free-space-cache.c 95.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
J
Josef Bacik 已提交
2 3 4 5
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 */

6
#include <linux/pagemap.h>
J
Josef Bacik 已提交
7
#include <linux/sched.h>
8
#include <linux/sched/signal.h>
9
#include <linux/slab.h>
10
#include <linux/math64.h>
11
#include <linux/ratelimit.h>
12
#include <linux/error-injection.h>
13
#include <linux/sched/mm.h>
J
Josef Bacik 已提交
14
#include "ctree.h"
15 16
#include "free-space-cache.h"
#include "transaction.h"
17
#include "disk-io.h"
18
#include "extent_io.h"
19
#include "inode-map.h"
20
#include "volumes.h"
21
#include "space-info.h"
22
#include "delalloc-space.h"
23
#include "block-group.h"
24

25
#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
26
#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
J
Josef Bacik 已提交
27

28 29 30 31 32 33
struct btrfs_trim_range {
	u64 start;
	u64 bytes;
	struct list_head list;
};

34
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
35
			   struct btrfs_free_space *info);
36 37
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info);
38 39 40 41
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
			     struct btrfs_trans_handle *trans,
			     struct btrfs_io_ctl *io_ctl,
			     struct btrfs_path *path);
J
Josef Bacik 已提交
42

43 44 45
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
					       struct btrfs_path *path,
					       u64 offset)
46
{
47
	struct btrfs_fs_info *fs_info = root->fs_info;
48 49 50 51 52 53
	struct btrfs_key key;
	struct btrfs_key location;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	struct inode *inode = NULL;
54
	unsigned nofs_flag;
55 56 57
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
58
	key.offset = offset;
59 60 61 62 63 64
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ERR_PTR(ret);
	if (ret > 0) {
65
		btrfs_release_path(path);
66 67 68 69 70 71 72 73
		return ERR_PTR(-ENOENT);
	}

	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_free_space_key(leaf, header, &disk_key);
	btrfs_disk_key_to_cpu(&location, &disk_key);
74
	btrfs_release_path(path);
75

76 77 78 79 80
	/*
	 * We are often under a trans handle at this point, so we need to make
	 * sure NOFS is set to keep us from deadlocking.
	 */
	nofs_flag = memalloc_nofs_save();
81
	inode = btrfs_iget_path(fs_info->sb, &location, root, path);
82
	btrfs_release_path(path);
83
	memalloc_nofs_restore(nofs_flag);
84 85 86
	if (IS_ERR(inode))
		return inode;

A
Al Viro 已提交
87
	mapping_set_gfp_mask(inode->i_mapping,
88 89
			mapping_gfp_constraint(inode->i_mapping,
			~(__GFP_FS | __GFP_HIGHMEM)));
90

91 92 93
	return inode;
}

94
struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
95
		struct btrfs_path *path)
96
{
97
	struct btrfs_fs_info *fs_info = block_group->fs_info;
98
	struct inode *inode = NULL;
99
	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100 101 102 103 104 105 106 107

	spin_lock(&block_group->lock);
	if (block_group->inode)
		inode = igrab(block_group->inode);
	spin_unlock(&block_group->lock);
	if (inode)
		return inode;

108
	inode = __lookup_free_space_inode(fs_info->tree_root, path,
109
					  block_group->start);
110 111 112
	if (IS_ERR(inode))
		return inode;

113
	spin_lock(&block_group->lock);
114
	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115
		btrfs_info(fs_info, "Old style space inode found, converting.");
116 117
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
			BTRFS_INODE_NODATACOW;
118 119 120
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
	}

121
	if (!block_group->iref) {
122 123 124 125 126 127 128 129
		block_group->inode = igrab(inode);
		block_group->iref = 1;
	}
	spin_unlock(&block_group->lock);

	return inode;
}

130 131 132 133
static int __create_free_space_inode(struct btrfs_root *root,
				     struct btrfs_trans_handle *trans,
				     struct btrfs_path *path,
				     u64 ino, u64 offset)
134 135 136 137 138 139
{
	struct btrfs_key key;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
140
	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
141 142
	int ret;

143
	ret = btrfs_insert_empty_inode(trans, root, path, ino);
144 145 146
	if (ret)
		return ret;

147 148 149 150
	/* We inline crc's for the free disk space cache */
	if (ino != BTRFS_FREE_INO_OBJECTID)
		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;

151 152 153 154
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	btrfs_item_key(leaf, &disk_key, path->slots[0]);
155
	memzero_extent_buffer(leaf, (unsigned long)inode_item,
156 157 158 159 160 161 162
			     sizeof(*inode_item));
	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
	btrfs_set_inode_size(leaf, inode_item, 0);
	btrfs_set_inode_nbytes(leaf, inode_item, 0);
	btrfs_set_inode_uid(leaf, inode_item, 0);
	btrfs_set_inode_gid(leaf, inode_item, 0);
	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
163
	btrfs_set_inode_flags(leaf, inode_item, flags);
164 165
	btrfs_set_inode_nlink(leaf, inode_item, 1);
	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
166
	btrfs_set_inode_block_group(leaf, inode_item, offset);
167
	btrfs_mark_buffer_dirty(leaf);
168
	btrfs_release_path(path);
169 170

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
171
	key.offset = offset;
172 173 174 175
	key.type = 0;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(struct btrfs_free_space_header));
	if (ret < 0) {
176
		btrfs_release_path(path);
177 178
		return ret;
	}
179

180 181 182
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
183
	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
184 185
	btrfs_set_free_space_key(leaf, header, &disk_key);
	btrfs_mark_buffer_dirty(leaf);
186
	btrfs_release_path(path);
187 188 189 190

	return 0;
}

191
int create_free_space_inode(struct btrfs_trans_handle *trans,
192
			    struct btrfs_block_group *block_group,
193 194 195 196 197
			    struct btrfs_path *path)
{
	int ret;
	u64 ino;

198
	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
199 200 201
	if (ret < 0)
		return ret;

202
	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
203
					 ino, block_group->start);
204 205
}

206
int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
207
				       struct btrfs_block_rsv *rsv)
208
{
209
	u64 needed_bytes;
210
	int ret;
211 212

	/* 1 for slack space, 1 for updating the inode */
213 214
	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
		btrfs_calc_metadata_size(fs_info, 1);
215

216 217 218 219 220 221
	spin_lock(&rsv->lock);
	if (rsv->reserved < needed_bytes)
		ret = -ENOSPC;
	else
		ret = 0;
	spin_unlock(&rsv->lock);
222
	return ret;
223 224
}

225
int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
226
				    struct btrfs_block_group *block_group,
227 228
				    struct inode *inode)
{
229
	struct btrfs_root *root = BTRFS_I(inode)->root;
230
	int ret = 0;
231
	bool locked = false;
232 233

	if (block_group) {
234 235 236 237 238 239
		struct btrfs_path *path = btrfs_alloc_path();

		if (!path) {
			ret = -ENOMEM;
			goto fail;
		}
240
		locked = true;
241 242 243 244
		mutex_lock(&trans->transaction->cache_write_mutex);
		if (!list_empty(&block_group->io_list)) {
			list_del_init(&block_group->io_list);

245
			btrfs_wait_cache_io(trans, block_group, path);
246 247 248 249 250 251 252 253 254 255
			btrfs_put_block_group(block_group);
		}

		/*
		 * now that we've truncated the cache away, its no longer
		 * setup or written
		 */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
256
		btrfs_free_path(path);
257
	}
258

259
	btrfs_i_size_write(BTRFS_I(inode), 0);
260
	truncate_pagecache(inode, 0);
261 262

	/*
263 264
	 * We skip the throttling logic for free space cache inodes, so we don't
	 * need to check for -EAGAIN.
265 266 267
	 */
	ret = btrfs_truncate_inode_items(trans, root, inode,
					 0, BTRFS_EXTENT_DATA_KEY);
268 269
	if (ret)
		goto fail;
270

271
	ret = btrfs_update_inode(trans, root, inode);
272 273

fail:
274 275
	if (locked)
		mutex_unlock(&trans->transaction->cache_write_mutex);
276
	if (ret)
277
		btrfs_abort_transaction(trans, ret);
278

279
	return ret;
280 281
}

282
static void readahead_cache(struct inode *inode)
283 284 285 286 287 288
{
	struct file_ra_state *ra;
	unsigned long last_index;

	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
289
		return;
290 291

	file_ra_state_init(ra, inode->i_mapping);
292
	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
293 294 295 296 297 298

	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);

	kfree(ra);
}

299
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
300
		       int write)
301
{
302 303 304
	int num_pages;
	int check_crcs = 0;

305
	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
306

307
	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
308 309
		check_crcs = 1;

310
	/* Make sure we can fit our crcs and generation into the first page */
311
	if (write && check_crcs &&
312
	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
313 314
		return -ENOSPC;

315
	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
316

317
	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
318 319
	if (!io_ctl->pages)
		return -ENOMEM;
320 321

	io_ctl->num_pages = num_pages;
322
	io_ctl->fs_info = btrfs_sb(inode->i_sb);
323
	io_ctl->check_crcs = check_crcs;
324
	io_ctl->inode = inode;
325

326 327
	return 0;
}
328
ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
329

330
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
331 332
{
	kfree(io_ctl->pages);
333
	io_ctl->pages = NULL;
334 335
}

336
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
337 338 339 340 341 342 343
{
	if (io_ctl->cur) {
		io_ctl->cur = NULL;
		io_ctl->orig = NULL;
	}
}

344
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
345
{
346
	ASSERT(io_ctl->index < io_ctl->num_pages);
347
	io_ctl->page = io_ctl->pages[io_ctl->index++];
348
	io_ctl->cur = page_address(io_ctl->page);
349
	io_ctl->orig = io_ctl->cur;
350
	io_ctl->size = PAGE_SIZE;
351
	if (clear)
352
		clear_page(io_ctl->cur);
353 354
}

355
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
356 357 358 359 360 361
{
	int i;

	io_ctl_unmap_page(io_ctl);

	for (i = 0; i < io_ctl->num_pages; i++) {
362 363 364
		if (io_ctl->pages[i]) {
			ClearPageChecked(io_ctl->pages[i]);
			unlock_page(io_ctl->pages[i]);
365
			put_page(io_ctl->pages[i]);
366
		}
367 368 369
	}
}

370
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
				int uptodate)
{
	struct page *page;
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
	int i;

	for (i = 0; i < io_ctl->num_pages; i++) {
		page = find_or_create_page(inode->i_mapping, i, mask);
		if (!page) {
			io_ctl_drop_pages(io_ctl);
			return -ENOMEM;
		}
		io_ctl->pages[i] = page;
		if (uptodate && !PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
387 388 389 390 391 392
			if (page->mapping != inode->i_mapping) {
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					  "free space cache page truncated");
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
393
			if (!PageUptodate(page)) {
394 395
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					   "error reading free space cache");
396 397 398 399 400 401
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
		}
	}

402 403 404 405 406
	for (i = 0; i < io_ctl->num_pages; i++) {
		clear_page_dirty_for_io(io_ctl->pages[i]);
		set_page_extent_mapped(io_ctl->pages[i]);
	}

407 408 409
	return 0;
}

410
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
411
{
A
Al Viro 已提交
412
	__le64 *val;
413 414 415 416

	io_ctl_map_page(io_ctl, 1);

	/*
417 418
	 * Skip the csum areas.  If we don't check crcs then we just have a
	 * 64bit chunk at the front of the first page.
419
	 */
420 421 422 423 424 425 426
	if (io_ctl->check_crcs) {
		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
427 428 429 430 431 432

	val = io_ctl->cur;
	*val = cpu_to_le64(generation);
	io_ctl->cur += sizeof(u64);
}

433
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
434
{
A
Al Viro 已提交
435
	__le64 *gen;
436

437 438 439 440 441 442 443 444 445 446 447 448
	/*
	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
	 * chunk at the front of the first page.
	 */
	if (io_ctl->check_crcs) {
		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
		io_ctl->size -= sizeof(u64) +
			(sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
449 450 451

	gen = io_ctl->cur;
	if (le64_to_cpu(*gen) != generation) {
452
		btrfs_err_rl(io_ctl->fs_info,
453 454
			"space cache generation (%llu) does not match inode (%llu)",
				*gen, generation);
455 456 457 458
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}
	io_ctl->cur += sizeof(u64);
459 460 461
	return 0;
}

462
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
463 464 465 466 467 468 469 470 471 472 473
{
	u32 *tmp;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_unmap_page(io_ctl);
		return;
	}

	if (index == 0)
474
		offset = sizeof(u32) * io_ctl->num_pages;
475

476 477
	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
	btrfs_crc32c_final(crc, (u8 *)&crc);
478
	io_ctl_unmap_page(io_ctl);
479
	tmp = page_address(io_ctl->pages[0]);
480 481 482 483
	tmp += index;
	*tmp = crc;
}

484
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
485 486 487 488 489 490 491 492 493 494 495 496 497
{
	u32 *tmp, val;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_map_page(io_ctl, 0);
		return 0;
	}

	if (index == 0)
		offset = sizeof(u32) * io_ctl->num_pages;

498
	tmp = page_address(io_ctl->pages[0]);
499 500 501 502
	tmp += index;
	val = *tmp;

	io_ctl_map_page(io_ctl, 0);
503 504
	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
	btrfs_crc32c_final(crc, (u8 *)&crc);
505
	if (val != crc) {
506
		btrfs_err_rl(io_ctl->fs_info,
507
			"csum mismatch on free space cache");
508 509 510 511
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}

512 513 514
	return 0;
}

515
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
			    void *bitmap)
{
	struct btrfs_free_space_entry *entry;

	if (!io_ctl->cur)
		return -ENOSPC;

	entry = io_ctl->cur;
	entry->offset = cpu_to_le64(offset);
	entry->bytes = cpu_to_le64(bytes);
	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
		BTRFS_FREE_SPACE_EXTENT;
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
		return 0;

534
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
535 536 537 538 539 540 541 542 543 544

	/* No more pages to map */
	if (io_ctl->index >= io_ctl->num_pages)
		return 0;

	/* map the next page */
	io_ctl_map_page(io_ctl, 1);
	return 0;
}

545
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
546 547 548 549 550 551 552 553 554
{
	if (!io_ctl->cur)
		return -ENOSPC;

	/*
	 * If we aren't at the start of the current page, unmap this one and
	 * map the next one if there is any left.
	 */
	if (io_ctl->cur != io_ctl->orig) {
555
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
556 557 558 559 560
		if (io_ctl->index >= io_ctl->num_pages)
			return -ENOSPC;
		io_ctl_map_page(io_ctl, 0);
	}

561
	copy_page(io_ctl->cur, bitmap);
562
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
563 564 565 566 567
	if (io_ctl->index < io_ctl->num_pages)
		io_ctl_map_page(io_ctl, 0);
	return 0;
}

568
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
569
{
570 571 572 573 574 575 576 577
	/*
	 * If we're not on the boundary we know we've modified the page and we
	 * need to crc the page.
	 */
	if (io_ctl->cur != io_ctl->orig)
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
	else
		io_ctl_unmap_page(io_ctl);
578 579 580

	while (io_ctl->index < io_ctl->num_pages) {
		io_ctl_map_page(io_ctl, 1);
581
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
582 583 584
	}
}

585
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
586
			    struct btrfs_free_space *entry, u8 *type)
587 588
{
	struct btrfs_free_space_entry *e;
589 590 591 592 593 594 595
	int ret;

	if (!io_ctl->cur) {
		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
		if (ret)
			return ret;
	}
596 597 598 599

	e = io_ctl->cur;
	entry->offset = le64_to_cpu(e->offset);
	entry->bytes = le64_to_cpu(e->bytes);
600
	*type = e->type;
601 602 603 604
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
605
		return 0;
606 607 608

	io_ctl_unmap_page(io_ctl);

609
	return 0;
610 611
}

612
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
613
			      struct btrfs_free_space *entry)
614
{
615 616 617 618 619 620
	int ret;

	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
	if (ret)
		return ret;

621
	copy_page(entry->bitmap, io_ctl->cur);
622
	io_ctl_unmap_page(io_ctl);
623 624

	return 0;
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
/*
 * Since we attach pinned extents after the fact we can have contiguous sections
 * of free space that are split up in entries.  This poses a problem with the
 * tree logging stuff since it could have allocated across what appears to be 2
 * entries since we would have merged the entries when adding the pinned extents
 * back to the free space cache.  So run through the space cache that we just
 * loaded and merge contiguous entries.  This will make the log replay stuff not
 * blow up and it will make for nicer allocator behavior.
 */
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_free_space *e, *prev = NULL;
	struct rb_node *n;

again:
	spin_lock(&ctl->tree_lock);
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
		e = rb_entry(n, struct btrfs_free_space, offset_index);
		if (!prev)
			goto next;
		if (e->bitmap || prev->bitmap)
			goto next;
		if (prev->offset + prev->bytes == e->offset) {
			unlink_free_space(ctl, prev);
			unlink_free_space(ctl, e);
			prev->bytes += e->bytes;
			kmem_cache_free(btrfs_free_space_cachep, e);
			link_free_space(ctl, prev);
			prev = NULL;
			spin_unlock(&ctl->tree_lock);
			goto again;
		}
next:
		prev = e;
	}
	spin_unlock(&ctl->tree_lock);
}

665 666 667
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_path *path, u64 offset)
668
{
669
	struct btrfs_fs_info *fs_info = root->fs_info;
670 671
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
672
	struct btrfs_io_ctl io_ctl;
673
	struct btrfs_key key;
674
	struct btrfs_free_space *e, *n;
675
	LIST_HEAD(bitmaps);
676 677 678
	u64 num_entries;
	u64 num_bitmaps;
	u64 generation;
679
	u8 type;
680
	int ret = 0;
681 682

	/* Nothing in the space cache, goodbye */
683
	if (!i_size_read(inode))
684
		return 0;
685 686

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
687
	key.offset = offset;
688 689 690
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
691
	if (ret < 0)
692
		return 0;
693
	else if (ret > 0) {
694
		btrfs_release_path(path);
695
		return 0;
696 697
	}

698 699
	ret = -1;

700 701 702 703 704 705
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	num_entries = btrfs_free_space_entries(leaf, header);
	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
	generation = btrfs_free_space_generation(leaf, header);
706
	btrfs_release_path(path);
707

708
	if (!BTRFS_I(inode)->generation) {
709
		btrfs_info(fs_info,
710
			   "the free space cache file (%llu) is invalid, skip it",
711 712 713 714
			   offset);
		return 0;
	}

715
	if (BTRFS_I(inode)->generation != generation) {
716 717 718
		btrfs_err(fs_info,
			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
			  BTRFS_I(inode)->generation, generation);
719
		return 0;
720 721 722
	}

	if (!num_entries)
723
		return 0;
724

725
	ret = io_ctl_init(&io_ctl, inode, 0);
726 727 728
	if (ret)
		return ret;

729
	readahead_cache(inode);
730

731 732 733
	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
	if (ret)
		goto out;
734

735 736 737 738
	ret = io_ctl_check_crc(&io_ctl, 0);
	if (ret)
		goto free_cache;

739 740 741
	ret = io_ctl_check_generation(&io_ctl, generation);
	if (ret)
		goto free_cache;
742

743 744 745 746
	while (num_entries) {
		e = kmem_cache_zalloc(btrfs_free_space_cachep,
				      GFP_NOFS);
		if (!e)
747 748
			goto free_cache;

749 750 751 752 753 754
		ret = io_ctl_read_entry(&io_ctl, e, &type);
		if (ret) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
		}

755 756 757 758 759 760 761 762
		/*
		 * Sync discard ensures that the free space cache is always
		 * trimmed.  So when reading this in, the state should reflect
		 * that.
		 */
		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
			e->trim_state = BTRFS_TRIM_STATE_TRIMMED;

763 764 765
		if (!e->bytes) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
766
		}
767 768 769 770 771 772

		if (type == BTRFS_FREE_SPACE_EXTENT) {
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
773
				btrfs_err(fs_info,
774
					"Duplicate entries in free space cache, dumping");
775
				kmem_cache_free(btrfs_free_space_cachep, e);
776 777
				goto free_cache;
			}
778
		} else {
779
			ASSERT(num_bitmaps);
780
			num_bitmaps--;
781 782
			e->bitmap = kmem_cache_zalloc(
					btrfs_free_space_bitmap_cachep, GFP_NOFS);
783 784 785
			if (!e->bitmap) {
				kmem_cache_free(
					btrfs_free_space_cachep, e);
786 787
				goto free_cache;
			}
788 789 790 791 792 793
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			ctl->total_bitmaps++;
			ctl->op->recalc_thresholds(ctl);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
794
				btrfs_err(fs_info,
795
					"Duplicate entries in free space cache, dumping");
796
				kmem_cache_free(btrfs_free_space_cachep, e);
797 798
				goto free_cache;
			}
799
			list_add_tail(&e->list, &bitmaps);
800 801
		}

802 803
		num_entries--;
	}
804

805 806
	io_ctl_unmap_page(&io_ctl);

807 808 809 810 811
	/*
	 * We add the bitmaps at the end of the entries in order that
	 * the bitmap entries are added to the cache.
	 */
	list_for_each_entry_safe(e, n, &bitmaps, list) {
812
		list_del_init(&e->list);
813 814 815
		ret = io_ctl_read_bitmap(&io_ctl, e);
		if (ret)
			goto free_cache;
816 817
	}

818
	io_ctl_drop_pages(&io_ctl);
819
	merge_space_tree(ctl);
820 821
	ret = 1;
out:
822
	io_ctl_free(&io_ctl);
823 824
	return ret;
free_cache:
825
	io_ctl_drop_pages(&io_ctl);
826
	__btrfs_remove_free_space_cache(ctl);
827 828 829
	goto out;
}

830
int load_free_space_cache(struct btrfs_block_group *block_group)
J
Josef Bacik 已提交
831
{
832
	struct btrfs_fs_info *fs_info = block_group->fs_info;
833
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
834 835
	struct inode *inode;
	struct btrfs_path *path;
836
	int ret = 0;
837
	bool matched;
838
	u64 used = block_group->used;
839 840 841 842 843

	/*
	 * If this block group has been marked to be cleared for one reason or
	 * another then we can't trust the on disk cache, so just return.
	 */
844
	spin_lock(&block_group->lock);
845 846 847 848
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
		return 0;
	}
849
	spin_unlock(&block_group->lock);
850 851 852 853

	path = btrfs_alloc_path();
	if (!path)
		return 0;
854 855
	path->search_commit_root = 1;
	path->skip_locking = 1;
856

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	/*
	 * We must pass a path with search_commit_root set to btrfs_iget in
	 * order to avoid a deadlock when allocating extents for the tree root.
	 *
	 * When we are COWing an extent buffer from the tree root, when looking
	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
	 * block group without its free space cache loaded. When we find one
	 * we must load its space cache which requires reading its free space
	 * cache's inode item from the root tree. If this inode item is located
	 * in the same leaf that we started COWing before, then we end up in
	 * deadlock on the extent buffer (trying to read lock it when we
	 * previously write locked it).
	 *
	 * It's safe to read the inode item using the commit root because
	 * block groups, once loaded, stay in memory forever (until they are
	 * removed) as well as their space caches once loaded. New block groups
	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
	 * we will never try to read their inode item while the fs is mounted.
	 */
876
	inode = lookup_free_space_inode(block_group, path);
877 878 879 880 881
	if (IS_ERR(inode)) {
		btrfs_free_path(path);
		return 0;
	}

882 883 884 885
	/* We may have converted the inode and made the cache invalid. */
	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
886
		btrfs_free_path(path);
887 888 889 890
		goto out;
	}
	spin_unlock(&block_group->lock);

891
	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
892
				      path, block_group->start);
893 894 895 896 897
	btrfs_free_path(path);
	if (ret <= 0)
		goto out;

	spin_lock(&ctl->tree_lock);
898
	matched = (ctl->free_space == (block_group->length - used -
899 900 901 902 903
				       block_group->bytes_super));
	spin_unlock(&ctl->tree_lock);

	if (!matched) {
		__btrfs_remove_free_space_cache(ctl);
J
Jeff Mahoney 已提交
904 905
		btrfs_warn(fs_info,
			   "block group %llu has wrong amount of free space",
906
			   block_group->start);
907 908 909 910 911 912 913 914
		ret = -1;
	}
out:
	if (ret < 0) {
		/* This cache is bogus, make sure it gets cleared */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
915
		ret = 0;
916

J
Jeff Mahoney 已提交
917 918
		btrfs_warn(fs_info,
			   "failed to load free space cache for block group %llu, rebuilding it now",
919
			   block_group->start);
920 921 922 923
	}

	iput(inode);
	return ret;
924 925
}

926
static noinline_for_stack
927
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
928
			      struct btrfs_free_space_ctl *ctl,
929
			      struct btrfs_block_group *block_group,
930 931
			      int *entries, int *bitmaps,
			      struct list_head *bitmap_list)
J
Josef Bacik 已提交
932
{
933
	int ret;
934
	struct btrfs_free_cluster *cluster = NULL;
935
	struct btrfs_free_cluster *cluster_locked = NULL;
936
	struct rb_node *node = rb_first(&ctl->free_space_offset);
937
	struct btrfs_trim_range *trim_entry;
938

939
	/* Get the cluster for this block_group if it exists */
940
	if (block_group && !list_empty(&block_group->cluster_list)) {
941 942 943
		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
944
	}
945

946
	if (!node && cluster) {
947 948
		cluster_locked = cluster;
		spin_lock(&cluster_locked->lock);
949 950 951 952
		node = rb_first(&cluster->root);
		cluster = NULL;
	}

953 954 955
	/* Write out the extent entries */
	while (node) {
		struct btrfs_free_space *e;
J
Josef Bacik 已提交
956

957
		e = rb_entry(node, struct btrfs_free_space, offset_index);
958
		*entries += 1;
J
Josef Bacik 已提交
959

960
		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
961 962
				       e->bitmap);
		if (ret)
963
			goto fail;
964

965
		if (e->bitmap) {
966 967
			list_add_tail(&e->list, bitmap_list);
			*bitmaps += 1;
968
		}
969 970 971
		node = rb_next(node);
		if (!node && cluster) {
			node = rb_first(&cluster->root);
972 973
			cluster_locked = cluster;
			spin_lock(&cluster_locked->lock);
974
			cluster = NULL;
975
		}
976
	}
977 978 979 980
	if (cluster_locked) {
		spin_unlock(&cluster_locked->lock);
		cluster_locked = NULL;
	}
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995

	/*
	 * Make sure we don't miss any range that was removed from our rbtree
	 * because trimming is running. Otherwise after a umount+mount (or crash
	 * after committing the transaction) we would leak free space and get
	 * an inconsistent free space cache report from fsck.
	 */
	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
				       trim_entry->bytes, NULL);
		if (ret)
			goto fail;
		*entries += 1;
	}

996 997
	return 0;
fail:
998 999
	if (cluster_locked)
		spin_unlock(&cluster_locked->lock);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	return -ENOSPC;
}

static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct inode *inode,
		  struct btrfs_path *path, u64 offset,
		  int entries, int bitmaps)
{
	struct btrfs_key key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
	key.offset = offset;
	key.type = 0;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0) {
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1022
				 EXTENT_DELALLOC, 0, 0, NULL);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		goto fail;
	}
	leaf = path->nodes[0];
	if (ret > 0) {
		struct btrfs_key found_key;
		ASSERT(path->slots[0]);
		path->slots[0]--;
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
		    found_key.offset != offset) {
			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1034 1035
					 inode->i_size - 1, EXTENT_DELALLOC, 0,
					 0, NULL);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
			btrfs_release_path(path);
			goto fail;
		}
	}

	BTRFS_I(inode)->generation = trans->transid;
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_set_free_space_entries(leaf, header, entries);
	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
	btrfs_set_free_space_generation(leaf, header, trans->transid);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_release_path(path);

	return 0;

fail:
	return -1;
}

1056
static noinline_for_stack int write_pinned_extent_entries(
1057
			    struct btrfs_block_group *block_group,
1058
			    struct btrfs_io_ctl *io_ctl,
1059
			    int *entries)
1060 1061 1062 1063
{
	u64 start, extent_start, extent_end, len;
	struct extent_io_tree *unpin = NULL;
	int ret;
1064

1065 1066 1067
	if (!block_group)
		return 0;

1068 1069 1070
	/*
	 * We want to add any pinned extents to our free space cache
	 * so we don't leak the space
1071
	 *
1072 1073 1074
	 * We shouldn't have switched the pinned extents yet so this is the
	 * right one
	 */
1075
	unpin = block_group->fs_info->pinned_extents;
1076

1077
	start = block_group->start;
1078

1079
	while (start < block_group->start + block_group->length) {
1080 1081
		ret = find_first_extent_bit(unpin, start,
					    &extent_start, &extent_end,
1082
					    EXTENT_DIRTY, NULL);
1083 1084
		if (ret)
			return 0;
J
Josef Bacik 已提交
1085

1086
		/* This pinned extent is out of our range */
1087
		if (extent_start >= block_group->start + block_group->length)
1088
			return 0;
1089

1090
		extent_start = max(extent_start, start);
1091 1092
		extent_end = min(block_group->start + block_group->length,
				 extent_end + 1);
1093
		len = extent_end - extent_start;
J
Josef Bacik 已提交
1094

1095 1096
		*entries += 1;
		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1097
		if (ret)
1098
			return -ENOSPC;
J
Josef Bacik 已提交
1099

1100
		start = extent_end;
1101
	}
J
Josef Bacik 已提交
1102

1103 1104 1105 1106
	return 0;
}

static noinline_for_stack int
1107
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1108
{
1109
	struct btrfs_free_space *entry, *next;
1110 1111
	int ret;

J
Josef Bacik 已提交
1112
	/* Write out the bitmaps */
1113
	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1114
		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1115
		if (ret)
1116
			return -ENOSPC;
J
Josef Bacik 已提交
1117
		list_del_init(&entry->list);
1118 1119
	}

1120 1121
	return 0;
}
J
Josef Bacik 已提交
1122

1123 1124 1125
static int flush_dirty_cache(struct inode *inode)
{
	int ret;
1126

1127
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1128
	if (ret)
1129
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1130
				 EXTENT_DELALLOC, 0, 0, NULL);
J
Josef Bacik 已提交
1131

1132
	return ret;
1133 1134 1135
}

static void noinline_for_stack
1136
cleanup_bitmap_list(struct list_head *bitmap_list)
1137
{
1138
	struct btrfs_free_space *entry, *next;
1139

1140
	list_for_each_entry_safe(entry, next, bitmap_list, list)
1141
		list_del_init(&entry->list);
1142 1143 1144 1145 1146
}

static void noinline_for_stack
cleanup_write_cache_enospc(struct inode *inode,
			   struct btrfs_io_ctl *io_ctl,
1147
			   struct extent_state **cached_state)
1148
{
1149 1150
	io_ctl_drop_pages(io_ctl);
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1151
			     i_size_read(inode) - 1, cached_state);
1152
}
1153

1154 1155
static int __btrfs_wait_cache_io(struct btrfs_root *root,
				 struct btrfs_trans_handle *trans,
1156
				 struct btrfs_block_group *block_group,
1157 1158
				 struct btrfs_io_ctl *io_ctl,
				 struct btrfs_path *path, u64 offset)
1159 1160 1161 1162
{
	int ret;
	struct inode *inode = io_ctl->inode;

1163 1164 1165
	if (!inode)
		return 0;

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	/* Flush the dirty pages in the cache file. */
	ret = flush_dirty_cache(inode);
	if (ret)
		goto out;

	/* Update the cache item to tell everyone this cache file is valid. */
	ret = update_cache_item(trans, root, inode, path, offset,
				io_ctl->entries, io_ctl->bitmaps);
out:
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		if (block_group) {
#ifdef DEBUG
1181
			btrfs_err(root->fs_info,
1182
				  "failed to write free space cache for block group %llu",
1183
				  block_group->start);
1184 1185 1186 1187 1188 1189
#endif
		}
	}
	btrfs_update_inode(trans, root, inode);

	if (block_group) {
1190 1191 1192 1193
		/* the dirty list is protected by the dirty_bgs_lock */
		spin_lock(&trans->transaction->dirty_bgs_lock);

		/* the disk_cache_state is protected by the block group lock */
1194 1195 1196 1197
		spin_lock(&block_group->lock);

		/*
		 * only mark this as written if we didn't get put back on
1198 1199
		 * the dirty list while waiting for IO.   Otherwise our
		 * cache state won't be right, and we won't get written again
1200 1201 1202 1203 1204 1205 1206
		 */
		if (!ret && list_empty(&block_group->dirty_list))
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		else if (ret)
			block_group->disk_cache_state = BTRFS_DC_ERROR;

		spin_unlock(&block_group->lock);
1207
		spin_unlock(&trans->transaction->dirty_bgs_lock);
1208 1209 1210 1211 1212 1213 1214 1215
		io_ctl->inode = NULL;
		iput(inode);
	}

	return ret;

}

1216 1217 1218 1219 1220 1221 1222 1223 1224
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
				    struct btrfs_trans_handle *trans,
				    struct btrfs_io_ctl *io_ctl,
				    struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
}

int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1225
			struct btrfs_block_group *block_group,
1226 1227 1228 1229
			struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
				     block_group, &block_group->io_ctl,
1230
				     path, block_group->start);
1231 1232
}

1233 1234 1235 1236 1237 1238 1239 1240
/**
 * __btrfs_write_out_cache - write out cached info to an inode
 * @root - the root the inode belongs to
 * @ctl - the free space cache we are going to write out
 * @block_group - the block_group for this cache if it belongs to a block_group
 * @trans - the trans handle
 *
 * This function writes out a free space cache struct to disk for quick recovery
G
Geliang Tang 已提交
1241
 * on mount.  This will return 0 if it was successful in writing the cache out,
1242
 * or an errno if it was not.
1243 1244 1245
 */
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
1246
				   struct btrfs_block_group *block_group,
1247
				   struct btrfs_io_ctl *io_ctl,
1248
				   struct btrfs_trans_handle *trans)
1249 1250
{
	struct extent_state *cached_state = NULL;
1251
	LIST_HEAD(bitmap_list);
1252 1253 1254
	int entries = 0;
	int bitmaps = 0;
	int ret;
1255
	int must_iput = 0;
1256 1257

	if (!i_size_read(inode))
1258
		return -EIO;
1259

1260
	WARN_ON(io_ctl->pages);
1261
	ret = io_ctl_init(io_ctl, inode, 1);
1262
	if (ret)
1263
		return ret;
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
		down_write(&block_group->data_rwsem);
		spin_lock(&block_group->lock);
		if (block_group->delalloc_bytes) {
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
			spin_unlock(&block_group->lock);
			up_write(&block_group->data_rwsem);
			BTRFS_I(inode)->generation = 0;
			ret = 0;
1274
			must_iput = 1;
1275 1276 1277 1278 1279
			goto out;
		}
		spin_unlock(&block_group->lock);
	}

1280
	/* Lock all pages first so we can lock the extent safely. */
1281 1282
	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
	if (ret)
1283
		goto out_unlock;
1284 1285

	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1286
			 &cached_state);
1287

1288
	io_ctl_set_generation(io_ctl, trans->transid);
1289

1290
	mutex_lock(&ctl->cache_writeout_mutex);
1291
	/* Write out the extent entries in the free space cache */
1292
	spin_lock(&ctl->tree_lock);
1293
	ret = write_cache_extent_entries(io_ctl, ctl,
1294 1295
					 block_group, &entries, &bitmaps,
					 &bitmap_list);
1296 1297
	if (ret)
		goto out_nospc_locked;
1298

1299 1300 1301 1302
	/*
	 * Some spaces that are freed in the current transaction are pinned,
	 * they will be added into free space cache after the transaction is
	 * committed, we shouldn't lose them.
1303 1304 1305
	 *
	 * If this changes while we are working we'll get added back to
	 * the dirty list and redo it.  No locking needed
1306
	 */
1307
	ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1308 1309
	if (ret)
		goto out_nospc_locked;
1310

1311 1312 1313 1314 1315
	/*
	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
	 * locked while doing it because a concurrent trim can be manipulating
	 * or freeing the bitmap.
	 */
1316
	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1317
	spin_unlock(&ctl->tree_lock);
1318
	mutex_unlock(&ctl->cache_writeout_mutex);
1319 1320 1321 1322
	if (ret)
		goto out_nospc;

	/* Zero out the rest of the pages just to make sure */
1323
	io_ctl_zero_remaining_pages(io_ctl);
1324

1325
	/* Everything is written out, now we dirty the pages in the file. */
1326 1327
	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
				i_size_read(inode), &cached_state);
1328
	if (ret)
1329
		goto out_nospc;
1330

1331 1332
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);
1333 1334 1335 1336
	/*
	 * Release the pages and unlock the extent, we will flush
	 * them out later
	 */
1337
	io_ctl_drop_pages(io_ctl);
1338 1339

	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1340
			     i_size_read(inode) - 1, &cached_state);
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350
	/*
	 * at this point the pages are under IO and we're happy,
	 * The caller is responsible for waiting on them and updating the
	 * the cache and the inode
	 */
	io_ctl->entries = entries;
	io_ctl->bitmaps = bitmaps;

	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1351
	if (ret)
1352 1353
		goto out;

1354 1355
	return 0;

1356
out:
1357 1358
	io_ctl->inode = NULL;
	io_ctl_free(io_ctl);
1359
	if (ret) {
1360
		invalidate_inode_pages2(inode->i_mapping);
J
Josef Bacik 已提交
1361 1362 1363
		BTRFS_I(inode)->generation = 0;
	}
	btrfs_update_inode(trans, root, inode);
1364 1365
	if (must_iput)
		iput(inode);
1366
	return ret;
1367

1368 1369 1370 1371 1372
out_nospc_locked:
	cleanup_bitmap_list(&bitmap_list);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

1373
out_nospc:
1374
	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1375

1376
out_unlock:
1377 1378 1379
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);

1380
	goto out;
1381 1382
}

1383
int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1384
			  struct btrfs_block_group *block_group,
1385 1386
			  struct btrfs_path *path)
{
1387
	struct btrfs_fs_info *fs_info = trans->fs_info;
1388 1389 1390 1391 1392 1393 1394
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct inode *inode;
	int ret = 0;

	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
		spin_unlock(&block_group->lock);
1395 1396
		return 0;
	}
1397 1398
	spin_unlock(&block_group->lock);

1399
	inode = lookup_free_space_inode(block_group, path);
1400 1401 1402
	if (IS_ERR(inode))
		return 0;

1403 1404
	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
				block_group, &block_group->io_ctl, trans);
1405 1406
	if (ret) {
#ifdef DEBUG
1407 1408
		btrfs_err(fs_info,
			  "failed to write free space cache for block group %llu",
1409
			  block_group->start);
1410
#endif
1411 1412 1413 1414 1415 1416
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&block_group->lock);

		block_group->io_ctl.inode = NULL;
		iput(inode);
1417 1418
	}

1419 1420 1421 1422 1423
	/*
	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
	 * to wait for IO and put the inode
	 */

J
Josef Bacik 已提交
1424 1425 1426
	return ret;
}

1427
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1428
					  u64 offset)
J
Josef Bacik 已提交
1429
{
1430
	ASSERT(offset >= bitmap_start);
1431
	offset -= bitmap_start;
1432
	return (unsigned long)(div_u64(offset, unit));
1433
}
J
Josef Bacik 已提交
1434

1435
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1436
{
1437
	return (unsigned long)(div_u64(bytes, unit));
1438
}
J
Josef Bacik 已提交
1439

1440
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1441 1442 1443
				   u64 offset)
{
	u64 bitmap_start;
1444
	u64 bytes_per_bitmap;
J
Josef Bacik 已提交
1445

1446 1447
	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
	bitmap_start = offset - ctl->start;
1448
	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1449
	bitmap_start *= bytes_per_bitmap;
1450
	bitmap_start += ctl->start;
J
Josef Bacik 已提交
1451

1452
	return bitmap_start;
J
Josef Bacik 已提交
1453 1454
}

1455 1456
static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
J
Josef Bacik 已提交
1457 1458 1459 1460 1461 1462 1463
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
1464
		info = rb_entry(parent, struct btrfs_free_space, offset_index);
J
Josef Bacik 已提交
1465

1466
		if (offset < info->offset) {
J
Josef Bacik 已提交
1467
			p = &(*p)->rb_left;
1468
		} else if (offset > info->offset) {
J
Josef Bacik 已提交
1469
			p = &(*p)->rb_right;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
1485 1486 1487 1488
				if (info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1489 1490
				p = &(*p)->rb_right;
			} else {
1491 1492 1493 1494
				if (!info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1495 1496 1497
				p = &(*p)->rb_left;
			}
		}
J
Josef Bacik 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
J
Josef Bacik 已提交
1507 1508
 * searches the tree for the given offset.
 *
1509 1510 1511
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
J
Josef Bacik 已提交
1512
 */
1513
static struct btrfs_free_space *
1514
tree_search_offset(struct btrfs_free_space_ctl *ctl,
1515
		   u64 offset, int bitmap_only, int fuzzy)
J
Josef Bacik 已提交
1516
{
1517
	struct rb_node *n = ctl->free_space_offset.rb_node;
1518 1519 1520 1521 1522 1523 1524 1525
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}
J
Josef Bacik 已提交
1526 1527

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1528
		prev = entry;
J
Josef Bacik 已提交
1529

1530
		if (offset < entry->offset)
J
Josef Bacik 已提交
1531
			n = n->rb_left;
1532
		else if (offset > entry->offset)
J
Josef Bacik 已提交
1533
			n = n->rb_right;
1534
		else
J
Josef Bacik 已提交
1535 1536 1537
			break;
	}

1538 1539 1540 1541 1542
	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;
J
Josef Bacik 已提交
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;
J
Josef Bacik 已提交
1554

1555 1556 1557 1558
		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
J
Josef Bacik 已提交
1559
			/*
1560 1561
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
J
Josef Bacik 已提交
1562
			 */
1563 1564
			n = rb_prev(&entry->offset_index);
			if (n) {
1565 1566
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
1567 1568 1569
				if (!prev->bitmap &&
				    prev->offset + prev->bytes > offset)
					entry = prev;
J
Josef Bacik 已提交
1570
			}
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
1585
			ASSERT(entry->offset <= offset);
J
Josef Bacik 已提交
1586
		} else {
1587 1588 1589 1590
			if (fuzzy)
				return entry;
			else
				return NULL;
J
Josef Bacik 已提交
1591 1592 1593
		}
	}

1594
	if (entry->bitmap) {
1595 1596
		n = rb_prev(&entry->offset_index);
		if (n) {
1597 1598
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
1599 1600 1601
			if (!prev->bitmap &&
			    prev->offset + prev->bytes > offset)
				return prev;
1602
		}
1603
		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
1614
			    ctl->unit > offset)
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
J
Josef Bacik 已提交
1627 1628
}

1629
static inline void
1630
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1631
		    struct btrfs_free_space *info)
J
Josef Bacik 已提交
1632
{
1633 1634
	rb_erase(&info->offset_index, &ctl->free_space_offset);
	ctl->free_extents--;
1635 1636
}

1637
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1638 1639
			      struct btrfs_free_space *info)
{
1640 1641
	__unlink_free_space(ctl, info);
	ctl->free_space -= info->bytes;
J
Josef Bacik 已提交
1642 1643
}

1644
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1645 1646 1647 1648
			   struct btrfs_free_space *info)
{
	int ret = 0;

1649
	ASSERT(info->bytes || info->bitmap);
1650
	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1651
				 &info->offset_index, (info->bitmap != NULL));
J
Josef Bacik 已提交
1652 1653 1654
	if (ret)
		return ret;

1655 1656
	ctl->free_space += info->bytes;
	ctl->free_extents++;
1657 1658 1659
	return ret;
}

1660
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1661
{
1662
	struct btrfs_block_group *block_group = ctl->private;
1663 1664 1665
	u64 max_bytes;
	u64 bitmap_bytes;
	u64 extent_bytes;
1666
	u64 size = block_group->length;
1667 1668
	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1669

1670
	max_bitmaps = max_t(u64, max_bitmaps, 1);
1671

1672
	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1673 1674 1675 1676 1677 1678

	/*
	 * The goal is to keep the total amount of memory used per 1gb of space
	 * at or below 32k, so we need to adjust how much memory we allow to be
	 * used by extent based free space tracking
	 */
1679
	if (size < SZ_1G)
1680 1681
		max_bytes = MAX_CACHE_BYTES_PER_GIG;
	else
1682
		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1683

1684 1685 1686 1687 1688
	/*
	 * we want to account for 1 more bitmap than what we have so we can make
	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
	 * we add more bitmaps.
	 */
1689
	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1690

1691
	if (bitmap_bytes >= max_bytes) {
1692
		ctl->extents_thresh = 0;
1693 1694
		return;
	}
1695

1696
	/*
1697
	 * we want the extent entry threshold to always be at most 1/2 the max
1698 1699 1700
	 * bytes we can have, or whatever is less than that.
	 */
	extent_bytes = max_bytes - bitmap_bytes;
1701
	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1702

1703
	ctl->extents_thresh =
1704
		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1705 1706
}

1707 1708 1709
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       u64 offset, u64 bytes)
1710
{
L
Li Zefan 已提交
1711
	unsigned long start, count;
1712

1713 1714
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1715
	ASSERT(start + count <= BITS_PER_BITMAP);
1716

L
Li Zefan 已提交
1717
	bitmap_clear(info->bitmap, start, count);
1718 1719

	info->bytes -= bytes;
1720 1721
	if (info->max_extent_size > ctl->unit)
		info->max_extent_size = 0;
1722 1723 1724 1725 1726 1727 1728
}

static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	__bitmap_clear_bits(ctl, info, offset, bytes);
1729
	ctl->free_space -= bytes;
1730 1731
}

1732
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1733 1734
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
1735
{
L
Li Zefan 已提交
1736
	unsigned long start, count;
1737

1738 1739
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1740
	ASSERT(start + count <= BITS_PER_BITMAP);
1741

L
Li Zefan 已提交
1742
	bitmap_set(info->bitmap, start, count);
1743 1744

	info->bytes += bytes;
1745
	ctl->free_space += bytes;
1746 1747
}

1748 1749 1750 1751
/*
 * If we can not find suitable extent, we will use bytes to record
 * the size of the max extent.
 */
1752
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1753
			 struct btrfs_free_space *bitmap_info, u64 *offset,
1754
			 u64 *bytes, bool for_alloc)
1755 1756
{
	unsigned long found_bits = 0;
1757
	unsigned long max_bits = 0;
1758 1759
	unsigned long bits, i;
	unsigned long next_zero;
1760
	unsigned long extent_bits;
1761

1762 1763 1764 1765
	/*
	 * Skip searching the bitmap if we don't have a contiguous section that
	 * is large enough for this allocation.
	 */
1766 1767
	if (for_alloc &&
	    bitmap_info->max_extent_size &&
1768 1769 1770 1771 1772
	    bitmap_info->max_extent_size < *bytes) {
		*bytes = bitmap_info->max_extent_size;
		return -1;
	}

1773
	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1774
			  max_t(u64, *offset, bitmap_info->offset));
1775
	bits = bytes_to_bits(*bytes, ctl->unit);
1776

1777
	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1778 1779 1780 1781
		if (for_alloc && bits == 1) {
			found_bits = 1;
			break;
		}
1782 1783
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
1784 1785 1786
		extent_bits = next_zero - i;
		if (extent_bits >= bits) {
			found_bits = extent_bits;
1787
			break;
1788 1789
		} else if (extent_bits > max_bits) {
			max_bits = extent_bits;
1790 1791 1792 1793 1794
		}
		i = next_zero;
	}

	if (found_bits) {
1795 1796
		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
		*bytes = (u64)(found_bits) * ctl->unit;
1797 1798 1799
		return 0;
	}

1800
	*bytes = (u64)(max_bits) * ctl->unit;
1801
	bitmap_info->max_extent_size = *bytes;
1802 1803 1804
	return -1;
}

J
Josef Bacik 已提交
1805 1806 1807 1808 1809 1810 1811
static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
{
	if (entry->bitmap)
		return entry->max_extent_size;
	return entry->bytes;
}

1812
/* Cache the size of the max extent in bytes */
1813
static struct btrfs_free_space *
D
David Woodhouse 已提交
1814
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1815
		unsigned long align, u64 *max_extent_size)
1816 1817 1818
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
D
David Woodhouse 已提交
1819 1820
	u64 tmp;
	u64 align_off;
1821 1822
	int ret;

1823
	if (!ctl->free_space_offset.rb_node)
1824
		goto out;
1825

1826
	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1827
	if (!entry)
1828
		goto out;
1829 1830 1831

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1832
		if (entry->bytes < *bytes) {
J
Josef Bacik 已提交
1833 1834
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
1835
			continue;
1836
		}
1837

D
David Woodhouse 已提交
1838 1839 1840 1841
		/* make sure the space returned is big enough
		 * to match our requested alignment
		 */
		if (*bytes >= align) {
1842
			tmp = entry->offset - ctl->start + align - 1;
1843
			tmp = div64_u64(tmp, align);
D
David Woodhouse 已提交
1844 1845 1846 1847 1848 1849 1850
			tmp = tmp * align + ctl->start;
			align_off = tmp - entry->offset;
		} else {
			align_off = 0;
			tmp = entry->offset;
		}

1851
		if (entry->bytes < *bytes + align_off) {
J
Josef Bacik 已提交
1852 1853
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
D
David Woodhouse 已提交
1854
			continue;
1855
		}
D
David Woodhouse 已提交
1856

1857
		if (entry->bitmap) {
1858 1859
			u64 size = *bytes;

1860
			ret = search_bitmap(ctl, entry, &tmp, &size, true);
D
David Woodhouse 已提交
1861 1862
			if (!ret) {
				*offset = tmp;
1863
				*bytes = size;
1864
				return entry;
J
Josef Bacik 已提交
1865 1866 1867 1868
			} else {
				*max_extent_size =
					max(get_max_extent_size(entry),
					    *max_extent_size);
D
David Woodhouse 已提交
1869
			}
1870 1871 1872
			continue;
		}

D
David Woodhouse 已提交
1873 1874
		*offset = tmp;
		*bytes = entry->bytes - align_off;
1875 1876
		return entry;
	}
1877
out:
1878 1879 1880
	return NULL;
}

1881
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1882 1883
			   struct btrfs_free_space *info, u64 offset)
{
1884
	info->offset = offset_to_bitmap(ctl, offset);
J
Josef Bacik 已提交
1885
	info->bytes = 0;
1886
	INIT_LIST_HEAD(&info->list);
1887 1888
	link_free_space(ctl, info);
	ctl->total_bitmaps++;
1889

1890
	ctl->op->recalc_thresholds(ctl);
1891 1892
}

1893
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1894 1895
			struct btrfs_free_space *bitmap_info)
{
1896
	unlink_free_space(ctl, bitmap_info);
1897
	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1898
	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1899 1900
	ctl->total_bitmaps--;
	ctl->op->recalc_thresholds(ctl);
1901 1902
}

1903
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1904 1905 1906 1907
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
1908 1909
	u64 search_start, search_bytes;
	int ret;
1910 1911

again:
1912
	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1913

1914
	/*
1915 1916 1917 1918
	 * We need to search for bits in this bitmap.  We could only cover some
	 * of the extent in this bitmap thanks to how we add space, so we need
	 * to search for as much as it as we can and clear that amount, and then
	 * go searching for the next bit.
1919 1920
	 */
	search_start = *offset;
1921
	search_bytes = ctl->unit;
1922
	search_bytes = min(search_bytes, end - search_start + 1);
1923 1924
	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
			    false);
1925 1926
	if (ret < 0 || search_start != *offset)
		return -EINVAL;
1927

1928 1929 1930 1931 1932 1933 1934 1935 1936
	/* We may have found more bits than what we need */
	search_bytes = min(search_bytes, *bytes);

	/* Cannot clear past the end of the bitmap */
	search_bytes = min(search_bytes, end - search_start + 1);

	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
	*offset += search_bytes;
	*bytes -= search_bytes;
1937 1938

	if (*bytes) {
1939
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1940
		if (!bitmap_info->bytes)
1941
			free_bitmap(ctl, bitmap_info);
1942

1943 1944 1945 1946 1947
		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
1948 1949
			return -EINVAL;

1950 1951 1952 1953 1954 1955 1956
		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
1957 1958 1959
		if (!bitmap_info->bitmap)
			return -EAGAIN;

1960 1961 1962 1963 1964 1965 1966
		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
1967
		search_bytes = ctl->unit;
1968
		ret = search_bitmap(ctl, bitmap_info, &search_start,
1969
				    &search_bytes, false);
1970 1971 1972
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

1973
		goto again;
1974
	} else if (!bitmap_info->bytes)
1975
		free_bitmap(ctl, bitmap_info);
1976 1977 1978 1979

	return 0;
}

J
Josef Bacik 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
			       struct btrfs_free_space *info, u64 offset,
			       u64 bytes)
{
	u64 bytes_to_set = 0;
	u64 end;

	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);

	bytes_to_set = min(end - offset, bytes);

	bitmap_set_bits(ctl, info, offset, bytes_to_set);

1993 1994 1995 1996 1997 1998
	/*
	 * We set some bytes, we have no idea what the max extent size is
	 * anymore.
	 */
	info->max_extent_size = 0;

J
Josef Bacik 已提交
1999 2000 2001 2002
	return bytes_to_set;

}

2003 2004
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
		      struct btrfs_free_space *info)
2005
{
2006
	struct btrfs_block_group *block_group = ctl->private;
2007
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2008 2009 2010
	bool forced = false;

#ifdef CONFIG_BTRFS_DEBUG
2011
	if (btrfs_should_fragment_free_space(block_group))
2012 2013
		forced = true;
#endif
2014 2015 2016 2017 2018

	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
2019
	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2020 2021 2022
		/*
		 * If this block group has some small extents we don't want to
		 * use up all of our free slots in the cache with them, we want
2023
		 * to reserve them to larger extents, however if we have plenty
2024 2025 2026
		 * of cache left then go ahead an dadd them, no sense in adding
		 * the overhead of a bitmap if we don't have to.
		 */
2027
		if (info->bytes <= fs_info->sectorsize * 4) {
2028 2029
			if (ctl->free_extents * 2 <= ctl->extents_thresh)
				return false;
2030
		} else {
2031
			return false;
2032 2033
		}
	}
2034 2035

	/*
2036 2037 2038 2039 2040 2041
	 * The original block groups from mkfs can be really small, like 8
	 * megabytes, so don't bother with a bitmap for those entries.  However
	 * some block groups can be smaller than what a bitmap would cover but
	 * are still large enough that they could overflow the 32k memory limit,
	 * so allow those block groups to still be allowed to have a bitmap
	 * entry.
2042
	 */
2043
	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2044 2045 2046 2047 2048
		return false;

	return true;
}

2049
static const struct btrfs_free_space_op free_space_op = {
J
Josef Bacik 已提交
2050 2051 2052 2053
	.recalc_thresholds	= recalculate_thresholds,
	.use_bitmap		= use_bitmap,
};

2054 2055 2056 2057
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
2058
	struct btrfs_block_group *block_group = NULL;
2059
	int added = 0;
J
Josef Bacik 已提交
2060
	u64 bytes, offset, bytes_added;
2061
	int ret;
2062 2063 2064 2065

	bytes = info->bytes;
	offset = info->offset;

2066 2067 2068
	if (!ctl->op->use_bitmap(ctl, info))
		return 0;

J
Josef Bacik 已提交
2069 2070
	if (ctl->op == &free_space_op)
		block_group = ctl->private;
2071
again:
J
Josef Bacik 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	/*
	 * Since we link bitmaps right into the cluster we need to see if we
	 * have a cluster here, and if so and it has our bitmap we need to add
	 * the free space to that bitmap.
	 */
	if (block_group && !list_empty(&block_group->cluster_list)) {
		struct btrfs_free_cluster *cluster;
		struct rb_node *node;
		struct btrfs_free_space *entry;

		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
		spin_lock(&cluster->lock);
		node = rb_first(&cluster->root);
		if (!node) {
			spin_unlock(&cluster->lock);
2089
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2090 2091 2092 2093 2094
		}

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (!entry->bitmap) {
			spin_unlock(&cluster->lock);
2095
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
		}

		if (entry->offset == offset_to_bitmap(ctl, offset)) {
			bytes_added = add_bytes_to_bitmap(ctl, entry,
							  offset, bytes);
			bytes -= bytes_added;
			offset += bytes_added;
		}
		spin_unlock(&cluster->lock);
		if (!bytes) {
			ret = 1;
			goto out;
		}
	}
2110 2111

no_cluster_bitmap:
2112
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2113 2114
					 1, 0);
	if (!bitmap_info) {
2115
		ASSERT(added == 0);
2116 2117 2118
		goto new_bitmap;
	}

J
Josef Bacik 已提交
2119 2120 2121 2122
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
	bytes -= bytes_added;
	offset += bytes_added;
	added = 0;
2123 2124 2125 2126 2127 2128 2129 2130 2131

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
2132
		add_new_bitmap(ctl, info, offset);
2133 2134 2135 2136
		added = 1;
		info = NULL;
		goto again;
	} else {
2137
		spin_unlock(&ctl->tree_lock);
2138 2139 2140

		/* no pre-allocated info, allocate a new one */
		if (!info) {
2141 2142
			info = kmem_cache_zalloc(btrfs_free_space_cachep,
						 GFP_NOFS);
2143
			if (!info) {
2144
				spin_lock(&ctl->tree_lock);
2145 2146 2147 2148 2149 2150
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
2151 2152
		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
						 GFP_NOFS);
2153
		spin_lock(&ctl->tree_lock);
2154 2155 2156 2157 2158 2159 2160 2161 2162
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
2163 2164 2165
		if (info->bitmap)
			kmem_cache_free(btrfs_free_space_bitmap_cachep,
					info->bitmap);
2166
		kmem_cache_free(btrfs_free_space_cachep, info);
2167
	}
J
Josef Bacik 已提交
2168 2169 2170 2171

	return ret;
}

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
/*
 * Free space merging rules:
 *  1) Merge trimmed areas together
 *  2) Let untrimmed areas coalesce with trimmed areas
 *  3) Always pull neighboring regions from bitmaps
 *
 * The above rules are for when we merge free space based on btrfs_trim_state.
 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
 * same reason: to promote larger extent regions which makes life easier for
 * find_free_extent().  Rule 2 enables coalescing based on the common path
 * being returning free space from btrfs_finish_extent_commit().  So when free
 * space is trimmed, it will prevent aggregating trimmed new region and
 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
 * and provide find_free_extent() with the largest extents possible hoping for
 * the reuse path.
 */
2188
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2189
			  struct btrfs_free_space *info, bool update_stat)
J
Josef Bacik 已提交
2190
{
2191 2192 2193 2194 2195
	struct btrfs_free_space *left_info;
	struct btrfs_free_space *right_info;
	bool merged = false;
	u64 offset = info->offset;
	u64 bytes = info->bytes;
2196
	const bool is_trimmed = btrfs_free_space_trimmed(info);
2197

J
Josef Bacik 已提交
2198 2199 2200 2201 2202
	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
2203
	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2204 2205 2206 2207
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
	else
2208
		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
J
Josef Bacik 已提交
2209

2210 2211 2212
	/* See try_merge_free_space() comment. */
	if (right_info && !right_info->bitmap &&
	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2213
		if (update_stat)
2214
			unlink_free_space(ctl, right_info);
2215
		else
2216
			__unlink_free_space(ctl, right_info);
2217
		info->bytes += right_info->bytes;
2218
		kmem_cache_free(btrfs_free_space_cachep, right_info);
2219
		merged = true;
J
Josef Bacik 已提交
2220 2221
	}

2222
	/* See try_merge_free_space() comment. */
2223
	if (left_info && !left_info->bitmap &&
2224 2225
	    left_info->offset + left_info->bytes == offset &&
	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2226
		if (update_stat)
2227
			unlink_free_space(ctl, left_info);
2228
		else
2229
			__unlink_free_space(ctl, left_info);
2230 2231
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
2232
		kmem_cache_free(btrfs_free_space_cachep, left_info);
2233
		merged = true;
J
Josef Bacik 已提交
2234 2235
	}

2236 2237 2238
	return merged;
}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
				     struct btrfs_free_space *info,
				     bool update_stat)
{
	struct btrfs_free_space *bitmap;
	unsigned long i;
	unsigned long j;
	const u64 end = info->offset + info->bytes;
	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
	u64 bytes;

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, end);
	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
	if (j == i)
		return false;
	bytes = (j - i) * ctl->unit;
	info->bytes += bytes;

2261 2262 2263 2264
	/* See try_merge_free_space() comment. */
	if (!btrfs_free_space_trimmed(bitmap))
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, end, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, end, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       bool update_stat)
{
	struct btrfs_free_space *bitmap;
	u64 bitmap_offset;
	unsigned long i;
	unsigned long j;
	unsigned long prev_j;
	u64 bytes;

	bitmap_offset = offset_to_bitmap(ctl, info->offset);
	/* If we're on a boundary, try the previous logical bitmap. */
	if (bitmap_offset == info->offset) {
		if (info->offset == 0)
			return false;
		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
	}

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
	j = 0;
	prev_j = (unsigned long)-1;
	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
		if (j > i)
			break;
		prev_j = j;
	}
	if (prev_j == i)
		return false;

	if (prev_j == (unsigned long)-1)
		bytes = (i + 1) * ctl->unit;
	else
		bytes = (i - prev_j) * ctl->unit;

	info->offset -= bytes;
	info->bytes += bytes;

2318 2319 2320 2321
	/* See try_merge_free_space() comment. */
	if (!btrfs_free_space_trimmed(bitmap))
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

/*
 * We prefer always to allocate from extent entries, both for clustered and
 * non-clustered allocation requests. So when attempting to add a new extent
 * entry, try to see if there's adjacent free space in bitmap entries, and if
 * there is, migrate that space from the bitmaps to the extent.
 * Like this we get better chances of satisfying space allocation requests
 * because we attempt to satisfy them based on a single cache entry, and never
 * on 2 or more entries - even if the entries represent a contiguous free space
 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 * ends).
 */
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info,
			      bool update_stat)
{
	/*
	 * Only work with disconnected entries, as we can change their offset,
	 * and must be extent entries.
	 */
	ASSERT(!info->bitmap);
	ASSERT(RB_EMPTY_NODE(&info->offset_index));

	if (ctl->total_bitmaps > 0) {
		bool stole_end;
		bool stole_front = false;

		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
		if (ctl->total_bitmaps > 0)
			stole_front = steal_from_bitmap_to_front(ctl, info,
								 update_stat);

		if (stole_end || stole_front)
			try_merge_free_space(ctl, info, update_stat);
	}
}

2369 2370
int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
			   struct btrfs_free_space_ctl *ctl,
2371 2372
			   u64 offset, u64 bytes,
			   enum btrfs_trim_state trim_state)
2373 2374 2375 2376
{
	struct btrfs_free_space *info;
	int ret = 0;

2377
	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2378 2379 2380 2381 2382
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;
2383
	info->trim_state = trim_state;
2384
	RB_CLEAR_NODE(&info->offset_index);
2385

2386
	spin_lock(&ctl->tree_lock);
2387

2388
	if (try_merge_free_space(ctl, info, true))
2389 2390 2391 2392 2393 2394 2395
		goto link;

	/*
	 * There was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
2396
	ret = insert_into_bitmap(ctl, info);
2397 2398 2399 2400 2401 2402 2403
	if (ret < 0) {
		goto out;
	} else if (ret) {
		ret = 0;
		goto out;
	}
link:
2404 2405 2406 2407 2408 2409 2410 2411
	/*
	 * Only steal free space from adjacent bitmaps if we're sure we're not
	 * going to add the new free space to existing bitmap entries - because
	 * that would mean unnecessary work that would be reverted. Therefore
	 * attempt to steal space from bitmaps if we're adding an extent entry.
	 */
	steal_from_bitmap(ctl, info, true);

2412
	ret = link_free_space(ctl, info);
J
Josef Bacik 已提交
2413
	if (ret)
2414
		kmem_cache_free(btrfs_free_space_cachep, info);
2415
out:
2416
	spin_unlock(&ctl->tree_lock);
2417

J
Josef Bacik 已提交
2418
	if (ret) {
2419
		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2420
		ASSERT(ret != -EEXIST);
J
Josef Bacik 已提交
2421 2422 2423 2424 2425
	}

	return ret;
}

2426
int btrfs_add_free_space(struct btrfs_block_group *block_group,
2427 2428
			 u64 bytenr, u64 size)
{
2429 2430 2431 2432 2433
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
		trim_state = BTRFS_TRIM_STATE_TRIMMED;

2434 2435
	return __btrfs_add_free_space(block_group->fs_info,
				      block_group->free_space_ctl,
2436
				      bytenr, size, trim_state);
2437 2438
}

2439
int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2440
			    u64 offset, u64 bytes)
J
Josef Bacik 已提交
2441
{
2442
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2443
	struct btrfs_free_space *info;
2444 2445
	int ret;
	bool re_search = false;
J
Josef Bacik 已提交
2446

2447
	spin_lock(&ctl->tree_lock);
2448

2449
again:
2450
	ret = 0;
2451 2452 2453
	if (!bytes)
		goto out_lock;

2454
	info = tree_search_offset(ctl, offset, 0, 0);
2455
	if (!info) {
2456 2457 2458 2459
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
2460
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2461 2462
					  1, 0);
		if (!info) {
2463 2464 2465 2466
			/*
			 * If we found a partial bit of our free space in a
			 * bitmap but then couldn't find the other part this may
			 * be a problem, so WARN about it.
2467
			 */
2468
			WARN_ON(re_search);
2469 2470
			goto out_lock;
		}
2471 2472
	}

2473
	re_search = false;
2474
	if (!info->bitmap) {
2475
		unlink_free_space(ctl, info);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
		if (offset == info->offset) {
			u64 to_free = min(bytes, info->bytes);

			info->bytes -= to_free;
			info->offset += to_free;
			if (info->bytes) {
				ret = link_free_space(ctl, info);
				WARN_ON(ret);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, info);
			}
J
Josef Bacik 已提交
2487

2488 2489 2490 2491 2492
			offset += to_free;
			bytes -= to_free;
			goto again;
		} else {
			u64 old_end = info->bytes + info->offset;
2493

2494
			info->bytes = offset - info->offset;
2495
			ret = link_free_space(ctl, info);
2496 2497 2498 2499
			WARN_ON(ret);
			if (ret)
				goto out_lock;

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
			/* Not enough bytes in this entry to satisfy us */
			if (old_end < offset + bytes) {
				bytes -= old_end - offset;
				offset = old_end;
				goto again;
			} else if (old_end == offset + bytes) {
				/* all done */
				goto out_lock;
			}
			spin_unlock(&ctl->tree_lock);

2511 2512 2513 2514
			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
						     offset + bytes,
						     old_end - (offset + bytes),
						     info->trim_state);
2515 2516 2517
			WARN_ON(ret);
			goto out;
		}
J
Josef Bacik 已提交
2518
	}
2519

2520
	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2521 2522
	if (ret == -EAGAIN) {
		re_search = true;
2523
		goto again;
2524
	}
2525
out_lock:
2526
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2527
out:
2528 2529 2530
	return ret;
}

2531
void btrfs_dump_free_space(struct btrfs_block_group *block_group,
J
Josef Bacik 已提交
2532 2533
			   u64 bytes)
{
2534
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2535
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2536 2537 2538 2539
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

2540
	spin_lock(&ctl->tree_lock);
2541
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
J
Josef Bacik 已提交
2542
		info = rb_entry(n, struct btrfs_free_space, offset_index);
L
Liu Bo 已提交
2543
		if (info->bytes >= bytes && !block_group->ro)
J
Josef Bacik 已提交
2544
			count++;
2545
		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2546
			   info->offset, info->bytes,
2547
		       (info->bitmap) ? "yes" : "no");
J
Josef Bacik 已提交
2548
	}
2549
	spin_unlock(&ctl->tree_lock);
2550
	btrfs_info(fs_info, "block group has cluster?: %s",
2551
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2552
	btrfs_info(fs_info,
2553
		   "%d blocks of free space at or bigger than bytes is", count);
J
Josef Bacik 已提交
2554 2555
}

2556
void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
J
Josef Bacik 已提交
2557
{
2558
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2559
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2560

2561
	spin_lock_init(&ctl->tree_lock);
2562
	ctl->unit = fs_info->sectorsize;
2563
	ctl->start = block_group->start;
2564 2565
	ctl->private = block_group;
	ctl->op = &free_space_op;
2566 2567
	INIT_LIST_HEAD(&ctl->trimming_ranges);
	mutex_init(&ctl->cache_writeout_mutex);
J
Josef Bacik 已提交
2568

2569 2570 2571 2572 2573
	/*
	 * we only want to have 32k of ram per block group for keeping
	 * track of free space, and if we pass 1/2 of that we want to
	 * start converting things over to using bitmaps
	 */
2574
	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
J
Josef Bacik 已提交
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584
/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
static int
__btrfs_return_cluster_to_free_space(
2585
			     struct btrfs_block_group *block_group,
2586 2587
			     struct btrfs_free_cluster *cluster)
{
2588
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2589 2590 2591 2592 2593 2594 2595
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

2596
	cluster->block_group = NULL;
2597
	cluster->window_start = 0;
2598 2599
	list_del_init(&cluster->block_group_list);

2600
	node = rb_first(&cluster->root);
2601
	while (node) {
2602 2603
		bool bitmap;

2604 2605 2606
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
2607
		RB_CLEAR_NODE(&entry->offset_index);
2608 2609

		bitmap = (entry->bitmap != NULL);
2610
		if (!bitmap) {
2611
			try_merge_free_space(ctl, entry, false);
2612 2613
			steal_from_bitmap(ctl, entry, false);
		}
2614
		tree_insert_offset(&ctl->free_space_offset,
2615
				   entry->offset, &entry->offset_index, bitmap);
2616
	}
2617
	cluster->root = RB_ROOT;
2618

2619 2620
out:
	spin_unlock(&cluster->lock);
2621
	btrfs_put_block_group(block_group);
2622 2623 2624
	return 0;
}

2625 2626
static void __btrfs_remove_free_space_cache_locked(
				struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2627 2628 2629
{
	struct btrfs_free_space *info;
	struct rb_node *node;
2630 2631 2632

	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
2633 2634 2635 2636 2637 2638
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			free_bitmap(ctl, info);
		}
2639 2640

		cond_resched_lock(&ctl->tree_lock);
2641
	}
2642 2643 2644 2645 2646 2647
}

void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
	spin_lock(&ctl->tree_lock);
	__btrfs_remove_free_space_cache_locked(ctl);
2648 2649 2650
	spin_unlock(&ctl->tree_lock);
}

2651
void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2652 2653
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2654
	struct btrfs_free_cluster *cluster;
2655
	struct list_head *head;
J
Josef Bacik 已提交
2656

2657
	spin_lock(&ctl->tree_lock);
2658 2659 2660 2661
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);
2662 2663 2664

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
2665 2666

		cond_resched_lock(&ctl->tree_lock);
2667
	}
2668
	__btrfs_remove_free_space_cache_locked(ctl);
2669
	spin_unlock(&ctl->tree_lock);
2670

J
Josef Bacik 已提交
2671 2672
}

2673
u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2674 2675
			       u64 offset, u64 bytes, u64 empty_size,
			       u64 *max_extent_size)
J
Josef Bacik 已提交
2676
{
2677
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2678
	struct btrfs_free_space *entry = NULL;
2679
	u64 bytes_search = bytes + empty_size;
2680
	u64 ret = 0;
D
David Woodhouse 已提交
2681 2682
	u64 align_gap = 0;
	u64 align_gap_len = 0;
2683
	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
J
Josef Bacik 已提交
2684

2685
	spin_lock(&ctl->tree_lock);
D
David Woodhouse 已提交
2686
	entry = find_free_space(ctl, &offset, &bytes_search,
2687
				block_group->full_stripe_len, max_extent_size);
2688
	if (!entry)
2689 2690 2691 2692
		goto out;

	ret = offset;
	if (entry->bitmap) {
2693
		bitmap_clear_bits(ctl, entry, offset, bytes);
2694
		if (!entry->bytes)
2695
			free_bitmap(ctl, entry);
2696
	} else {
2697
		unlink_free_space(ctl, entry);
D
David Woodhouse 已提交
2698 2699
		align_gap_len = offset - entry->offset;
		align_gap = entry->offset;
2700
		align_gap_trim_state = entry->trim_state;
D
David Woodhouse 已提交
2701 2702 2703 2704 2705

		entry->offset = offset + bytes;
		WARN_ON(entry->bytes < bytes + align_gap_len);

		entry->bytes -= bytes + align_gap_len;
2706
		if (!entry->bytes)
2707
			kmem_cache_free(btrfs_free_space_cachep, entry);
2708
		else
2709
			link_free_space(ctl, entry);
2710
	}
2711
out:
2712
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2713

D
David Woodhouse 已提交
2714
	if (align_gap_len)
2715
		__btrfs_add_free_space(block_group->fs_info, ctl,
2716 2717
				       align_gap, align_gap_len,
				       align_gap_trim_state);
J
Josef Bacik 已提交
2718 2719
	return ret;
}
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
int btrfs_return_cluster_to_free_space(
2730
			       struct btrfs_block_group *block_group,
2731 2732
			       struct btrfs_free_cluster *cluster)
{
2733
	struct btrfs_free_space_ctl *ctl;
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	int ret;

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
			return 0;
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
		return 0;
	}
	atomic_inc(&block_group->count);
	spin_unlock(&cluster->lock);

2752 2753
	ctl = block_group->free_space_ctl;

2754
	/* now return any extents the cluster had on it */
2755
	spin_lock(&ctl->tree_lock);
2756
	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2757
	spin_unlock(&ctl->tree_lock);
2758 2759 2760 2761 2762 2763

	/* finally drop our ref */
	btrfs_put_block_group(block_group);
	return ret;
}

2764
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2765
				   struct btrfs_free_cluster *cluster,
2766
				   struct btrfs_free_space *entry,
2767 2768
				   u64 bytes, u64 min_start,
				   u64 *max_extent_size)
2769
{
2770
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2771 2772 2773 2774 2775 2776 2777 2778
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	search_start = min_start;
	search_bytes = bytes;

2779
	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2780
	if (err) {
J
Josef Bacik 已提交
2781 2782
		*max_extent_size = max(get_max_extent_size(entry),
				       *max_extent_size);
2783
		return 0;
2784
	}
2785 2786

	ret = search_start;
2787
	__bitmap_clear_bits(ctl, entry, ret, bytes);
2788 2789 2790 2791

	return ret;
}

2792 2793 2794 2795 2796
/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
2797
u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2798
			     struct btrfs_free_cluster *cluster, u64 bytes,
2799
			     u64 min_start, u64 *max_extent_size)
2800
{
2801
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2818
	while (1) {
J
Josef Bacik 已提交
2819 2820 2821
		if (entry->bytes < bytes)
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
2822

2823 2824
		if (entry->bytes < bytes ||
		    (!entry->bitmap && entry->offset < min_start)) {
2825 2826 2827 2828 2829 2830 2831 2832
			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}

2833 2834 2835
		if (entry->bitmap) {
			ret = btrfs_alloc_from_bitmap(block_group,
						      cluster, entry, bytes,
2836 2837
						      cluster->window_start,
						      max_extent_size);
2838 2839 2840 2841 2842 2843 2844 2845
			if (ret == 0) {
				node = rb_next(&entry->offset_index);
				if (!node)
					break;
				entry = rb_entry(node, struct btrfs_free_space,
						 offset_index);
				continue;
			}
2846
			cluster->window_start += bytes;
2847 2848 2849 2850 2851 2852
		} else {
			ret = entry->offset;

			entry->offset += bytes;
			entry->bytes -= bytes;
		}
2853

2854
		if (entry->bytes == 0)
2855 2856 2857 2858 2859
			rb_erase(&entry->offset_index, &cluster->root);
		break;
	}
out:
	spin_unlock(&cluster->lock);
2860

2861 2862 2863
	if (!ret)
		return 0;

2864
	spin_lock(&ctl->tree_lock);
2865

2866
	ctl->free_space -= bytes;
2867
	if (entry->bytes == 0) {
2868
		ctl->free_extents--;
2869
		if (entry->bitmap) {
2870 2871
			kmem_cache_free(btrfs_free_space_bitmap_cachep,
					entry->bitmap);
2872 2873
			ctl->total_bitmaps--;
			ctl->op->recalc_thresholds(ctl);
2874
		}
2875
		kmem_cache_free(btrfs_free_space_cachep, entry);
2876 2877
	}

2878
	spin_unlock(&ctl->tree_lock);
2879

2880 2881 2882
	return ret;
}

2883
static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
2884 2885
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
2886 2887
				u64 offset, u64 bytes,
				u64 cont1_bytes, u64 min_bytes)
2888
{
2889
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2890 2891
	unsigned long next_zero;
	unsigned long i;
2892 2893
	unsigned long want_bits;
	unsigned long min_bits;
2894
	unsigned long found_bits;
2895
	unsigned long max_bits = 0;
2896 2897
	unsigned long start = 0;
	unsigned long total_found = 0;
2898
	int ret;
2899

2900
	i = offset_to_bit(entry->offset, ctl->unit,
2901
			  max_t(u64, offset, entry->offset));
2902 2903
	want_bits = bytes_to_bits(bytes, ctl->unit);
	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2904

2905 2906 2907 2908 2909 2910 2911
	/*
	 * Don't bother looking for a cluster in this bitmap if it's heavily
	 * fragmented.
	 */
	if (entry->max_extent_size &&
	    entry->max_extent_size < cont1_bytes)
		return -ENOSPC;
2912 2913
again:
	found_bits = 0;
2914
	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2915 2916
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
2917
		if (next_zero - i >= min_bits) {
2918
			found_bits = next_zero - i;
2919 2920
			if (found_bits > max_bits)
				max_bits = found_bits;
2921 2922
			break;
		}
2923 2924
		if (next_zero - i > max_bits)
			max_bits = next_zero - i;
2925 2926 2927
		i = next_zero;
	}

2928 2929
	if (!found_bits) {
		entry->max_extent_size = (u64)max_bits * ctl->unit;
2930
		return -ENOSPC;
2931
	}
2932

2933
	if (!total_found) {
2934
		start = i;
2935
		cluster->max_size = 0;
2936 2937 2938 2939
	}

	total_found += found_bits;

2940 2941
	if (cluster->max_size < found_bits * ctl->unit)
		cluster->max_size = found_bits * ctl->unit;
2942

2943 2944
	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
		i = next_zero + 1;
2945 2946 2947
		goto again;
	}

2948
	cluster->window_start = start * ctl->unit + entry->offset;
2949
	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2950 2951
	ret = tree_insert_offset(&cluster->root, entry->offset,
				 &entry->offset_index, 1);
2952
	ASSERT(!ret); /* -EEXIST; Logic error */
2953

J
Josef Bacik 已提交
2954
	trace_btrfs_setup_cluster(block_group, cluster,
2955
				  total_found * ctl->unit, 1);
2956 2957 2958
	return 0;
}

2959 2960
/*
 * This searches the block group for just extents to fill the cluster with.
2961 2962
 * Try to find a cluster with at least bytes total bytes, at least one
 * extent of cont1_bytes, and other clusters of at least min_bytes.
2963
 */
2964
static noinline int
2965
setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
2966 2967
			struct btrfs_free_cluster *cluster,
			struct list_head *bitmaps, u64 offset, u64 bytes,
2968
			u64 cont1_bytes, u64 min_bytes)
2969
{
2970
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2971 2972 2973 2974 2975 2976
	struct btrfs_free_space *first = NULL;
	struct btrfs_free_space *entry = NULL;
	struct btrfs_free_space *last;
	struct rb_node *node;
	u64 window_free;
	u64 max_extent;
J
Josef Bacik 已提交
2977
	u64 total_size = 0;
2978

2979
	entry = tree_search_offset(ctl, offset, 0, 1);
2980 2981 2982 2983 2984 2985 2986
	if (!entry)
		return -ENOSPC;

	/*
	 * We don't want bitmaps, so just move along until we find a normal
	 * extent entry.
	 */
2987 2988
	while (entry->bitmap || entry->bytes < min_bytes) {
		if (entry->bitmap && list_empty(&entry->list))
2989
			list_add_tail(&entry->list, bitmaps);
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
		node = rb_next(&entry->offset_index);
		if (!node)
			return -ENOSPC;
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	window_free = entry->bytes;
	max_extent = entry->bytes;
	first = entry;
	last = entry;

3001 3002
	for (node = rb_next(&entry->offset_index); node;
	     node = rb_next(&entry->offset_index)) {
3003 3004
		entry = rb_entry(node, struct btrfs_free_space, offset_index);

3005 3006 3007
		if (entry->bitmap) {
			if (list_empty(&entry->list))
				list_add_tail(&entry->list, bitmaps);
3008
			continue;
3009 3010
		}

3011 3012 3013 3014 3015 3016
		if (entry->bytes < min_bytes)
			continue;

		last = entry;
		window_free += entry->bytes;
		if (entry->bytes > max_extent)
3017 3018 3019
			max_extent = entry->bytes;
	}

3020 3021 3022
	if (window_free < bytes || max_extent < cont1_bytes)
		return -ENOSPC;

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	cluster->window_start = first->offset;

	node = &first->offset_index;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 */
	do {
		int ret;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
3036
		if (entry->bitmap || entry->bytes < min_bytes)
3037 3038
			continue;

3039
		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3040 3041
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
J
Josef Bacik 已提交
3042
		total_size += entry->bytes;
3043
		ASSERT(!ret); /* -EEXIST; Logic error */
3044 3045 3046
	} while (node && entry != last);

	cluster->max_size = max_extent;
J
Josef Bacik 已提交
3047
	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3048 3049 3050 3051 3052 3053 3054
	return 0;
}

/*
 * This specifically looks for bitmaps that may work in the cluster, we assume
 * that we have already failed to find extents that will work.
 */
3055
static noinline int
3056
setup_cluster_bitmap(struct btrfs_block_group *block_group,
3057 3058
		     struct btrfs_free_cluster *cluster,
		     struct list_head *bitmaps, u64 offset, u64 bytes,
3059
		     u64 cont1_bytes, u64 min_bytes)
3060
{
3061
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3062
	struct btrfs_free_space *entry = NULL;
3063
	int ret = -ENOSPC;
3064
	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3065

3066
	if (ctl->total_bitmaps == 0)
3067 3068
		return -ENOSPC;

3069 3070 3071 3072
	/*
	 * The bitmap that covers offset won't be in the list unless offset
	 * is just its start offset.
	 */
3073 3074 3075 3076
	if (!list_empty(bitmaps))
		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);

	if (!entry || entry->offset != bitmap_offset) {
3077 3078 3079 3080 3081
		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
		if (entry && list_empty(&entry->list))
			list_add(&entry->list, bitmaps);
	}

3082
	list_for_each_entry(entry, bitmaps, list) {
3083
		if (entry->bytes < bytes)
3084 3085
			continue;
		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3086
					   bytes, cont1_bytes, min_bytes);
3087 3088 3089 3090 3091
		if (!ret)
			return 0;
	}

	/*
3092 3093
	 * The bitmaps list has all the bitmaps that record free space
	 * starting after offset, so no more search is required.
3094
	 */
3095
	return -ENOSPC;
3096 3097
}

3098 3099
/*
 * here we try to find a cluster of blocks in a block group.  The goal
3100
 * is to find at least bytes+empty_size.
3101 3102 3103 3104 3105
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
3106
int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3107 3108 3109
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
3110
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3111
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3112
	struct btrfs_free_space *entry, *tmp;
3113
	LIST_HEAD(bitmaps);
3114
	u64 min_bytes;
3115
	u64 cont1_bytes;
3116 3117
	int ret;

3118 3119 3120 3121 3122 3123
	/*
	 * Choose the minimum extent size we'll require for this
	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
	 * For metadata, allow allocates with smaller extents.  For
	 * data, keep it dense.
	 */
3124
	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3125
		cont1_bytes = min_bytes = bytes + empty_size;
3126
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3127
		cont1_bytes = bytes;
3128
		min_bytes = fs_info->sectorsize;
3129 3130
	} else {
		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3131
		min_bytes = fs_info->sectorsize;
3132
	}
3133

3134
	spin_lock(&ctl->tree_lock);
3135 3136 3137 3138 3139

	/*
	 * If we know we don't have enough space to make a cluster don't even
	 * bother doing all the work to try and find one.
	 */
3140
	if (ctl->free_space < bytes) {
3141
		spin_unlock(&ctl->tree_lock);
3142 3143 3144
		return -ENOSPC;
	}

3145 3146 3147 3148 3149 3150 3151 3152
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}

J
Josef Bacik 已提交
3153 3154 3155
	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
				 min_bytes);

3156
	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3157 3158
				      bytes + empty_size,
				      cont1_bytes, min_bytes);
3159
	if (ret)
3160
		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3161 3162
					   offset, bytes + empty_size,
					   cont1_bytes, min_bytes);
3163 3164 3165 3166

	/* Clear our temporary list */
	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
		list_del_init(&entry->list);
3167

3168 3169 3170 3171 3172
	if (!ret) {
		atomic_inc(&block_group->count);
		list_add_tail(&cluster->block_group_list,
			      &block_group->cluster_list);
		cluster->block_group = block_group;
J
Josef Bacik 已提交
3173 3174
	} else {
		trace_btrfs_failed_cluster_setup(block_group);
3175 3176 3177
	}
out:
	spin_unlock(&cluster->lock);
3178
	spin_unlock(&ctl->tree_lock);
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
3190
	cluster->root = RB_ROOT;
3191
	cluster->max_size = 0;
3192
	cluster->fragmented = false;
3193 3194 3195 3196
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}

3197
static int do_trimming(struct btrfs_block_group *block_group,
3198
		       u64 *total_trimmed, u64 start, u64 bytes,
3199 3200
		       u64 reserved_start, u64 reserved_bytes,
		       struct btrfs_trim_range *trim_entry)
3201
{
3202
	struct btrfs_space_info *space_info = block_group->space_info;
3203
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3204
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3205 3206 3207
	int ret;
	int update = 0;
	u64 trimmed = 0;
3208

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
	spin_lock(&space_info->lock);
	spin_lock(&block_group->lock);
	if (!block_group->ro) {
		block_group->reserved += reserved_bytes;
		space_info->bytes_reserved += reserved_bytes;
		update = 1;
	}
	spin_unlock(&block_group->lock);
	spin_unlock(&space_info->lock);

3219
	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3220 3221 3222
	if (!ret)
		*total_trimmed += trimmed;

3223
	mutex_lock(&ctl->cache_writeout_mutex);
3224
	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3225 3226
	list_del(&trim_entry->list);
	mutex_unlock(&ctl->cache_writeout_mutex);
3227 3228 3229 3230 3231 3232 3233 3234 3235

	if (update) {
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);
		if (block_group->ro)
			space_info->bytes_readonly += reserved_bytes;
		block_group->reserved -= reserved_bytes;
		space_info->bytes_reserved -= reserved_bytes;
		spin_unlock(&block_group->lock);
3236
		spin_unlock(&space_info->lock);
3237 3238 3239 3240 3241
	}

	return ret;
}

3242
static int trim_no_bitmap(struct btrfs_block_group *block_group,
3243 3244 3245 3246 3247 3248 3249 3250 3251
			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret = 0;
	u64 extent_start;
	u64 extent_bytes;
	u64 bytes;
3252 3253

	while (start < end) {
3254 3255 3256
		struct btrfs_trim_range trim_entry;

		mutex_lock(&ctl->cache_writeout_mutex);
3257
		spin_lock(&ctl->tree_lock);
3258

3259 3260
		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3261
			mutex_unlock(&ctl->cache_writeout_mutex);
3262 3263 3264
			break;
		}

3265
		entry = tree_search_offset(ctl, start, 0, 1);
3266
		if (!entry) {
3267
			spin_unlock(&ctl->tree_lock);
3268
			mutex_unlock(&ctl->cache_writeout_mutex);
3269 3270 3271
			break;
		}

3272 3273 3274 3275
		/* skip bitmaps */
		while (entry->bitmap) {
			node = rb_next(&entry->offset_index);
			if (!node) {
3276
				spin_unlock(&ctl->tree_lock);
3277
				mutex_unlock(&ctl->cache_writeout_mutex);
3278
				goto out;
3279
			}
3280 3281
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
3282 3283
		}

3284 3285
		if (entry->offset >= end) {
			spin_unlock(&ctl->tree_lock);
3286
			mutex_unlock(&ctl->cache_writeout_mutex);
3287
			break;
3288 3289
		}

3290 3291 3292 3293 3294 3295
		extent_start = entry->offset;
		extent_bytes = entry->bytes;
		start = max(start, extent_start);
		bytes = min(extent_start + extent_bytes, end) - start;
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3296
			mutex_unlock(&ctl->cache_writeout_mutex);
3297
			goto next;
3298 3299
		}

3300 3301 3302
		unlink_free_space(ctl, entry);
		kmem_cache_free(btrfs_free_space_cachep, entry);

3303
		spin_unlock(&ctl->tree_lock);
3304 3305 3306 3307
		trim_entry.start = extent_start;
		trim_entry.bytes = extent_bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3308

3309
		ret = do_trimming(block_group, total_trimmed, start, bytes,
3310
				  extent_start, extent_bytes, &trim_entry);
3311 3312 3313 3314
		if (ret)
			break;
next:
		start += bytes;
3315

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}
out:
	return ret;
}

3327
static int trim_bitmaps(struct btrfs_block_group *block_group,
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	int ret = 0;
	int ret2;
	u64 bytes;
	u64 offset = offset_to_bitmap(ctl, start);

	while (offset < end) {
		bool next_bitmap = false;
3339
		struct btrfs_trim_range trim_entry;
3340

3341
		mutex_lock(&ctl->cache_writeout_mutex);
3342 3343 3344 3345
		spin_lock(&ctl->tree_lock);

		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3346
			mutex_unlock(&ctl->cache_writeout_mutex);
3347 3348 3349 3350 3351 3352
			break;
		}

		entry = tree_search_offset(ctl, offset, 1, 0);
		if (!entry) {
			spin_unlock(&ctl->tree_lock);
3353
			mutex_unlock(&ctl->cache_writeout_mutex);
3354 3355 3356 3357 3358
			next_bitmap = true;
			goto next;
		}

		bytes = minlen;
3359
		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3360 3361
		if (ret2 || start >= end) {
			spin_unlock(&ctl->tree_lock);
3362
			mutex_unlock(&ctl->cache_writeout_mutex);
3363 3364 3365 3366 3367 3368 3369
			next_bitmap = true;
			goto next;
		}

		bytes = min(bytes, end - start);
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3370
			mutex_unlock(&ctl->cache_writeout_mutex);
3371 3372 3373 3374 3375 3376 3377 3378
			goto next;
		}

		bitmap_clear_bits(ctl, entry, start, bytes);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);

		spin_unlock(&ctl->tree_lock);
3379 3380 3381 3382
		trim_entry.start = start;
		trim_entry.bytes = bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3383 3384

		ret = do_trimming(block_group, total_trimmed, start, bytes,
3385
				  start, bytes, &trim_entry);
3386 3387 3388 3389 3390 3391 3392 3393 3394
		if (ret)
			break;
next:
		if (next_bitmap) {
			offset += BITS_PER_BITMAP * ctl->unit;
		} else {
			start += bytes;
			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
				offset += BITS_PER_BITMAP * ctl->unit;
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
		}

		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}

	return ret;
}
3407

3408
void btrfs_get_block_group_trimming(struct btrfs_block_group *cache)
3409
{
3410 3411
	atomic_inc(&cache->trimming);
}
3412

3413
void btrfs_put_block_group_trimming(struct btrfs_block_group *block_group)
3414
{
3415
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3416 3417 3418
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	bool cleanup;
3419

3420
	spin_lock(&block_group->lock);
3421 3422
	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
		   block_group->removed);
3423 3424
	spin_unlock(&block_group->lock);

3425
	if (cleanup) {
3426
		mutex_lock(&fs_info->chunk_mutex);
3427
		em_tree = &fs_info->mapping_tree;
3428
		write_lock(&em_tree->lock);
3429
		em = lookup_extent_mapping(em_tree, block_group->start,
3430 3431 3432 3433
					   1);
		BUG_ON(!em); /* logic error, can't happen */
		remove_extent_mapping(em_tree, em);
		write_unlock(&em_tree->lock);
3434
		mutex_unlock(&fs_info->chunk_mutex);
3435 3436 3437 3438

		/* once for us and once for the tree */
		free_extent_map(em);
		free_extent_map(em);
3439 3440 3441 3442 3443 3444

		/*
		 * We've left one free space entry and other tasks trimming
		 * this block group have left 1 entry each one. Free them.
		 */
		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3445 3446 3447
	}
}

3448
int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3449 3450 3451 3452 3453 3454 3455 3456
			   u64 *trimmed, u64 start, u64 end, u64 minlen)
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
3457
		spin_unlock(&block_group->lock);
3458
		return 0;
3459
	}
3460 3461 3462 3463 3464 3465
	btrfs_get_block_group_trimming(block_group);
	spin_unlock(&block_group->lock);

	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
	if (ret)
		goto out;
3466

3467 3468 3469
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
out:
	btrfs_put_block_group_trimming(block_group);
3470 3471 3472
	return ret;
}

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
/*
 * Find the left-most item in the cache tree, and then return the
 * smallest inode number in the item.
 *
 * Note: the returned inode number may not be the smallest one in
 * the tree, if the left-most item is a bitmap.
 */
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
{
	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
	struct btrfs_free_space *entry = NULL;
	u64 ino = 0;

	spin_lock(&ctl->tree_lock);

	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
		goto out;

	entry = rb_entry(rb_first(&ctl->free_space_offset),
			 struct btrfs_free_space, offset_index);

	if (!entry->bitmap) {
		ino = entry->offset;

		unlink_free_space(ctl, entry);
		entry->offset++;
		entry->bytes--;
		if (!entry->bytes)
			kmem_cache_free(btrfs_free_space_cachep, entry);
		else
			link_free_space(ctl, entry);
	} else {
		u64 offset = 0;
		u64 count = 1;
		int ret;

3509
		ret = search_bitmap(ctl, entry, &offset, &count, true);
3510
		/* Logic error; Should be empty if it can't find anything */
3511
		ASSERT(!ret);
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522

		ino = offset;
		bitmap_clear_bits(ctl, entry, offset, 1);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);
	}
out:
	spin_unlock(&ctl->tree_lock);

	return ino;
}
3523 3524 3525 3526 3527 3528

struct inode *lookup_free_ino_inode(struct btrfs_root *root,
				    struct btrfs_path *path)
{
	struct inode *inode = NULL;

3529 3530 3531 3532
	spin_lock(&root->ino_cache_lock);
	if (root->ino_cache_inode)
		inode = igrab(root->ino_cache_inode);
	spin_unlock(&root->ino_cache_lock);
3533 3534 3535 3536 3537 3538 3539
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path, 0);
	if (IS_ERR(inode))
		return inode;

3540
	spin_lock(&root->ino_cache_lock);
3541
	if (!btrfs_fs_closing(root->fs_info))
3542 3543
		root->ino_cache_inode = igrab(inode);
	spin_unlock(&root->ino_cache_lock);
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563

	return inode;
}

int create_free_ino_inode(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_path *path)
{
	return __create_free_space_inode(root, trans, path,
					 BTRFS_FREE_INO_OBJECTID, 0);
}

int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	struct btrfs_path *path;
	struct inode *inode;
	int ret = 0;
	u64 root_gen = btrfs_root_generation(&root->root_item);

3564
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3565 3566
		return 0;

3567 3568 3569 3570
	/*
	 * If we're unmounting then just return, since this does a search on the
	 * normal root and not the commit root and we could deadlock.
	 */
3571
	if (btrfs_fs_closing(fs_info))
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return 0;

	inode = lookup_free_ino_inode(root, path);
	if (IS_ERR(inode))
		goto out;

	if (root_gen != BTRFS_I(inode)->generation)
		goto out_put;

	ret = __load_free_space_cache(root, inode, ctl, path, 0);

	if (ret < 0)
3588 3589 3590
		btrfs_err(fs_info,
			"failed to load free ino cache for root %llu",
			root->root_key.objectid);
3591 3592 3593 3594 3595 3596 3597 3598 3599
out_put:
	iput(inode);
out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_write_out_ino_cache(struct btrfs_root *root,
			      struct btrfs_trans_handle *trans,
3600 3601
			      struct btrfs_path *path,
			      struct inode *inode)
3602
{
3603
	struct btrfs_fs_info *fs_info = root->fs_info;
3604 3605
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	int ret;
3606
	struct btrfs_io_ctl io_ctl;
3607
	bool release_metadata = true;
3608

3609
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3610 3611
		return 0;

C
Chris Mason 已提交
3612
	memset(&io_ctl, 0, sizeof(io_ctl));
3613
	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3614 3615 3616 3617 3618 3619 3620 3621
	if (!ret) {
		/*
		 * At this point writepages() didn't error out, so our metadata
		 * reservation is released when the writeback finishes, at
		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
		 * with or without an error.
		 */
		release_metadata = false;
3622
		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3623
	}
C
Chris Mason 已提交
3624

3625
	if (ret) {
3626
		if (release_metadata)
3627
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3628
					inode->i_size, true);
3629
#ifdef DEBUG
3630 3631 3632
		btrfs_err(fs_info,
			  "failed to write free ino cache for root %llu",
			  root->root_key.objectid);
3633 3634
#endif
	}
3635 3636 3637

	return ret;
}
3638 3639

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3640 3641 3642 3643 3644 3645
/*
 * Use this if you need to make a bitmap or extent entry specifically, it
 * doesn't do any of the merging that add_free_space does, this acts a lot like
 * how the free space cache loading stuff works, so you can get really weird
 * configurations.
 */
3646
int test_add_free_space_entry(struct btrfs_block_group *cache,
3647
			      u64 offset, u64 bytes, bool bitmap)
3648
{
3649 3650 3651 3652 3653
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info = NULL, *bitmap_info;
	void *map = NULL;
	u64 bytes_added;
	int ret;
3654

3655 3656 3657 3658 3659
again:
	if (!info) {
		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
		if (!info)
			return -ENOMEM;
3660 3661
	}

3662 3663 3664 3665
	if (!bitmap) {
		spin_lock(&ctl->tree_lock);
		info->offset = offset;
		info->bytes = bytes;
3666
		info->max_extent_size = 0;
3667 3668 3669 3670 3671 3672 3673 3674
		ret = link_free_space(ctl, info);
		spin_unlock(&ctl->tree_lock);
		if (ret)
			kmem_cache_free(btrfs_free_space_cachep, info);
		return ret;
	}

	if (!map) {
3675
		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
		if (!map) {
			kmem_cache_free(btrfs_free_space_cachep, info);
			return -ENOMEM;
		}
	}

	spin_lock(&ctl->tree_lock);
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					 1, 0);
	if (!bitmap_info) {
		info->bitmap = map;
		map = NULL;
		add_new_bitmap(ctl, info, offset);
		bitmap_info = info;
3690
		info = NULL;
3691
	}
3692

3693
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3694

3695 3696 3697
	bytes -= bytes_added;
	offset += bytes_added;
	spin_unlock(&ctl->tree_lock);
3698

3699 3700
	if (bytes)
		goto again;
3701

3702 3703
	if (info)
		kmem_cache_free(btrfs_free_space_cachep, info);
3704 3705
	if (map)
		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3706
	return 0;
3707 3708 3709 3710 3711 3712 3713
}

/*
 * Checks to see if the given range is in the free space cache.  This is really
 * just used to check the absence of space, so if there is free space in the
 * range at all we will return 1.
 */
3714
int test_check_exists(struct btrfs_block_group *cache,
3715
		      u64 offset, u64 bytes)
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
{
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&ctl->tree_lock);
	info = tree_search_offset(ctl, offset, 0, 0);
	if (!info) {
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					  1, 0);
		if (!info)
			goto out;
	}

have_info:
	if (info->bitmap) {
		u64 bit_off, bit_bytes;
		struct rb_node *n;
		struct btrfs_free_space *tmp;

		bit_off = offset;
		bit_bytes = ctl->unit;
3738
		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
		if (!ret) {
			if (bit_off == offset) {
				ret = 1;
				goto out;
			} else if (bit_off > offset &&
				   offset + bytes > bit_off) {
				ret = 1;
				goto out;
			}
		}

		n = rb_prev(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (tmp->offset + tmp->bytes < offset)
				break;
			if (offset + bytes < tmp->offset) {
3757
				n = rb_prev(&tmp->offset_index);
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
				continue;
			}
			info = tmp;
			goto have_info;
		}

		n = rb_next(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (offset + bytes < tmp->offset)
				break;
			if (tmp->offset + tmp->bytes < offset) {
3771
				n = rb_next(&tmp->offset_index);
3772 3773 3774 3775 3776 3777
				continue;
			}
			info = tmp;
			goto have_info;
		}

3778
		ret = 0;
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
		goto out;
	}

	if (info->offset == offset) {
		ret = 1;
		goto out;
	}

	if (offset > info->offset && offset < info->offset + info->bytes)
		ret = 1;
out:
	spin_unlock(&ctl->tree_lock);
	return ret;
}
3793
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */