
				btrfs_err(fs_info,
801
					"Duplicate entries in free space cache, dumping");
802
				kmem_cache_free(btrfs_free_space_cachep, e);
803 804
				goto free_cache;
			}
805
			list_add_tail(&e->list, &bitmaps);
806 807
		}

808 809
		num_entries--;
	}
810

811 812
	io_ctl_unmap_page(&io_ctl);

813 814 815 816 817
	/*
	 * We add the bitmaps at the end of the entries in order that
	 * the bitmap entries are added to the cache.
	 */
	list_for_each_entry_safe(e, n, &bitmaps, list) {
818
		list_del_init(&e->list);
819 820 821
		ret = io_ctl_read_bitmap(&io_ctl, e);
		if (ret)
			goto free_cache;
822
		e->bitmap_extents = count_bitmap_extents(ctl, e);
823
		if (!btrfs_free_space_trimmed(e)) {
824 825
			ctl->discardable_extents[BTRFS_STAT_CURR] +=
				e->bitmap_extents;
826 827
			ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes;
		}
828 829
	}

830
	io_ctl_drop_pages(&io_ctl);
831
	merge_space_tree(ctl);
832 833
	ret = 1;
out:
834
	btrfs_discard_update_discardable(ctl->private, ctl);
835
	io_ctl_free(&io_ctl);
836 837
	return ret;
free_cache:
838
	io_ctl_drop_pages(&io_ctl);
839
	__btrfs_remove_free_space_cache(ctl);
840 841 842
	goto out;
}

843
int load_free_space_cache(struct btrfs_block_group *block_group)
J
Josef Bacik 已提交
844
{
845
	struct btrfs_fs_info *fs_info = block_group->fs_info;
846
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
847 848
	struct inode *inode;
	struct btrfs_path *path;
849
	int ret = 0;
850
	bool matched;
851
	u64 used = block_group->used;
852 853 854 855 856

	/*
	 * If this block group has been marked to be cleared for one reason or
	 * another then we can't trust the on disk cache, so just return.
	 */
857
	spin_lock(&block_group->lock);
858 859 860 861
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
		return 0;
	}
862
	spin_unlock(&block_group->lock);
863 864 865 866

	path = btrfs_alloc_path();
	if (!path)
		return 0;
867 868
	path->search_commit_root = 1;
	path->skip_locking = 1;
869

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	/*
	 * We must pass a path with search_commit_root set to btrfs_iget in
	 * order to avoid a deadlock when allocating extents for the tree root.
	 *
	 * When we are COWing an extent buffer from the tree root, when looking
	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
	 * block group without its free space cache loaded. When we find one
	 * we must load its space cache which requires reading its free space
	 * cache's inode item from the root tree. If this inode item is located
	 * in the same leaf that we started COWing before, then we end up in
	 * deadlock on the extent buffer (trying to read lock it when we
	 * previously write locked it).
	 *
	 * It's safe to read the inode item using the commit root because
	 * block groups, once loaded, stay in memory forever (until they are
	 * removed) as well as their space caches once loaded. New block groups
	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
	 * we will never try to read their inode item while the fs is mounted.
	 */
889
	inode = lookup_free_space_inode(block_group, path);
890 891 892 893 894
	if (IS_ERR(inode)) {
		btrfs_free_path(path);
		return 0;
	}

895 896 897 898
	/* We may have converted the inode and made the cache invalid. */
	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
899
		btrfs_free_path(path);
900 901 902 903
		goto out;
	}
	spin_unlock(&block_group->lock);

904
	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
905
				      path, block_group->start);
906 907 908 909 910
	btrfs_free_path(path);
	if (ret <= 0)
		goto out;

	spin_lock(&ctl->tree_lock);
911
	matched = (ctl->free_space == (block_group->length - used -
912 913 914 915 916
				       block_group->bytes_super));
	spin_unlock(&ctl->tree_lock);

	if (!matched) {
		__btrfs_remove_free_space_cache(ctl);
J
Jeff Mahoney 已提交
917 918
		btrfs_warn(fs_info,
			   "block group %llu has wrong amount of free space",
919
			   block_group->start);
920 921 922 923 924 925 926 927
		ret = -1;
	}
out:
	if (ret < 0) {
		/* This cache is bogus, make sure it gets cleared */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
928
		ret = 0;
929

J
Jeff Mahoney 已提交
930 931
		btrfs_warn(fs_info,
			   "failed to load free space cache for block group %llu, rebuilding it now",
932
			   block_group->start);
933 934 935 936
	}

	iput(inode);
	return ret;
937 938
}

939
static noinline_for_stack
940
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
941
			      struct btrfs_free_space_ctl *ctl,
942
			      struct btrfs_block_group *block_group,
943 944
			      int *entries, int *bitmaps,
			      struct list_head *bitmap_list)
J
Josef Bacik 已提交
945
{
946
	int ret;
947
	struct btrfs_free_cluster *cluster = NULL;
948
	struct btrfs_free_cluster *cluster_locked = NULL;
949
	struct rb_node *node = rb_first(&ctl->free_space_offset);
950
	struct btrfs_trim_range *trim_entry;
951

952
	/* Get the cluster for this block_group if it exists */
953
	if (block_group && !list_empty(&block_group->cluster_list)) {
954 955 956
		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
957
	}
958

959
	if (!node && cluster) {
960 961
		cluster_locked = cluster;
		spin_lock(&cluster_locked->lock);
962 963 964 965
		node = rb_first(&cluster->root);
		cluster = NULL;
	}

966 967 968
	/* Write out the extent entries */
	while (node) {
		struct btrfs_free_space *e;
J
Josef Bacik 已提交
969

970
		e = rb_entry(node, struct btrfs_free_space, offset_index);
971
		*entries += 1;
J
Josef Bacik 已提交
972

973
		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
974 975
				       e->bitmap);
		if (ret)
976
			goto fail;
977

978
		if (e->bitmap) {
979 980
			list_add_tail(&e->list, bitmap_list);
			*bitmaps += 1;
981
		}
982 983 984
		node = rb_next(node);
		if (!node && cluster) {
			node = rb_first(&cluster->root);
985 986
			cluster_locked = cluster;
			spin_lock(&cluster_locked->lock);
987
			cluster = NULL;
988
		}
989
	}
990 991 992 993
	if (cluster_locked) {
		spin_unlock(&cluster_locked->lock);
		cluster_locked = NULL;
	}
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

	/*
	 * Make sure we don't miss any range that was removed from our rbtree
	 * because trimming is running. Otherwise after a umount+mount (or crash
	 * after committing the transaction) we would leak free space and get
	 * an inconsistent free space cache report from fsck.
	 */
	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
				       trim_entry->bytes, NULL);
		if (ret)
			goto fail;
		*entries += 1;
	}

1009 1010
	return 0;
fail:
1011 1012
	if (cluster_locked)
		spin_unlock(&cluster_locked->lock);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	return -ENOSPC;
}

static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct inode *inode,
		  struct btrfs_path *path, u64 offset,
		  int entries, int bitmaps)
{
	struct btrfs_key key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
	key.offset = offset;
	key.type = 0;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0) {
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1035
				 EXTENT_DELALLOC, 0, 0, NULL);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		goto fail;
	}
	leaf = path->nodes[0];
	if (ret > 0) {
		struct btrfs_key found_key;
		ASSERT(path->slots[0]);
		path->slots[0]--;
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
		    found_key.offset != offset) {
			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1047 1048
					 inode->i_size - 1, EXTENT_DELALLOC, 0,
					 0, NULL);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
			btrfs_release_path(path);
			goto fail;
		}
	}

	BTRFS_I(inode)->generation = trans->transid;
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_set_free_space_entries(leaf, header, entries);
	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
	btrfs_set_free_space_generation(leaf, header, trans->transid);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_release_path(path);

	return 0;

fail:
	return -1;
}

1069
static noinline_for_stack int write_pinned_extent_entries(
1070
			    struct btrfs_trans_handle *trans,
1071
			    struct btrfs_block_group *block_group,
1072
			    struct btrfs_io_ctl *io_ctl,
1073
			    int *entries)
1074 1075 1076 1077
{
	u64 start, extent_start, extent_end, len;
	struct extent_io_tree *unpin = NULL;
	int ret;
1078

1079 1080 1081
	if (!block_group)
		return 0;

1082 1083 1084
	/*
	 * We want to add any pinned extents to our free space cache
	 * so we don't leak the space
1085
	 *
1086 1087 1088
	 * We shouldn't have switched the pinned extents yet so this is the
	 * right one
	 */
1089
	unpin = &trans->transaction->pinned_extents;
1090

1091
	start = block_group->start;
1092

1093
	while (start < block_group->start + block_group->length) {
1094 1095
		ret = find_first_extent_bit(unpin, start,
					    &extent_start, &extent_end,
1096
					    EXTENT_DIRTY, NULL);
1097 1098
		if (ret)
			return 0;
J
Josef Bacik 已提交
1099

1100
		/* This pinned extent is out of our range */
1101
		if (extent_start >= block_group->start + block_group->length)
1102
			return 0;
1103

1104
		extent_start = max(extent_start, start);
1105 1106
		extent_end = min(block_group->start + block_group->length,
				 extent_end + 1);
1107
		len = extent_end - extent_start;
J
Josef Bacik 已提交
1108

1109 1110
		*entries += 1;
		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1111
		if (ret)
1112
			return -ENOSPC;
J
Josef Bacik 已提交
1113

1114
		start = extent_end;
1115
	}
J
Josef Bacik 已提交
1116

1117 1118 1119 1120
	return 0;
}

static noinline_for_stack int
1121
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1122
{
1123
	struct btrfs_free_space *entry, *next;
1124 1125
	int ret;

J
Josef Bacik 已提交
1126
	/* Write out the bitmaps */
1127
	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1128
		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1129
		if (ret)
1130
			return -ENOSPC;
J
Josef Bacik 已提交
1131
		list_del_init(&entry->list);
1132 1133
	}

1134 1135
	return 0;
}
J
Josef Bacik 已提交
1136

1137 1138 1139
static int flush_dirty_cache(struct inode *inode)
{
	int ret;
1140

1141
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1142
	if (ret)
1143
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1144
				 EXTENT_DELALLOC, 0, 0, NULL);
J
Josef Bacik 已提交
1145

1146
	return ret;
1147 1148 1149
}

static void noinline_for_stack
1150
cleanup_bitmap_list(struct list_head *bitmap_list)
1151
{
1152
	struct btrfs_free_space *entry, *next;
1153

1154
	list_for_each_entry_safe(entry, next, bitmap_list, list)
1155
		list_del_init(&entry->list);
1156 1157 1158 1159 1160
}

static void noinline_for_stack
cleanup_write_cache_enospc(struct inode *inode,
			   struct btrfs_io_ctl *io_ctl,
1161
			   struct extent_state **cached_state)
1162
{
1163 1164
	io_ctl_drop_pages(io_ctl);
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1165
			     i_size_read(inode) - 1, cached_state);
1166
}
1167

1168 1169
static int __btrfs_wait_cache_io(struct btrfs_root *root,
				 struct btrfs_trans_handle *trans,
1170
				 struct btrfs_block_group *block_group,
1171 1172
				 struct btrfs_io_ctl *io_ctl,
				 struct btrfs_path *path, u64 offset)
1173 1174 1175 1176
{
	int ret;
	struct inode *inode = io_ctl->inode;

1177 1178 1179
	if (!inode)
		return 0;

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	/* Flush the dirty pages in the cache file. */
	ret = flush_dirty_cache(inode);
	if (ret)
		goto out;

	/* Update the cache item to tell everyone this cache file is valid. */
	ret = update_cache_item(trans, root, inode, path, offset,
				io_ctl->entries, io_ctl->bitmaps);
out:
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		if (block_group) {
1194
#ifdef CONFIG_BTRFS_DEBUG
1195
			btrfs_err(root->fs_info,
1196
				  "failed to write free space cache for block group %llu",
1197
				  block_group->start);
1198 1199 1200 1201 1202 1203
#endif
		}
	}
	btrfs_update_inode(trans, root, inode);

	if (block_group) {
1204 1205 1206 1207
		/* the dirty list is protected by the dirty_bgs_lock */
		spin_lock(&trans->transaction->dirty_bgs_lock);

		/* the disk_cache_state is protected by the block group lock */
1208 1209 1210 1211
		spin_lock(&block_group->lock);

		/*
		 * only mark this as written if we didn't get put back on
1212 1213
		 * the dirty list while waiting for IO.   Otherwise our
		 * cache state won't be right, and we won't get written again
1214 1215 1216 1217 1218 1219 1220
		 */
		if (!ret && list_empty(&block_group->dirty_list))
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		else if (ret)
			block_group->disk_cache_state = BTRFS_DC_ERROR;

		spin_unlock(&block_group->lock);
1221
		spin_unlock(&trans->transaction->dirty_bgs_lock);
1222 1223 1224 1225 1226 1227 1228 1229
		io_ctl->inode = NULL;
		iput(inode);
	}

	return ret;

}

1230 1231 1232 1233 1234 1235 1236 1237 1238
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
				    struct btrfs_trans_handle *trans,
				    struct btrfs_io_ctl *io_ctl,
				    struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
}

int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1239
			struct btrfs_block_group *block_group,
1240 1241 1242 1243
			struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
				     block_group, &block_group->io_ctl,
1244
				     path, block_group->start);
1245 1246
}

1247 1248 1249 1250 1251 1252 1253 1254
/**
 * __btrfs_write_out_cache - write out cached info to an inode
 * @root - the root the inode belongs to
 * @ctl - the free space cache we are going to write out
 * @block_group - the block_group for this cache if it belongs to a block_group
 * @trans - the trans handle
 *
 * This function writes out a free space cache struct to disk for quick recovery
G
Geliang Tang 已提交
1255
 * on mount.  This will return 0 if it was successful in writing the cache out,
1256
 * or an errno if it was not.
1257 1258 1259
 */
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
1260
				   struct btrfs_block_group *block_group,
1261
				   struct btrfs_io_ctl *io_ctl,
1262
				   struct btrfs_trans_handle *trans)
1263 1264
{
	struct extent_state *cached_state = NULL;
1265
	LIST_HEAD(bitmap_list);
1266 1267 1268
	int entries = 0;
	int bitmaps = 0;
	int ret;
1269
	int must_iput = 0;
1270 1271

	if (!i_size_read(inode))
1272
		return -EIO;
1273

1274
	WARN_ON(io_ctl->pages);
1275
	ret = io_ctl_init(io_ctl, inode, 1);
1276
	if (ret)
1277
		return ret;
1278

1279 1280 1281 1282 1283 1284 1285 1286 1287
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
		down_write(&block_group->data_rwsem);
		spin_lock(&block_group->lock);
		if (block_group->delalloc_bytes) {
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
			spin_unlock(&block_group->lock);
			up_write(&block_group->data_rwsem);
			BTRFS_I(inode)->generation = 0;
			ret = 0;
1288
			must_iput = 1;
1289 1290 1291 1292 1293
			goto out;
		}
		spin_unlock(&block_group->lock);
	}

1294
	/* Lock all pages first so we can lock the extent safely. */
1295
	ret = io_ctl_prepare_pages(io_ctl, false);
1296
	if (ret)
1297
		goto out_unlock;
1298 1299

	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1300
			 &cached_state);
1301

1302
	io_ctl_set_generation(io_ctl, trans->transid);
1303

1304
	mutex_lock(&ctl->cache_writeout_mutex);
1305
	/* Write out the extent entries in the free space cache */
1306
	spin_lock(&ctl->tree_lock);
1307
	ret = write_cache_extent_entries(io_ctl, ctl,
1308 1309
					 block_group, &entries, &bitmaps,
					 &bitmap_list);
1310 1311
	if (ret)
		goto out_nospc_locked;
1312

1313 1314 1315 1316
	/*
	 * Some spaces that are freed in the current transaction are pinned,
	 * they will be added into free space cache after the transaction is
	 * committed, we shouldn't lose them.
1317 1318 1319
	 *
	 * If this changes while we are working we'll get added back to
	 * the dirty list and redo it.  No locking needed
1320
	 */
1321
	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1322 1323
	if (ret)
		goto out_nospc_locked;
1324

1325 1326 1327 1328 1329
	/*
	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
	 * locked while doing it because a concurrent trim can be manipulating
	 * or freeing the bitmap.
	 */
1330
	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1331
	spin_unlock(&ctl->tree_lock);
1332
	mutex_unlock(&ctl->cache_writeout_mutex);
1333 1334 1335 1336
	if (ret)
		goto out_nospc;

	/* Zero out the rest of the pages just to make sure */
1337
	io_ctl_zero_remaining_pages(io_ctl);
1338

1339
	/* Everything is written out, now we dirty the pages in the file. */
1340 1341
	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
				i_size_read(inode), &cached_state);
1342
	if (ret)
1343
		goto out_nospc;
1344

1345 1346
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);
1347 1348 1349 1350
	/*
	 * Release the pages and unlock the extent, we will flush
	 * them out later
	 */
1351
	io_ctl_drop_pages(io_ctl);
1352 1353

	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1354
			     i_size_read(inode) - 1, &cached_state);
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364
	/*
	 * at this point the pages are under IO and we're happy,
	 * The caller is responsible for waiting on them and updating the
	 * the cache and the inode
	 */
	io_ctl->entries = entries;
	io_ctl->bitmaps = bitmaps;

	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1365
	if (ret)
1366 1367
		goto out;

1368 1369
	return 0;

1370 1371 1372 1373 1374
out_nospc_locked:
	cleanup_bitmap_list(&bitmap_list);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

1375
out_nospc:
1376
	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1377

1378
out_unlock:
1379 1380 1381
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
out:
	io_ctl->inode = NULL;
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
	}
	btrfs_update_inode(trans, root, inode);
	if (must_iput)
		iput(inode);
	return ret;
1393 1394
}

1395
int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1396
			  struct btrfs_block_group *block_group,
1397 1398
			  struct btrfs_path *path)
{
1399
	struct btrfs_fs_info *fs_info = trans->fs_info;
1400 1401 1402 1403 1404 1405 1406
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct inode *inode;
	int ret = 0;

	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
		spin_unlock(&block_group->lock);
1407 1408
		return 0;
	}
1409 1410
	spin_unlock(&block_group->lock);

1411
	inode = lookup_free_space_inode(block_group, path);
1412 1413 1414
	if (IS_ERR(inode))
		return 0;

1415 1416
	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
				block_group, &block_group->io_ctl, trans);
1417
	if (ret) {
1418
#ifdef CONFIG_BTRFS_DEBUG
1419 1420
		btrfs_err(fs_info,
			  "failed to write free space cache for block group %llu",
1421
			  block_group->start);
1422
#endif
1423 1424 1425 1426 1427 1428
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&block_group->lock);

		block_group->io_ctl.inode = NULL;
		iput(inode);
1429 1430
	}

1431 1432 1433 1434 1435
	/*
	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
	 * to wait for IO and put the inode
	 */

J
Josef Bacik 已提交
1436 1437 1438
	return ret;
}

1439
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1440
					  u64 offset)
J
Josef Bacik 已提交
1441
{
1442
	ASSERT(offset >= bitmap_start);
1443
	offset -= bitmap_start;
1444
	return (unsigned long)(div_u64(offset, unit));
1445
}
J
Josef Bacik 已提交
1446

1447
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1448
{
1449
	return (unsigned long)(div_u64(bytes, unit));
1450
}
J
Josef Bacik 已提交
1451

1452
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1453 1454 1455
				   u64 offset)
{
	u64 bitmap_start;
1456
	u64 bytes_per_bitmap;
J
Josef Bacik 已提交
1457

1458 1459
	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
	bitmap_start = offset - ctl->start;
1460
	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1461
	bitmap_start *= bytes_per_bitmap;
1462
	bitmap_start += ctl->start;
J
Josef Bacik 已提交
1463

1464
	return bitmap_start;
J
Josef Bacik 已提交
1465 1466
}

1467 1468
static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
J
Josef Bacik 已提交
1469 1470 1471 1472 1473 1474 1475
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
1476
		info = rb_entry(parent, struct btrfs_free_space, offset_index);
J
Josef Bacik 已提交
1477

1478
		if (offset < info->offset) {
J
Josef Bacik 已提交
1479
			p = &(*p)->rb_left;
1480
		} else if (offset > info->offset) {
J
Josef Bacik 已提交
1481
			p = &(*p)->rb_right;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
1497 1498 1499 1500
				if (info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1501 1502
				p = &(*p)->rb_right;
			} else {
1503 1504 1505 1506
				if (!info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1507 1508 1509
				p = &(*p)->rb_left;
			}
		}
J
Josef Bacik 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
J
Josef Bacik 已提交
1519 1520
 * searches the tree for the given offset.
 *
1521 1522 1523
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
J
Josef Bacik 已提交
1524
 */
1525
static struct btrfs_free_space *
1526
tree_search_offset(struct btrfs_free_space_ctl *ctl,
1527
		   u64 offset, int bitmap_only, int fuzzy)
J
Josef Bacik 已提交
1528
{
1529
	struct rb_node *n = ctl->free_space_offset.rb_node;
1530 1531 1532 1533 1534 1535 1536 1537
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}
J
Josef Bacik 已提交
1538 1539

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1540
		prev = entry;
J
Josef Bacik 已提交
1541

1542
		if (offset < entry->offset)
J
Josef Bacik 已提交
1543
			n = n->rb_left;
1544
		else if (offset > entry->offset)
J
Josef Bacik 已提交
1545
			n = n->rb_right;
1546
		else
J
Josef Bacik 已提交
1547 1548 1549
			break;
	}

1550 1551 1552 1553 1554
	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;
J
Josef Bacik 已提交
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;
J
Josef Bacik 已提交
1566

1567 1568 1569 1570
		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
J
Josef Bacik 已提交
1571
			/*
1572 1573
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
J
Josef Bacik 已提交
1574
			 */
1575 1576
			n = rb_prev(&entry->offset_index);
			if (n) {
1577 1578
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
1579 1580 1581
				if (!prev->bitmap &&
				    prev->offset + prev->bytes > offset)
					entry = prev;
J
Josef Bacik 已提交
1582
			}
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
1597
			ASSERT(entry->offset <= offset);
J
Josef Bacik 已提交
1598
		} else {
1599 1600 1601 1602
			if (fuzzy)
				return entry;
			else
				return NULL;
J
Josef Bacik 已提交
1603 1604 1605
		}
	}

1606
	if (entry->bitmap) {
1607 1608
		n = rb_prev(&entry->offset_index);
		if (n) {
1609 1610
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
1611 1612 1613
			if (!prev->bitmap &&
			    prev->offset + prev->bytes > offset)
				return prev;
1614
		}
1615
		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
1626
			    ctl->unit > offset)
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
J
Josef Bacik 已提交
1639 1640
}

1641
static inline void
1642
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1643
		    struct btrfs_free_space *info)
J
Josef Bacik 已提交
1644
{
1645 1646
	rb_erase(&info->offset_index, &ctl->free_space_offset);
	ctl->free_extents--;
1647

1648
	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1649
		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1650 1651
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
	}
1652 1653
}

1654
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1655 1656
			      struct btrfs_free_space *info)
{
1657 1658
	__unlink_free_space(ctl, info);
	ctl->free_space -= info->bytes;
J
Josef Bacik 已提交
1659 1660
}

1661
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1662 1663 1664 1665
			   struct btrfs_free_space *info)
{
	int ret = 0;

1666
	ASSERT(info->bytes || info->bitmap);
1667
	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1668
				 &info->offset_index, (info->bitmap != NULL));
J
Josef Bacik 已提交
1669 1670 1671
	if (ret)
		return ret;

1672
	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1673
		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1674 1675
		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
	}
1676

1677 1678
	ctl->free_space += info->bytes;
	ctl->free_extents++;
1679 1680 1681
	return ret;
}

1682
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1683
{
1684
	struct btrfs_block_group *block_group = ctl->private;
1685 1686 1687
	u64 max_bytes;
	u64 bitmap_bytes;
	u64 extent_bytes;
1688
	u64 size = block_group->length;
1689 1690
	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1691

1692
	max_bitmaps = max_t(u64, max_bitmaps, 1);
1693

1694
	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1695 1696

	/*
1697 1698 1699 1700
	 * We are trying to keep the total amount of memory used per 1GiB of
	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
	 * bitmaps, we may end up using more memory than this.
1701
	 */
1702
	if (size < SZ_1G)
1703 1704
		max_bytes = MAX_CACHE_BYTES_PER_GIG;
	else
1705
		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1706

1707
	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
1708

1709
	/*
1710
	 * we want the extent entry threshold to always be at most 1/2 the max
1711 1712 1713
	 * bytes we can have, or whatever is less than that.
	 */
	extent_bytes = max_bytes - bitmap_bytes;
1714
	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1715

1716
	ctl->extents_thresh =
1717
		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1718 1719
}

1720 1721 1722
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       u64 offset, u64 bytes)
1723
{
1724 1725
	unsigned long start, count, end;
	int extent_delta = -1;
1726

1727 1728
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1729 1730
	end = start + count;
	ASSERT(end <= BITS_PER_BITMAP);
1731

L
Li Zefan 已提交
1732
	bitmap_clear(info->bitmap, start, count);
1733 1734

	info->bytes -= bytes;
1735 1736
	if (info->max_extent_size > ctl->unit)
		info->max_extent_size = 0;
1737 1738 1739 1740 1741 1742 1743 1744

	if (start && test_bit(start - 1, info->bitmap))
		extent_delta++;

	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
		extent_delta++;

	info->bitmap_extents += extent_delta;
1745
	if (!btrfs_free_space_trimmed(info)) {
1746
		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1747 1748
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
	}
1749 1750 1751 1752 1753 1754 1755
}

static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	__bitmap_clear_bits(ctl, info, offset, bytes);
1756
	ctl->free_space -= bytes;
1757 1758
}

1759
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1760 1761
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
1762
{
1763 1764
	unsigned long start, count, end;
	int extent_delta = 1;
1765

1766 1767
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1768 1769
	end = start + count;
	ASSERT(end <= BITS_PER_BITMAP);
1770

L
Li Zefan 已提交
1771
	bitmap_set(info->bitmap, start, count);
1772 1773

	info->bytes += bytes;
1774
	ctl->free_space += bytes;
1775 1776 1777 1778 1779 1780 1781 1782

	if (start && test_bit(start - 1, info->bitmap))
		extent_delta--;

	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
		extent_delta--;

	info->bitmap_extents += extent_delta;
1783
	if (!btrfs_free_space_trimmed(info)) {
1784
		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1785 1786
		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
	}
1787 1788
}

1789 1790 1791 1792
/*
 * If we can not find suitable extent, we will use bytes to record
 * the size of the max extent.
 */
1793
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1794
			 struct btrfs_free_space *bitmap_info, u64 *offset,
1795
			 u64 *bytes, bool for_alloc)
1796 1797
{
	unsigned long found_bits = 0;
1798
	unsigned long max_bits = 0;
1799 1800
	unsigned long bits, i;
	unsigned long next_zero;
1801
	unsigned long extent_bits;
1802

1803 1804 1805 1806
	/*
	 * Skip searching the bitmap if we don't have a contiguous section that
	 * is large enough for this allocation.
	 */
1807 1808
	if (for_alloc &&
	    bitmap_info->max_extent_size &&
1809 1810 1811 1812 1813
	    bitmap_info->max_extent_size < *bytes) {
		*bytes = bitmap_info->max_extent_size;
		return -1;
	}

1814
	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1815
			  max_t(u64, *offset, bitmap_info->offset));
1816
	bits = bytes_to_bits(*bytes, ctl->unit);
1817

1818
	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1819 1820 1821 1822
		if (for_alloc && bits == 1) {
			found_bits = 1;
			break;
		}
1823 1824
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
1825 1826 1827
		extent_bits = next_zero - i;
		if (extent_bits >= bits) {
			found_bits = extent_bits;
1828
			break;
1829 1830
		} else if (extent_bits > max_bits) {
			max_bits = extent_bits;
1831 1832 1833 1834 1835
		}
		i = next_zero;
	}

	if (found_bits) {
1836 1837
		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
		*bytes = (u64)(found_bits) * ctl->unit;
1838 1839 1840
		return 0;
	}

1841
	*bytes = (u64)(max_bits) * ctl->unit;
1842
	bitmap_info->max_extent_size = *bytes;
1843 1844 1845
	return -1;
}

J
Josef Bacik 已提交
1846 1847 1848 1849 1850 1851 1852
static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
{
	if (entry->bitmap)
		return entry->max_extent_size;
	return entry->bytes;
}

1853
/* Cache the size of the max extent in bytes */
1854
static struct btrfs_free_space *
D
David Woodhouse 已提交
1855
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1856
		unsigned long align, u64 *max_extent_size)
1857 1858 1859
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
D
David Woodhouse 已提交
1860 1861
	u64 tmp;
	u64 align_off;
1862 1863
	int ret;

1864
	if (!ctl->free_space_offset.rb_node)
1865
		goto out;
1866

1867
	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1868
	if (!entry)
1869
		goto out;
1870 1871 1872

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1873
		if (entry->bytes < *bytes) {
J
Josef Bacik 已提交
1874 1875
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
1876
			continue;
1877
		}
1878

D
David Woodhouse 已提交
1879 1880 1881 1882
		/* make sure the space returned is big enough
		 * to match our requested alignment
		 */
		if (*bytes >= align) {
1883
			tmp = entry->offset - ctl->start + align - 1;
1884
			tmp = div64_u64(tmp, align);
D
David Woodhouse 已提交
1885 1886 1887 1888 1889 1890 1891
			tmp = tmp * align + ctl->start;
			align_off = tmp - entry->offset;
		} else {
			align_off = 0;
			tmp = entry->offset;
		}

1892
		if (entry->bytes < *bytes + align_off) {
J
Josef Bacik 已提交
1893 1894
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
D
David Woodhouse 已提交
1895
			continue;
1896
		}
D
David Woodhouse 已提交
1897

1898
		if (entry->bitmap) {
1899 1900
			u64 size = *bytes;

1901
			ret = search_bitmap(ctl, entry, &tmp, &size, true);
D
David Woodhouse 已提交
1902 1903
			if (!ret) {
				*offset = tmp;
1904
				*bytes = size;
1905
				return entry;
J
Josef Bacik 已提交
1906 1907 1908 1909
			} else {
				*max_extent_size =
					max(get_max_extent_size(entry),
					    *max_extent_size);
D
David Woodhouse 已提交
1910
			}
1911 1912 1913
			continue;
		}

D
David Woodhouse 已提交
1914 1915
		*offset = tmp;
		*bytes = entry->bytes - align_off;
1916 1917
		return entry;
	}
1918
out:
1919 1920 1921
	return NULL;
}

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
				struct btrfs_free_space *bitmap_info)
{
	struct btrfs_block_group *block_group = ctl->private;
	u64 bytes = bitmap_info->bytes;
	unsigned int rs, re;
	int count = 0;

	if (!block_group || !bytes)
		return count;

	bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0,
				   BITS_PER_BITMAP) {
		bytes -= (rs - re) * ctl->unit;
		count++;

		if (!bytes)
			break;
	}

	return count;
}

1945
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1946 1947
			   struct btrfs_free_space *info, u64 offset)
{
1948
	info->offset = offset_to_bitmap(ctl, offset);
J
Josef Bacik 已提交
1949
	info->bytes = 0;
1950
	info->bitmap_extents = 0;
1951
	INIT_LIST_HEAD(&info->list);
1952 1953
	link_free_space(ctl, info);
	ctl->total_bitmaps++;
1954

1955
	ctl->op->recalc_thresholds(ctl);
1956 1957
}

1958
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1959 1960
			struct btrfs_free_space *bitmap_info)
{
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	/*
	 * Normally when this is called, the bitmap is completely empty. However,
	 * if we are blowing up the free space cache for one reason or another
	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
	 * we may leave stats on the table.
	 */
	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
		ctl->discardable_extents[BTRFS_STAT_CURR] -=
			bitmap_info->bitmap_extents;
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;

	}
1973
	unlink_free_space(ctl, bitmap_info);
1974
	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1975
	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1976 1977
	ctl->total_bitmaps--;
	ctl->op->recalc_thresholds(ctl);
1978 1979
}

1980
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1981 1982 1983 1984
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
1985 1986
	u64 search_start, search_bytes;
	int ret;
1987 1988

again:
1989
	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1990

1991
	/*
1992 1993 1994 1995
	 * We need to search for bits in this bitmap.  We could only cover some
	 * of the extent in this bitmap thanks to how we add space, so we need
	 * to search for as much as it as we can and clear that amount, and then
	 * go searching for the next bit.
1996 1997
	 */
	search_start = *offset;
1998
	search_bytes = ctl->unit;
1999
	search_bytes = min(search_bytes, end - search_start + 1);
2000 2001
	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
			    false);
2002 2003
	if (ret < 0 || search_start != *offset)
		return -EINVAL;
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013
	/* We may have found more bits than what we need */
	search_bytes = min(search_bytes, *bytes);

	/* Cannot clear past the end of the bitmap */
	search_bytes = min(search_bytes, end - search_start + 1);

	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
	*offset += search_bytes;
	*bytes -= search_bytes;
2014 2015

	if (*bytes) {
2016
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2017
		if (!bitmap_info->bytes)
2018
			free_bitmap(ctl, bitmap_info);
2019

2020 2021 2022 2023 2024
		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
2025 2026
			return -EINVAL;

2027 2028 2029 2030 2031 2032 2033
		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
2034 2035 2036
		if (!bitmap_info->bitmap)
			return -EAGAIN;

2037 2038 2039 2040 2041 2042 2043
		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
2044
		search_bytes = ctl->unit;
2045
		ret = search_bitmap(ctl, bitmap_info, &search_start,
2046
				    &search_bytes, false);
2047 2048 2049
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

2050
		goto again;
2051
	} else if (!bitmap_info->bytes)
2052
		free_bitmap(ctl, bitmap_info);
2053 2054 2055 2056

	return 0;
}

J
Josef Bacik 已提交
2057 2058
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
			       struct btrfs_free_space *info, u64 offset,
2059
			       u64 bytes, enum btrfs_trim_state trim_state)
J
Josef Bacik 已提交
2060 2061 2062 2063
{
	u64 bytes_to_set = 0;
	u64 end;

2064 2065 2066 2067
	/*
	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
	 * whole bitmap untrimmed if at any point we add untrimmed regions.
	 */
2068
	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2069
		if (btrfs_free_space_trimmed(info)) {
2070 2071
			ctl->discardable_extents[BTRFS_STAT_CURR] +=
				info->bitmap_extents;
2072 2073
			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
		}
2074
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2075
	}
2076

J
Josef Bacik 已提交
2077 2078 2079 2080 2081 2082
	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);

	bytes_to_set = min(end - offset, bytes);

	bitmap_set_bits(ctl, info, offset, bytes_to_set);

2083 2084 2085 2086 2087 2088
	/*
	 * We set some bytes, we have no idea what the max extent size is
	 * anymore.
	 */
	info->max_extent_size = 0;

J
Josef Bacik 已提交
2089 2090 2091 2092
	return bytes_to_set;

}

2093 2094
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
		      struct btrfs_free_space *info)
2095
{
2096
	struct btrfs_block_group *block_group = ctl->private;
2097
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2098 2099 2100
	bool forced = false;

#ifdef CONFIG_BTRFS_DEBUG
2101
	if (btrfs_should_fragment_free_space(block_group))
2102 2103
		forced = true;
#endif
2104

2105 2106 2107 2108
	/* This is a way to reclaim large regions from the bitmaps. */
	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
		return false;

2109 2110 2111 2112
	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
2113
	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2114 2115 2116
		/*
		 * If this block group has some small extents we don't want to
		 * use up all of our free slots in the cache with them, we want
2117
		 * to reserve them to larger extents, however if we have plenty
2118 2119 2120
		 * of cache left then go ahead an dadd them, no sense in adding
		 * the overhead of a bitmap if we don't have to.
		 */
2121 2122
		if (info->bytes <= fs_info->sectorsize * 8) {
			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2123
				return false;
2124
		} else {
2125
			return false;
2126 2127
		}
	}
2128 2129

	/*
2130 2131 2132 2133 2134 2135
	 * The original block groups from mkfs can be really small, like 8
	 * megabytes, so don't bother with a bitmap for those entries.  However
	 * some block groups can be smaller than what a bitmap would cover but
	 * are still large enough that they could overflow the 32k memory limit,
	 * so allow those block groups to still be allowed to have a bitmap
	 * entry.
2136
	 */
2137
	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2138 2139 2140 2141 2142
		return false;

	return true;
}

2143
static const struct btrfs_free_space_op free_space_op = {
J
Josef Bacik 已提交
2144 2145 2146 2147
	.recalc_thresholds	= recalculate_thresholds,
	.use_bitmap		= use_bitmap,
};

2148 2149 2150 2151
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
2152
	struct btrfs_block_group *block_group = NULL;
2153
	int added = 0;
J
Josef Bacik 已提交
2154
	u64 bytes, offset, bytes_added;
2155
	enum btrfs_trim_state trim_state;
2156
	int ret;
2157 2158 2159

	bytes = info->bytes;
	offset = info->offset;
2160
	trim_state = info->trim_state;
2161

2162 2163 2164
	if (!ctl->op->use_bitmap(ctl, info))
		return 0;

J
Josef Bacik 已提交
2165 2166
	if (ctl->op == &free_space_op)
		block_group = ctl->private;
2167
again:
J
Josef Bacik 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
	/*
	 * Since we link bitmaps right into the cluster we need to see if we
	 * have a cluster here, and if so and it has our bitmap we need to add
	 * the free space to that bitmap.
	 */
	if (block_group && !list_empty(&block_group->cluster_list)) {
		struct btrfs_free_cluster *cluster;
		struct rb_node *node;
		struct btrfs_free_space *entry;

		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
		spin_lock(&cluster->lock);
		node = rb_first(&cluster->root);
		if (!node) {
			spin_unlock(&cluster->lock);
2185
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2186 2187 2188 2189 2190
		}

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (!entry->bitmap) {
			spin_unlock(&cluster->lock);
2191
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2192 2193 2194
		}

		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2195 2196
			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
							  bytes, trim_state);
J
Josef Bacik 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205
			bytes -= bytes_added;
			offset += bytes_added;
		}
		spin_unlock(&cluster->lock);
		if (!bytes) {
			ret = 1;
			goto out;
		}
	}
2206 2207

no_cluster_bitmap:
2208
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2209 2210
					 1, 0);
	if (!bitmap_info) {
2211
		ASSERT(added == 0);
2212 2213 2214
		goto new_bitmap;
	}

2215 2216
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
					  trim_state);
J
Josef Bacik 已提交
2217 2218 2219
	bytes -= bytes_added;
	offset += bytes_added;
	added = 0;
2220 2221 2222 2223 2224 2225 2226 2227 2228

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
2229
		add_new_bitmap(ctl, info, offset);
2230 2231 2232 2233
		added = 1;
		info = NULL;
		goto again;
	} else {
2234
		spin_unlock(&ctl->tree_lock);
2235 2236 2237

		/* no pre-allocated info, allocate a new one */
		if (!info) {
2238 2239
			info = kmem_cache_zalloc(btrfs_free_space_cachep,
						 GFP_NOFS);
2240
			if (!info) {
2241
				spin_lock(&ctl->tree_lock);
2242 2243 2244 2245 2246 2247
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
2248 2249
		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
						 GFP_NOFS);
2250
		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2251
		spin_lock(&ctl->tree_lock);
2252 2253 2254 2255 2256 2257 2258 2259 2260
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
2261 2262 2263
		if (info->bitmap)
			kmem_cache_free(btrfs_free_space_bitmap_cachep,
					info->bitmap);
2264
		kmem_cache_free(btrfs_free_space_cachep, info);
2265
	}
J
Josef Bacik 已提交
2266 2267 2268 2269

	return ret;
}

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
/*
 * Free space merging rules:
 *  1) Merge trimmed areas together
 *  2) Let untrimmed areas coalesce with trimmed areas
 *  3) Always pull neighboring regions from bitmaps
 *
 * The above rules are for when we merge free space based on btrfs_trim_state.
 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
 * same reason: to promote larger extent regions which makes life easier for
 * find_free_extent().  Rule 2 enables coalescing based on the common path
 * being returning free space from btrfs_finish_extent_commit().  So when free
 * space is trimmed, it will prevent aggregating trimmed new region and
 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
 * and provide find_free_extent() with the largest extents possible hoping for
 * the reuse path.
 */
2286
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2287
			  struct btrfs_free_space *info, bool update_stat)
J
Josef Bacik 已提交
2288
{
2289 2290 2291 2292 2293
	struct btrfs_free_space *left_info;
	struct btrfs_free_space *right_info;
	bool merged = false;
	u64 offset = info->offset;
	u64 bytes = info->bytes;
2294
	const bool is_trimmed = btrfs_free_space_trimmed(info);
2295

J
Josef Bacik 已提交
2296 2297 2298 2299 2300
	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
2301
	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2302 2303 2304 2305
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
	else
2306
		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
J
Josef Bacik 已提交
2307

2308 2309 2310
	/* See try_merge_free_space() comment. */
	if (right_info && !right_info->bitmap &&
	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2311
		if (update_stat)
2312
			unlink_free_space(ctl, right_info);
2313
		else
2314
			__unlink_free_space(ctl, right_info);
2315
		info->bytes += right_info->bytes;
2316
		kmem_cache_free(btrfs_free_space_cachep, right_info);
2317
		merged = true;
J
Josef Bacik 已提交
2318 2319
	}

2320
	/* See try_merge_free_space() comment. */
2321
	if (left_info && !left_info->bitmap &&
2322 2323
	    left_info->offset + left_info->bytes == offset &&
	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2324
		if (update_stat)
2325
			unlink_free_space(ctl, left_info);
2326
		else
2327
			__unlink_free_space(ctl, left_info);
2328 2329
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
2330
		kmem_cache_free(btrfs_free_space_cachep, left_info);
2331
		merged = true;
J
Josef Bacik 已提交
2332 2333
	}

2334 2335 2336
	return merged;
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
				     struct btrfs_free_space *info,
				     bool update_stat)
{
	struct btrfs_free_space *bitmap;
	unsigned long i;
	unsigned long j;
	const u64 end = info->offset + info->bytes;
	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
	u64 bytes;

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, end);
	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
	if (j == i)
		return false;
	bytes = (j - i) * ctl->unit;
	info->bytes += bytes;

2359 2360 2361 2362
	/* See try_merge_free_space() comment. */
	if (!btrfs_free_space_trimmed(bitmap))
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, end, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, end, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       bool update_stat)
{
	struct btrfs_free_space *bitmap;
	u64 bitmap_offset;
	unsigned long i;
	unsigned long j;
	unsigned long prev_j;
	u64 bytes;

	bitmap_offset = offset_to_bitmap(ctl, info->offset);
	/* If we're on a boundary, try the previous logical bitmap. */
	if (bitmap_offset == info->offset) {
		if (info->offset == 0)
			return false;
		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
	}

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
	j = 0;
	prev_j = (unsigned long)-1;
	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
		if (j > i)
			break;
		prev_j = j;
	}
	if (prev_j == i)
		return false;

	if (prev_j == (unsigned long)-1)
		bytes = (i + 1) * ctl->unit;
	else
		bytes = (i - prev_j) * ctl->unit;

	info->offset -= bytes;
	info->bytes += bytes;

2416 2417 2418 2419
	/* See try_merge_free_space() comment. */
	if (!btrfs_free_space_trimmed(bitmap))
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

/*
 * We prefer always to allocate from extent entries, both for clustered and
 * non-clustered allocation requests. So when attempting to add a new extent
 * entry, try to see if there's adjacent free space in bitmap entries, and if
 * there is, migrate that space from the bitmaps to the extent.
 * Like this we get better chances of satisfying space allocation requests
 * because we attempt to satisfy them based on a single cache entry, and never
 * on 2 or more entries - even if the entries represent a contiguous free space
 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 * ends).
 */
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info,
			      bool update_stat)
{
	/*
	 * Only work with disconnected entries, as we can change their offset,
	 * and must be extent entries.
	 */
	ASSERT(!info->bitmap);
	ASSERT(RB_EMPTY_NODE(&info->offset_index));

	if (ctl->total_bitmaps > 0) {
		bool stole_end;
		bool stole_front = false;

		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
		if (ctl->total_bitmaps > 0)
			stole_front = steal_from_bitmap_to_front(ctl, info,
								 update_stat);

		if (stole_end || stole_front)
			try_merge_free_space(ctl, info, update_stat);
	}
}

2467 2468
int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
			   struct btrfs_free_space_ctl *ctl,
2469 2470
			   u64 offset, u64 bytes,
			   enum btrfs_trim_state trim_state)
2471
{
2472
	struct btrfs_block_group *block_group = ctl->private;
2473 2474
	struct btrfs_free_space *info;
	int ret = 0;
D
Dennis Zhou 已提交
2475
	u64 filter_bytes = bytes;
2476

2477
	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2478 2479 2480 2481 2482
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;
2483
	info->trim_state = trim_state;
2484
	RB_CLEAR_NODE(&info->offset_index);
2485

2486
	spin_lock(&ctl->tree_lock);
2487

2488
	if (try_merge_free_space(ctl, info, true))
2489 2490 2491 2492 2493 2494 2495
		goto link;

	/*
	 * There was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
2496
	ret = insert_into_bitmap(ctl, info);
2497 2498 2499 2500 2501 2502 2503
	if (ret < 0) {
		goto out;
	} else if (ret) {
		ret = 0;
		goto out;
	}
link:
2504 2505 2506 2507 2508 2509 2510 2511
	/*
	 * Only steal free space from adjacent bitmaps if we're sure we're not
	 * going to add the new free space to existing bitmap entries - because
	 * that would mean unnecessary work that would be reverted. Therefore
	 * attempt to steal space from bitmaps if we're adding an extent entry.
	 */
	steal_from_bitmap(ctl, info, true);

D
Dennis Zhou 已提交
2512 2513
	filter_bytes = max(filter_bytes, info->bytes);

2514
	ret = link_free_space(ctl, info);
J
Josef Bacik 已提交
2515
	if (ret)
2516
		kmem_cache_free(btrfs_free_space_cachep, info);
2517
out:
2518
	btrfs_discard_update_discardable(block_group, ctl);
2519
	spin_unlock(&ctl->tree_lock);
2520

J
Josef Bacik 已提交
2521
	if (ret) {
2522
		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2523
		ASSERT(ret != -EEXIST);
J
Josef Bacik 已提交
2524 2525
	}

D
Dennis Zhou 已提交
2526 2527
	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
		btrfs_discard_check_filter(block_group, filter_bytes);
2528
		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
D
Dennis Zhou 已提交
2529
	}
2530

J
Josef Bacik 已提交
2531 2532 2533
	return ret;
}

2534
int btrfs_add_free_space(struct btrfs_block_group *block_group,
2535 2536
			 u64 bytenr, u64 size)
{
2537 2538 2539 2540 2541
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
		trim_state = BTRFS_TRIM_STATE_TRIMMED;

2542 2543
	return __btrfs_add_free_space(block_group->fs_info,
				      block_group->free_space_ctl,
2544
				      bytenr, size, trim_state);
2545 2546
}

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
/*
 * This is a subtle distinction because when adding free space back in general,
 * we want it to be added as untrimmed for async. But in the case where we add
 * it on loading of a block group, we want to consider it trimmed.
 */
int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
				       u64 bytenr, u64 size)
{
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
		trim_state = BTRFS_TRIM_STATE_TRIMMED;

	return __btrfs_add_free_space(block_group->fs_info,
				      block_group->free_space_ctl,
				      bytenr, size, trim_state);
}

2566
int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2567
			    u64 offset, u64 bytes)
J
Josef Bacik 已提交
2568
{
2569
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2570
	struct btrfs_free_space *info;
2571 2572
	int ret;
	bool re_search = false;
J
Josef Bacik 已提交
2573

2574
	spin_lock(&ctl->tree_lock);
2575

2576
again:
2577
	ret = 0;
2578 2579 2580
	if (!bytes)
		goto out_lock;

2581
	info = tree_search_offset(ctl, offset, 0, 0);
2582
	if (!info) {
2583 2584 2585 2586
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
2587
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2588 2589
					  1, 0);
		if (!info) {
2590 2591 2592 2593
			/*
			 * If we found a partial bit of our free space in a
			 * bitmap but then couldn't find the other part this may
			 * be a problem, so WARN about it.
2594
			 */
2595
			WARN_ON(re_search);
2596 2597
			goto out_lock;
		}
2598 2599
	}

2600
	re_search = false;
2601
	if (!info->bitmap) {
2602
		unlink_free_space(ctl, info);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
		if (offset == info->offset) {
			u64 to_free = min(bytes, info->bytes);

			info->bytes -= to_free;
			info->offset += to_free;
			if (info->bytes) {
				ret = link_free_space(ctl, info);
				WARN_ON(ret);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, info);
			}
J
Josef Bacik 已提交
2614

2615 2616 2617 2618 2619
			offset += to_free;
			bytes -= to_free;
			goto again;
		} else {
			u64 old_end = info->bytes + info->offset;
2620

2621
			info->bytes = offset - info->offset;
2622
			ret = link_free_space(ctl, info);
2623 2624 2625 2626
			WARN_ON(ret);
			if (ret)
				goto out_lock;

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
			/* Not enough bytes in this entry to satisfy us */
			if (old_end < offset + bytes) {
				bytes -= old_end - offset;
				offset = old_end;
				goto again;
			} else if (old_end == offset + bytes) {
				/* all done */
				goto out_lock;
			}
			spin_unlock(&ctl->tree_lock);

2638 2639 2640 2641
			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
						     offset + bytes,
						     old_end - (offset + bytes),
						     info->trim_state);
2642 2643 2644
			WARN_ON(ret);
			goto out;
		}
J
Josef Bacik 已提交
2645
	}
2646

2647
	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2648 2649
	if (ret == -EAGAIN) {
		re_search = true;
2650
		goto again;
2651
	}
2652
out_lock:
2653
	btrfs_discard_update_discardable(block_group, ctl);
2654
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2655
out:
2656 2657 2658
	return ret;
}

2659
void btrfs_dump_free_space(struct btrfs_block_group *block_group,
J
Josef Bacik 已提交
2660 2661
			   u64 bytes)
{
2662
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2663
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2664 2665 2666 2667
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

2668
	spin_lock(&ctl->tree_lock);
2669
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
J
Josef Bacik 已提交
2670
		info = rb_entry(n, struct btrfs_free_space, offset_index);
L
Liu Bo 已提交
2671
		if (info->bytes >= bytes && !block_group->ro)
J
Josef Bacik 已提交
2672
			count++;
2673
		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2674
			   info->offset, info->bytes,
2675
		       (info->bitmap) ? "yes" : "no");
J
Josef Bacik 已提交
2676
	}
2677
	spin_unlock(&ctl->tree_lock);
2678
	btrfs_info(fs_info, "block group has cluster?: %s",
2679
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2680
	btrfs_info(fs_info,
2681
		   "%d blocks of free space at or bigger than bytes is", count);
J
Josef Bacik 已提交
2682 2683
}

2684
void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
J
Josef Bacik 已提交
2685
{
2686
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2687
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2688

2689
	spin_lock_init(&ctl->tree_lock);
2690
	ctl->unit = fs_info->sectorsize;
2691
	ctl->start = block_group->start;
2692 2693
	ctl->private = block_group;
	ctl->op = &free_space_op;
2694 2695
	INIT_LIST_HEAD(&ctl->trimming_ranges);
	mutex_init(&ctl->cache_writeout_mutex);
J
Josef Bacik 已提交
2696

2697 2698 2699 2700 2701
	/*
	 * we only want to have 32k of ram per block group for keeping
	 * track of free space, and if we pass 1/2 of that we want to
	 * start converting things over to using bitmaps
	 */
2702
	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
J
Josef Bacik 已提交
2703 2704
}

2705 2706 2707 2708 2709 2710 2711 2712
/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
static int
__btrfs_return_cluster_to_free_space(
2713
			     struct btrfs_block_group *block_group,
2714 2715
			     struct btrfs_free_cluster *cluster)
{
2716
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2717 2718 2719 2720 2721 2722 2723
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

2724
	cluster->block_group = NULL;
2725
	cluster->window_start = 0;
2726 2727
	list_del_init(&cluster->block_group_list);

2728
	node = rb_first(&cluster->root);
2729
	while (node) {
2730 2731
		bool bitmap;

2732 2733 2734
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
2735
		RB_CLEAR_NODE(&entry->offset_index);
2736 2737

		bitmap = (entry->bitmap != NULL);
2738
		if (!bitmap) {
2739
			/* Merging treats extents as if they were new */
2740
			if (!btrfs_free_space_trimmed(entry)) {
2741
				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2742 2743 2744
				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
					entry->bytes;
			}
2745

2746
			try_merge_free_space(ctl, entry, false);
2747
			steal_from_bitmap(ctl, entry, false);
2748 2749

			/* As we insert directly, update these statistics */
2750
			if (!btrfs_free_space_trimmed(entry)) {
2751
				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2752 2753 2754
				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
					entry->bytes;
			}
2755
		}
2756
		tree_insert_offset(&ctl->free_space_offset,
2757
				   entry->offset, &entry->offset_index, bitmap);
2758
	}
2759
	cluster->root = RB_ROOT;
2760

2761 2762
out:
	spin_unlock(&cluster->lock);
2763
	btrfs_put_block_group(block_group);
2764 2765 2766
	return 0;
}

2767 2768
static void __btrfs_remove_free_space_cache_locked(
				struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2769 2770 2771
{
	struct btrfs_free_space *info;
	struct rb_node *node;
2772 2773 2774

	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
2775 2776 2777 2778 2779 2780
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			free_bitmap(ctl, info);
		}
2781 2782

		cond_resched_lock(&ctl->tree_lock);
2783
	}
2784 2785 2786 2787 2788 2789
}

void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
	spin_lock(&ctl->tree_lock);
	__btrfs_remove_free_space_cache_locked(ctl);
2790 2791
	if (ctl->private)
		btrfs_discard_update_discardable(ctl->private, ctl);
2792 2793 2794
	spin_unlock(&ctl->tree_lock);
}

2795
void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2796 2797
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2798
	struct btrfs_free_cluster *cluster;
2799
	struct list_head *head;
J
Josef Bacik 已提交
2800

2801
	spin_lock(&ctl->tree_lock);
2802 2803 2804 2805
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);
2806 2807 2808

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
2809 2810

		cond_resched_lock(&ctl->tree_lock);
2811
	}
2812
	__btrfs_remove_free_space_cache_locked(ctl);
2813
	btrfs_discard_update_discardable(block_group, ctl);
2814
	spin_unlock(&ctl->tree_lock);
2815

J
Josef Bacik 已提交
2816 2817
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
/**
 * btrfs_is_free_space_trimmed - see if everything is trimmed
 * @block_group: block_group of interest
 *
 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
 */
bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *info;
	struct rb_node *node;
	bool ret = true;

	spin_lock(&ctl->tree_lock);
	node = rb_first(&ctl->free_space_offset);

	while (node) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);

		if (!btrfs_free_space_trimmed(info)) {
			ret = false;
			break;
		}

		node = rb_next(node);
	}

	spin_unlock(&ctl->tree_lock);
	return ret;
}

2849
u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2850 2851
			       u64 offset, u64 bytes, u64 empty_size,
			       u64 *max_extent_size)
J
Josef Bacik 已提交
2852
{
2853
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2854 2855
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
2856
	struct btrfs_free_space *entry = NULL;
2857
	u64 bytes_search = bytes + empty_size;
2858
	u64 ret = 0;
D
David Woodhouse 已提交
2859 2860
	u64 align_gap = 0;
	u64 align_gap_len = 0;
2861
	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
J
Josef Bacik 已提交
2862

2863
	spin_lock(&ctl->tree_lock);
D
David Woodhouse 已提交
2864
	entry = find_free_space(ctl, &offset, &bytes_search,
2865
				block_group->full_stripe_len, max_extent_size);
2866
	if (!entry)
2867 2868 2869 2870
		goto out;

	ret = offset;
	if (entry->bitmap) {
2871
		bitmap_clear_bits(ctl, entry, offset, bytes);
2872 2873 2874 2875

		if (!btrfs_free_space_trimmed(entry))
			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

2876
		if (!entry->bytes)
2877
			free_bitmap(ctl, entry);
2878
	} else {
2879
		unlink_free_space(ctl, entry);
D
David Woodhouse 已提交
2880 2881
		align_gap_len = offset - entry->offset;
		align_gap = entry->offset;
2882
		align_gap_trim_state = entry->trim_state;
D
David Woodhouse 已提交
2883

2884 2885 2886
		if (!btrfs_free_space_trimmed(entry))
			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

D
David Woodhouse 已提交
2887 2888 2889 2890
		entry->offset = offset + bytes;
		WARN_ON(entry->bytes < bytes + align_gap_len);

		entry->bytes -= bytes + align_gap_len;
2891
		if (!entry->bytes)
2892
			kmem_cache_free(btrfs_free_space_cachep, entry);
2893
		else
2894
			link_free_space(ctl, entry);
2895
	}
2896
out:
2897
	btrfs_discard_update_discardable(block_group, ctl);
2898
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2899

D
David Woodhouse 已提交
2900
	if (align_gap_len)
2901
		__btrfs_add_free_space(block_group->fs_info, ctl,
2902 2903
				       align_gap, align_gap_len,
				       align_gap_trim_state);
J
Josef Bacik 已提交
2904 2905
	return ret;
}
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
int btrfs_return_cluster_to_free_space(
2916
			       struct btrfs_block_group *block_group,
2917 2918
			       struct btrfs_free_cluster *cluster)
{
2919
	struct btrfs_free_space_ctl *ctl;
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	int ret;

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
			return 0;
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
		return 0;
	}
	atomic_inc(&block_group->count);
	spin_unlock(&cluster->lock);

2938 2939
	ctl = block_group->free_space_ctl;

2940
	/* now return any extents the cluster had on it */
2941
	spin_lock(&ctl->tree_lock);
2942
	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2943
	spin_unlock(&ctl->tree_lock);
2944

2945 2946
	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);

2947 2948 2949 2950 2951
	/* finally drop our ref */
	btrfs_put_block_group(block_group);
	return ret;
}

2952
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2953
				   struct btrfs_free_cluster *cluster,
2954
				   struct btrfs_free_space *entry,
2955 2956
				   u64 bytes, u64 min_start,
				   u64 *max_extent_size)
2957
{
2958
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2959 2960 2961 2962 2963 2964 2965 2966
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	search_start = min_start;
	search_bytes = bytes;

2967
	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2968
	if (err) {
J
Josef Bacik 已提交
2969 2970
		*max_extent_size = max(get_max_extent_size(entry),
				       *max_extent_size);
2971
		return 0;
2972
	}
2973 2974

	ret = search_start;
2975
	__bitmap_clear_bits(ctl, entry, ret, bytes);
2976 2977 2978 2979

	return ret;
}

2980 2981 2982 2983 2984
/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
2985
u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2986
			     struct btrfs_free_cluster *cluster, u64 bytes,
2987
			     u64 min_start, u64 *max_extent_size)
2988
{
2989
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2990 2991
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3008
	while (1) {
J
Josef Bacik 已提交
3009 3010 3011
		if (entry->bytes < bytes)
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
3012

3013 3014
		if (entry->bytes < bytes ||
		    (!entry->bitmap && entry->offset < min_start)) {
3015 3016 3017 3018 3019 3020 3021 3022
			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}

3023 3024 3025
		if (entry->bitmap) {
			ret = btrfs_alloc_from_bitmap(block_group,
						      cluster, entry, bytes,
3026 3027
						      cluster->window_start,
						      max_extent_size);
3028 3029 3030 3031 3032 3033 3034 3035
			if (ret == 0) {
				node = rb_next(&entry->offset_index);
				if (!node)
					break;
				entry = rb_entry(node, struct btrfs_free_space,
						 offset_index);
				continue;
			}
3036
			cluster->window_start += bytes;
3037 3038 3039 3040 3041 3042
		} else {
			ret = entry->offset;

			entry->offset += bytes;
			entry->bytes -= bytes;
		}
3043

3044
		if (entry->bytes == 0)
3045 3046 3047 3048 3049
			rb_erase(&entry->offset_index, &cluster->root);
		break;
	}
out:
	spin_unlock(&cluster->lock);
3050

3051 3052 3053
	if (!ret)
		return 0;

3054
	spin_lock(&ctl->tree_lock);
3055

3056 3057 3058
	if (!btrfs_free_space_trimmed(entry))
		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

3059
	ctl->free_space -= bytes;
3060 3061
	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3062
	if (entry->bytes == 0) {
3063
		ctl->free_extents--;
3064
		if (entry->bitmap) {
3065 3066
			kmem_cache_free(btrfs_free_space_bitmap_cachep,
					entry->bitmap);
3067 3068
			ctl->total_bitmaps--;
			ctl->op->recalc_thresholds(ctl);
3069 3070
		} else if (!btrfs_free_space_trimmed(entry)) {
			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3071
		}
3072
		kmem_cache_free(btrfs_free_space_cachep, entry);
3073 3074
	}

3075
	spin_unlock(&ctl->tree_lock);
3076

3077 3078 3079
	return ret;
}

3080
static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3081 3082
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
3083 3084
				u64 offset, u64 bytes,
				u64 cont1_bytes, u64 min_bytes)
3085
{
3086
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3087 3088
	unsigned long next_zero;
	unsigned long i;
3089 3090
	unsigned long want_bits;
	unsigned long min_bits;
3091
	unsigned long found_bits;
3092
	unsigned long max_bits = 0;
3093 3094
	unsigned long start = 0;
	unsigned long total_found = 0;
3095
	int ret;
3096

3097
	i = offset_to_bit(entry->offset, ctl->unit,
3098
			  max_t(u64, offset, entry->offset));
3099 3100
	want_bits = bytes_to_bits(bytes, ctl->unit);
	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3101

3102 3103 3104 3105 3106 3107 3108
	/*
	 * Don't bother looking for a cluster in this bitmap if it's heavily
	 * fragmented.
	 */
	if (entry->max_extent_size &&
	    entry->max_extent_size < cont1_bytes)
		return -ENOSPC;
3109 3110
again:
	found_bits = 0;
3111
	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3112 3113
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
3114
		if (next_zero - i >= min_bits) {
3115
			found_bits = next_zero - i;
3116 3117
			if (found_bits > max_bits)
				max_bits = found_bits;
3118 3119
			break;
		}
3120 3121
		if (next_zero - i > max_bits)
			max_bits = next_zero - i;
3122 3123 3124
		i = next_zero;
	}

3125 3126
	if (!found_bits) {
		entry->max_extent_size = (u64)max_bits * ctl->unit;
3127
		return -ENOSPC;
3128
	}
3129

3130
	if (!total_found) {
3131
		start = i;
3132
		cluster->max_size = 0;
3133 3134 3135 3136
	}

	total_found += found_bits;

3137 3138
	if (cluster->max_size < found_bits * ctl->unit)
		cluster->max_size = found_bits * ctl->unit;
3139

3140 3141
	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
		i = next_zero + 1;
3142 3143 3144
		goto again;
	}

3145
	cluster->window_start = start * ctl->unit + entry->offset;
3146
	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3147 3148
	ret = tree_insert_offset(&cluster->root, entry->offset,
				 &entry->offset_index, 1);
3149
	ASSERT(!ret); /* -EEXIST; Logic error */
3150

J
Josef Bacik 已提交
3151
	trace_btrfs_setup_cluster(block_group, cluster,
3152
				  total_found * ctl->unit, 1);
3153 3154 3155
	return 0;
}

3156 3157
/*
 * This searches the block group for just extents to fill the cluster with.
3158 3159
 * Try to find a cluster with at least bytes total bytes, at least one
 * extent of cont1_bytes, and other clusters of at least min_bytes.
3160
 */
3161
static noinline int
3162
setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3163 3164
			struct btrfs_free_cluster *cluster,
			struct list_head *bitmaps, u64 offset, u64 bytes,
3165
			u64 cont1_bytes, u64 min_bytes)
3166
{
3167
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3168 3169 3170 3171 3172 3173
	struct btrfs_free_space *first = NULL;
	struct btrfs_free_space *entry = NULL;
	struct btrfs_free_space *last;
	struct rb_node *node;
	u64 window_free;
	u64 max_extent;
J
Josef Bacik 已提交
3174
	u64 total_size = 0;
3175

3176
	entry = tree_search_offset(ctl, offset, 0, 1);
3177 3178 3179 3180 3181 3182 3183
	if (!entry)
		return -ENOSPC;

	/*
	 * We don't want bitmaps, so just move along until we find a normal
	 * extent entry.
	 */
3184 3185
	while (entry->bitmap || entry->bytes < min_bytes) {
		if (entry->bitmap && list_empty(&entry->list))
3186
			list_add_tail(&entry->list, bitmaps);
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
		node = rb_next(&entry->offset_index);
		if (!node)
			return -ENOSPC;
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	window_free = entry->bytes;
	max_extent = entry->bytes;
	first = entry;
	last = entry;

3198 3199
	for (node = rb_next(&entry->offset_index); node;
	     node = rb_next(&entry->offset_index)) {
3200 3201
		entry = rb_entry(node, struct btrfs_free_space, offset_index);

3202 3203 3204
		if (entry->bitmap) {
			if (list_empty(&entry->list))
				list_add_tail(&entry->list, bitmaps);
3205
			continue;
3206 3207
		}

3208 3209 3210 3211 3212 3213
		if (entry->bytes < min_bytes)
			continue;

		last = entry;
		window_free += entry->bytes;
		if (entry->bytes > max_extent)
3214 3215 3216
			max_extent = entry->bytes;
	}

3217 3218 3219
	if (window_free < bytes || max_extent < cont1_bytes)
		return -ENOSPC;

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	cluster->window_start = first->offset;

	node = &first->offset_index;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 */
	do {
		int ret;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
3233
		if (entry->bitmap || entry->bytes < min_bytes)
3234 3235
			continue;

3236
		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3237 3238
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
J
Josef Bacik 已提交
3239
		total_size += entry->bytes;
3240
		ASSERT(!ret); /* -EEXIST; Logic error */
3241 3242 3243
	} while (node && entry != last);

	cluster->max_size = max_extent;
J
Josef Bacik 已提交
3244
	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3245 3246 3247 3248 3249 3250 3251
	return 0;
}

/*
 * This specifically looks for bitmaps that may work in the cluster, we assume
 * that we have already failed to find extents that will work.
 */
3252
static noinline int
3253
setup_cluster_bitmap(struct btrfs_block_group *block_group,
3254 3255
		     struct btrfs_free_cluster *cluster,
		     struct list_head *bitmaps, u64 offset, u64 bytes,
3256
		     u64 cont1_bytes, u64 min_bytes)
3257
{
3258
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3259
	struct btrfs_free_space *entry = NULL;
3260
	int ret = -ENOSPC;
3261
	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3262

3263
	if (ctl->total_bitmaps == 0)
3264 3265
		return -ENOSPC;

3266 3267 3268 3269
	/*
	 * The bitmap that covers offset won't be in the list unless offset
	 * is just its start offset.
	 */
3270 3271 3272 3273
	if (!list_empty(bitmaps))
		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);

	if (!entry || entry->offset != bitmap_offset) {
3274 3275 3276 3277 3278
		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
		if (entry && list_empty(&entry->list))
			list_add(&entry->list, bitmaps);
	}

3279
	list_for_each_entry(entry, bitmaps, list) {
3280
		if (entry->bytes < bytes)
3281 3282
			continue;
		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3283
					   bytes, cont1_bytes, min_bytes);
3284 3285 3286 3287 3288
		if (!ret)
			return 0;
	}

	/*
3289 3290
	 * The bitmaps list has all the bitmaps that record free space
	 * starting after offset, so no more search is required.
3291
	 */
3292
	return -ENOSPC;
3293 3294
}

3295 3296
/*
 * here we try to find a cluster of blocks in a block group.  The goal
3297
 * is to find at least bytes+empty_size.
3298 3299 3300 3301 3302
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
3303
int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3304 3305 3306
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
3307
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3308
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3309
	struct btrfs_free_space *entry, *tmp;
3310
	LIST_HEAD(bitmaps);
3311
	u64 min_bytes;
3312
	u64 cont1_bytes;
3313 3314
	int ret;

3315 3316 3317 3318 3319 3320
	/*
	 * Choose the minimum extent size we'll require for this
	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
	 * For metadata, allow allocates with smaller extents.  For
	 * data, keep it dense.
	 */
3321
	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3322
		cont1_bytes = min_bytes = bytes + empty_size;
3323
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3324
		cont1_bytes = bytes;
3325
		min_bytes = fs_info->sectorsize;
3326 3327
	} else {
		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3328
		min_bytes = fs_info->sectorsize;
3329
	}
3330

3331
	spin_lock(&ctl->tree_lock);
3332 3333 3334 3335 3336

	/*
	 * If we know we don't have enough space to make a cluster don't even
	 * bother doing all the work to try and find one.
	 */
3337
	if (ctl->free_space < bytes) {
3338
		spin_unlock(&ctl->tree_lock);
3339 3340 3341
		return -ENOSPC;
	}

3342 3343 3344 3345 3346 3347 3348 3349
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}

J
Josef Bacik 已提交
3350 3351 3352
	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
				 min_bytes);

3353
	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3354 3355
				      bytes + empty_size,
				      cont1_bytes, min_bytes);
3356
	if (ret)
3357
		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3358 3359
					   offset, bytes + empty_size,
					   cont1_bytes, min_bytes);
3360 3361 3362 3363

	/* Clear our temporary list */
	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
		list_del_init(&entry->list);
3364

3365 3366 3367 3368 3369
	if (!ret) {
		atomic_inc(&block_group->count);
		list_add_tail(&cluster->block_group_list,
			      &block_group->cluster_list);
		cluster->block_group = block_group;
J
Josef Bacik 已提交
3370 3371
	} else {
		trace_btrfs_failed_cluster_setup(block_group);
3372 3373 3374
	}
out:
	spin_unlock(&cluster->lock);
3375
	spin_unlock(&ctl->tree_lock);
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
3387
	cluster->root = RB_ROOT;
3388
	cluster->max_size = 0;
3389
	cluster->fragmented = false;
3390 3391 3392 3393
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}

3394
static int do_trimming(struct btrfs_block_group *block_group,
3395
		       u64 *total_trimmed, u64 start, u64 bytes,
3396
		       u64 reserved_start, u64 reserved_bytes,
3397
		       enum btrfs_trim_state reserved_trim_state,
3398
		       struct btrfs_trim_range *trim_entry)
3399
{
3400
	struct btrfs_space_info *space_info = block_group->space_info;
3401
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3402
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3403 3404
	int ret;
	int update = 0;
3405 3406 3407
	const u64 end = start + bytes;
	const u64 reserved_end = reserved_start + reserved_bytes;
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3408
	u64 trimmed = 0;
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	spin_lock(&space_info->lock);
	spin_lock(&block_group->lock);
	if (!block_group->ro) {
		block_group->reserved += reserved_bytes;
		space_info->bytes_reserved += reserved_bytes;
		update = 1;
	}
	spin_unlock(&block_group->lock);
	spin_unlock(&space_info->lock);

3420
	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3421
	if (!ret) {
3422
		*total_trimmed += trimmed;
3423 3424
		trim_state = BTRFS_TRIM_STATE_TRIMMED;
	}
3425

3426
	mutex_lock(&ctl->cache_writeout_mutex);
3427 3428 3429 3430 3431 3432 3433 3434
	if (reserved_start < start)
		__btrfs_add_free_space(fs_info, ctl, reserved_start,
				       start - reserved_start,
				       reserved_trim_state);
	if (start + bytes < reserved_start + reserved_bytes)
		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
				       reserved_trim_state);
	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3435 3436
	list_del(&trim_entry->list);
	mutex_unlock(&ctl->cache_writeout_mutex);
3437 3438 3439 3440 3441 3442 3443 3444 3445

	if (update) {
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);
		if (block_group->ro)
			space_info->bytes_readonly += reserved_bytes;
		block_group->reserved -= reserved_bytes;
		space_info->bytes_reserved -= reserved_bytes;
		spin_unlock(&block_group->lock);
3446
		spin_unlock(&space_info->lock);
3447 3448 3449 3450 3451
	}

	return ret;
}

3452 3453 3454
/*
 * If @async is set, then we will trim 1 region and return.
 */
3455
static int trim_no_bitmap(struct btrfs_block_group *block_group,
3456 3457
			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
			  bool async)
3458
{
3459 3460
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
3461 3462 3463 3464 3465 3466
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret = 0;
	u64 extent_start;
	u64 extent_bytes;
3467
	enum btrfs_trim_state extent_trim_state;
3468
	u64 bytes;
3469
	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3470 3471

	while (start < end) {
3472 3473 3474
		struct btrfs_trim_range trim_entry;

		mutex_lock(&ctl->cache_writeout_mutex);
3475
		spin_lock(&ctl->tree_lock);
3476

3477 3478
		if (ctl->free_space < minlen)
			goto out_unlock;
3479

3480
		entry = tree_search_offset(ctl, start, 0, 1);
3481 3482
		if (!entry)
			goto out_unlock;
3483

3484 3485 3486
		/* Skip bitmaps and if async, already trimmed entries */
		while (entry->bitmap ||
		       (async && btrfs_free_space_trimmed(entry))) {
3487
			node = rb_next(&entry->offset_index);
3488 3489
			if (!node)
				goto out_unlock;
3490 3491
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
3492 3493
		}

3494 3495
		if (entry->offset >= end)
			goto out_unlock;
3496

3497 3498
		extent_start = entry->offset;
		extent_bytes = entry->bytes;
3499
		extent_trim_state = entry->trim_state;
3500 3501 3502 3503 3504 3505 3506 3507 3508
		if (async) {
			start = entry->offset;
			bytes = entry->bytes;
			if (bytes < minlen) {
				spin_unlock(&ctl->tree_lock);
				mutex_unlock(&ctl->cache_writeout_mutex);
				goto next;
			}
			unlink_free_space(ctl, entry);
D
Dennis Zhou 已提交
3509 3510 3511 3512 3513 3514 3515 3516
			/*
			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
			 * X when we come back around.  So trim it now.
			 */
			if (max_discard_size &&
			    bytes >= (max_discard_size +
				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3517 3518 3519 3520
				bytes = max_discard_size;
				extent_bytes = max_discard_size;
				entry->offset += max_discard_size;
				entry->bytes -= max_discard_size;
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
				link_free_space(ctl, entry);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, entry);
			}
		} else {
			start = max(start, extent_start);
			bytes = min(extent_start + extent_bytes, end) - start;
			if (bytes < minlen) {
				spin_unlock(&ctl->tree_lock);
				mutex_unlock(&ctl->cache_writeout_mutex);
				goto next;
			}
3533

3534 3535 3536
			unlink_free_space(ctl, entry);
			kmem_cache_free(btrfs_free_space_cachep, entry);
		}
3537

3538
		spin_unlock(&ctl->tree_lock);
3539 3540 3541 3542
		trim_entry.start = extent_start;
		trim_entry.bytes = extent_bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3543

3544
		ret = do_trimming(block_group, total_trimmed, start, bytes,
3545 3546
				  extent_start, extent_bytes, extent_trim_state,
				  &trim_entry);
3547 3548
		if (ret) {
			block_group->discard_cursor = start + bytes;
3549
			break;
3550
		}
3551 3552
next:
		start += bytes;
3553 3554 3555
		block_group->discard_cursor = start;
		if (async && *total_trimmed)
			break;
3556

3557 3558 3559 3560 3561 3562 3563
		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}
3564 3565 3566 3567 3568 3569 3570 3571

	return ret;

out_unlock:
	block_group->discard_cursor = btrfs_block_group_end(block_group);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

3572 3573 3574
	return ret;
}

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
/*
 * If we break out of trimming a bitmap prematurely, we should reset the
 * trimming bit.  In a rather contrieved case, it's possible to race here so
 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
 *
 * start = start of bitmap
 * end = near end of bitmap
 *
 * Thread 1:			Thread 2:
 * trim_bitmaps(start)
 *				trim_bitmaps(end)
 *				end_trimming_bitmap()
 * reset_trimming_bitmap()
 */
static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
{
	struct btrfs_free_space *entry;

	spin_lock(&ctl->tree_lock);
	entry = tree_search_offset(ctl, offset, 1, 0);
3595
	if (entry) {
3596
		if (btrfs_free_space_trimmed(entry)) {
3597 3598
			ctl->discardable_extents[BTRFS_STAT_CURR] +=
				entry->bitmap_extents;
3599 3600
			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
		}
3601
		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3602 3603
	}

3604 3605 3606
	spin_unlock(&ctl->tree_lock);
}

3607 3608
static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
				struct btrfs_free_space *entry)
3609
{
3610
	if (btrfs_free_space_trimming_bitmap(entry)) {
3611
		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3612 3613
		ctl->discardable_extents[BTRFS_STAT_CURR] -=
			entry->bitmap_extents;
3614
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3615
	}
3616 3617
}

3618 3619 3620
/*
 * If @async is set, then we will trim 1 region and return.
 */
3621
static int trim_bitmaps(struct btrfs_block_group *block_group,
3622
			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
D
Dennis Zhou 已提交
3623
			u64 maxlen, bool async)
3624
{
3625 3626
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
3627 3628 3629 3630 3631 3632
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	int ret = 0;
	int ret2;
	u64 bytes;
	u64 offset = offset_to_bitmap(ctl, start);
3633
	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3634 3635 3636

	while (offset < end) {
		bool next_bitmap = false;
3637
		struct btrfs_trim_range trim_entry;
3638

3639
		mutex_lock(&ctl->cache_writeout_mutex);
3640 3641 3642
		spin_lock(&ctl->tree_lock);

		if (ctl->free_space < minlen) {
3643 3644
			block_group->discard_cursor =
				btrfs_block_group_end(block_group);
3645
			spin_unlock(&ctl->tree_lock);
3646
			mutex_unlock(&ctl->cache_writeout_mutex);
3647 3648 3649 3650
			break;
		}

		entry = tree_search_offset(ctl, offset, 1, 0);
D
Dennis Zhou 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659
		/*
		 * Bitmaps are marked trimmed lossily now to prevent constant
		 * discarding of the same bitmap (the reason why we are bound
		 * by the filters).  So, retrim the block group bitmaps when we
		 * are preparing to punt to the unused_bgs list.  This uses
		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
		 * which is the only discard index which sets minlen to 0.
		 */
		if (!entry || (async && minlen && start == offset &&
3660
			       btrfs_free_space_trimmed(entry))) {
3661
			spin_unlock(&ctl->tree_lock);
3662
			mutex_unlock(&ctl->cache_writeout_mutex);
3663 3664 3665 3666
			next_bitmap = true;
			goto next;
		}

3667 3668 3669 3670 3671 3672 3673 3674 3675
		/*
		 * Async discard bitmap trimming begins at by setting the start
		 * to be key.objectid and the offset_to_bitmap() aligns to the
		 * start of the bitmap.  This lets us know we are fully
		 * scanning the bitmap rather than only some portion of it.
		 */
		if (start == offset)
			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;

3676
		bytes = minlen;
3677
		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3678
		if (ret2 || start >= end) {
3679
			/*
D
Dennis Zhou 已提交
3680 3681
			 * We lossily consider a bitmap trimmed if we only skip
			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3682
			 */
D
Dennis Zhou 已提交
3683
			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3684
				end_trimming_bitmap(ctl, entry);
3685 3686
			else
				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3687
			spin_unlock(&ctl->tree_lock);
3688
			mutex_unlock(&ctl->cache_writeout_mutex);
3689 3690 3691 3692
			next_bitmap = true;
			goto next;
		}

3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
		/*
		 * We already trimmed a region, but are using the locking above
		 * to reset the trim_state.
		 */
		if (async && *total_trimmed) {
			spin_unlock(&ctl->tree_lock);
			mutex_unlock(&ctl->cache_writeout_mutex);
			goto out;
		}

3703
		bytes = min(bytes, end - start);
D
Dennis Zhou 已提交
3704
		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3705
			spin_unlock(&ctl->tree_lock);
3706
			mutex_unlock(&ctl->cache_writeout_mutex);
3707 3708 3709
			goto next;
		}

D
Dennis Zhou 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718
		/*
		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
		 * If X < @minlen, we won't trim X when we come back around.
		 * So trim it now.  We differ here from trimming extents as we
		 * don't keep individual state per bit.
		 */
		if (async &&
		    max_discard_size &&
		    bytes > (max_discard_size + minlen))
3719
			bytes = max_discard_size;
3720

3721 3722 3723 3724 3725
		bitmap_clear_bits(ctl, entry, start, bytes);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);

		spin_unlock(&ctl->tree_lock);
3726 3727 3728 3729
		trim_entry.start = start;
		trim_entry.bytes = bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3730 3731

		ret = do_trimming(block_group, total_trimmed, start, bytes,
3732
				  start, bytes, 0, &trim_entry);
3733 3734
		if (ret) {
			reset_trimming_bitmap(ctl, offset);
3735 3736
			block_group->discard_cursor =
				btrfs_block_group_end(block_group);
3737
			break;
3738
		}
3739 3740 3741
next:
		if (next_bitmap) {
			offset += BITS_PER_BITMAP * ctl->unit;
3742
			start = offset;
3743 3744
		} else {
			start += bytes;
3745
		}
3746
		block_group->discard_cursor = start;
3747 3748

		if (fatal_signal_pending(current)) {
3749 3750
			if (start != offset)
				reset_trimming_bitmap(ctl, offset);
3751 3752 3753 3754 3755 3756 3757
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}

3758 3759 3760 3761
	if (offset >= end)
		block_group->discard_cursor = end;

out:
3762 3763
	return ret;
}
3764

3765
int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3766 3767
			   u64 *trimmed, u64 start, u64 end, u64 minlen)
{
3768
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3769
	int ret;
3770
	u64 rem = 0;
3771 3772 3773 3774 3775

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
3776
		spin_unlock(&block_group->lock);
3777
		return 0;
3778
	}
3779
	btrfs_freeze_block_group(block_group);
3780 3781
	spin_unlock(&block_group->lock);

3782
	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3783 3784
	if (ret)
		goto out;
3785

D
Dennis Zhou 已提交
3786
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3787 3788 3789 3790
	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
	/* If we ended in the middle of a bitmap, reset the trimming flag */
	if (rem)
		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3791
out:
3792
	btrfs_unfreeze_block_group(block_group);
3793 3794 3795
	return ret;
}

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
				   u64 *trimmed, u64 start, u64 end, u64 minlen,
				   bool async)
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
		spin_unlock(&block_group->lock);
		return 0;
	}
3809
	btrfs_freeze_block_group(block_group);
3810 3811 3812
	spin_unlock(&block_group->lock);

	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3813
	btrfs_unfreeze_block_group(block_group);
3814 3815 3816 3817 3818 3819

	return ret;
}

int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
				   u64 *trimmed, u64 start, u64 end, u64 minlen,
D
Dennis Zhou 已提交
3820
				   u64 maxlen, bool async)
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
		spin_unlock(&block_group->lock);
		return 0;
	}
3831
	btrfs_freeze_block_group(block_group);
3832 3833
	spin_unlock(&block_group->lock);

D
Dennis Zhou 已提交
3834 3835 3836
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
			   async);

3837
	btrfs_unfreeze_block_group(block_group);
3838 3839 3840 3841

	return ret;
}

3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
/*
 * Find the left-most item in the cache tree, and then return the
 * smallest inode number in the item.
 *
 * Note: the returned inode number may not be the smallest one in
 * the tree, if the left-most item is a bitmap.
 */
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
{
	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
	struct btrfs_free_space *entry = NULL;
	u64 ino = 0;

	spin_lock(&ctl->tree_lock);

	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
		goto out;

	entry = rb_entry(rb_first(&ctl->free_space_offset),
			 struct btrfs_free_space, offset_index);

	if (!entry->bitmap) {
		ino = entry->offset;

		unlink_free_space(ctl, entry);
		entry->offset++;
		entry->bytes--;
		if (!entry->bytes)
			kmem_cache_free(btrfs_free_space_cachep, entry);
		else
			link_free_space(ctl, entry);
	} else {
		u64 offset = 0;
		u64 count = 1;
		int ret;

3878
		ret = search_bitmap(ctl, entry, &offset, &count, true);
3879
		/* Logic error; Should be empty if it can't find anything */
3880
		ASSERT(!ret);
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891

		ino = offset;
		bitmap_clear_bits(ctl, entry, offset, 1);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);
	}
out:
	spin_unlock(&ctl->tree_lock);

	return ino;
}
3892 3893 3894 3895 3896 3897

struct inode *lookup_free_ino_inode(struct btrfs_root *root,
				    struct btrfs_path *path)
{
	struct inode *inode = NULL;

3898 3899 3900 3901
	spin_lock(&root->ino_cache_lock);
	if (root->ino_cache_inode)
		inode = igrab(root->ino_cache_inode);
	spin_unlock(&root->ino_cache_lock);
3902 3903 3904 3905 3906 3907 3908
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path, 0);
	if (IS_ERR(inode))
		return inode;

3909
	spin_lock(&root->ino_cache_lock);
3910
	if (!btrfs_fs_closing(root->fs_info))
3911 3912
		root->ino_cache_inode = igrab(inode);
	spin_unlock(&root->ino_cache_lock);
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932

	return inode;
}

int create_free_ino_inode(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_path *path)
{
	return __create_free_space_inode(root, trans, path,
					 BTRFS_FREE_INO_OBJECTID, 0);
}

int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	struct btrfs_path *path;
	struct inode *inode;
	int ret = 0;
	u64 root_gen = btrfs_root_generation(&root->root_item);

3933
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3934 3935
		return 0;

3936 3937 3938 3939
	/*
	 * If we're unmounting then just return, since this does a search on the
	 * normal root and not the commit root and we could deadlock.
	 */
3940
	if (btrfs_fs_closing(fs_info))
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return 0;

	inode = lookup_free_ino_inode(root, path);
	if (IS_ERR(inode))
		goto out;

	if (root_gen != BTRFS_I(inode)->generation)
		goto out_put;

	ret = __load_free_space_cache(root, inode, ctl, path, 0);

	if (ret < 0)
3957 3958 3959
		btrfs_err(fs_info,
			"failed to load free ino cache for root %llu",
			root->root_key.objectid);
3960 3961 3962 3963 3964 3965 3966 3967 3968
out_put:
	iput(inode);
out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_write_out_ino_cache(struct btrfs_root *root,
			      struct btrfs_trans_handle *trans,
3969 3970
			      struct btrfs_path *path,
			      struct inode *inode)
3971
{
3972
	struct btrfs_fs_info *fs_info = root->fs_info;
3973 3974
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	int ret;
3975
	struct btrfs_io_ctl io_ctl;
3976
	bool release_metadata = true;
3977

3978
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3979 3980
		return 0;

C
Chris Mason 已提交
3981
	memset(&io_ctl, 0, sizeof(io_ctl));
3982
	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3983 3984 3985 3986 3987 3988 3989 3990
	if (!ret) {
		/*
		 * At this point writepages() didn't error out, so our metadata
		 * reservation is released when the writeback finishes, at
		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
		 * with or without an error.
		 */
		release_metadata = false;
3991
		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3992
	}
C
Chris Mason 已提交
3993

3994
	if (ret) {
3995
		if (release_metadata)
3996
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3997
					inode->i_size, true);
3998
#ifdef CONFIG_BTRFS_DEBUG
3999 4000 4001
		btrfs_err(fs_info,
			  "failed to write free ino cache for root %llu",
			  root->root_key.objectid);
4002 4003
#endif
	}
4004 4005 4006

	return ret;
}
4007 4008

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4009 4010 4011 4012 4013 4014
/*
 * Use this if you need to make a bitmap or extent entry specifically, it
 * doesn't do any of the merging that add_free_space does, this acts a lot like
 * how the free space cache loading stuff works, so you can get really weird
 * configurations.
 */
4015
int test_add_free_space_entry(struct btrfs_block_group *cache,
4016
			      u64 offset, u64 bytes, bool bitmap)
4017
{
4018 4019 4020
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info = NULL, *bitmap_info;
	void *map = NULL;
4021
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4022 4023
	u64 bytes_added;
	int ret;
4024

4025 4026 4027 4028 4029
again:
	if (!info) {
		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
		if (!info)
			return -ENOMEM;
4030 4031
	}

4032 4033 4034 4035
	if (!bitmap) {
		spin_lock(&ctl->tree_lock);
		info->offset = offset;
		info->bytes = bytes;
4036
		info->max_extent_size = 0;
4037 4038 4039 4040 4041 4042 4043 4044
		ret = link_free_space(ctl, info);
		spin_unlock(&ctl->tree_lock);
		if (ret)
			kmem_cache_free(btrfs_free_space_cachep, info);
		return ret;
	}

	if (!map) {
4045
		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
		if (!map) {
			kmem_cache_free(btrfs_free_space_cachep, info);
			return -ENOMEM;
		}
	}

	spin_lock(&ctl->tree_lock);
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					 1, 0);
	if (!bitmap_info) {
		info->bitmap = map;
		map = NULL;
		add_new_bitmap(ctl, info, offset);
		bitmap_info = info;
4060
		info = NULL;
4061
	}
4062

4063 4064
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
					  trim_state);
4065

4066 4067 4068
	bytes -= bytes_added;
	offset += bytes_added;
	spin_unlock(&ctl->tree_lock);
4069

4070 4071
	if (bytes)
		goto again;
4072

4073 4074
	if (info)
		kmem_cache_free(btrfs_free_space_cachep, info);
4075 4076
	if (map)
		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4077
	return 0;
4078 4079 4080 4081 4082 4083 4084
}

/*
 * Checks to see if the given range is in the free space cache.  This is really
 * just used to check the absence of space, so if there is free space in the
 * range at all we will return 1.
 */
4085
int test_check_exists(struct btrfs_block_group *cache,
4086
		      u64 offset, u64 bytes)
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
{
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&ctl->tree_lock);
	info = tree_search_offset(ctl, offset, 0, 0);
	if (!info) {
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					  1, 0);
		if (!info)
			goto out;
	}

have_info:
	if (info->bitmap) {
		u64 bit_off, bit_bytes;
		struct rb_node *n;
		struct btrfs_free_space *tmp;

		bit_off = offset;
		bit_bytes = ctl->unit;
4109
		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
		if (!ret) {
			if (bit_off == offset) {
				ret = 1;
				goto out;
			} else if (bit_off > offset &&
				   offset + bytes > bit_off) {
				ret = 1;
				goto out;
			}
		}

		n = rb_prev(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (tmp->offset + tmp->bytes < offset)
				break;
			if (offset + bytes < tmp->offset) {
4128
				n = rb_prev(&tmp->offset_index);
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
				continue;
			}
			info = tmp;
			goto have_info;
		}

		n = rb_next(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (offset + bytes < tmp->offset)
				break;
			if (tmp->offset + tmp->bytes < offset) {
4142
				n = rb_next(&tmp->offset_index);
4143 4144 4145 4146 4147 4148
				continue;
			}
			info = tmp;
			goto have_info;
		}

4149
		ret = 0;
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
		goto out;
	}

	if (info->offset == offset) {
		ret = 1;
		goto out;
	}

	if (offset > info->offset && offset < info->offset + info->bytes)
		ret = 1;
out:
	spin_unlock(&ctl->tree_lock);
	return ret;
}
4164
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */