free-space-cache.c 92.4 KB
Newer Older
J
Josef Bacik 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/pagemap.h>
J
Josef Bacik 已提交
20
#include <linux/sched.h>
21
#include <linux/sched/signal.h>
22
#include <linux/slab.h>
23
#include <linux/math64.h>
24
#include <linux/ratelimit.h>
J
Josef Bacik 已提交
25
#include "ctree.h"
26 27
#include "free-space-cache.h"
#include "transaction.h"
28
#include "disk-io.h"
29
#include "extent_io.h"
30
#include "inode-map.h"
31
#include "volumes.h"
32

33
#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
34
#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
J
Josef Bacik 已提交
35

36 37 38 39 40 41
struct btrfs_trim_range {
	u64 start;
	u64 bytes;
	struct list_head list;
};

42
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
43
			   struct btrfs_free_space *info);
44 45
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info);
46 47 48 49
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
			     struct btrfs_trans_handle *trans,
			     struct btrfs_io_ctl *io_ctl,
			     struct btrfs_path *path);
J
Josef Bacik 已提交
50

51 52 53
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
					       struct btrfs_path *path,
					       u64 offset)
54
{
55
	struct btrfs_fs_info *fs_info = root->fs_info;
56 57 58 59 60 61 62 63 64
	struct btrfs_key key;
	struct btrfs_key location;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	struct inode *inode = NULL;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
65
	key.offset = offset;
66 67 68 69 70 71
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ERR_PTR(ret);
	if (ret > 0) {
72
		btrfs_release_path(path);
73 74 75 76 77 78 79 80
		return ERR_PTR(-ENOENT);
	}

	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_free_space_key(leaf, header, &disk_key);
	btrfs_disk_key_to_cpu(&location, &disk_key);
81
	btrfs_release_path(path);
82

83
	inode = btrfs_iget(fs_info->sb, &location, root, NULL);
84 85 86 87 88 89 90
	if (IS_ERR(inode))
		return inode;
	if (is_bad_inode(inode)) {
		iput(inode);
		return ERR_PTR(-ENOENT);
	}

A
Al Viro 已提交
91
	mapping_set_gfp_mask(inode->i_mapping,
92 93
			mapping_gfp_constraint(inode->i_mapping,
			~(__GFP_FS | __GFP_HIGHMEM)));
94

95 96 97
	return inode;
}

98
struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
99 100 101 102
				      struct btrfs_block_group_cache
				      *block_group, struct btrfs_path *path)
{
	struct inode *inode = NULL;
103
	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
104 105 106 107 108 109 110 111

	spin_lock(&block_group->lock);
	if (block_group->inode)
		inode = igrab(block_group->inode);
	spin_unlock(&block_group->lock);
	if (inode)
		return inode;

112
	inode = __lookup_free_space_inode(fs_info->tree_root, path,
113 114 115 116
					  block_group->key.objectid);
	if (IS_ERR(inode))
		return inode;

117
	spin_lock(&block_group->lock);
118
	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
119
		btrfs_info(fs_info, "Old style space inode found, converting.");
120 121
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
			BTRFS_INODE_NODATACOW;
122 123 124
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
	}

125
	if (!block_group->iref) {
126 127 128 129 130 131 132 133
		block_group->inode = igrab(inode);
		block_group->iref = 1;
	}
	spin_unlock(&block_group->lock);

	return inode;
}

134 135 136 137
static int __create_free_space_inode(struct btrfs_root *root,
				     struct btrfs_trans_handle *trans,
				     struct btrfs_path *path,
				     u64 ino, u64 offset)
138 139 140 141 142 143
{
	struct btrfs_key key;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
144
	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
145 146
	int ret;

147
	ret = btrfs_insert_empty_inode(trans, root, path, ino);
148 149 150
	if (ret)
		return ret;

151 152 153 154
	/* We inline crc's for the free disk space cache */
	if (ino != BTRFS_FREE_INO_OBJECTID)
		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;

155 156 157 158
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159
	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160 161 162 163 164 165 166
			     sizeof(*inode_item));
	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
	btrfs_set_inode_size(leaf, inode_item, 0);
	btrfs_set_inode_nbytes(leaf, inode_item, 0);
	btrfs_set_inode_uid(leaf, inode_item, 0);
	btrfs_set_inode_gid(leaf, inode_item, 0);
	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167
	btrfs_set_inode_flags(leaf, inode_item, flags);
168 169
	btrfs_set_inode_nlink(leaf, inode_item, 1);
	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170
	btrfs_set_inode_block_group(leaf, inode_item, offset);
171
	btrfs_mark_buffer_dirty(leaf);
172
	btrfs_release_path(path);
173 174

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175
	key.offset = offset;
176 177 178 179
	key.type = 0;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(struct btrfs_free_space_header));
	if (ret < 0) {
180
		btrfs_release_path(path);
181 182
		return ret;
	}
183

184 185 186
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
187
	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188 189
	btrfs_set_free_space_key(leaf, header, &disk_key);
	btrfs_mark_buffer_dirty(leaf);
190
	btrfs_release_path(path);
191 192 193 194

	return 0;
}

195
int create_free_space_inode(struct btrfs_fs_info *fs_info,
196 197 198 199 200 201 202
			    struct btrfs_trans_handle *trans,
			    struct btrfs_block_group_cache *block_group,
			    struct btrfs_path *path)
{
	int ret;
	u64 ino;

203
	ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
204 205 206
	if (ret < 0)
		return ret;

207
	return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
208 209 210
					 block_group->key.objectid);
}

211
int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
212
				       struct btrfs_block_rsv *rsv)
213
{
214
	u64 needed_bytes;
215
	int ret;
216 217

	/* 1 for slack space, 1 for updating the inode */
218 219
	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
		btrfs_calc_trans_metadata_size(fs_info, 1);
220

221 222 223 224 225 226
	spin_lock(&rsv->lock);
	if (rsv->reserved < needed_bytes)
		ret = -ENOSPC;
	else
		ret = 0;
	spin_unlock(&rsv->lock);
227
	return ret;
228 229
}

230
int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
231
				    struct btrfs_block_group_cache *block_group,
232 233
				    struct inode *inode)
{
234
	struct btrfs_root *root = BTRFS_I(inode)->root;
235
	int ret = 0;
236
	bool locked = false;
237 238

	if (block_group) {
239 240 241 242 243 244
		struct btrfs_path *path = btrfs_alloc_path();

		if (!path) {
			ret = -ENOMEM;
			goto fail;
		}
245
		locked = true;
246 247 248 249
		mutex_lock(&trans->transaction->cache_write_mutex);
		if (!list_empty(&block_group->io_list)) {
			list_del_init(&block_group->io_list);

250
			btrfs_wait_cache_io(trans, block_group, path);
251 252 253 254 255 256 257 258 259 260
			btrfs_put_block_group(block_group);
		}

		/*
		 * now that we've truncated the cache away, its no longer
		 * setup or written
		 */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
261
		btrfs_free_path(path);
262
	}
263

264
	btrfs_i_size_write(BTRFS_I(inode), 0);
265
	truncate_pagecache(inode, 0);
266 267 268 269

	/*
	 * We don't need an orphan item because truncating the free space cache
	 * will never be split across transactions.
270 271
	 * We don't need to check for -EAGAIN because we're a free space
	 * cache inode
272 273 274
	 */
	ret = btrfs_truncate_inode_items(trans, root, inode,
					 0, BTRFS_EXTENT_DATA_KEY);
275 276
	if (ret)
		goto fail;
277

278
	ret = btrfs_update_inode(trans, root, inode);
279 280

fail:
281 282
	if (locked)
		mutex_unlock(&trans->transaction->cache_write_mutex);
283
	if (ret)
284
		btrfs_abort_transaction(trans, ret);
285

286
	return ret;
287 288
}

289
static void readahead_cache(struct inode *inode)
290 291 292 293 294 295
{
	struct file_ra_state *ra;
	unsigned long last_index;

	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
296
		return;
297 298

	file_ra_state_init(ra, inode->i_mapping);
299
	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
300 301 302 303 304 305

	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);

	kfree(ra);
}

306
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
307
		       int write)
308
{
309 310 311
	int num_pages;
	int check_crcs = 0;

312
	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
313

314
	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
315 316 317 318
		check_crcs = 1;

	/* Make sure we can fit our crcs into the first page */
	if (write && check_crcs &&
319
	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
320 321
		return -ENOSPC;

322
	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
323

324
	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
325 326
	if (!io_ctl->pages)
		return -ENOMEM;
327 328

	io_ctl->num_pages = num_pages;
329
	io_ctl->fs_info = btrfs_sb(inode->i_sb);
330
	io_ctl->check_crcs = check_crcs;
331
	io_ctl->inode = inode;
332

333 334 335
	return 0;
}

336
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
337 338
{
	kfree(io_ctl->pages);
339
	io_ctl->pages = NULL;
340 341
}

342
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
343 344 345 346 347 348 349
{
	if (io_ctl->cur) {
		io_ctl->cur = NULL;
		io_ctl->orig = NULL;
	}
}

350
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
351
{
352
	ASSERT(io_ctl->index < io_ctl->num_pages);
353
	io_ctl->page = io_ctl->pages[io_ctl->index++];
354
	io_ctl->cur = page_address(io_ctl->page);
355
	io_ctl->orig = io_ctl->cur;
356
	io_ctl->size = PAGE_SIZE;
357
	if (clear)
358
		clear_page(io_ctl->cur);
359 360
}

361
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
362 363 364 365 366 367
{
	int i;

	io_ctl_unmap_page(io_ctl);

	for (i = 0; i < io_ctl->num_pages; i++) {
368 369 370
		if (io_ctl->pages[i]) {
			ClearPageChecked(io_ctl->pages[i]);
			unlock_page(io_ctl->pages[i]);
371
			put_page(io_ctl->pages[i]);
372
		}
373 374 375
	}
}

376
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
				int uptodate)
{
	struct page *page;
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
	int i;

	for (i = 0; i < io_ctl->num_pages; i++) {
		page = find_or_create_page(inode->i_mapping, i, mask);
		if (!page) {
			io_ctl_drop_pages(io_ctl);
			return -ENOMEM;
		}
		io_ctl->pages[i] = page;
		if (uptodate && !PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
394 395
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					   "error reading free space cache");
396 397 398 399 400 401
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
		}
	}

402 403 404 405 406
	for (i = 0; i < io_ctl->num_pages; i++) {
		clear_page_dirty_for_io(io_ctl->pages[i]);
		set_page_extent_mapped(io_ctl->pages[i]);
	}

407 408 409
	return 0;
}

410
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
411
{
A
Al Viro 已提交
412
	__le64 *val;
413 414 415 416

	io_ctl_map_page(io_ctl, 1);

	/*
417 418
	 * Skip the csum areas.  If we don't check crcs then we just have a
	 * 64bit chunk at the front of the first page.
419
	 */
420 421 422 423 424 425 426
	if (io_ctl->check_crcs) {
		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
427 428 429 430 431 432

	val = io_ctl->cur;
	*val = cpu_to_le64(generation);
	io_ctl->cur += sizeof(u64);
}

433
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
434
{
A
Al Viro 已提交
435
	__le64 *gen;
436

437 438 439 440 441 442 443 444 445 446 447 448
	/*
	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
	 * chunk at the front of the first page.
	 */
	if (io_ctl->check_crcs) {
		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
		io_ctl->size -= sizeof(u64) +
			(sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
449 450 451

	gen = io_ctl->cur;
	if (le64_to_cpu(*gen) != generation) {
452
		btrfs_err_rl(io_ctl->fs_info,
453 454
			"space cache generation (%llu) does not match inode (%llu)",
				*gen, generation);
455 456 457 458
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}
	io_ctl->cur += sizeof(u64);
459 460 461
	return 0;
}

462
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
463 464 465 466 467 468 469 470 471 472 473
{
	u32 *tmp;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_unmap_page(io_ctl);
		return;
	}

	if (index == 0)
474
		offset = sizeof(u32) * io_ctl->num_pages;
475

476
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
477
			      PAGE_SIZE - offset);
478
	btrfs_csum_final(crc, (u8 *)&crc);
479
	io_ctl_unmap_page(io_ctl);
480
	tmp = page_address(io_ctl->pages[0]);
481 482 483 484
	tmp += index;
	*tmp = crc;
}

485
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
486 487 488 489 490 491 492 493 494 495 496 497 498
{
	u32 *tmp, val;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_map_page(io_ctl, 0);
		return 0;
	}

	if (index == 0)
		offset = sizeof(u32) * io_ctl->num_pages;

499
	tmp = page_address(io_ctl->pages[0]);
500 501 502 503
	tmp += index;
	val = *tmp;

	io_ctl_map_page(io_ctl, 0);
504
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
505
			      PAGE_SIZE - offset);
506
	btrfs_csum_final(crc, (u8 *)&crc);
507
	if (val != crc) {
508
		btrfs_err_rl(io_ctl->fs_info,
509
			"csum mismatch on free space cache");
510 511 512 513
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}

514 515 516
	return 0;
}

517
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
			    void *bitmap)
{
	struct btrfs_free_space_entry *entry;

	if (!io_ctl->cur)
		return -ENOSPC;

	entry = io_ctl->cur;
	entry->offset = cpu_to_le64(offset);
	entry->bytes = cpu_to_le64(bytes);
	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
		BTRFS_FREE_SPACE_EXTENT;
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
		return 0;

536
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
537 538 539 540 541 542 543 544 545 546

	/* No more pages to map */
	if (io_ctl->index >= io_ctl->num_pages)
		return 0;

	/* map the next page */
	io_ctl_map_page(io_ctl, 1);
	return 0;
}

547
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
548 549 550 551 552 553 554 555 556
{
	if (!io_ctl->cur)
		return -ENOSPC;

	/*
	 * If we aren't at the start of the current page, unmap this one and
	 * map the next one if there is any left.
	 */
	if (io_ctl->cur != io_ctl->orig) {
557
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
558 559 560 561 562
		if (io_ctl->index >= io_ctl->num_pages)
			return -ENOSPC;
		io_ctl_map_page(io_ctl, 0);
	}

563
	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
564
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
565 566 567 568 569
	if (io_ctl->index < io_ctl->num_pages)
		io_ctl_map_page(io_ctl, 0);
	return 0;
}

570
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
571
{
572 573 574 575 576 577 578 579
	/*
	 * If we're not on the boundary we know we've modified the page and we
	 * need to crc the page.
	 */
	if (io_ctl->cur != io_ctl->orig)
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
	else
		io_ctl_unmap_page(io_ctl);
580 581 582

	while (io_ctl->index < io_ctl->num_pages) {
		io_ctl_map_page(io_ctl, 1);
583
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
584 585 586
	}
}

587
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
588
			    struct btrfs_free_space *entry, u8 *type)
589 590
{
	struct btrfs_free_space_entry *e;
591 592 593 594 595 596 597
	int ret;

	if (!io_ctl->cur) {
		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
		if (ret)
			return ret;
	}
598 599 600 601

	e = io_ctl->cur;
	entry->offset = le64_to_cpu(e->offset);
	entry->bytes = le64_to_cpu(e->bytes);
602
	*type = e->type;
603 604 605 606
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
607
		return 0;
608 609 610

	io_ctl_unmap_page(io_ctl);

611
	return 0;
612 613
}

614
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
615
			      struct btrfs_free_space *entry)
616
{
617 618 619 620 621 622
	int ret;

	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
	if (ret)
		return ret;

623
	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
624
	io_ctl_unmap_page(io_ctl);
625 626

	return 0;
627 628
}

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
/*
 * Since we attach pinned extents after the fact we can have contiguous sections
 * of free space that are split up in entries.  This poses a problem with the
 * tree logging stuff since it could have allocated across what appears to be 2
 * entries since we would have merged the entries when adding the pinned extents
 * back to the free space cache.  So run through the space cache that we just
 * loaded and merge contiguous entries.  This will make the log replay stuff not
 * blow up and it will make for nicer allocator behavior.
 */
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_free_space *e, *prev = NULL;
	struct rb_node *n;

again:
	spin_lock(&ctl->tree_lock);
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
		e = rb_entry(n, struct btrfs_free_space, offset_index);
		if (!prev)
			goto next;
		if (e->bitmap || prev->bitmap)
			goto next;
		if (prev->offset + prev->bytes == e->offset) {
			unlink_free_space(ctl, prev);
			unlink_free_space(ctl, e);
			prev->bytes += e->bytes;
			kmem_cache_free(btrfs_free_space_cachep, e);
			link_free_space(ctl, prev);
			prev = NULL;
			spin_unlock(&ctl->tree_lock);
			goto again;
		}
next:
		prev = e;
	}
	spin_unlock(&ctl->tree_lock);
}

667 668 669
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_path *path, u64 offset)
670
{
671
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
672 673
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
674
	struct btrfs_io_ctl io_ctl;
675
	struct btrfs_key key;
676
	struct btrfs_free_space *e, *n;
677
	LIST_HEAD(bitmaps);
678 679 680
	u64 num_entries;
	u64 num_bitmaps;
	u64 generation;
681
	u8 type;
682
	int ret = 0;
683 684

	/* Nothing in the space cache, goodbye */
685
	if (!i_size_read(inode))
686
		return 0;
687 688

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
689
	key.offset = offset;
690 691 692
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
693
	if (ret < 0)
694
		return 0;
695
	else if (ret > 0) {
696
		btrfs_release_path(path);
697
		return 0;
698 699
	}

700 701
	ret = -1;

702 703 704 705 706 707
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	num_entries = btrfs_free_space_entries(leaf, header);
	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
	generation = btrfs_free_space_generation(leaf, header);
708
	btrfs_release_path(path);
709

710
	if (!BTRFS_I(inode)->generation) {
711
		btrfs_info(fs_info,
712 713 714 715 716
			   "The free space cache file (%llu) is invalid. skip it\n",
			   offset);
		return 0;
	}

717
	if (BTRFS_I(inode)->generation != generation) {
718 719 720
		btrfs_err(fs_info,
			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
			  BTRFS_I(inode)->generation, generation);
721
		return 0;
722 723 724
	}

	if (!num_entries)
725
		return 0;
726

727
	ret = io_ctl_init(&io_ctl, inode, 0);
728 729 730
	if (ret)
		return ret;

731
	readahead_cache(inode);
732

733 734 735
	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
	if (ret)
		goto out;
736

737 738 739 740
	ret = io_ctl_check_crc(&io_ctl, 0);
	if (ret)
		goto free_cache;

741 742 743
	ret = io_ctl_check_generation(&io_ctl, generation);
	if (ret)
		goto free_cache;
744

745 746 747 748
	while (num_entries) {
		e = kmem_cache_zalloc(btrfs_free_space_cachep,
				      GFP_NOFS);
		if (!e)
749 750
			goto free_cache;

751 752 753 754 755 756
		ret = io_ctl_read_entry(&io_ctl, e, &type);
		if (ret) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
		}

757 758 759
		if (!e->bytes) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
760
		}
761 762 763 764 765 766

		if (type == BTRFS_FREE_SPACE_EXTENT) {
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
767
				btrfs_err(fs_info,
768
					"Duplicate entries in free space cache, dumping");
769
				kmem_cache_free(btrfs_free_space_cachep, e);
770 771
				goto free_cache;
			}
772
		} else {
773
			ASSERT(num_bitmaps);
774
			num_bitmaps--;
775
			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
776 777 778
			if (!e->bitmap) {
				kmem_cache_free(
					btrfs_free_space_cachep, e);
779 780
				goto free_cache;
			}
781 782 783 784 785 786
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			ctl->total_bitmaps++;
			ctl->op->recalc_thresholds(ctl);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
787
				btrfs_err(fs_info,
788
					"Duplicate entries in free space cache, dumping");
789
				kmem_cache_free(btrfs_free_space_cachep, e);
790 791
				goto free_cache;
			}
792
			list_add_tail(&e->list, &bitmaps);
793 794
		}

795 796
		num_entries--;
	}
797

798 799
	io_ctl_unmap_page(&io_ctl);

800 801 802 803 804
	/*
	 * We add the bitmaps at the end of the entries in order that
	 * the bitmap entries are added to the cache.
	 */
	list_for_each_entry_safe(e, n, &bitmaps, list) {
805
		list_del_init(&e->list);
806 807 808
		ret = io_ctl_read_bitmap(&io_ctl, e);
		if (ret)
			goto free_cache;
809 810
	}

811
	io_ctl_drop_pages(&io_ctl);
812
	merge_space_tree(ctl);
813 814
	ret = 1;
out:
815
	io_ctl_free(&io_ctl);
816 817
	return ret;
free_cache:
818
	io_ctl_drop_pages(&io_ctl);
819
	__btrfs_remove_free_space_cache(ctl);
820 821 822
	goto out;
}

823 824
int load_free_space_cache(struct btrfs_fs_info *fs_info,
			  struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
825
{
826
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
827 828
	struct inode *inode;
	struct btrfs_path *path;
829
	int ret = 0;
830 831 832 833 834 835 836
	bool matched;
	u64 used = btrfs_block_group_used(&block_group->item);

	/*
	 * If this block group has been marked to be cleared for one reason or
	 * another then we can't trust the on disk cache, so just return.
	 */
837
	spin_lock(&block_group->lock);
838 839 840 841
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
		return 0;
	}
842
	spin_unlock(&block_group->lock);
843 844 845 846

	path = btrfs_alloc_path();
	if (!path)
		return 0;
847 848
	path->search_commit_root = 1;
	path->skip_locking = 1;
849

850
	inode = lookup_free_space_inode(fs_info, block_group, path);
851 852 853 854 855
	if (IS_ERR(inode)) {
		btrfs_free_path(path);
		return 0;
	}

856 857 858 859
	/* We may have converted the inode and made the cache invalid. */
	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
860
		btrfs_free_path(path);
861 862 863 864
		goto out;
	}
	spin_unlock(&block_group->lock);

865 866 867 868 869 870 871 872 873 874 875 876 877
	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
				      path, block_group->key.objectid);
	btrfs_free_path(path);
	if (ret <= 0)
		goto out;

	spin_lock(&ctl->tree_lock);
	matched = (ctl->free_space == (block_group->key.offset - used -
				       block_group->bytes_super));
	spin_unlock(&ctl->tree_lock);

	if (!matched) {
		__btrfs_remove_free_space_cache(ctl);
J
Jeff Mahoney 已提交
878 879 880
		btrfs_warn(fs_info,
			   "block group %llu has wrong amount of free space",
			   block_group->key.objectid);
881 882 883 884 885 886 887 888
		ret = -1;
	}
out:
	if (ret < 0) {
		/* This cache is bogus, make sure it gets cleared */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
889
		ret = 0;
890

J
Jeff Mahoney 已提交
891 892 893
		btrfs_warn(fs_info,
			   "failed to load free space cache for block group %llu, rebuilding it now",
			   block_group->key.objectid);
894 895 896 897
	}

	iput(inode);
	return ret;
898 899
}

900
static noinline_for_stack
901
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
902 903 904 905
			      struct btrfs_free_space_ctl *ctl,
			      struct btrfs_block_group_cache *block_group,
			      int *entries, int *bitmaps,
			      struct list_head *bitmap_list)
J
Josef Bacik 已提交
906
{
907
	int ret;
908
	struct btrfs_free_cluster *cluster = NULL;
909
	struct btrfs_free_cluster *cluster_locked = NULL;
910
	struct rb_node *node = rb_first(&ctl->free_space_offset);
911
	struct btrfs_trim_range *trim_entry;
912

913
	/* Get the cluster for this block_group if it exists */
914
	if (block_group && !list_empty(&block_group->cluster_list)) {
915 916 917
		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
918
	}
919

920
	if (!node && cluster) {
921 922
		cluster_locked = cluster;
		spin_lock(&cluster_locked->lock);
923 924 925 926
		node = rb_first(&cluster->root);
		cluster = NULL;
	}

927 928 929
	/* Write out the extent entries */
	while (node) {
		struct btrfs_free_space *e;
J
Josef Bacik 已提交
930

931
		e = rb_entry(node, struct btrfs_free_space, offset_index);
932
		*entries += 1;
J
Josef Bacik 已提交
933

934
		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
935 936
				       e->bitmap);
		if (ret)
937
			goto fail;
938

939
		if (e->bitmap) {
940 941
			list_add_tail(&e->list, bitmap_list);
			*bitmaps += 1;
942
		}
943 944 945
		node = rb_next(node);
		if (!node && cluster) {
			node = rb_first(&cluster->root);
946 947
			cluster_locked = cluster;
			spin_lock(&cluster_locked->lock);
948
			cluster = NULL;
949
		}
950
	}
951 952 953 954
	if (cluster_locked) {
		spin_unlock(&cluster_locked->lock);
		cluster_locked = NULL;
	}
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

	/*
	 * Make sure we don't miss any range that was removed from our rbtree
	 * because trimming is running. Otherwise after a umount+mount (or crash
	 * after committing the transaction) we would leak free space and get
	 * an inconsistent free space cache report from fsck.
	 */
	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
				       trim_entry->bytes, NULL);
		if (ret)
			goto fail;
		*entries += 1;
	}

970 971
	return 0;
fail:
972 973
	if (cluster_locked)
		spin_unlock(&cluster_locked->lock);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	return -ENOSPC;
}

static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct inode *inode,
		  struct btrfs_path *path, u64 offset,
		  int entries, int bitmaps)
{
	struct btrfs_key key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
	key.offset = offset;
	key.type = 0;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0) {
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
		goto fail;
	}
	leaf = path->nodes[0];
	if (ret > 0) {
		struct btrfs_key found_key;
		ASSERT(path->slots[0]);
		path->slots[0]--;
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
		    found_key.offset != offset) {
			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
					 inode->i_size - 1,
					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
					 NULL, GFP_NOFS);
			btrfs_release_path(path);
			goto fail;
		}
	}

	BTRFS_I(inode)->generation = trans->transid;
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_set_free_space_entries(leaf, header, entries);
	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
	btrfs_set_free_space_generation(leaf, header, trans->transid);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_release_path(path);

	return 0;

fail:
	return -1;
}

static noinline_for_stack int
1033
write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1034
			    struct btrfs_block_group_cache *block_group,
1035
			    struct btrfs_io_ctl *io_ctl,
1036
			    int *entries)
1037 1038 1039 1040
{
	u64 start, extent_start, extent_end, len;
	struct extent_io_tree *unpin = NULL;
	int ret;
1041

1042 1043 1044
	if (!block_group)
		return 0;

1045 1046 1047
	/*
	 * We want to add any pinned extents to our free space cache
	 * so we don't leak the space
1048
	 *
1049 1050 1051
	 * We shouldn't have switched the pinned extents yet so this is the
	 * right one
	 */
1052
	unpin = fs_info->pinned_extents;
1053

1054
	start = block_group->key.objectid;
1055

1056
	while (start < block_group->key.objectid + block_group->key.offset) {
1057 1058
		ret = find_first_extent_bit(unpin, start,
					    &extent_start, &extent_end,
1059
					    EXTENT_DIRTY, NULL);
1060 1061
		if (ret)
			return 0;
J
Josef Bacik 已提交
1062

1063
		/* This pinned extent is out of our range */
1064
		if (extent_start >= block_group->key.objectid +
1065
		    block_group->key.offset)
1066
			return 0;
1067

1068 1069 1070 1071
		extent_start = max(extent_start, start);
		extent_end = min(block_group->key.objectid +
				 block_group->key.offset, extent_end + 1);
		len = extent_end - extent_start;
J
Josef Bacik 已提交
1072

1073 1074
		*entries += 1;
		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1075
		if (ret)
1076
			return -ENOSPC;
J
Josef Bacik 已提交
1077

1078
		start = extent_end;
1079
	}
J
Josef Bacik 已提交
1080

1081 1082 1083 1084
	return 0;
}

static noinline_for_stack int
1085
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1086
{
1087
	struct btrfs_free_space *entry, *next;
1088 1089
	int ret;

J
Josef Bacik 已提交
1090
	/* Write out the bitmaps */
1091
	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1092
		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1093
		if (ret)
1094
			return -ENOSPC;
J
Josef Bacik 已提交
1095
		list_del_init(&entry->list);
1096 1097
	}

1098 1099
	return 0;
}
J
Josef Bacik 已提交
1100

1101 1102 1103
static int flush_dirty_cache(struct inode *inode)
{
	int ret;
1104

1105
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1106
	if (ret)
1107 1108 1109
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
J
Josef Bacik 已提交
1110

1111
	return ret;
1112 1113 1114
}

static void noinline_for_stack
1115
cleanup_bitmap_list(struct list_head *bitmap_list)
1116
{
1117
	struct btrfs_free_space *entry, *next;
1118

1119
	list_for_each_entry_safe(entry, next, bitmap_list, list)
1120
		list_del_init(&entry->list);
1121 1122 1123 1124 1125
}

static void noinline_for_stack
cleanup_write_cache_enospc(struct inode *inode,
			   struct btrfs_io_ctl *io_ctl,
1126
			   struct extent_state **cached_state)
1127
{
1128 1129 1130 1131 1132
	io_ctl_drop_pages(io_ctl);
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, cached_state,
			     GFP_NOFS);
}
1133

1134 1135 1136 1137 1138
static int __btrfs_wait_cache_io(struct btrfs_root *root,
				 struct btrfs_trans_handle *trans,
				 struct btrfs_block_group_cache *block_group,
				 struct btrfs_io_ctl *io_ctl,
				 struct btrfs_path *path, u64 offset)
1139 1140 1141
{
	int ret;
	struct inode *inode = io_ctl->inode;
1142
	struct btrfs_fs_info *fs_info;
1143

1144 1145 1146
	if (!inode)
		return 0;

1147 1148
	fs_info = btrfs_sb(inode->i_sb);

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	/* Flush the dirty pages in the cache file. */
	ret = flush_dirty_cache(inode);
	if (ret)
		goto out;

	/* Update the cache item to tell everyone this cache file is valid. */
	ret = update_cache_item(trans, root, inode, path, offset,
				io_ctl->entries, io_ctl->bitmaps);
out:
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		if (block_group) {
#ifdef DEBUG
1164 1165 1166
			btrfs_err(fs_info,
				  "failed to write free space cache for block group %llu",
				  block_group->key.objectid);
1167 1168 1169 1170 1171 1172
#endif
		}
	}
	btrfs_update_inode(trans, root, inode);

	if (block_group) {
1173 1174 1175 1176
		/* the dirty list is protected by the dirty_bgs_lock */
		spin_lock(&trans->transaction->dirty_bgs_lock);

		/* the disk_cache_state is protected by the block group lock */
1177 1178 1179 1180
		spin_lock(&block_group->lock);

		/*
		 * only mark this as written if we didn't get put back on
1181 1182
		 * the dirty list while waiting for IO.   Otherwise our
		 * cache state won't be right, and we won't get written again
1183 1184 1185 1186 1187 1188 1189
		 */
		if (!ret && list_empty(&block_group->dirty_list))
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		else if (ret)
			block_group->disk_cache_state = BTRFS_DC_ERROR;

		spin_unlock(&block_group->lock);
1190
		spin_unlock(&trans->transaction->dirty_bgs_lock);
1191 1192 1193 1194 1195 1196 1197 1198
		io_ctl->inode = NULL;
		iput(inode);
	}

	return ret;

}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
				    struct btrfs_trans_handle *trans,
				    struct btrfs_io_ctl *io_ctl,
				    struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
}

int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
			struct btrfs_block_group_cache *block_group,
			struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
				     block_group, &block_group->io_ctl,
				     path, block_group->key.objectid);
}

1216 1217 1218 1219 1220 1221 1222 1223
/**
 * __btrfs_write_out_cache - write out cached info to an inode
 * @root - the root the inode belongs to
 * @ctl - the free space cache we are going to write out
 * @block_group - the block_group for this cache if it belongs to a block_group
 * @trans - the trans handle
 *
 * This function writes out a free space cache struct to disk for quick recovery
G
Geliang Tang 已提交
1224
 * on mount.  This will return 0 if it was successful in writing the cache out,
1225
 * or an errno if it was not.
1226 1227 1228 1229
 */
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_block_group_cache *block_group,
1230
				   struct btrfs_io_ctl *io_ctl,
1231
				   struct btrfs_trans_handle *trans)
1232
{
1233
	struct btrfs_fs_info *fs_info = root->fs_info;
1234
	struct extent_state *cached_state = NULL;
1235
	LIST_HEAD(bitmap_list);
1236 1237 1238
	int entries = 0;
	int bitmaps = 0;
	int ret;
1239
	int must_iput = 0;
1240 1241

	if (!i_size_read(inode))
1242
		return -EIO;
1243

1244
	WARN_ON(io_ctl->pages);
1245
	ret = io_ctl_init(io_ctl, inode, 1);
1246
	if (ret)
1247
		return ret;
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
		down_write(&block_group->data_rwsem);
		spin_lock(&block_group->lock);
		if (block_group->delalloc_bytes) {
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
			spin_unlock(&block_group->lock);
			up_write(&block_group->data_rwsem);
			BTRFS_I(inode)->generation = 0;
			ret = 0;
1258
			must_iput = 1;
1259 1260 1261 1262 1263
			goto out;
		}
		spin_unlock(&block_group->lock);
	}

1264
	/* Lock all pages first so we can lock the extent safely. */
1265 1266 1267
	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
	if (ret)
		goto out;
1268 1269

	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1270
			 &cached_state);
1271

1272
	io_ctl_set_generation(io_ctl, trans->transid);
1273

1274
	mutex_lock(&ctl->cache_writeout_mutex);
1275
	/* Write out the extent entries in the free space cache */
1276
	spin_lock(&ctl->tree_lock);
1277
	ret = write_cache_extent_entries(io_ctl, ctl,
1278 1279
					 block_group, &entries, &bitmaps,
					 &bitmap_list);
1280 1281
	if (ret)
		goto out_nospc_locked;
1282

1283 1284 1285 1286
	/*
	 * Some spaces that are freed in the current transaction are pinned,
	 * they will be added into free space cache after the transaction is
	 * committed, we shouldn't lose them.
1287 1288 1289
	 *
	 * If this changes while we are working we'll get added back to
	 * the dirty list and redo it.  No locking needed
1290
	 */
1291 1292
	ret = write_pinned_extent_entries(fs_info, block_group,
					  io_ctl, &entries);
1293 1294
	if (ret)
		goto out_nospc_locked;
1295

1296 1297 1298 1299 1300
	/*
	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
	 * locked while doing it because a concurrent trim can be manipulating
	 * or freeing the bitmap.
	 */
1301
	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1302
	spin_unlock(&ctl->tree_lock);
1303
	mutex_unlock(&ctl->cache_writeout_mutex);
1304 1305 1306 1307
	if (ret)
		goto out_nospc;

	/* Zero out the rest of the pages just to make sure */
1308
	io_ctl_zero_remaining_pages(io_ctl);
1309

1310
	/* Everything is written out, now we dirty the pages in the file. */
1311 1312
	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
				i_size_read(inode), &cached_state);
1313
	if (ret)
1314
		goto out_nospc;
1315

1316 1317
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);
1318 1319 1320 1321
	/*
	 * Release the pages and unlock the extent, we will flush
	 * them out later
	 */
1322
	io_ctl_drop_pages(io_ctl);
1323 1324 1325 1326

	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);

1327 1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * at this point the pages are under IO and we're happy,
	 * The caller is responsible for waiting on them and updating the
	 * the cache and the inode
	 */
	io_ctl->entries = entries;
	io_ctl->bitmaps = bitmaps;

	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1336
	if (ret)
1337 1338
		goto out;

1339 1340
	return 0;

1341
out:
1342 1343
	io_ctl->inode = NULL;
	io_ctl_free(io_ctl);
1344
	if (ret) {
1345
		invalidate_inode_pages2(inode->i_mapping);
J
Josef Bacik 已提交
1346 1347 1348
		BTRFS_I(inode)->generation = 0;
	}
	btrfs_update_inode(trans, root, inode);
1349 1350
	if (must_iput)
		iput(inode);
1351
	return ret;
1352

1353 1354 1355 1356 1357
out_nospc_locked:
	cleanup_bitmap_list(&bitmap_list);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

1358
out_nospc:
1359
	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1360 1361 1362 1363

	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);

1364
	goto out;
1365 1366
}

1367
int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
			  struct btrfs_trans_handle *trans,
			  struct btrfs_block_group_cache *block_group,
			  struct btrfs_path *path)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct inode *inode;
	int ret = 0;

	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
		spin_unlock(&block_group->lock);
1379 1380
		return 0;
	}
1381 1382
	spin_unlock(&block_group->lock);

1383
	inode = lookup_free_space_inode(fs_info, block_group, path);
1384 1385 1386
	if (IS_ERR(inode))
		return 0;

1387 1388
	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
				block_group, &block_group->io_ctl, trans);
1389 1390
	if (ret) {
#ifdef DEBUG
1391 1392 1393
		btrfs_err(fs_info,
			  "failed to write free space cache for block group %llu",
			  block_group->key.objectid);
1394
#endif
1395 1396 1397 1398 1399 1400
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&block_group->lock);

		block_group->io_ctl.inode = NULL;
		iput(inode);
1401 1402
	}

1403 1404 1405 1406 1407
	/*
	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
	 * to wait for IO and put the inode
	 */

J
Josef Bacik 已提交
1408 1409 1410
	return ret;
}

1411
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1412
					  u64 offset)
J
Josef Bacik 已提交
1413
{
1414
	ASSERT(offset >= bitmap_start);
1415
	offset -= bitmap_start;
1416
	return (unsigned long)(div_u64(offset, unit));
1417
}
J
Josef Bacik 已提交
1418

1419
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1420
{
1421
	return (unsigned long)(div_u64(bytes, unit));
1422
}
J
Josef Bacik 已提交
1423

1424
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1425 1426 1427
				   u64 offset)
{
	u64 bitmap_start;
1428
	u64 bytes_per_bitmap;
J
Josef Bacik 已提交
1429

1430 1431
	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
	bitmap_start = offset - ctl->start;
1432
	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1433
	bitmap_start *= bytes_per_bitmap;
1434
	bitmap_start += ctl->start;
J
Josef Bacik 已提交
1435

1436
	return bitmap_start;
J
Josef Bacik 已提交
1437 1438
}

1439 1440
static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
J
Josef Bacik 已提交
1441 1442 1443 1444 1445 1446 1447
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
1448
		info = rb_entry(parent, struct btrfs_free_space, offset_index);
J
Josef Bacik 已提交
1449

1450
		if (offset < info->offset) {
J
Josef Bacik 已提交
1451
			p = &(*p)->rb_left;
1452
		} else if (offset > info->offset) {
J
Josef Bacik 已提交
1453
			p = &(*p)->rb_right;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
1469 1470 1471 1472
				if (info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1473 1474
				p = &(*p)->rb_right;
			} else {
1475 1476 1477 1478
				if (!info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1479 1480 1481
				p = &(*p)->rb_left;
			}
		}
J
Josef Bacik 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
J
Josef Bacik 已提交
1491 1492
 * searches the tree for the given offset.
 *
1493 1494 1495
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
J
Josef Bacik 已提交
1496
 */
1497
static struct btrfs_free_space *
1498
tree_search_offset(struct btrfs_free_space_ctl *ctl,
1499
		   u64 offset, int bitmap_only, int fuzzy)
J
Josef Bacik 已提交
1500
{
1501
	struct rb_node *n = ctl->free_space_offset.rb_node;
1502 1503 1504 1505 1506 1507 1508 1509
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}
J
Josef Bacik 已提交
1510 1511

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1512
		prev = entry;
J
Josef Bacik 已提交
1513

1514
		if (offset < entry->offset)
J
Josef Bacik 已提交
1515
			n = n->rb_left;
1516
		else if (offset > entry->offset)
J
Josef Bacik 已提交
1517
			n = n->rb_right;
1518
		else
J
Josef Bacik 已提交
1519 1520 1521
			break;
	}

1522 1523 1524 1525 1526
	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;
J
Josef Bacik 已提交
1527

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;
J
Josef Bacik 已提交
1538

1539 1540 1541 1542
		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
J
Josef Bacik 已提交
1543
			/*
1544 1545
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
J
Josef Bacik 已提交
1546
			 */
1547 1548
			n = rb_prev(&entry->offset_index);
			if (n) {
1549 1550
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
1551 1552 1553
				if (!prev->bitmap &&
				    prev->offset + prev->bytes > offset)
					entry = prev;
J
Josef Bacik 已提交
1554
			}
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
1569
			ASSERT(entry->offset <= offset);
J
Josef Bacik 已提交
1570
		} else {
1571 1572 1573 1574
			if (fuzzy)
				return entry;
			else
				return NULL;
J
Josef Bacik 已提交
1575 1576 1577
		}
	}

1578
	if (entry->bitmap) {
1579 1580
		n = rb_prev(&entry->offset_index);
		if (n) {
1581 1582
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
1583 1584 1585
			if (!prev->bitmap &&
			    prev->offset + prev->bytes > offset)
				return prev;
1586
		}
1587
		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
1598
			    ctl->unit > offset)
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
J
Josef Bacik 已提交
1611 1612
}

1613
static inline void
1614
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1615
		    struct btrfs_free_space *info)
J
Josef Bacik 已提交
1616
{
1617 1618
	rb_erase(&info->offset_index, &ctl->free_space_offset);
	ctl->free_extents--;
1619 1620
}

1621
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1622 1623
			      struct btrfs_free_space *info)
{
1624 1625
	__unlink_free_space(ctl, info);
	ctl->free_space -= info->bytes;
J
Josef Bacik 已提交
1626 1627
}

1628
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1629 1630 1631 1632
			   struct btrfs_free_space *info)
{
	int ret = 0;

1633
	ASSERT(info->bytes || info->bitmap);
1634
	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1635
				 &info->offset_index, (info->bitmap != NULL));
J
Josef Bacik 已提交
1636 1637 1638
	if (ret)
		return ret;

1639 1640
	ctl->free_space += info->bytes;
	ctl->free_extents++;
1641 1642 1643
	return ret;
}

1644
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1645
{
1646
	struct btrfs_block_group_cache *block_group = ctl->private;
1647 1648 1649
	u64 max_bytes;
	u64 bitmap_bytes;
	u64 extent_bytes;
1650
	u64 size = block_group->key.offset;
1651 1652
	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1653

1654
	max_bitmaps = max_t(u64, max_bitmaps, 1);
1655

1656
	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1657 1658 1659 1660 1661 1662

	/*
	 * The goal is to keep the total amount of memory used per 1gb of space
	 * at or below 32k, so we need to adjust how much memory we allow to be
	 * used by extent based free space tracking
	 */
1663
	if (size < SZ_1G)
1664 1665
		max_bytes = MAX_CACHE_BYTES_PER_GIG;
	else
1666
		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1667

1668 1669 1670 1671 1672
	/*
	 * we want to account for 1 more bitmap than what we have so we can make
	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
	 * we add more bitmaps.
	 */
1673
	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1674

1675
	if (bitmap_bytes >= max_bytes) {
1676
		ctl->extents_thresh = 0;
1677 1678
		return;
	}
1679

1680
	/*
1681
	 * we want the extent entry threshold to always be at most 1/2 the max
1682 1683 1684
	 * bytes we can have, or whatever is less than that.
	 */
	extent_bytes = max_bytes - bitmap_bytes;
1685
	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1686

1687
	ctl->extents_thresh =
1688
		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1689 1690
}

1691 1692 1693
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       u64 offset, u64 bytes)
1694
{
L
Li Zefan 已提交
1695
	unsigned long start, count;
1696

1697 1698
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1699
	ASSERT(start + count <= BITS_PER_BITMAP);
1700

L
Li Zefan 已提交
1701
	bitmap_clear(info->bitmap, start, count);
1702 1703

	info->bytes -= bytes;
1704 1705 1706 1707 1708 1709 1710
}

static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	__bitmap_clear_bits(ctl, info, offset, bytes);
1711
	ctl->free_space -= bytes;
1712 1713
}

1714
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1715 1716
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
1717
{
L
Li Zefan 已提交
1718
	unsigned long start, count;
1719

1720 1721
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1722
	ASSERT(start + count <= BITS_PER_BITMAP);
1723

L
Li Zefan 已提交
1724
	bitmap_set(info->bitmap, start, count);
1725 1726

	info->bytes += bytes;
1727
	ctl->free_space += bytes;
1728 1729
}

1730 1731 1732 1733
/*
 * If we can not find suitable extent, we will use bytes to record
 * the size of the max extent.
 */
1734
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1735
			 struct btrfs_free_space *bitmap_info, u64 *offset,
1736
			 u64 *bytes, bool for_alloc)
1737 1738
{
	unsigned long found_bits = 0;
1739
	unsigned long max_bits = 0;
1740 1741
	unsigned long bits, i;
	unsigned long next_zero;
1742
	unsigned long extent_bits;
1743

1744 1745 1746 1747
	/*
	 * Skip searching the bitmap if we don't have a contiguous section that
	 * is large enough for this allocation.
	 */
1748 1749
	if (for_alloc &&
	    bitmap_info->max_extent_size &&
1750 1751 1752 1753 1754
	    bitmap_info->max_extent_size < *bytes) {
		*bytes = bitmap_info->max_extent_size;
		return -1;
	}

1755
	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1756
			  max_t(u64, *offset, bitmap_info->offset));
1757
	bits = bytes_to_bits(*bytes, ctl->unit);
1758

1759
	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1760 1761 1762 1763
		if (for_alloc && bits == 1) {
			found_bits = 1;
			break;
		}
1764 1765
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
1766 1767 1768
		extent_bits = next_zero - i;
		if (extent_bits >= bits) {
			found_bits = extent_bits;
1769
			break;
1770 1771
		} else if (extent_bits > max_bits) {
			max_bits = extent_bits;
1772 1773 1774 1775 1776
		}
		i = next_zero;
	}

	if (found_bits) {
1777 1778
		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
		*bytes = (u64)(found_bits) * ctl->unit;
1779 1780 1781
		return 0;
	}

1782
	*bytes = (u64)(max_bits) * ctl->unit;
1783
	bitmap_info->max_extent_size = *bytes;
1784 1785 1786
	return -1;
}

1787
/* Cache the size of the max extent in bytes */
1788
static struct btrfs_free_space *
D
David Woodhouse 已提交
1789
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1790
		unsigned long align, u64 *max_extent_size)
1791 1792 1793
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
D
David Woodhouse 已提交
1794 1795
	u64 tmp;
	u64 align_off;
1796 1797
	int ret;

1798
	if (!ctl->free_space_offset.rb_node)
1799
		goto out;
1800

1801
	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1802
	if (!entry)
1803
		goto out;
1804 1805 1806

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1807 1808 1809
		if (entry->bytes < *bytes) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
1810
			continue;
1811
		}
1812

D
David Woodhouse 已提交
1813 1814 1815 1816
		/* make sure the space returned is big enough
		 * to match our requested alignment
		 */
		if (*bytes >= align) {
1817
			tmp = entry->offset - ctl->start + align - 1;
1818
			tmp = div64_u64(tmp, align);
D
David Woodhouse 已提交
1819 1820 1821 1822 1823 1824 1825
			tmp = tmp * align + ctl->start;
			align_off = tmp - entry->offset;
		} else {
			align_off = 0;
			tmp = entry->offset;
		}

1826 1827 1828
		if (entry->bytes < *bytes + align_off) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
D
David Woodhouse 已提交
1829
			continue;
1830
		}
D
David Woodhouse 已提交
1831

1832
		if (entry->bitmap) {
1833 1834
			u64 size = *bytes;

1835
			ret = search_bitmap(ctl, entry, &tmp, &size, true);
D
David Woodhouse 已提交
1836 1837
			if (!ret) {
				*offset = tmp;
1838
				*bytes = size;
1839
				return entry;
1840 1841
			} else if (size > *max_extent_size) {
				*max_extent_size = size;
D
David Woodhouse 已提交
1842
			}
1843 1844 1845
			continue;
		}

D
David Woodhouse 已提交
1846 1847
		*offset = tmp;
		*bytes = entry->bytes - align_off;
1848 1849
		return entry;
	}
1850
out:
1851 1852 1853
	return NULL;
}

1854
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1855 1856
			   struct btrfs_free_space *info, u64 offset)
{
1857
	info->offset = offset_to_bitmap(ctl, offset);
J
Josef Bacik 已提交
1858
	info->bytes = 0;
1859
	INIT_LIST_HEAD(&info->list);
1860 1861
	link_free_space(ctl, info);
	ctl->total_bitmaps++;
1862

1863
	ctl->op->recalc_thresholds(ctl);
1864 1865
}

1866
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1867 1868
			struct btrfs_free_space *bitmap_info)
{
1869
	unlink_free_space(ctl, bitmap_info);
1870
	kfree(bitmap_info->bitmap);
1871
	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1872 1873
	ctl->total_bitmaps--;
	ctl->op->recalc_thresholds(ctl);
1874 1875
}

1876
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1877 1878 1879 1880
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
1881 1882
	u64 search_start, search_bytes;
	int ret;
1883 1884

again:
1885
	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1886

1887
	/*
1888 1889 1890 1891
	 * We need to search for bits in this bitmap.  We could only cover some
	 * of the extent in this bitmap thanks to how we add space, so we need
	 * to search for as much as it as we can and clear that amount, and then
	 * go searching for the next bit.
1892 1893
	 */
	search_start = *offset;
1894
	search_bytes = ctl->unit;
1895
	search_bytes = min(search_bytes, end - search_start + 1);
1896 1897
	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
			    false);
1898 1899
	if (ret < 0 || search_start != *offset)
		return -EINVAL;
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909
	/* We may have found more bits than what we need */
	search_bytes = min(search_bytes, *bytes);

	/* Cannot clear past the end of the bitmap */
	search_bytes = min(search_bytes, end - search_start + 1);

	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
	*offset += search_bytes;
	*bytes -= search_bytes;
1910 1911

	if (*bytes) {
1912
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1913
		if (!bitmap_info->bytes)
1914
			free_bitmap(ctl, bitmap_info);
1915

1916 1917 1918 1919 1920
		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
1921 1922
			return -EINVAL;

1923 1924 1925 1926 1927 1928 1929
		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
1930 1931 1932
		if (!bitmap_info->bitmap)
			return -EAGAIN;

1933 1934 1935 1936 1937 1938 1939
		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
1940
		search_bytes = ctl->unit;
1941
		ret = search_bitmap(ctl, bitmap_info, &search_start,
1942
				    &search_bytes, false);
1943 1944 1945
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

1946
		goto again;
1947
	} else if (!bitmap_info->bytes)
1948
		free_bitmap(ctl, bitmap_info);
1949 1950 1951 1952

	return 0;
}

J
Josef Bacik 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
			       struct btrfs_free_space *info, u64 offset,
			       u64 bytes)
{
	u64 bytes_to_set = 0;
	u64 end;

	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);

	bytes_to_set = min(end - offset, bytes);

	bitmap_set_bits(ctl, info, offset, bytes_to_set);

1966 1967 1968 1969 1970 1971
	/*
	 * We set some bytes, we have no idea what the max extent size is
	 * anymore.
	 */
	info->max_extent_size = 0;

J
Josef Bacik 已提交
1972 1973 1974 1975
	return bytes_to_set;

}

1976 1977
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
		      struct btrfs_free_space *info)
1978
{
1979
	struct btrfs_block_group_cache *block_group = ctl->private;
1980
	struct btrfs_fs_info *fs_info = block_group->fs_info;
1981 1982 1983
	bool forced = false;

#ifdef CONFIG_BTRFS_DEBUG
1984
	if (btrfs_should_fragment_free_space(block_group))
1985 1986
		forced = true;
#endif
1987 1988 1989 1990 1991

	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
1992
	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1993 1994 1995
		/*
		 * If this block group has some small extents we don't want to
		 * use up all of our free slots in the cache with them, we want
1996
		 * to reserve them to larger extents, however if we have plenty
1997 1998 1999
		 * of cache left then go ahead an dadd them, no sense in adding
		 * the overhead of a bitmap if we don't have to.
		 */
2000
		if (info->bytes <= fs_info->sectorsize * 4) {
2001 2002
			if (ctl->free_extents * 2 <= ctl->extents_thresh)
				return false;
2003
		} else {
2004
			return false;
2005 2006
		}
	}
2007 2008

	/*
2009 2010 2011 2012 2013 2014
	 * The original block groups from mkfs can be really small, like 8
	 * megabytes, so don't bother with a bitmap for those entries.  However
	 * some block groups can be smaller than what a bitmap would cover but
	 * are still large enough that they could overflow the 32k memory limit,
	 * so allow those block groups to still be allowed to have a bitmap
	 * entry.
2015
	 */
2016
	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2017 2018 2019 2020 2021
		return false;

	return true;
}

2022
static const struct btrfs_free_space_op free_space_op = {
J
Josef Bacik 已提交
2023 2024 2025 2026
	.recalc_thresholds	= recalculate_thresholds,
	.use_bitmap		= use_bitmap,
};

2027 2028 2029 2030
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
J
Josef Bacik 已提交
2031
	struct btrfs_block_group_cache *block_group = NULL;
2032
	int added = 0;
J
Josef Bacik 已提交
2033
	u64 bytes, offset, bytes_added;
2034
	int ret;
2035 2036 2037 2038

	bytes = info->bytes;
	offset = info->offset;

2039 2040 2041
	if (!ctl->op->use_bitmap(ctl, info))
		return 0;

J
Josef Bacik 已提交
2042 2043
	if (ctl->op == &free_space_op)
		block_group = ctl->private;
2044
again:
J
Josef Bacik 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	/*
	 * Since we link bitmaps right into the cluster we need to see if we
	 * have a cluster here, and if so and it has our bitmap we need to add
	 * the free space to that bitmap.
	 */
	if (block_group && !list_empty(&block_group->cluster_list)) {
		struct btrfs_free_cluster *cluster;
		struct rb_node *node;
		struct btrfs_free_space *entry;

		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
		spin_lock(&cluster->lock);
		node = rb_first(&cluster->root);
		if (!node) {
			spin_unlock(&cluster->lock);
2062
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2063 2064 2065 2066 2067
		}

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (!entry->bitmap) {
			spin_unlock(&cluster->lock);
2068
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
		}

		if (entry->offset == offset_to_bitmap(ctl, offset)) {
			bytes_added = add_bytes_to_bitmap(ctl, entry,
							  offset, bytes);
			bytes -= bytes_added;
			offset += bytes_added;
		}
		spin_unlock(&cluster->lock);
		if (!bytes) {
			ret = 1;
			goto out;
		}
	}
2083 2084

no_cluster_bitmap:
2085
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2086 2087
					 1, 0);
	if (!bitmap_info) {
2088
		ASSERT(added == 0);
2089 2090 2091
		goto new_bitmap;
	}

J
Josef Bacik 已提交
2092 2093 2094 2095
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
	bytes -= bytes_added;
	offset += bytes_added;
	added = 0;
2096 2097 2098 2099 2100 2101 2102 2103 2104

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
2105
		add_new_bitmap(ctl, info, offset);
2106 2107 2108 2109
		added = 1;
		info = NULL;
		goto again;
	} else {
2110
		spin_unlock(&ctl->tree_lock);
2111 2112 2113

		/* no pre-allocated info, allocate a new one */
		if (!info) {
2114 2115
			info = kmem_cache_zalloc(btrfs_free_space_cachep,
						 GFP_NOFS);
2116
			if (!info) {
2117
				spin_lock(&ctl->tree_lock);
2118 2119 2120 2121 2122 2123
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
2124
		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2125
		spin_lock(&ctl->tree_lock);
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
		if (info->bitmap)
			kfree(info->bitmap);
2137
		kmem_cache_free(btrfs_free_space_cachep, info);
2138
	}
J
Josef Bacik 已提交
2139 2140 2141 2142

	return ret;
}

2143
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2144
			  struct btrfs_free_space *info, bool update_stat)
J
Josef Bacik 已提交
2145
{
2146 2147 2148 2149 2150
	struct btrfs_free_space *left_info;
	struct btrfs_free_space *right_info;
	bool merged = false;
	u64 offset = info->offset;
	u64 bytes = info->bytes;
2151

J
Josef Bacik 已提交
2152 2153 2154 2155 2156
	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
2157
	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2158 2159 2160 2161
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
	else
2162
		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
J
Josef Bacik 已提交
2163

2164
	if (right_info && !right_info->bitmap) {
2165
		if (update_stat)
2166
			unlink_free_space(ctl, right_info);
2167
		else
2168
			__unlink_free_space(ctl, right_info);
2169
		info->bytes += right_info->bytes;
2170
		kmem_cache_free(btrfs_free_space_cachep, right_info);
2171
		merged = true;
J
Josef Bacik 已提交
2172 2173
	}

2174 2175
	if (left_info && !left_info->bitmap &&
	    left_info->offset + left_info->bytes == offset) {
2176
		if (update_stat)
2177
			unlink_free_space(ctl, left_info);
2178
		else
2179
			__unlink_free_space(ctl, left_info);
2180 2181
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
2182
		kmem_cache_free(btrfs_free_space_cachep, left_info);
2183
		merged = true;
J
Josef Bacik 已提交
2184 2185
	}

2186 2187 2188
	return merged;
}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
				     struct btrfs_free_space *info,
				     bool update_stat)
{
	struct btrfs_free_space *bitmap;
	unsigned long i;
	unsigned long j;
	const u64 end = info->offset + info->bytes;
	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
	u64 bytes;

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, end);
	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
	if (j == i)
		return false;
	bytes = (j - i) * ctl->unit;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, end, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, end, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       bool update_stat)
{
	struct btrfs_free_space *bitmap;
	u64 bitmap_offset;
	unsigned long i;
	unsigned long j;
	unsigned long prev_j;
	u64 bytes;

	bitmap_offset = offset_to_bitmap(ctl, info->offset);
	/* If we're on a boundary, try the previous logical bitmap. */
	if (bitmap_offset == info->offset) {
		if (info->offset == 0)
			return false;
		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
	}

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
	j = 0;
	prev_j = (unsigned long)-1;
	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
		if (j > i)
			break;
		prev_j = j;
	}
	if (prev_j == i)
		return false;

	if (prev_j == (unsigned long)-1)
		bytes = (i + 1) * ctl->unit;
	else
		bytes = (i - prev_j) * ctl->unit;

	info->offset -= bytes;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

/*
 * We prefer always to allocate from extent entries, both for clustered and
 * non-clustered allocation requests. So when attempting to add a new extent
 * entry, try to see if there's adjacent free space in bitmap entries, and if
 * there is, migrate that space from the bitmaps to the extent.
 * Like this we get better chances of satisfying space allocation requests
 * because we attempt to satisfy them based on a single cache entry, and never
 * on 2 or more entries - even if the entries represent a contiguous free space
 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 * ends).
 */
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info,
			      bool update_stat)
{
	/*
	 * Only work with disconnected entries, as we can change their offset,
	 * and must be extent entries.
	 */
	ASSERT(!info->bitmap);
	ASSERT(RB_EMPTY_NODE(&info->offset_index));

	if (ctl->total_bitmaps > 0) {
		bool stole_end;
		bool stole_front = false;

		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
		if (ctl->total_bitmaps > 0)
			stole_front = steal_from_bitmap_to_front(ctl, info,
								 update_stat);

		if (stole_end || stole_front)
			try_merge_free_space(ctl, info, update_stat);
	}
}

2311 2312
int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
			   struct btrfs_free_space_ctl *ctl,
2313
			   u64 offset, u64 bytes)
2314 2315 2316 2317
{
	struct btrfs_free_space *info;
	int ret = 0;

2318
	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2319 2320 2321 2322 2323
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;
2324
	RB_CLEAR_NODE(&info->offset_index);
2325

2326
	spin_lock(&ctl->tree_lock);
2327

2328
	if (try_merge_free_space(ctl, info, true))
2329 2330 2331 2332 2333 2334 2335
		goto link;

	/*
	 * There was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
2336
	ret = insert_into_bitmap(ctl, info);
2337 2338 2339 2340 2341 2342 2343
	if (ret < 0) {
		goto out;
	} else if (ret) {
		ret = 0;
		goto out;
	}
link:
2344 2345 2346 2347 2348 2349 2350 2351
	/*
	 * Only steal free space from adjacent bitmaps if we're sure we're not
	 * going to add the new free space to existing bitmap entries - because
	 * that would mean unnecessary work that would be reverted. Therefore
	 * attempt to steal space from bitmaps if we're adding an extent entry.
	 */
	steal_from_bitmap(ctl, info, true);

2352
	ret = link_free_space(ctl, info);
J
Josef Bacik 已提交
2353
	if (ret)
2354
		kmem_cache_free(btrfs_free_space_cachep, info);
2355
out:
2356
	spin_unlock(&ctl->tree_lock);
2357

J
Josef Bacik 已提交
2358
	if (ret) {
2359
		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2360
		ASSERT(ret != -EEXIST);
J
Josef Bacik 已提交
2361 2362 2363 2364 2365
	}

	return ret;
}

2366 2367
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
			    u64 offset, u64 bytes)
J
Josef Bacik 已提交
2368
{
2369
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2370
	struct btrfs_free_space *info;
2371 2372
	int ret;
	bool re_search = false;
J
Josef Bacik 已提交
2373

2374
	spin_lock(&ctl->tree_lock);
2375

2376
again:
2377
	ret = 0;
2378 2379 2380
	if (!bytes)
		goto out_lock;

2381
	info = tree_search_offset(ctl, offset, 0, 0);
2382
	if (!info) {
2383 2384 2385 2386
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
2387
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2388 2389
					  1, 0);
		if (!info) {
2390 2391 2392 2393
			/*
			 * If we found a partial bit of our free space in a
			 * bitmap but then couldn't find the other part this may
			 * be a problem, so WARN about it.
2394
			 */
2395
			WARN_ON(re_search);
2396 2397
			goto out_lock;
		}
2398 2399
	}

2400
	re_search = false;
2401
	if (!info->bitmap) {
2402
		unlink_free_space(ctl, info);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
		if (offset == info->offset) {
			u64 to_free = min(bytes, info->bytes);

			info->bytes -= to_free;
			info->offset += to_free;
			if (info->bytes) {
				ret = link_free_space(ctl, info);
				WARN_ON(ret);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, info);
			}
J
Josef Bacik 已提交
2414

2415 2416 2417 2418 2419
			offset += to_free;
			bytes -= to_free;
			goto again;
		} else {
			u64 old_end = info->bytes + info->offset;
2420

2421
			info->bytes = offset - info->offset;
2422
			ret = link_free_space(ctl, info);
2423 2424 2425 2426
			WARN_ON(ret);
			if (ret)
				goto out_lock;

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
			/* Not enough bytes in this entry to satisfy us */
			if (old_end < offset + bytes) {
				bytes -= old_end - offset;
				offset = old_end;
				goto again;
			} else if (old_end == offset + bytes) {
				/* all done */
				goto out_lock;
			}
			spin_unlock(&ctl->tree_lock);

			ret = btrfs_add_free_space(block_group, offset + bytes,
						   old_end - (offset + bytes));
			WARN_ON(ret);
			goto out;
		}
J
Josef Bacik 已提交
2443
	}
2444

2445
	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2446 2447
	if (ret == -EAGAIN) {
		re_search = true;
2448
		goto again;
2449
	}
2450
out_lock:
2451
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2452
out:
2453 2454 2455
	return ret;
}

J
Josef Bacik 已提交
2456 2457 2458
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
			   u64 bytes)
{
2459
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2460
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2461 2462 2463 2464
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

2465
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
J
Josef Bacik 已提交
2466
		info = rb_entry(n, struct btrfs_free_space, offset_index);
L
Liu Bo 已提交
2467
		if (info->bytes >= bytes && !block_group->ro)
J
Josef Bacik 已提交
2468
			count++;
2469
		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2470
			   info->offset, info->bytes,
2471
		       (info->bitmap) ? "yes" : "no");
J
Josef Bacik 已提交
2472
	}
2473
	btrfs_info(fs_info, "block group has cluster?: %s",
2474
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2475
	btrfs_info(fs_info,
2476
		   "%d blocks of free space at or bigger than bytes is", count);
J
Josef Bacik 已提交
2477 2478
}

2479
void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
2480
{
2481
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2482
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2483

2484
	spin_lock_init(&ctl->tree_lock);
2485
	ctl->unit = fs_info->sectorsize;
2486 2487 2488
	ctl->start = block_group->key.objectid;
	ctl->private = block_group;
	ctl->op = &free_space_op;
2489 2490
	INIT_LIST_HEAD(&ctl->trimming_ranges);
	mutex_init(&ctl->cache_writeout_mutex);
J
Josef Bacik 已提交
2491

2492 2493 2494 2495 2496
	/*
	 * we only want to have 32k of ram per block group for keeping
	 * track of free space, and if we pass 1/2 of that we want to
	 * start converting things over to using bitmaps
	 */
2497
	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
J
Josef Bacik 已提交
2498 2499
}

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
static int
__btrfs_return_cluster_to_free_space(
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster)
{
2511
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2512 2513 2514 2515 2516 2517 2518
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

2519
	cluster->block_group = NULL;
2520
	cluster->window_start = 0;
2521 2522
	list_del_init(&cluster->block_group_list);

2523
	node = rb_first(&cluster->root);
2524
	while (node) {
2525 2526
		bool bitmap;

2527 2528 2529
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
2530
		RB_CLEAR_NODE(&entry->offset_index);
2531 2532

		bitmap = (entry->bitmap != NULL);
2533
		if (!bitmap) {
2534
			try_merge_free_space(ctl, entry, false);
2535 2536
			steal_from_bitmap(ctl, entry, false);
		}
2537
		tree_insert_offset(&ctl->free_space_offset,
2538
				   entry->offset, &entry->offset_index, bitmap);
2539
	}
2540
	cluster->root = RB_ROOT;
2541

2542 2543
out:
	spin_unlock(&cluster->lock);
2544
	btrfs_put_block_group(block_group);
2545 2546 2547
	return 0;
}

2548 2549
static void __btrfs_remove_free_space_cache_locked(
				struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2550 2551 2552
{
	struct btrfs_free_space *info;
	struct rb_node *node;
2553 2554 2555

	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
2556 2557 2558 2559 2560 2561
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			free_bitmap(ctl, info);
		}
2562 2563

		cond_resched_lock(&ctl->tree_lock);
2564
	}
2565 2566 2567 2568 2569 2570
}

void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
	spin_lock(&ctl->tree_lock);
	__btrfs_remove_free_space_cache_locked(ctl);
2571 2572 2573 2574 2575 2576
	spin_unlock(&ctl->tree_lock);
}

void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2577
	struct btrfs_free_cluster *cluster;
2578
	struct list_head *head;
J
Josef Bacik 已提交
2579

2580
	spin_lock(&ctl->tree_lock);
2581 2582 2583 2584
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);
2585 2586 2587

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
2588 2589

		cond_resched_lock(&ctl->tree_lock);
2590
	}
2591
	__btrfs_remove_free_space_cache_locked(ctl);
2592
	spin_unlock(&ctl->tree_lock);
2593

J
Josef Bacik 已提交
2594 2595
}

2596
u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2597 2598
			       u64 offset, u64 bytes, u64 empty_size,
			       u64 *max_extent_size)
J
Josef Bacik 已提交
2599
{
2600
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2601
	struct btrfs_free_space *entry = NULL;
2602
	u64 bytes_search = bytes + empty_size;
2603
	u64 ret = 0;
D
David Woodhouse 已提交
2604 2605
	u64 align_gap = 0;
	u64 align_gap_len = 0;
J
Josef Bacik 已提交
2606

2607
	spin_lock(&ctl->tree_lock);
D
David Woodhouse 已提交
2608
	entry = find_free_space(ctl, &offset, &bytes_search,
2609
				block_group->full_stripe_len, max_extent_size);
2610
	if (!entry)
2611 2612 2613 2614
		goto out;

	ret = offset;
	if (entry->bitmap) {
2615
		bitmap_clear_bits(ctl, entry, offset, bytes);
2616
		if (!entry->bytes)
2617
			free_bitmap(ctl, entry);
2618
	} else {
2619
		unlink_free_space(ctl, entry);
D
David Woodhouse 已提交
2620 2621 2622 2623 2624 2625 2626
		align_gap_len = offset - entry->offset;
		align_gap = entry->offset;

		entry->offset = offset + bytes;
		WARN_ON(entry->bytes < bytes + align_gap_len);

		entry->bytes -= bytes + align_gap_len;
2627
		if (!entry->bytes)
2628
			kmem_cache_free(btrfs_free_space_cachep, entry);
2629
		else
2630
			link_free_space(ctl, entry);
2631
	}
2632
out:
2633
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2634

D
David Woodhouse 已提交
2635
	if (align_gap_len)
2636 2637
		__btrfs_add_free_space(block_group->fs_info, ctl,
				       align_gap, align_gap_len);
J
Josef Bacik 已提交
2638 2639
	return ret;
}
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
int btrfs_return_cluster_to_free_space(
			       struct btrfs_block_group_cache *block_group,
			       struct btrfs_free_cluster *cluster)
{
2653
	struct btrfs_free_space_ctl *ctl;
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	int ret;

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
			return 0;
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
		return 0;
	}
	atomic_inc(&block_group->count);
	spin_unlock(&cluster->lock);

2672 2673
	ctl = block_group->free_space_ctl;

2674
	/* now return any extents the cluster had on it */
2675
	spin_lock(&ctl->tree_lock);
2676
	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2677
	spin_unlock(&ctl->tree_lock);
2678 2679 2680 2681 2682 2683

	/* finally drop our ref */
	btrfs_put_block_group(block_group);
	return ret;
}

2684 2685
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
				   struct btrfs_free_cluster *cluster,
2686
				   struct btrfs_free_space *entry,
2687 2688
				   u64 bytes, u64 min_start,
				   u64 *max_extent_size)
2689
{
2690
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2691 2692 2693 2694 2695 2696 2697 2698
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	search_start = min_start;
	search_bytes = bytes;

2699
	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2700 2701 2702
	if (err) {
		if (search_bytes > *max_extent_size)
			*max_extent_size = search_bytes;
2703
		return 0;
2704
	}
2705 2706

	ret = search_start;
2707
	__bitmap_clear_bits(ctl, entry, ret, bytes);
2708 2709 2710 2711

	return ret;
}

2712 2713 2714 2715 2716 2717 2718
/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster, u64 bytes,
2719
			     u64 min_start, u64 *max_extent_size)
2720
{
2721
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2738
	while (1) {
2739 2740 2741
		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
			*max_extent_size = entry->bytes;

2742 2743
		if (entry->bytes < bytes ||
		    (!entry->bitmap && entry->offset < min_start)) {
2744 2745 2746 2747 2748 2749 2750 2751
			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}

2752 2753 2754
		if (entry->bitmap) {
			ret = btrfs_alloc_from_bitmap(block_group,
						      cluster, entry, bytes,
2755 2756
						      cluster->window_start,
						      max_extent_size);
2757 2758 2759 2760 2761 2762 2763 2764
			if (ret == 0) {
				node = rb_next(&entry->offset_index);
				if (!node)
					break;
				entry = rb_entry(node, struct btrfs_free_space,
						 offset_index);
				continue;
			}
2765
			cluster->window_start += bytes;
2766 2767 2768 2769 2770 2771
		} else {
			ret = entry->offset;

			entry->offset += bytes;
			entry->bytes -= bytes;
		}
2772

2773
		if (entry->bytes == 0)
2774 2775 2776 2777 2778
			rb_erase(&entry->offset_index, &cluster->root);
		break;
	}
out:
	spin_unlock(&cluster->lock);
2779

2780 2781 2782
	if (!ret)
		return 0;

2783
	spin_lock(&ctl->tree_lock);
2784

2785
	ctl->free_space -= bytes;
2786
	if (entry->bytes == 0) {
2787
		ctl->free_extents--;
2788 2789
		if (entry->bitmap) {
			kfree(entry->bitmap);
2790 2791
			ctl->total_bitmaps--;
			ctl->op->recalc_thresholds(ctl);
2792
		}
2793
		kmem_cache_free(btrfs_free_space_cachep, entry);
2794 2795
	}

2796
	spin_unlock(&ctl->tree_lock);
2797

2798 2799 2800
	return ret;
}

2801 2802 2803
static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
2804 2805
				u64 offset, u64 bytes,
				u64 cont1_bytes, u64 min_bytes)
2806
{
2807
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2808 2809
	unsigned long next_zero;
	unsigned long i;
2810 2811
	unsigned long want_bits;
	unsigned long min_bits;
2812
	unsigned long found_bits;
2813
	unsigned long max_bits = 0;
2814 2815
	unsigned long start = 0;
	unsigned long total_found = 0;
2816
	int ret;
2817

2818
	i = offset_to_bit(entry->offset, ctl->unit,
2819
			  max_t(u64, offset, entry->offset));
2820 2821
	want_bits = bytes_to_bits(bytes, ctl->unit);
	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2822

2823 2824 2825 2826 2827 2828 2829
	/*
	 * Don't bother looking for a cluster in this bitmap if it's heavily
	 * fragmented.
	 */
	if (entry->max_extent_size &&
	    entry->max_extent_size < cont1_bytes)
		return -ENOSPC;
2830 2831
again:
	found_bits = 0;
2832
	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2833 2834
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
2835
		if (next_zero - i >= min_bits) {
2836
			found_bits = next_zero - i;
2837 2838
			if (found_bits > max_bits)
				max_bits = found_bits;
2839 2840
			break;
		}
2841 2842
		if (next_zero - i > max_bits)
			max_bits = next_zero - i;
2843 2844 2845
		i = next_zero;
	}

2846 2847
	if (!found_bits) {
		entry->max_extent_size = (u64)max_bits * ctl->unit;
2848
		return -ENOSPC;
2849
	}
2850

2851
	if (!total_found) {
2852
		start = i;
2853
		cluster->max_size = 0;
2854 2855 2856 2857
	}

	total_found += found_bits;

2858 2859
	if (cluster->max_size < found_bits * ctl->unit)
		cluster->max_size = found_bits * ctl->unit;
2860

2861 2862
	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
		i = next_zero + 1;
2863 2864 2865
		goto again;
	}

2866
	cluster->window_start = start * ctl->unit + entry->offset;
2867
	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2868 2869
	ret = tree_insert_offset(&cluster->root, entry->offset,
				 &entry->offset_index, 1);
2870
	ASSERT(!ret); /* -EEXIST; Logic error */
2871

J
Josef Bacik 已提交
2872
	trace_btrfs_setup_cluster(block_group, cluster,
2873
				  total_found * ctl->unit, 1);
2874 2875 2876
	return 0;
}

2877 2878
/*
 * This searches the block group for just extents to fill the cluster with.
2879 2880
 * Try to find a cluster with at least bytes total bytes, at least one
 * extent of cont1_bytes, and other clusters of at least min_bytes.
2881
 */
2882 2883 2884 2885
static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
			struct btrfs_free_cluster *cluster,
			struct list_head *bitmaps, u64 offset, u64 bytes,
2886
			u64 cont1_bytes, u64 min_bytes)
2887
{
2888
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2889 2890 2891 2892 2893 2894
	struct btrfs_free_space *first = NULL;
	struct btrfs_free_space *entry = NULL;
	struct btrfs_free_space *last;
	struct rb_node *node;
	u64 window_free;
	u64 max_extent;
J
Josef Bacik 已提交
2895
	u64 total_size = 0;
2896

2897
	entry = tree_search_offset(ctl, offset, 0, 1);
2898 2899 2900 2901 2902 2903 2904
	if (!entry)
		return -ENOSPC;

	/*
	 * We don't want bitmaps, so just move along until we find a normal
	 * extent entry.
	 */
2905 2906
	while (entry->bitmap || entry->bytes < min_bytes) {
		if (entry->bitmap && list_empty(&entry->list))
2907
			list_add_tail(&entry->list, bitmaps);
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
		node = rb_next(&entry->offset_index);
		if (!node)
			return -ENOSPC;
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	window_free = entry->bytes;
	max_extent = entry->bytes;
	first = entry;
	last = entry;

2919 2920
	for (node = rb_next(&entry->offset_index); node;
	     node = rb_next(&entry->offset_index)) {
2921 2922
		entry = rb_entry(node, struct btrfs_free_space, offset_index);

2923 2924 2925
		if (entry->bitmap) {
			if (list_empty(&entry->list))
				list_add_tail(&entry->list, bitmaps);
2926
			continue;
2927 2928
		}

2929 2930 2931 2932 2933 2934
		if (entry->bytes < min_bytes)
			continue;

		last = entry;
		window_free += entry->bytes;
		if (entry->bytes > max_extent)
2935 2936 2937
			max_extent = entry->bytes;
	}

2938 2939 2940
	if (window_free < bytes || max_extent < cont1_bytes)
		return -ENOSPC;

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	cluster->window_start = first->offset;

	node = &first->offset_index;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 */
	do {
		int ret;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
2954
		if (entry->bitmap || entry->bytes < min_bytes)
2955 2956
			continue;

2957
		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2958 2959
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
J
Josef Bacik 已提交
2960
		total_size += entry->bytes;
2961
		ASSERT(!ret); /* -EEXIST; Logic error */
2962 2963 2964
	} while (node && entry != last);

	cluster->max_size = max_extent;
J
Josef Bacik 已提交
2965
	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2966 2967 2968 2969 2970 2971 2972
	return 0;
}

/*
 * This specifically looks for bitmaps that may work in the cluster, we assume
 * that we have already failed to find extents that will work.
 */
2973 2974 2975 2976
static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
		     struct btrfs_free_cluster *cluster,
		     struct list_head *bitmaps, u64 offset, u64 bytes,
2977
		     u64 cont1_bytes, u64 min_bytes)
2978
{
2979
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2980
	struct btrfs_free_space *entry = NULL;
2981
	int ret = -ENOSPC;
2982
	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2983

2984
	if (ctl->total_bitmaps == 0)
2985 2986
		return -ENOSPC;

2987 2988 2989 2990
	/*
	 * The bitmap that covers offset won't be in the list unless offset
	 * is just its start offset.
	 */
2991 2992 2993 2994
	if (!list_empty(bitmaps))
		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);

	if (!entry || entry->offset != bitmap_offset) {
2995 2996 2997 2998 2999
		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
		if (entry && list_empty(&entry->list))
			list_add(&entry->list, bitmaps);
	}

3000
	list_for_each_entry(entry, bitmaps, list) {
3001
		if (entry->bytes < bytes)
3002 3003
			continue;
		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3004
					   bytes, cont1_bytes, min_bytes);
3005 3006 3007 3008 3009
		if (!ret)
			return 0;
	}

	/*
3010 3011
	 * The bitmaps list has all the bitmaps that record free space
	 * starting after offset, so no more search is required.
3012
	 */
3013
	return -ENOSPC;
3014 3015
}

3016 3017
/*
 * here we try to find a cluster of blocks in a block group.  The goal
3018
 * is to find at least bytes+empty_size.
3019 3020 3021 3022 3023
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
3024
int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3025 3026 3027 3028
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
3029
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3030
	struct btrfs_free_space *entry, *tmp;
3031
	LIST_HEAD(bitmaps);
3032
	u64 min_bytes;
3033
	u64 cont1_bytes;
3034 3035
	int ret;

3036 3037 3038 3039 3040 3041
	/*
	 * Choose the minimum extent size we'll require for this
	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
	 * For metadata, allow allocates with smaller extents.  For
	 * data, keep it dense.
	 */
3042
	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3043
		cont1_bytes = min_bytes = bytes + empty_size;
3044
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3045
		cont1_bytes = bytes;
3046
		min_bytes = fs_info->sectorsize;
3047 3048
	} else {
		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3049
		min_bytes = fs_info->sectorsize;
3050
	}
3051

3052
	spin_lock(&ctl->tree_lock);
3053 3054 3055 3056 3057

	/*
	 * If we know we don't have enough space to make a cluster don't even
	 * bother doing all the work to try and find one.
	 */
3058
	if (ctl->free_space < bytes) {
3059
		spin_unlock(&ctl->tree_lock);
3060 3061 3062
		return -ENOSPC;
	}

3063 3064 3065 3066 3067 3068 3069 3070
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}

J
Josef Bacik 已提交
3071 3072 3073
	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
				 min_bytes);

3074
	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3075 3076
				      bytes + empty_size,
				      cont1_bytes, min_bytes);
3077
	if (ret)
3078
		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3079 3080
					   offset, bytes + empty_size,
					   cont1_bytes, min_bytes);
3081 3082 3083 3084

	/* Clear our temporary list */
	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
		list_del_init(&entry->list);
3085

3086 3087 3088 3089 3090
	if (!ret) {
		atomic_inc(&block_group->count);
		list_add_tail(&cluster->block_group_list,
			      &block_group->cluster_list);
		cluster->block_group = block_group;
J
Josef Bacik 已提交
3091 3092
	} else {
		trace_btrfs_failed_cluster_setup(block_group);
3093 3094 3095
	}
out:
	spin_unlock(&cluster->lock);
3096
	spin_unlock(&ctl->tree_lock);
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
3108
	cluster->root = RB_ROOT;
3109
	cluster->max_size = 0;
3110
	cluster->fragmented = false;
3111 3112 3113 3114
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}

3115 3116
static int do_trimming(struct btrfs_block_group_cache *block_group,
		       u64 *total_trimmed, u64 start, u64 bytes,
3117 3118
		       u64 reserved_start, u64 reserved_bytes,
		       struct btrfs_trim_range *trim_entry)
3119
{
3120
	struct btrfs_space_info *space_info = block_group->space_info;
3121
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3122
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3123 3124 3125
	int ret;
	int update = 0;
	u64 trimmed = 0;
3126

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	spin_lock(&space_info->lock);
	spin_lock(&block_group->lock);
	if (!block_group->ro) {
		block_group->reserved += reserved_bytes;
		space_info->bytes_reserved += reserved_bytes;
		update = 1;
	}
	spin_unlock(&block_group->lock);
	spin_unlock(&space_info->lock);

3137
	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3138 3139 3140
	if (!ret)
		*total_trimmed += trimmed;

3141
	mutex_lock(&ctl->cache_writeout_mutex);
3142
	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3143 3144
	list_del(&trim_entry->list);
	mutex_unlock(&ctl->cache_writeout_mutex);
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169

	if (update) {
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);
		if (block_group->ro)
			space_info->bytes_readonly += reserved_bytes;
		block_group->reserved -= reserved_bytes;
		space_info->bytes_reserved -= reserved_bytes;
		spin_unlock(&space_info->lock);
		spin_unlock(&block_group->lock);
	}

	return ret;
}

static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret = 0;
	u64 extent_start;
	u64 extent_bytes;
	u64 bytes;
3170 3171

	while (start < end) {
3172 3173 3174
		struct btrfs_trim_range trim_entry;

		mutex_lock(&ctl->cache_writeout_mutex);
3175
		spin_lock(&ctl->tree_lock);
3176

3177 3178
		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3179
			mutex_unlock(&ctl->cache_writeout_mutex);
3180 3181 3182
			break;
		}

3183
		entry = tree_search_offset(ctl, start, 0, 1);
3184
		if (!entry) {
3185
			spin_unlock(&ctl->tree_lock);
3186
			mutex_unlock(&ctl->cache_writeout_mutex);
3187 3188 3189
			break;
		}

3190 3191 3192 3193
		/* skip bitmaps */
		while (entry->bitmap) {
			node = rb_next(&entry->offset_index);
			if (!node) {
3194
				spin_unlock(&ctl->tree_lock);
3195
				mutex_unlock(&ctl->cache_writeout_mutex);
3196
				goto out;
3197
			}
3198 3199
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
3200 3201
		}

3202 3203
		if (entry->offset >= end) {
			spin_unlock(&ctl->tree_lock);
3204
			mutex_unlock(&ctl->cache_writeout_mutex);
3205
			break;
3206 3207
		}

3208 3209 3210 3211 3212 3213
		extent_start = entry->offset;
		extent_bytes = entry->bytes;
		start = max(start, extent_start);
		bytes = min(extent_start + extent_bytes, end) - start;
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3214
			mutex_unlock(&ctl->cache_writeout_mutex);
3215
			goto next;
3216 3217
		}

3218 3219 3220
		unlink_free_space(ctl, entry);
		kmem_cache_free(btrfs_free_space_cachep, entry);

3221
		spin_unlock(&ctl->tree_lock);
3222 3223 3224 3225
		trim_entry.start = extent_start;
		trim_entry.bytes = extent_bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3226

3227
		ret = do_trimming(block_group, total_trimmed, start, bytes,
3228
				  extent_start, extent_bytes, &trim_entry);
3229 3230 3231 3232
		if (ret)
			break;
next:
		start += bytes;
3233

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}
out:
	return ret;
}

static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	int ret = 0;
	int ret2;
	u64 bytes;
	u64 offset = offset_to_bitmap(ctl, start);

	while (offset < end) {
		bool next_bitmap = false;
3257
		struct btrfs_trim_range trim_entry;
3258

3259
		mutex_lock(&ctl->cache_writeout_mutex);
3260 3261 3262 3263
		spin_lock(&ctl->tree_lock);

		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3264
			mutex_unlock(&ctl->cache_writeout_mutex);
3265 3266 3267 3268 3269 3270
			break;
		}

		entry = tree_search_offset(ctl, offset, 1, 0);
		if (!entry) {
			spin_unlock(&ctl->tree_lock);
3271
			mutex_unlock(&ctl->cache_writeout_mutex);
3272 3273 3274 3275 3276
			next_bitmap = true;
			goto next;
		}

		bytes = minlen;
3277
		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3278 3279
		if (ret2 || start >= end) {
			spin_unlock(&ctl->tree_lock);
3280
			mutex_unlock(&ctl->cache_writeout_mutex);
3281 3282 3283 3284 3285 3286 3287
			next_bitmap = true;
			goto next;
		}

		bytes = min(bytes, end - start);
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3288
			mutex_unlock(&ctl->cache_writeout_mutex);
3289 3290 3291 3292 3293 3294 3295 3296
			goto next;
		}

		bitmap_clear_bits(ctl, entry, start, bytes);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);

		spin_unlock(&ctl->tree_lock);
3297 3298 3299 3300
		trim_entry.start = start;
		trim_entry.bytes = bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3301 3302

		ret = do_trimming(block_group, total_trimmed, start, bytes,
3303
				  start, bytes, &trim_entry);
3304 3305 3306 3307 3308 3309 3310 3311 3312
		if (ret)
			break;
next:
		if (next_bitmap) {
			offset += BITS_PER_BITMAP * ctl->unit;
		} else {
			start += bytes;
			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
				offset += BITS_PER_BITMAP * ctl->unit;
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
		}

		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}

	return ret;
}
3325

3326
void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3327
{
3328 3329
	atomic_inc(&cache->trimming);
}
3330

3331 3332
void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
{
3333
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3334 3335 3336
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	bool cleanup;
3337

3338
	spin_lock(&block_group->lock);
3339 3340
	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
		   block_group->removed);
3341 3342
	spin_unlock(&block_group->lock);

3343
	if (cleanup) {
3344
		mutex_lock(&fs_info->chunk_mutex);
3345
		em_tree = &fs_info->mapping_tree.map_tree;
3346 3347 3348 3349
		write_lock(&em_tree->lock);
		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
					   1);
		BUG_ON(!em); /* logic error, can't happen */
3350 3351 3352 3353
		/*
		 * remove_extent_mapping() will delete us from the pinned_chunks
		 * list, which is protected by the chunk mutex.
		 */
3354 3355
		remove_extent_mapping(em_tree, em);
		write_unlock(&em_tree->lock);
3356
		mutex_unlock(&fs_info->chunk_mutex);
3357 3358 3359 3360

		/* once for us and once for the tree */
		free_extent_map(em);
		free_extent_map(em);
3361 3362 3363 3364 3365 3366

		/*
		 * We've left one free space entry and other tasks trimming
		 * this block group have left 1 entry each one. Free them.
		 */
		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	}
}

int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
			   u64 *trimmed, u64 start, u64 end, u64 minlen)
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
3379
		spin_unlock(&block_group->lock);
3380
		return 0;
3381
	}
3382 3383 3384 3385 3386 3387
	btrfs_get_block_group_trimming(block_group);
	spin_unlock(&block_group->lock);

	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
	if (ret)
		goto out;
3388

3389 3390 3391
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
out:
	btrfs_put_block_group_trimming(block_group);
3392 3393 3394
	return ret;
}

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
/*
 * Find the left-most item in the cache tree, and then return the
 * smallest inode number in the item.
 *
 * Note: the returned inode number may not be the smallest one in
 * the tree, if the left-most item is a bitmap.
 */
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
{
	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
	struct btrfs_free_space *entry = NULL;
	u64 ino = 0;

	spin_lock(&ctl->tree_lock);

	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
		goto out;

	entry = rb_entry(rb_first(&ctl->free_space_offset),
			 struct btrfs_free_space, offset_index);

	if (!entry->bitmap) {
		ino = entry->offset;

		unlink_free_space(ctl, entry);
		entry->offset++;
		entry->bytes--;
		if (!entry->bytes)
			kmem_cache_free(btrfs_free_space_cachep, entry);
		else
			link_free_space(ctl, entry);
	} else {
		u64 offset = 0;
		u64 count = 1;
		int ret;

3431
		ret = search_bitmap(ctl, entry, &offset, &count, true);
3432
		/* Logic error; Should be empty if it can't find anything */
3433
		ASSERT(!ret);
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444

		ino = offset;
		bitmap_clear_bits(ctl, entry, offset, 1);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);
	}
out:
	spin_unlock(&ctl->tree_lock);

	return ino;
}
3445 3446 3447 3448 3449 3450

struct inode *lookup_free_ino_inode(struct btrfs_root *root,
				    struct btrfs_path *path)
{
	struct inode *inode = NULL;

3451 3452 3453 3454
	spin_lock(&root->ino_cache_lock);
	if (root->ino_cache_inode)
		inode = igrab(root->ino_cache_inode);
	spin_unlock(&root->ino_cache_lock);
3455 3456 3457 3458 3459 3460 3461
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path, 0);
	if (IS_ERR(inode))
		return inode;

3462
	spin_lock(&root->ino_cache_lock);
3463
	if (!btrfs_fs_closing(root->fs_info))
3464 3465
		root->ino_cache_inode = igrab(inode);
	spin_unlock(&root->ino_cache_lock);
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485

	return inode;
}

int create_free_ino_inode(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_path *path)
{
	return __create_free_space_inode(root, trans, path,
					 BTRFS_FREE_INO_OBJECTID, 0);
}

int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	struct btrfs_path *path;
	struct inode *inode;
	int ret = 0;
	u64 root_gen = btrfs_root_generation(&root->root_item);

3486
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3487 3488
		return 0;

3489 3490 3491 3492
	/*
	 * If we're unmounting then just return, since this does a search on the
	 * normal root and not the commit root and we could deadlock.
	 */
3493
	if (btrfs_fs_closing(fs_info))
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return 0;

	inode = lookup_free_ino_inode(root, path);
	if (IS_ERR(inode))
		goto out;

	if (root_gen != BTRFS_I(inode)->generation)
		goto out_put;

	ret = __load_free_space_cache(root, inode, ctl, path, 0);

	if (ret < 0)
3510 3511 3512
		btrfs_err(fs_info,
			"failed to load free ino cache for root %llu",
			root->root_key.objectid);
3513 3514 3515 3516 3517 3518 3519 3520 3521
out_put:
	iput(inode);
out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_write_out_ino_cache(struct btrfs_root *root,
			      struct btrfs_trans_handle *trans,
3522 3523
			      struct btrfs_path *path,
			      struct inode *inode)
3524
{
3525
	struct btrfs_fs_info *fs_info = root->fs_info;
3526 3527
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	int ret;
3528
	struct btrfs_io_ctl io_ctl;
3529
	bool release_metadata = true;
3530

3531
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3532 3533
		return 0;

C
Chris Mason 已提交
3534
	memset(&io_ctl, 0, sizeof(io_ctl));
3535
	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3536 3537 3538 3539 3540 3541 3542 3543
	if (!ret) {
		/*
		 * At this point writepages() didn't error out, so our metadata
		 * reservation is released when the writeback finishes, at
		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
		 * with or without an error.
		 */
		release_metadata = false;
3544
		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3545
	}
C
Chris Mason 已提交
3546

3547
	if (ret) {
3548
		if (release_metadata)
3549 3550
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
					inode->i_size);
3551
#ifdef DEBUG
3552 3553 3554
		btrfs_err(fs_info,
			  "failed to write free ino cache for root %llu",
			  root->root_key.objectid);
3555 3556
#endif
	}
3557 3558 3559

	return ret;
}
3560 3561

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3562 3563 3564 3565 3566 3567 3568 3569
/*
 * Use this if you need to make a bitmap or extent entry specifically, it
 * doesn't do any of the merging that add_free_space does, this acts a lot like
 * how the free space cache loading stuff works, so you can get really weird
 * configurations.
 */
int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
			      u64 offset, u64 bytes, bool bitmap)
3570
{
3571 3572 3573 3574 3575
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info = NULL, *bitmap_info;
	void *map = NULL;
	u64 bytes_added;
	int ret;
3576

3577 3578 3579 3580 3581
again:
	if (!info) {
		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
		if (!info)
			return -ENOMEM;
3582 3583
	}

3584 3585 3586 3587
	if (!bitmap) {
		spin_lock(&ctl->tree_lock);
		info->offset = offset;
		info->bytes = bytes;
3588
		info->max_extent_size = 0;
3589 3590 3591 3592 3593 3594 3595 3596
		ret = link_free_space(ctl, info);
		spin_unlock(&ctl->tree_lock);
		if (ret)
			kmem_cache_free(btrfs_free_space_cachep, info);
		return ret;
	}

	if (!map) {
3597
		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
		if (!map) {
			kmem_cache_free(btrfs_free_space_cachep, info);
			return -ENOMEM;
		}
	}

	spin_lock(&ctl->tree_lock);
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					 1, 0);
	if (!bitmap_info) {
		info->bitmap = map;
		map = NULL;
		add_new_bitmap(ctl, info, offset);
		bitmap_info = info;
3612
		info = NULL;
3613
	}
3614

3615
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3616

3617 3618 3619
	bytes -= bytes_added;
	offset += bytes_added;
	spin_unlock(&ctl->tree_lock);
3620

3621 3622
	if (bytes)
		goto again;
3623

3624 3625
	if (info)
		kmem_cache_free(btrfs_free_space_cachep, info);
3626 3627 3628
	if (map)
		kfree(map);
	return 0;
3629 3630 3631 3632 3633 3634 3635
}

/*
 * Checks to see if the given range is in the free space cache.  This is really
 * just used to check the absence of space, so if there is free space in the
 * range at all we will return 1.
 */
3636 3637
int test_check_exists(struct btrfs_block_group_cache *cache,
		      u64 offset, u64 bytes)
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
{
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&ctl->tree_lock);
	info = tree_search_offset(ctl, offset, 0, 0);
	if (!info) {
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					  1, 0);
		if (!info)
			goto out;
	}

have_info:
	if (info->bitmap) {
		u64 bit_off, bit_bytes;
		struct rb_node *n;
		struct btrfs_free_space *tmp;

		bit_off = offset;
		bit_bytes = ctl->unit;
3660
		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
		if (!ret) {
			if (bit_off == offset) {
				ret = 1;
				goto out;
			} else if (bit_off > offset &&
				   offset + bytes > bit_off) {
				ret = 1;
				goto out;
			}
		}

		n = rb_prev(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (tmp->offset + tmp->bytes < offset)
				break;
			if (offset + bytes < tmp->offset) {
3679
				n = rb_prev(&tmp->offset_index);
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
				continue;
			}
			info = tmp;
			goto have_info;
		}

		n = rb_next(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (offset + bytes < tmp->offset)
				break;
			if (tmp->offset + tmp->bytes < offset) {
3693
				n = rb_next(&tmp->offset_index);
3694 3695 3696 3697 3698 3699
				continue;
			}
			info = tmp;
			goto have_info;
		}

3700
		ret = 0;
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
		goto out;
	}

	if (info->offset == offset) {
		ret = 1;
		goto out;
	}

	if (offset > info->offset && offset < info->offset + info->bytes)
		ret = 1;
out:
	spin_unlock(&ctl->tree_lock);
	return ret;
}
3715
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */