free-space-cache.c 108.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
J
Josef Bacik 已提交
2 3 4 5
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 */

6
#include <linux/pagemap.h>
J
Josef Bacik 已提交
7
#include <linux/sched.h>
8
#include <linux/sched/signal.h>
9
#include <linux/slab.h>
10
#include <linux/math64.h>
11
#include <linux/ratelimit.h>
12
#include <linux/error-injection.h>
13
#include <linux/sched/mm.h>
J
Josef Bacik 已提交
14
#include "ctree.h"
15 16
#include "free-space-cache.h"
#include "transaction.h"
17
#include "disk-io.h"
18
#include "extent_io.h"
19
#include "inode-map.h"
20
#include "volumes.h"
21
#include "space-info.h"
22
#include "delalloc-space.h"
23
#include "block-group.h"
24
#include "discard.h"
25

26
#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
27 28
#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
#define FORCE_EXTENT_THRESHOLD	SZ_1M
J
Josef Bacik 已提交
29

30 31 32 33 34 35
struct btrfs_trim_range {
	u64 start;
	u64 bytes;
	struct list_head list;
};

36 37
static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
				struct btrfs_free_space *bitmap_info);
38
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
39
			   struct btrfs_free_space *info);
40 41
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info);
42 43 44 45
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
			     struct btrfs_trans_handle *trans,
			     struct btrfs_io_ctl *io_ctl,
			     struct btrfs_path *path);
J
Josef Bacik 已提交
46

47 48 49
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
					       struct btrfs_path *path,
					       u64 offset)
50
{
51
	struct btrfs_fs_info *fs_info = root->fs_info;
52 53 54 55 56 57
	struct btrfs_key key;
	struct btrfs_key location;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	struct inode *inode = NULL;
58
	unsigned nofs_flag;
59 60 61
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
62
	key.offset = offset;
63 64 65 66 67 68
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ERR_PTR(ret);
	if (ret > 0) {
69
		btrfs_release_path(path);
70 71 72 73 74 75 76 77
		return ERR_PTR(-ENOENT);
	}

	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_free_space_key(leaf, header, &disk_key);
	btrfs_disk_key_to_cpu(&location, &disk_key);
78
	btrfs_release_path(path);
79

80 81 82 83 84
	/*
	 * We are often under a trans handle at this point, so we need to make
	 * sure NOFS is set to keep us from deadlocking.
	 */
	nofs_flag = memalloc_nofs_save();
85
	inode = btrfs_iget_path(fs_info->sb, &location, root, path);
86
	btrfs_release_path(path);
87
	memalloc_nofs_restore(nofs_flag);
88 89 90
	if (IS_ERR(inode))
		return inode;

A
Al Viro 已提交
91
	mapping_set_gfp_mask(inode->i_mapping,
92 93
			mapping_gfp_constraint(inode->i_mapping,
			~(__GFP_FS | __GFP_HIGHMEM)));
94

95 96 97
	return inode;
}

98
struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
99
		struct btrfs_path *path)
100
{
101
	struct btrfs_fs_info *fs_info = block_group->fs_info;
102
	struct inode *inode = NULL;
103
	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
104 105 106 107 108 109 110 111

	spin_lock(&block_group->lock);
	if (block_group->inode)
		inode = igrab(block_group->inode);
	spin_unlock(&block_group->lock);
	if (inode)
		return inode;

112
	inode = __lookup_free_space_inode(fs_info->tree_root, path,
113
					  block_group->start);
114 115 116
	if (IS_ERR(inode))
		return inode;

117
	spin_lock(&block_group->lock);
118
	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
119
		btrfs_info(fs_info, "Old style space inode found, converting.");
120 121
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
			BTRFS_INODE_NODATACOW;
122 123 124
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
	}

125
	if (!block_group->iref) {
126 127 128 129 130 131 132 133
		block_group->inode = igrab(inode);
		block_group->iref = 1;
	}
	spin_unlock(&block_group->lock);

	return inode;
}

134 135 136 137
static int __create_free_space_inode(struct btrfs_root *root,
				     struct btrfs_trans_handle *trans,
				     struct btrfs_path *path,
				     u64 ino, u64 offset)
138 139 140 141 142 143
{
	struct btrfs_key key;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
144
	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
145 146
	int ret;

147
	ret = btrfs_insert_empty_inode(trans, root, path, ino);
148 149 150
	if (ret)
		return ret;

151 152 153 154
	/* We inline crc's for the free disk space cache */
	if (ino != BTRFS_FREE_INO_OBJECTID)
		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;

155 156 157 158
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159
	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160 161 162 163 164 165 166
			     sizeof(*inode_item));
	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
	btrfs_set_inode_size(leaf, inode_item, 0);
	btrfs_set_inode_nbytes(leaf, inode_item, 0);
	btrfs_set_inode_uid(leaf, inode_item, 0);
	btrfs_set_inode_gid(leaf, inode_item, 0);
	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167
	btrfs_set_inode_flags(leaf, inode_item, flags);
168 169
	btrfs_set_inode_nlink(leaf, inode_item, 1);
	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170
	btrfs_set_inode_block_group(leaf, inode_item, offset);
171
	btrfs_mark_buffer_dirty(leaf);
172
	btrfs_release_path(path);
173 174

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175
	key.offset = offset;
176 177 178 179
	key.type = 0;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(struct btrfs_free_space_header));
	if (ret < 0) {
180
		btrfs_release_path(path);
181 182
		return ret;
	}
183

184 185 186
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
187
	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188 189
	btrfs_set_free_space_key(leaf, header, &disk_key);
	btrfs_mark_buffer_dirty(leaf);
190
	btrfs_release_path(path);
191 192 193 194

	return 0;
}

195
int create_free_space_inode(struct btrfs_trans_handle *trans,
196
			    struct btrfs_block_group *block_group,
197 198 199 200 201
			    struct btrfs_path *path)
{
	int ret;
	u64 ino;

202
	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
203 204 205
	if (ret < 0)
		return ret;

206
	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
207
					 ino, block_group->start);
208 209
}

210
int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
211
				       struct btrfs_block_rsv *rsv)
212
{
213
	u64 needed_bytes;
214
	int ret;
215 216

	/* 1 for slack space, 1 for updating the inode */
217 218
	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
		btrfs_calc_metadata_size(fs_info, 1);
219

220 221 222 223 224 225
	spin_lock(&rsv->lock);
	if (rsv->reserved < needed_bytes)
		ret = -ENOSPC;
	else
		ret = 0;
	spin_unlock(&rsv->lock);
226
	return ret;
227 228
}

229
int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
230
				    struct btrfs_block_group *block_group,
231 232
				    struct inode *inode)
{
233
	struct btrfs_root *root = BTRFS_I(inode)->root;
234
	int ret = 0;
235
	bool locked = false;
236 237

	if (block_group) {
238 239 240 241 242 243
		struct btrfs_path *path = btrfs_alloc_path();

		if (!path) {
			ret = -ENOMEM;
			goto fail;
		}
244
		locked = true;
245 246 247 248
		mutex_lock(&trans->transaction->cache_write_mutex);
		if (!list_empty(&block_group->io_list)) {
			list_del_init(&block_group->io_list);

249
			btrfs_wait_cache_io(trans, block_group, path);
250 251 252 253 254 255 256 257 258 259
			btrfs_put_block_group(block_group);
		}

		/*
		 * now that we've truncated the cache away, its no longer
		 * setup or written
		 */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
260
		btrfs_free_path(path);
261
	}
262

263
	btrfs_i_size_write(BTRFS_I(inode), 0);
264
	truncate_pagecache(inode, 0);
265 266

	/*
267 268
	 * We skip the throttling logic for free space cache inodes, so we don't
	 * need to check for -EAGAIN.
269 270 271
	 */
	ret = btrfs_truncate_inode_items(trans, root, inode,
					 0, BTRFS_EXTENT_DATA_KEY);
272 273
	if (ret)
		goto fail;
274

275
	ret = btrfs_update_inode(trans, root, inode);
276 277

fail:
278 279
	if (locked)
		mutex_unlock(&trans->transaction->cache_write_mutex);
280
	if (ret)
281
		btrfs_abort_transaction(trans, ret);
282

283
	return ret;
284 285
}

286
static void readahead_cache(struct inode *inode)
287 288 289 290 291 292
{
	struct file_ra_state *ra;
	unsigned long last_index;

	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
293
		return;
294 295

	file_ra_state_init(ra, inode->i_mapping);
296
	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
297 298 299 300 301 302

	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);

	kfree(ra);
}

303
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
304
		       int write)
305
{
306 307 308
	int num_pages;
	int check_crcs = 0;

309
	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
310

311
	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
312 313
		check_crcs = 1;

314
	/* Make sure we can fit our crcs and generation into the first page */
315
	if (write && check_crcs &&
316
	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
317 318
		return -ENOSPC;

319
	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
320

321
	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
322 323
	if (!io_ctl->pages)
		return -ENOMEM;
324 325

	io_ctl->num_pages = num_pages;
326
	io_ctl->fs_info = btrfs_sb(inode->i_sb);
327
	io_ctl->check_crcs = check_crcs;
328
	io_ctl->inode = inode;
329

330 331
	return 0;
}
332
ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
333

334
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
335 336
{
	kfree(io_ctl->pages);
337
	io_ctl->pages = NULL;
338 339
}

340
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
341 342 343 344 345 346 347
{
	if (io_ctl->cur) {
		io_ctl->cur = NULL;
		io_ctl->orig = NULL;
	}
}

348
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
349
{
350
	ASSERT(io_ctl->index < io_ctl->num_pages);
351
	io_ctl->page = io_ctl->pages[io_ctl->index++];
352
	io_ctl->cur = page_address(io_ctl->page);
353
	io_ctl->orig = io_ctl->cur;
354
	io_ctl->size = PAGE_SIZE;
355
	if (clear)
356
		clear_page(io_ctl->cur);
357 358
}

359
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
360 361 362 363 364 365
{
	int i;

	io_ctl_unmap_page(io_ctl);

	for (i = 0; i < io_ctl->num_pages; i++) {
366 367 368
		if (io_ctl->pages[i]) {
			ClearPageChecked(io_ctl->pages[i]);
			unlock_page(io_ctl->pages[i]);
369
			put_page(io_ctl->pages[i]);
370
		}
371 372 373
	}
}

374
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
375 376
{
	struct page *page;
377
	struct inode *inode = io_ctl->inode;
378 379 380 381 382 383 384 385 386 387 388 389 390
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
	int i;

	for (i = 0; i < io_ctl->num_pages; i++) {
		page = find_or_create_page(inode->i_mapping, i, mask);
		if (!page) {
			io_ctl_drop_pages(io_ctl);
			return -ENOMEM;
		}
		io_ctl->pages[i] = page;
		if (uptodate && !PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
391 392 393 394 395 396
			if (page->mapping != inode->i_mapping) {
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					  "free space cache page truncated");
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
397
			if (!PageUptodate(page)) {
398 399
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					   "error reading free space cache");
400 401 402 403 404 405
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
		}
	}

406 407 408 409 410
	for (i = 0; i < io_ctl->num_pages; i++) {
		clear_page_dirty_for_io(io_ctl->pages[i]);
		set_page_extent_mapped(io_ctl->pages[i]);
	}

411 412 413
	return 0;
}

414
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
415
{
A
Al Viro 已提交
416
	__le64 *val;
417 418 419 420

	io_ctl_map_page(io_ctl, 1);

	/*
421 422
	 * Skip the csum areas.  If we don't check crcs then we just have a
	 * 64bit chunk at the front of the first page.
423
	 */
424 425 426 427 428 429 430
	if (io_ctl->check_crcs) {
		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
431 432 433 434 435 436

	val = io_ctl->cur;
	*val = cpu_to_le64(generation);
	io_ctl->cur += sizeof(u64);
}

437
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
438
{
A
Al Viro 已提交
439
	__le64 *gen;
440

441 442 443 444 445 446 447 448 449 450 451 452
	/*
	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
	 * chunk at the front of the first page.
	 */
	if (io_ctl->check_crcs) {
		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
		io_ctl->size -= sizeof(u64) +
			(sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
453 454 455

	gen = io_ctl->cur;
	if (le64_to_cpu(*gen) != generation) {
456
		btrfs_err_rl(io_ctl->fs_info,
457 458
			"space cache generation (%llu) does not match inode (%llu)",
				*gen, generation);
459 460 461 462
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}
	io_ctl->cur += sizeof(u64);
463 464 465
	return 0;
}

466
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
467 468 469 470 471 472 473 474 475 476 477
{
	u32 *tmp;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_unmap_page(io_ctl);
		return;
	}

	if (index == 0)
478
		offset = sizeof(u32) * io_ctl->num_pages;
479

480 481
	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
	btrfs_crc32c_final(crc, (u8 *)&crc);
482
	io_ctl_unmap_page(io_ctl);
483
	tmp = page_address(io_ctl->pages[0]);
484 485 486 487
	tmp += index;
	*tmp = crc;
}

488
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
489 490 491 492 493 494 495 496 497 498 499 500 501
{
	u32 *tmp, val;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_map_page(io_ctl, 0);
		return 0;
	}

	if (index == 0)
		offset = sizeof(u32) * io_ctl->num_pages;

502
	tmp = page_address(io_ctl->pages[0]);
503 504 505 506
	tmp += index;
	val = *tmp;

	io_ctl_map_page(io_ctl, 0);
507 508
	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
	btrfs_crc32c_final(crc, (u8 *)&crc);
509
	if (val != crc) {
510
		btrfs_err_rl(io_ctl->fs_info,
511
			"csum mismatch on free space cache");
512 513 514 515
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}

516 517 518
	return 0;
}

519
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
			    void *bitmap)
{
	struct btrfs_free_space_entry *entry;

	if (!io_ctl->cur)
		return -ENOSPC;

	entry = io_ctl->cur;
	entry->offset = cpu_to_le64(offset);
	entry->bytes = cpu_to_le64(bytes);
	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
		BTRFS_FREE_SPACE_EXTENT;
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
		return 0;

538
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539 540 541 542 543 544 545 546 547 548

	/* No more pages to map */
	if (io_ctl->index >= io_ctl->num_pages)
		return 0;

	/* map the next page */
	io_ctl_map_page(io_ctl, 1);
	return 0;
}

549
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
550 551 552 553 554 555 556 557 558
{
	if (!io_ctl->cur)
		return -ENOSPC;

	/*
	 * If we aren't at the start of the current page, unmap this one and
	 * map the next one if there is any left.
	 */
	if (io_ctl->cur != io_ctl->orig) {
559
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
560 561 562 563 564
		if (io_ctl->index >= io_ctl->num_pages)
			return -ENOSPC;
		io_ctl_map_page(io_ctl, 0);
	}

565
	copy_page(io_ctl->cur, bitmap);
566
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
567 568 569 570 571
	if (io_ctl->index < io_ctl->num_pages)
		io_ctl_map_page(io_ctl, 0);
	return 0;
}

572
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
573
{
574 575 576 577 578 579 580 581
	/*
	 * If we're not on the boundary we know we've modified the page and we
	 * need to crc the page.
	 */
	if (io_ctl->cur != io_ctl->orig)
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
	else
		io_ctl_unmap_page(io_ctl);
582 583 584

	while (io_ctl->index < io_ctl->num_pages) {
		io_ctl_map_page(io_ctl, 1);
585
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
586 587 588
	}
}

589
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
590
			    struct btrfs_free_space *entry, u8 *type)
591 592
{
	struct btrfs_free_space_entry *e;
593 594 595 596 597 598 599
	int ret;

	if (!io_ctl->cur) {
		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
		if (ret)
			return ret;
	}
600 601 602 603

	e = io_ctl->cur;
	entry->offset = le64_to_cpu(e->offset);
	entry->bytes = le64_to_cpu(e->bytes);
604
	*type = e->type;
605 606 607 608
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
609
		return 0;
610 611 612

	io_ctl_unmap_page(io_ctl);

613
	return 0;
614 615
}

616
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
617
			      struct btrfs_free_space *entry)
618
{
619 620 621 622 623 624
	int ret;

	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
	if (ret)
		return ret;

625
	copy_page(entry->bitmap, io_ctl->cur);
626
	io_ctl_unmap_page(io_ctl);
627 628

	return 0;
629 630
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/*
 * Since we attach pinned extents after the fact we can have contiguous sections
 * of free space that are split up in entries.  This poses a problem with the
 * tree logging stuff since it could have allocated across what appears to be 2
 * entries since we would have merged the entries when adding the pinned extents
 * back to the free space cache.  So run through the space cache that we just
 * loaded and merge contiguous entries.  This will make the log replay stuff not
 * blow up and it will make for nicer allocator behavior.
 */
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_free_space *e, *prev = NULL;
	struct rb_node *n;

again:
	spin_lock(&ctl->tree_lock);
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
		e = rb_entry(n, struct btrfs_free_space, offset_index);
		if (!prev)
			goto next;
		if (e->bitmap || prev->bitmap)
			goto next;
		if (prev->offset + prev->bytes == e->offset) {
			unlink_free_space(ctl, prev);
			unlink_free_space(ctl, e);
			prev->bytes += e->bytes;
			kmem_cache_free(btrfs_free_space_cachep, e);
			link_free_space(ctl, prev);
			prev = NULL;
			spin_unlock(&ctl->tree_lock);
			goto again;
		}
next:
		prev = e;
	}
	spin_unlock(&ctl->tree_lock);
}

669 670 671
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_path *path, u64 offset)
672
{
673
	struct btrfs_fs_info *fs_info = root->fs_info;
674 675
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
676
	struct btrfs_io_ctl io_ctl;
677
	struct btrfs_key key;
678
	struct btrfs_free_space *e, *n;
679
	LIST_HEAD(bitmaps);
680 681 682
	u64 num_entries;
	u64 num_bitmaps;
	u64 generation;
683
	u8 type;
684
	int ret = 0;
685 686

	/* Nothing in the space cache, goodbye */
687
	if (!i_size_read(inode))
688
		return 0;
689 690

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
691
	key.offset = offset;
692 693 694
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
695
	if (ret < 0)
696
		return 0;
697
	else if (ret > 0) {
698
		btrfs_release_path(path);
699
		return 0;
700 701
	}

702 703
	ret = -1;

704 705 706 707 708 709
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	num_entries = btrfs_free_space_entries(leaf, header);
	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
	generation = btrfs_free_space_generation(leaf, header);
710
	btrfs_release_path(path);
711

712
	if (!BTRFS_I(inode)->generation) {
713
		btrfs_info(fs_info,
714
			   "the free space cache file (%llu) is invalid, skip it",
715 716 717 718
			   offset);
		return 0;
	}

719
	if (BTRFS_I(inode)->generation != generation) {
720 721 722
		btrfs_err(fs_info,
			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
			  BTRFS_I(inode)->generation, generation);
723
		return 0;
724 725 726
	}

	if (!num_entries)
727
		return 0;
728

729
	ret = io_ctl_init(&io_ctl, inode, 0);
730 731 732
	if (ret)
		return ret;

733
	readahead_cache(inode);
734

735
	ret = io_ctl_prepare_pages(&io_ctl, true);
736 737
	if (ret)
		goto out;
738

739 740 741 742
	ret = io_ctl_check_crc(&io_ctl, 0);
	if (ret)
		goto free_cache;

743 744 745
	ret = io_ctl_check_generation(&io_ctl, generation);
	if (ret)
		goto free_cache;
746

747 748 749 750
	while (num_entries) {
		e = kmem_cache_zalloc(btrfs_free_space_cachep,
				      GFP_NOFS);
		if (!e)
751 752
			goto free_cache;

753 754 755 756 757 758
		ret = io_ctl_read_entry(&io_ctl, e, &type);
		if (ret) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
		}

759 760 761
		/*
		 * Sync discard ensures that the free space cache is always
		 * trimmed.  So when reading this in, the state should reflect
762 763
		 * that.  We also do this for async as a stop gap for lack of
		 * persistence.
764
		 */
765 766
		if (btrfs_test_opt(fs_info, DISCARD_SYNC) ||
		    btrfs_test_opt(fs_info, DISCARD_ASYNC))
767 768
			e->trim_state = BTRFS_TRIM_STATE_TRIMMED;

769 770 771
		if (!e->bytes) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
772
		}
773 774 775 776 777 778

		if (type == BTRFS_FREE_SPACE_EXTENT) {
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
779
				btrfs_err(fs_info,
780
					"Duplicate entries in free space cache, dumping");
781
				kmem_cache_free(btrfs_free_space_cachep, e);
782 783
				goto free_cache;
			}
784
		} else {
785
			ASSERT(num_bitmaps);
786
			num_bitmaps--;
787 788
			e->bitmap = kmem_cache_zalloc(
					btrfs_free_space_bitmap_cachep, GFP_NOFS);
789 790 791
			if (!e->bitmap) {
				kmem_cache_free(
					btrfs_free_space_cachep, e);
792 793
				goto free_cache;
			}
794 795 796 797 798 799
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			ctl->total_bitmaps++;
			ctl->op->recalc_thresholds(ctl);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
800
				btrfs_err(fs_info,
801
					"Duplicate entries in free space cache, dumping");
802
				kmem_cache_free(btrfs_free_space_cachep, e);
803 804
				goto free_cache;
			}
805
			list_add_tail(&e->list, &bitmaps);
806 807
		}

808 809
		num_entries--;
	}
810

811 812
	io_ctl_unmap_page(&io_ctl);

813 814 815 816 817
	/*
	 * We add the bitmaps at the end of the entries in order that
	 * the bitmap entries are added to the cache.
	 */
	list_for_each_entry_safe(e, n, &bitmaps, list) {
818
		list_del_init(&e->list);
819 820 821
		ret = io_ctl_read_bitmap(&io_ctl, e);
		if (ret)
			goto free_cache;
822
		e->bitmap_extents = count_bitmap_extents(ctl, e);
823
		if (!btrfs_free_space_trimmed(e)) {
824 825
			ctl->discardable_extents[BTRFS_STAT_CURR] +=
				e->bitmap_extents;
826 827
			ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes;
		}
828 829
	}

830
	io_ctl_drop_pages(&io_ctl);
831
	merge_space_tree(ctl);
832 833
	ret = 1;
out:
834
	btrfs_discard_update_discardable(ctl->private, ctl);
835
	io_ctl_free(&io_ctl);
836 837
	return ret;
free_cache:
838
	io_ctl_drop_pages(&io_ctl);
839
	__btrfs_remove_free_space_cache(ctl);
840 841 842
	goto out;
}

843
int load_free_space_cache(struct btrfs_block_group *block_group)
J
Josef Bacik 已提交
844
{
845
	struct btrfs_fs_info *fs_info = block_group->fs_info;
846
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
847 848
	struct inode *inode;
	struct btrfs_path *path;
849
	int ret = 0;
850
	bool matched;
851
	u64 used = block_group->used;
852 853 854 855 856

	/*
	 * If this block group has been marked to be cleared for one reason or
	 * another then we can't trust the on disk cache, so just return.
	 */
857
	spin_lock(&block_group->lock);
858 859 860 861
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
		return 0;
	}
862
	spin_unlock(&block_group->lock);
863 864 865 866

	path = btrfs_alloc_path();
	if (!path)
		return 0;
867 868
	path->search_commit_root = 1;
	path->skip_locking = 1;
869

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	/*
	 * We must pass a path with search_commit_root set to btrfs_iget in
	 * order to avoid a deadlock when allocating extents for the tree root.
	 *
	 * When we are COWing an extent buffer from the tree root, when looking
	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
	 * block group without its free space cache loaded. When we find one
	 * we must load its space cache which requires reading its free space
	 * cache's inode item from the root tree. If this inode item is located
	 * in the same leaf that we started COWing before, then we end up in
	 * deadlock on the extent buffer (trying to read lock it when we
	 * previously write locked it).
	 *
	 * It's safe to read the inode item using the commit root because
	 * block groups, once loaded, stay in memory forever (until they are
	 * removed) as well as their space caches once loaded. New block groups
	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
	 * we will never try to read their inode item while the fs is mounted.
	 */
889
	inode = lookup_free_space_inode(block_group, path);
890 891 892 893 894
	if (IS_ERR(inode)) {
		btrfs_free_path(path);
		return 0;
	}

895 896 897 898
	/* We may have converted the inode and made the cache invalid. */
	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
899
		btrfs_free_path(path);
900 901 902 903
		goto out;
	}
	spin_unlock(&block_group->lock);

904
	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
905
				      path, block_group->start);
906 907 908 909 910
	btrfs_free_path(path);
	if (ret <= 0)
		goto out;

	spin_lock(&ctl->tree_lock);
911
	matched = (ctl->free_space == (block_group->length - used -
912 913 914 915 916
				       block_group->bytes_super));
	spin_unlock(&ctl->tree_lock);

	if (!matched) {
		__btrfs_remove_free_space_cache(ctl);
J
Jeff Mahoney 已提交
917 918
		btrfs_warn(fs_info,
			   "block group %llu has wrong amount of free space",
919
			   block_group->start);
920 921 922 923 924 925 926 927
		ret = -1;
	}
out:
	if (ret < 0) {
		/* This cache is bogus, make sure it gets cleared */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
928
		ret = 0;
929

J
Jeff Mahoney 已提交
930 931
		btrfs_warn(fs_info,
			   "failed to load free space cache for block group %llu, rebuilding it now",
932
			   block_group->start);
933 934 935 936
	}

	iput(inode);
	return ret;
937 938
}

939
static noinline_for_stack
940
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
941
			      struct btrfs_free_space_ctl *ctl,
942
			      struct btrfs_block_group *block_group,
943 944
			      int *entries, int *bitmaps,
			      struct list_head *bitmap_list)
J
Josef Bacik 已提交
945
{
946
	int ret;
947
	struct btrfs_free_cluster *cluster = NULL;
948
	struct btrfs_free_cluster *cluster_locked = NULL;
949
	struct rb_node *node = rb_first(&ctl->free_space_offset);
950
	struct btrfs_trim_range *trim_entry;
951

952
	/* Get the cluster for this block_group if it exists */
953
	if (block_group && !list_empty(&block_group->cluster_list)) {
954 955 956
		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
957
	}
958

959
	if (!node && cluster) {
960 961
		cluster_locked = cluster;
		spin_lock(&cluster_locked->lock);
962 963 964 965
		node = rb_first(&cluster->root);
		cluster = NULL;
	}

966 967 968
	/* Write out the extent entries */
	while (node) {
		struct btrfs_free_space *e;
J
Josef Bacik 已提交
969

970
		e = rb_entry(node, struct btrfs_free_space, offset_index);
971
		*entries += 1;
J
Josef Bacik 已提交
972

973
		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
974 975
				       e->bitmap);
		if (ret)
976
			goto fail;
977

978
		if (e->bitmap) {
979 980
			list_add_tail(&e->list, bitmap_list);
			*bitmaps += 1;
981
		}
982 983 984
		node = rb_next(node);
		if (!node && cluster) {
			node = rb_first(&cluster->root);
985 986
			cluster_locked = cluster;
			spin_lock(&cluster_locked->lock);
987
			cluster = NULL;
988
		}
989
	}
990 991 992 993
	if (cluster_locked) {
		spin_unlock(&cluster_locked->lock);
		cluster_locked = NULL;
	}
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

	/*
	 * Make sure we don't miss any range that was removed from our rbtree
	 * because trimming is running. Otherwise after a umount+mount (or crash
	 * after committing the transaction) we would leak free space and get
	 * an inconsistent free space cache report from fsck.
	 */
	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
				       trim_entry->bytes, NULL);
		if (ret)
			goto fail;
		*entries += 1;
	}

1009 1010
	return 0;
fail:
1011 1012
	if (cluster_locked)
		spin_unlock(&cluster_locked->lock);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	return -ENOSPC;
}

static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct inode *inode,
		  struct btrfs_path *path, u64 offset,
		  int entries, int bitmaps)
{
	struct btrfs_key key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
	key.offset = offset;
	key.type = 0;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0) {
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1035
				 EXTENT_DELALLOC, 0, 0, NULL);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		goto fail;
	}
	leaf = path->nodes[0];
	if (ret > 0) {
		struct btrfs_key found_key;
		ASSERT(path->slots[0]);
		path->slots[0]--;
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
		    found_key.offset != offset) {
			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1047 1048
					 inode->i_size - 1, EXTENT_DELALLOC, 0,
					 0, NULL);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
			btrfs_release_path(path);
			goto fail;
		}
	}

	BTRFS_I(inode)->generation = trans->transid;
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_set_free_space_entries(leaf, header, entries);
	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
	btrfs_set_free_space_generation(leaf, header, trans->transid);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_release_path(path);

	return 0;

fail:
	return -1;
}

1069
static noinline_for_stack int write_pinned_extent_entries(
1070
			    struct btrfs_trans_handle *trans,
1071
			    struct btrfs_block_group *block_group,
1072
			    struct btrfs_io_ctl *io_ctl,
1073
			    int *entries)
1074 1075 1076 1077
{
	u64 start, extent_start, extent_end, len;
	struct extent_io_tree *unpin = NULL;
	int ret;
1078

1079 1080 1081
	if (!block_group)
		return 0;

1082 1083 1084
	/*
	 * We want to add any pinned extents to our free space cache
	 * so we don't leak the space
1085
	 *
1086 1087 1088
	 * We shouldn't have switched the pinned extents yet so this is the
	 * right one
	 */
1089
	unpin = &trans->transaction->pinned_extents;
1090

1091
	start = block_group->start;
1092

1093
	while (start < block_group->start + block_group->length) {
1094 1095
		ret = find_first_extent_bit(unpin, start,
					    &extent_start, &extent_end,
1096
					    EXTENT_DIRTY, NULL);
1097 1098
		if (ret)
			return 0;
J
Josef Bacik 已提交
1099

1100
		/* This pinned extent is out of our range */
1101
		if (extent_start >= block_group->start + block_group->length)
1102
			return 0;
1103

1104
		extent_start = max(extent_start, start);
1105 1106
		extent_end = min(block_group->start + block_group->length,
				 extent_end + 1);
1107
		len = extent_end - extent_start;
J
Josef Bacik 已提交
1108

1109 1110
		*entries += 1;
		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1111
		if (ret)
1112
			return -ENOSPC;
J
Josef Bacik 已提交
1113

1114
		start = extent_end;
1115
	}
J
Josef Bacik 已提交
1116

1117 1118 1119 1120
	return 0;
}

static noinline_for_stack int
1121
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1122
{
1123
	struct btrfs_free_space *entry, *next;
1124 1125
	int ret;

J
Josef Bacik 已提交
1126
	/* Write out the bitmaps */
1127
	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1128
		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1129
		if (ret)
1130
			return -ENOSPC;
J
Josef Bacik 已提交
1131
		list_del_init(&entry->list);
1132 1133
	}

1134 1135
	return 0;
}
J
Josef Bacik 已提交
1136

1137 1138 1139
static int flush_dirty_cache(struct inode *inode)
{
	int ret;
1140

1141
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1142
	if (ret)
1143
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1144
				 EXTENT_DELALLOC, 0, 0, NULL);
J
Josef Bacik 已提交
1145

1146
	return ret;
1147 1148 1149
}

static void noinline_for_stack
1150
cleanup_bitmap_list(struct list_head *bitmap_list)
1151
{
1152
	struct btrfs_free_space *entry, *next;
1153

1154
	list_for_each_entry_safe(entry, next, bitmap_list, list)
1155
		list_del_init(&entry->list);
1156 1157 1158 1159 1160
}

static void noinline_for_stack
cleanup_write_cache_enospc(struct inode *inode,
			   struct btrfs_io_ctl *io_ctl,
1161
			   struct extent_state **cached_state)
1162
{
1163 1164
	io_ctl_drop_pages(io_ctl);
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1165
			     i_size_read(inode) - 1, cached_state);
1166
}
1167

1168 1169
static int __btrfs_wait_cache_io(struct btrfs_root *root,
				 struct btrfs_trans_handle *trans,
1170
				 struct btrfs_block_group *block_group,
1171 1172
				 struct btrfs_io_ctl *io_ctl,
				 struct btrfs_path *path, u64 offset)
1173 1174 1175 1176
{
	int ret;
	struct inode *inode = io_ctl->inode;

1177 1178 1179
	if (!inode)
		return 0;

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	/* Flush the dirty pages in the cache file. */
	ret = flush_dirty_cache(inode);
	if (ret)
		goto out;

	/* Update the cache item to tell everyone this cache file is valid. */
	ret = update_cache_item(trans, root, inode, path, offset,
				io_ctl->entries, io_ctl->bitmaps);
out:
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		if (block_group) {
#ifdef DEBUG
1195
			btrfs_err(root->fs_info,
1196
				  "failed to write free space cache for block group %llu",
1197
				  block_group->start);
1198 1199 1200 1201 1202 1203
#endif
		}
	}
	btrfs_update_inode(trans, root, inode);

	if (block_group) {
1204 1205 1206 1207
		/* the dirty list is protected by the dirty_bgs_lock */
		spin_lock(&trans->transaction->dirty_bgs_lock);

		/* the disk_cache_state is protected by the block group lock */
1208 1209 1210 1211
		spin_lock(&block_group->lock);

		/*
		 * only mark this as written if we didn't get put back on
1212 1213
		 * the dirty list while waiting for IO.   Otherwise our
		 * cache state won't be right, and we won't get written again
1214 1215 1216 1217 1218 1219 1220
		 */
		if (!ret && list_empty(&block_group->dirty_list))
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		else if (ret)
			block_group->disk_cache_state = BTRFS_DC_ERROR;

		spin_unlock(&block_group->lock);
1221
		spin_unlock(&trans->transaction->dirty_bgs_lock);
1222 1223 1224 1225 1226 1227 1228 1229
		io_ctl->inode = NULL;
		iput(inode);
	}

	return ret;

}

1230 1231 1232 1233 1234 1235 1236 1237 1238
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
				    struct btrfs_trans_handle *trans,
				    struct btrfs_io_ctl *io_ctl,
				    struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
}

int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1239
			struct btrfs_block_group *block_group,
1240 1241 1242 1243
			struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
				     block_group, &block_group->io_ctl,
1244
				     path, block_group->start);
1245 1246
}

1247 1248 1249 1250 1251 1252 1253 1254
/**
 * __btrfs_write_out_cache - write out cached info to an inode
 * @root - the root the inode belongs to
 * @ctl - the free space cache we are going to write out
 * @block_group - the block_group for this cache if it belongs to a block_group
 * @trans - the trans handle
 *
 * This function writes out a free space cache struct to disk for quick recovery
G
Geliang Tang 已提交
1255
 * on mount.  This will return 0 if it was successful in writing the cache out,
1256
 * or an errno if it was not.
1257 1258 1259
 */
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
1260
				   struct btrfs_block_group *block_group,
1261
				   struct btrfs_io_ctl *io_ctl,
1262
				   struct btrfs_trans_handle *trans)
1263 1264
{
	struct extent_state *cached_state = NULL;
1265
	LIST_HEAD(bitmap_list);
1266 1267 1268
	int entries = 0;
	int bitmaps = 0;
	int ret;
1269
	int must_iput = 0;
1270 1271

	if (!i_size_read(inode))
1272
		return -EIO;
1273

1274
	WARN_ON(io_ctl->pages);
1275
	ret = io_ctl_init(io_ctl, inode, 1);
1276
	if (ret)
1277
		return ret;
1278

1279 1280 1281 1282 1283 1284 1285 1286 1287
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
		down_write(&block_group->data_rwsem);
		spin_lock(&block_group->lock);
		if (block_group->delalloc_bytes) {
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
			spin_unlock(&block_group->lock);
			up_write(&block_group->data_rwsem);
			BTRFS_I(inode)->generation = 0;
			ret = 0;
1288
			must_iput = 1;
1289 1290 1291 1292 1293
			goto out;
		}
		spin_unlock(&block_group->lock);
	}

1294
	/* Lock all pages first so we can lock the extent safely. */
1295
	ret = io_ctl_prepare_pages(io_ctl, false);
1296
	if (ret)
1297
		goto out_unlock;
1298 1299

	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1300
			 &cached_state);
1301

1302
	io_ctl_set_generation(io_ctl, trans->transid);
1303

1304
	mutex_lock(&ctl->cache_writeout_mutex);
1305
	/* Write out the extent entries in the free space cache */
1306
	spin_lock(&ctl->tree_lock);
1307
	ret = write_cache_extent_entries(io_ctl, ctl,
1308 1309
					 block_group, &entries, &bitmaps,
					 &bitmap_list);
1310 1311
	if (ret)
		goto out_nospc_locked;
1312

1313 1314 1315 1316
	/*
	 * Some spaces that are freed in the current transaction are pinned,
	 * they will be added into free space cache after the transaction is
	 * committed, we shouldn't lose them.
1317 1318 1319
	 *
	 * If this changes while we are working we'll get added back to
	 * the dirty list and redo it.  No locking needed
1320
	 */
1321
	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1322 1323
	if (ret)
		goto out_nospc_locked;
1324

1325 1326 1327 1328 1329
	/*
	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
	 * locked while doing it because a concurrent trim can be manipulating
	 * or freeing the bitmap.
	 */
1330
	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1331
	spin_unlock(&ctl->tree_lock);
1332
	mutex_unlock(&ctl->cache_writeout_mutex);
1333 1334 1335 1336
	if (ret)
		goto out_nospc;

	/* Zero out the rest of the pages just to make sure */
1337
	io_ctl_zero_remaining_pages(io_ctl);
1338

1339
	/* Everything is written out, now we dirty the pages in the file. */
1340 1341
	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
				i_size_read(inode), &cached_state);
1342
	if (ret)
1343
		goto out_nospc;
1344

1345 1346
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);
1347 1348 1349 1350
	/*
	 * Release the pages and unlock the extent, we will flush
	 * them out later
	 */
1351
	io_ctl_drop_pages(io_ctl);
1352 1353

	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1354
			     i_size_read(inode) - 1, &cached_state);
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364
	/*
	 * at this point the pages are under IO and we're happy,
	 * The caller is responsible for waiting on them and updating the
	 * the cache and the inode
	 */
	io_ctl->entries = entries;
	io_ctl->bitmaps = bitmaps;

	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1365
	if (ret)
1366 1367
		goto out;

1368 1369
	return 0;

1370
out:
1371 1372
	io_ctl->inode = NULL;
	io_ctl_free(io_ctl);
1373
	if (ret) {
1374
		invalidate_inode_pages2(inode->i_mapping);
J
Josef Bacik 已提交
1375 1376 1377
		BTRFS_I(inode)->generation = 0;
	}
	btrfs_update_inode(trans, root, inode);
1378 1379
	if (must_iput)
		iput(inode);
1380
	return ret;
1381

1382 1383 1384 1385 1386
out_nospc_locked:
	cleanup_bitmap_list(&bitmap_list);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

1387
out_nospc:
1388
	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1389

1390
out_unlock:
1391 1392 1393
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);

1394
	goto out;
1395 1396
}

1397
int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1398
			  struct btrfs_block_group *block_group,
1399 1400
			  struct btrfs_path *path)
{
1401
	struct btrfs_fs_info *fs_info = trans->fs_info;
1402 1403 1404 1405 1406 1407 1408
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct inode *inode;
	int ret = 0;

	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
		spin_unlock(&block_group->lock);
1409 1410
		return 0;
	}
1411 1412
	spin_unlock(&block_group->lock);

1413
	inode = lookup_free_space_inode(block_group, path);
1414 1415 1416
	if (IS_ERR(inode))
		return 0;

1417 1418
	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
				block_group, &block_group->io_ctl, trans);
1419 1420
	if (ret) {
#ifdef DEBUG
1421 1422
		btrfs_err(fs_info,
			  "failed to write free space cache for block group %llu",
1423
			  block_group->start);
1424
#endif
1425 1426 1427 1428 1429 1430
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&block_group->lock);

		block_group->io_ctl.inode = NULL;
		iput(inode);
1431 1432
	}

1433 1434 1435 1436 1437
	/*
	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
	 * to wait for IO and put the inode
	 */

J
Josef Bacik 已提交
1438 1439 1440
	return ret;
}

1441
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1442
					  u64 offset)
J
Josef Bacik 已提交
1443
{
1444
	ASSERT(offset >= bitmap_start);
1445
	offset -= bitmap_start;
1446
	return (unsigned long)(div_u64(offset, unit));
1447
}
J
Josef Bacik 已提交
1448

1449
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1450
{
1451
	return (unsigned long)(div_u64(bytes, unit));
1452
}
J
Josef Bacik 已提交
1453

1454
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1455 1456 1457
				   u64 offset)
{
	u64 bitmap_start;
1458
	u64 bytes_per_bitmap;
J
Josef Bacik 已提交
1459

1460 1461
	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
	bitmap_start = offset - ctl->start;
1462
	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1463
	bitmap_start *= bytes_per_bitmap;
1464
	bitmap_start += ctl->start;
J
Josef Bacik 已提交
1465

1466
	return bitmap_start;
J
Josef Bacik 已提交
1467 1468
}

1469 1470
static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
J
Josef Bacik 已提交
1471 1472 1473 1474 1475 1476 1477
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
1478
		info = rb_entry(parent, struct btrfs_free_space, offset_index);
J
Josef Bacik 已提交
1479

1480
		if (offset < info->offset) {
J
Josef Bacik 已提交
1481
			p = &(*p)->rb_left;
1482
		} else if (offset > info->offset) {
J
Josef Bacik 已提交
1483
			p = &(*p)->rb_right;
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
1499 1500 1501 1502
				if (info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1503 1504
				p = &(*p)->rb_right;
			} else {
1505 1506 1507 1508
				if (!info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1509 1510 1511
				p = &(*p)->rb_left;
			}
		}
J
Josef Bacik 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
J
Josef Bacik 已提交
1521 1522
 * searches the tree for the given offset.
 *
1523 1524 1525
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
J
Josef Bacik 已提交
1526
 */
1527
static struct btrfs_free_space *
1528
tree_search_offset(struct btrfs_free_space_ctl *ctl,
1529
		   u64 offset, int bitmap_only, int fuzzy)
J
Josef Bacik 已提交
1530
{
1531
	struct rb_node *n = ctl->free_space_offset.rb_node;
1532 1533 1534 1535 1536 1537 1538 1539
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}
J
Josef Bacik 已提交
1540 1541

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1542
		prev = entry;
J
Josef Bacik 已提交
1543

1544
		if (offset < entry->offset)
J
Josef Bacik 已提交
1545
			n = n->rb_left;
1546
		else if (offset > entry->offset)
J
Josef Bacik 已提交
1547
			n = n->rb_right;
1548
		else
J
Josef Bacik 已提交
1549 1550 1551
			break;
	}

1552 1553 1554 1555 1556
	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;
J
Josef Bacik 已提交
1557

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;
J
Josef Bacik 已提交
1568

1569 1570 1571 1572
		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
J
Josef Bacik 已提交
1573
			/*
1574 1575
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
J
Josef Bacik 已提交
1576
			 */
1577 1578
			n = rb_prev(&entry->offset_index);
			if (n) {
1579 1580
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
1581 1582 1583
				if (!prev->bitmap &&
				    prev->offset + prev->bytes > offset)
					entry = prev;
J
Josef Bacik 已提交
1584
			}
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
1599
			ASSERT(entry->offset <= offset);
J
Josef Bacik 已提交
1600
		} else {
1601 1602 1603 1604
			if (fuzzy)
				return entry;
			else
				return NULL;
J
Josef Bacik 已提交
1605 1606 1607
		}
	}

1608
	if (entry->bitmap) {
1609 1610
		n = rb_prev(&entry->offset_index);
		if (n) {
1611 1612
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
1613 1614 1615
			if (!prev->bitmap &&
			    prev->offset + prev->bytes > offset)
				return prev;
1616
		}
1617
		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
1628
			    ctl->unit > offset)
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
J
Josef Bacik 已提交
1641 1642
}

1643
static inline void
1644
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1645
		    struct btrfs_free_space *info)
J
Josef Bacik 已提交
1646
{
1647 1648
	rb_erase(&info->offset_index, &ctl->free_space_offset);
	ctl->free_extents--;
1649

1650
	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1651
		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1652 1653
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
	}
1654 1655
}

1656
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1657 1658
			      struct btrfs_free_space *info)
{
1659 1660
	__unlink_free_space(ctl, info);
	ctl->free_space -= info->bytes;
J
Josef Bacik 已提交
1661 1662
}

1663
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1664 1665 1666 1667
			   struct btrfs_free_space *info)
{
	int ret = 0;

1668
	ASSERT(info->bytes || info->bitmap);
1669
	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1670
				 &info->offset_index, (info->bitmap != NULL));
J
Josef Bacik 已提交
1671 1672 1673
	if (ret)
		return ret;

1674
	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1675
		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1676 1677
		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
	}
1678

1679 1680
	ctl->free_space += info->bytes;
	ctl->free_extents++;
1681 1682 1683
	return ret;
}

1684
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1685
{
1686
	struct btrfs_block_group *block_group = ctl->private;
1687 1688 1689
	u64 max_bytes;
	u64 bitmap_bytes;
	u64 extent_bytes;
1690
	u64 size = block_group->length;
1691 1692
	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1693

1694
	max_bitmaps = max_t(u64, max_bitmaps, 1);
1695

1696
	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1697 1698

	/*
1699 1700 1701 1702
	 * We are trying to keep the total amount of memory used per 1GiB of
	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
	 * bitmaps, we may end up using more memory than this.
1703
	 */
1704
	if (size < SZ_1G)
1705 1706
		max_bytes = MAX_CACHE_BYTES_PER_GIG;
	else
1707
		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1708

1709
	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
1710

1711
	/*
1712
	 * we want the extent entry threshold to always be at most 1/2 the max
1713 1714 1715
	 * bytes we can have, or whatever is less than that.
	 */
	extent_bytes = max_bytes - bitmap_bytes;
1716
	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1717

1718
	ctl->extents_thresh =
1719
		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1720 1721
}

1722 1723 1724
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       u64 offset, u64 bytes)
1725
{
1726 1727
	unsigned long start, count, end;
	int extent_delta = -1;
1728

1729 1730
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1731 1732
	end = start + count;
	ASSERT(end <= BITS_PER_BITMAP);
1733

L
Li Zefan 已提交
1734
	bitmap_clear(info->bitmap, start, count);
1735 1736

	info->bytes -= bytes;
1737 1738
	if (info->max_extent_size > ctl->unit)
		info->max_extent_size = 0;
1739 1740 1741 1742 1743 1744 1745 1746

	if (start && test_bit(start - 1, info->bitmap))
		extent_delta++;

	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
		extent_delta++;

	info->bitmap_extents += extent_delta;
1747
	if (!btrfs_free_space_trimmed(info)) {
1748
		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1749 1750
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
	}
1751 1752 1753 1754 1755 1756 1757
}

static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	__bitmap_clear_bits(ctl, info, offset, bytes);
1758
	ctl->free_space -= bytes;
1759 1760
}

1761
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1762 1763
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
1764
{
1765 1766
	unsigned long start, count, end;
	int extent_delta = 1;
1767

1768 1769
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1770 1771
	end = start + count;
	ASSERT(end <= BITS_PER_BITMAP);
1772

L
Li Zefan 已提交
1773
	bitmap_set(info->bitmap, start, count);
1774 1775

	info->bytes += bytes;
1776
	ctl->free_space += bytes;
1777 1778 1779 1780 1781 1782 1783 1784

	if (start && test_bit(start - 1, info->bitmap))
		extent_delta--;

	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
		extent_delta--;

	info->bitmap_extents += extent_delta;
1785
	if (!btrfs_free_space_trimmed(info)) {
1786
		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1787 1788
		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
	}
1789 1790
}

1791 1792 1793 1794
/*
 * If we can not find suitable extent, we will use bytes to record
 * the size of the max extent.
 */
1795
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1796
			 struct btrfs_free_space *bitmap_info, u64 *offset,
1797
			 u64 *bytes, bool for_alloc)
1798 1799
{
	unsigned long found_bits = 0;
1800
	unsigned long max_bits = 0;
1801 1802
	unsigned long bits, i;
	unsigned long next_zero;
1803
	unsigned long extent_bits;
1804

1805 1806 1807 1808
	/*
	 * Skip searching the bitmap if we don't have a contiguous section that
	 * is large enough for this allocation.
	 */
1809 1810
	if (for_alloc &&
	    bitmap_info->max_extent_size &&
1811 1812 1813 1814 1815
	    bitmap_info->max_extent_size < *bytes) {
		*bytes = bitmap_info->max_extent_size;
		return -1;
	}

1816
	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1817
			  max_t(u64, *offset, bitmap_info->offset));
1818
	bits = bytes_to_bits(*bytes, ctl->unit);
1819

1820
	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1821 1822 1823 1824
		if (for_alloc && bits == 1) {
			found_bits = 1;
			break;
		}
1825 1826
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
1827 1828 1829
		extent_bits = next_zero - i;
		if (extent_bits >= bits) {
			found_bits = extent_bits;
1830
			break;
1831 1832
		} else if (extent_bits > max_bits) {
			max_bits = extent_bits;
1833 1834 1835 1836 1837
		}
		i = next_zero;
	}

	if (found_bits) {
1838 1839
		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
		*bytes = (u64)(found_bits) * ctl->unit;
1840 1841 1842
		return 0;
	}

1843
	*bytes = (u64)(max_bits) * ctl->unit;
1844
	bitmap_info->max_extent_size = *bytes;
1845 1846 1847
	return -1;
}

J
Josef Bacik 已提交
1848 1849 1850 1851 1852 1853 1854
static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
{
	if (entry->bitmap)
		return entry->max_extent_size;
	return entry->bytes;
}

1855
/* Cache the size of the max extent in bytes */
1856
static struct btrfs_free_space *
D
David Woodhouse 已提交
1857
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1858
		unsigned long align, u64 *max_extent_size)
1859 1860 1861
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
D
David Woodhouse 已提交
1862 1863
	u64 tmp;
	u64 align_off;
1864 1865
	int ret;

1866
	if (!ctl->free_space_offset.rb_node)
1867
		goto out;
1868

1869
	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1870
	if (!entry)
1871
		goto out;
1872 1873 1874

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1875
		if (entry->bytes < *bytes) {
J
Josef Bacik 已提交
1876 1877
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
1878
			continue;
1879
		}
1880

D
David Woodhouse 已提交
1881 1882 1883 1884
		/* make sure the space returned is big enough
		 * to match our requested alignment
		 */
		if (*bytes >= align) {
1885
			tmp = entry->offset - ctl->start + align - 1;
1886
			tmp = div64_u64(tmp, align);
D
David Woodhouse 已提交
1887 1888 1889 1890 1891 1892 1893
			tmp = tmp * align + ctl->start;
			align_off = tmp - entry->offset;
		} else {
			align_off = 0;
			tmp = entry->offset;
		}

1894
		if (entry->bytes < *bytes + align_off) {
J
Josef Bacik 已提交
1895 1896
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
D
David Woodhouse 已提交
1897
			continue;
1898
		}
D
David Woodhouse 已提交
1899

1900
		if (entry->bitmap) {
1901 1902
			u64 size = *bytes;

1903
			ret = search_bitmap(ctl, entry, &tmp, &size, true);
D
David Woodhouse 已提交
1904 1905
			if (!ret) {
				*offset = tmp;
1906
				*bytes = size;
1907
				return entry;
J
Josef Bacik 已提交
1908 1909 1910 1911
			} else {
				*max_extent_size =
					max(get_max_extent_size(entry),
					    *max_extent_size);
D
David Woodhouse 已提交
1912
			}
1913 1914 1915
			continue;
		}

D
David Woodhouse 已提交
1916 1917
		*offset = tmp;
		*bytes = entry->bytes - align_off;
1918 1919
		return entry;
	}
1920
out:
1921 1922 1923
	return NULL;
}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
				struct btrfs_free_space *bitmap_info)
{
	struct btrfs_block_group *block_group = ctl->private;
	u64 bytes = bitmap_info->bytes;
	unsigned int rs, re;
	int count = 0;

	if (!block_group || !bytes)
		return count;

	bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0,
				   BITS_PER_BITMAP) {
		bytes -= (rs - re) * ctl->unit;
		count++;

		if (!bytes)
			break;
	}

	return count;
}

1947
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1948 1949
			   struct btrfs_free_space *info, u64 offset)
{
1950
	info->offset = offset_to_bitmap(ctl, offset);
J
Josef Bacik 已提交
1951
	info->bytes = 0;
1952
	info->bitmap_extents = 0;
1953
	INIT_LIST_HEAD(&info->list);
1954 1955
	link_free_space(ctl, info);
	ctl->total_bitmaps++;
1956

1957
	ctl->op->recalc_thresholds(ctl);
1958 1959
}

1960
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1961 1962
			struct btrfs_free_space *bitmap_info)
{
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	/*
	 * Normally when this is called, the bitmap is completely empty. However,
	 * if we are blowing up the free space cache for one reason or another
	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
	 * we may leave stats on the table.
	 */
	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
		ctl->discardable_extents[BTRFS_STAT_CURR] -=
			bitmap_info->bitmap_extents;
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;

	}
1975
	unlink_free_space(ctl, bitmap_info);
1976
	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1977
	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1978 1979
	ctl->total_bitmaps--;
	ctl->op->recalc_thresholds(ctl);
1980 1981
}

1982
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1983 1984 1985 1986
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
1987 1988
	u64 search_start, search_bytes;
	int ret;
1989 1990

again:
1991
	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1992

1993
	/*
1994 1995 1996 1997
	 * We need to search for bits in this bitmap.  We could only cover some
	 * of the extent in this bitmap thanks to how we add space, so we need
	 * to search for as much as it as we can and clear that amount, and then
	 * go searching for the next bit.
1998 1999
	 */
	search_start = *offset;
2000
	search_bytes = ctl->unit;
2001
	search_bytes = min(search_bytes, end - search_start + 1);
2002 2003
	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
			    false);
2004 2005
	if (ret < 0 || search_start != *offset)
		return -EINVAL;
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015
	/* We may have found more bits than what we need */
	search_bytes = min(search_bytes, *bytes);

	/* Cannot clear past the end of the bitmap */
	search_bytes = min(search_bytes, end - search_start + 1);

	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
	*offset += search_bytes;
	*bytes -= search_bytes;
2016 2017

	if (*bytes) {
2018
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2019
		if (!bitmap_info->bytes)
2020
			free_bitmap(ctl, bitmap_info);
2021

2022 2023 2024 2025 2026
		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
2027 2028
			return -EINVAL;

2029 2030 2031 2032 2033 2034 2035
		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
2036 2037 2038
		if (!bitmap_info->bitmap)
			return -EAGAIN;

2039 2040 2041 2042 2043 2044 2045
		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
2046
		search_bytes = ctl->unit;
2047
		ret = search_bitmap(ctl, bitmap_info, &search_start,
2048
				    &search_bytes, false);
2049 2050 2051
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

2052
		goto again;
2053
	} else if (!bitmap_info->bytes)
2054
		free_bitmap(ctl, bitmap_info);
2055 2056 2057 2058

	return 0;
}

J
Josef Bacik 已提交
2059 2060
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
			       struct btrfs_free_space *info, u64 offset,
2061
			       u64 bytes, enum btrfs_trim_state trim_state)
J
Josef Bacik 已提交
2062 2063 2064 2065
{
	u64 bytes_to_set = 0;
	u64 end;

2066 2067 2068 2069
	/*
	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
	 * whole bitmap untrimmed if at any point we add untrimmed regions.
	 */
2070
	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2071
		if (btrfs_free_space_trimmed(info)) {
2072 2073
			ctl->discardable_extents[BTRFS_STAT_CURR] +=
				info->bitmap_extents;
2074 2075
			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
		}
2076
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2077
	}
2078

J
Josef Bacik 已提交
2079 2080 2081 2082 2083 2084
	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);

	bytes_to_set = min(end - offset, bytes);

	bitmap_set_bits(ctl, info, offset, bytes_to_set);

2085 2086 2087 2088 2089 2090
	/*
	 * We set some bytes, we have no idea what the max extent size is
	 * anymore.
	 */
	info->max_extent_size = 0;

J
Josef Bacik 已提交
2091 2092 2093 2094
	return bytes_to_set;

}

2095 2096
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
		      struct btrfs_free_space *info)
2097
{
2098
	struct btrfs_block_group *block_group = ctl->private;
2099
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2100 2101 2102
	bool forced = false;

#ifdef CONFIG_BTRFS_DEBUG
2103
	if (btrfs_should_fragment_free_space(block_group))
2104 2105
		forced = true;
#endif
2106

2107 2108 2109 2110
	/* This is a way to reclaim large regions from the bitmaps. */
	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
		return false;

2111 2112 2113 2114
	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
2115
	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2116 2117 2118
		/*
		 * If this block group has some small extents we don't want to
		 * use up all of our free slots in the cache with them, we want
2119
		 * to reserve them to larger extents, however if we have plenty
2120 2121 2122
		 * of cache left then go ahead an dadd them, no sense in adding
		 * the overhead of a bitmap if we don't have to.
		 */
2123 2124
		if (info->bytes <= fs_info->sectorsize * 8) {
			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2125
				return false;
2126
		} else {
2127
			return false;
2128 2129
		}
	}
2130 2131

	/*
2132 2133 2134 2135 2136 2137
	 * The original block groups from mkfs can be really small, like 8
	 * megabytes, so don't bother with a bitmap for those entries.  However
	 * some block groups can be smaller than what a bitmap would cover but
	 * are still large enough that they could overflow the 32k memory limit,
	 * so allow those block groups to still be allowed to have a bitmap
	 * entry.
2138
	 */
2139
	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2140 2141 2142 2143 2144
		return false;

	return true;
}

2145
static const struct btrfs_free_space_op free_space_op = {
J
Josef Bacik 已提交
2146 2147 2148 2149
	.recalc_thresholds	= recalculate_thresholds,
	.use_bitmap		= use_bitmap,
};

2150 2151 2152 2153
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
2154
	struct btrfs_block_group *block_group = NULL;
2155
	int added = 0;
J
Josef Bacik 已提交
2156
	u64 bytes, offset, bytes_added;
2157
	enum btrfs_trim_state trim_state;
2158
	int ret;
2159 2160 2161

	bytes = info->bytes;
	offset = info->offset;
2162
	trim_state = info->trim_state;
2163

2164 2165 2166
	if (!ctl->op->use_bitmap(ctl, info))
		return 0;

J
Josef Bacik 已提交
2167 2168
	if (ctl->op == &free_space_op)
		block_group = ctl->private;
2169
again:
J
Josef Bacik 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	/*
	 * Since we link bitmaps right into the cluster we need to see if we
	 * have a cluster here, and if so and it has our bitmap we need to add
	 * the free space to that bitmap.
	 */
	if (block_group && !list_empty(&block_group->cluster_list)) {
		struct btrfs_free_cluster *cluster;
		struct rb_node *node;
		struct btrfs_free_space *entry;

		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
		spin_lock(&cluster->lock);
		node = rb_first(&cluster->root);
		if (!node) {
			spin_unlock(&cluster->lock);
2187
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2188 2189 2190 2191 2192
		}

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (!entry->bitmap) {
			spin_unlock(&cluster->lock);
2193
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2194 2195 2196
		}

		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2197 2198
			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
							  bytes, trim_state);
J
Josef Bacik 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207
			bytes -= bytes_added;
			offset += bytes_added;
		}
		spin_unlock(&cluster->lock);
		if (!bytes) {
			ret = 1;
			goto out;
		}
	}
2208 2209

no_cluster_bitmap:
2210
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2211 2212
					 1, 0);
	if (!bitmap_info) {
2213
		ASSERT(added == 0);
2214 2215 2216
		goto new_bitmap;
	}

2217 2218
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
					  trim_state);
J
Josef Bacik 已提交
2219 2220 2221
	bytes -= bytes_added;
	offset += bytes_added;
	added = 0;
2222 2223 2224 2225 2226 2227 2228 2229 2230

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
2231
		add_new_bitmap(ctl, info, offset);
2232 2233 2234 2235
		added = 1;
		info = NULL;
		goto again;
	} else {
2236
		spin_unlock(&ctl->tree_lock);
2237 2238 2239

		/* no pre-allocated info, allocate a new one */
		if (!info) {
2240 2241
			info = kmem_cache_zalloc(btrfs_free_space_cachep,
						 GFP_NOFS);
2242
			if (!info) {
2243
				spin_lock(&ctl->tree_lock);
2244 2245 2246 2247 2248 2249
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
2250 2251
		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
						 GFP_NOFS);
2252
		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2253
		spin_lock(&ctl->tree_lock);
2254 2255 2256 2257 2258 2259 2260 2261 2262
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
2263 2264 2265
		if (info->bitmap)
			kmem_cache_free(btrfs_free_space_bitmap_cachep,
					info->bitmap);
2266
		kmem_cache_free(btrfs_free_space_cachep, info);
2267
	}
J
Josef Bacik 已提交
2268 2269 2270 2271

	return ret;
}

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
/*
 * Free space merging rules:
 *  1) Merge trimmed areas together
 *  2) Let untrimmed areas coalesce with trimmed areas
 *  3) Always pull neighboring regions from bitmaps
 *
 * The above rules are for when we merge free space based on btrfs_trim_state.
 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
 * same reason: to promote larger extent regions which makes life easier for
 * find_free_extent().  Rule 2 enables coalescing based on the common path
 * being returning free space from btrfs_finish_extent_commit().  So when free
 * space is trimmed, it will prevent aggregating trimmed new region and
 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
 * and provide find_free_extent() with the largest extents possible hoping for
 * the reuse path.
 */
2288
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2289
			  struct btrfs_free_space *info, bool update_stat)
J
Josef Bacik 已提交
2290
{
2291 2292 2293 2294 2295
	struct btrfs_free_space *left_info;
	struct btrfs_free_space *right_info;
	bool merged = false;
	u64 offset = info->offset;
	u64 bytes = info->bytes;
2296
	const bool is_trimmed = btrfs_free_space_trimmed(info);
2297

J
Josef Bacik 已提交
2298 2299 2300 2301 2302
	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
2303
	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2304 2305 2306 2307
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
	else
2308
		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
J
Josef Bacik 已提交
2309

2310 2311 2312
	/* See try_merge_free_space() comment. */
	if (right_info && !right_info->bitmap &&
	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2313
		if (update_stat)
2314
			unlink_free_space(ctl, right_info);
2315
		else
2316
			__unlink_free_space(ctl, right_info);
2317
		info->bytes += right_info->bytes;
2318
		kmem_cache_free(btrfs_free_space_cachep, right_info);
2319
		merged = true;
J
Josef Bacik 已提交
2320 2321
	}

2322
	/* See try_merge_free_space() comment. */
2323
	if (left_info && !left_info->bitmap &&
2324 2325
	    left_info->offset + left_info->bytes == offset &&
	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2326
		if (update_stat)
2327
			unlink_free_space(ctl, left_info);
2328
		else
2329
			__unlink_free_space(ctl, left_info);
2330 2331
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
2332
		kmem_cache_free(btrfs_free_space_cachep, left_info);
2333
		merged = true;
J
Josef Bacik 已提交
2334 2335
	}

2336 2337 2338
	return merged;
}

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
				     struct btrfs_free_space *info,
				     bool update_stat)
{
	struct btrfs_free_space *bitmap;
	unsigned long i;
	unsigned long j;
	const u64 end = info->offset + info->bytes;
	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
	u64 bytes;

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, end);
	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
	if (j == i)
		return false;
	bytes = (j - i) * ctl->unit;
	info->bytes += bytes;

2361 2362 2363 2364
	/* See try_merge_free_space() comment. */
	if (!btrfs_free_space_trimmed(bitmap))
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, end, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, end, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       bool update_stat)
{
	struct btrfs_free_space *bitmap;
	u64 bitmap_offset;
	unsigned long i;
	unsigned long j;
	unsigned long prev_j;
	u64 bytes;

	bitmap_offset = offset_to_bitmap(ctl, info->offset);
	/* If we're on a boundary, try the previous logical bitmap. */
	if (bitmap_offset == info->offset) {
		if (info->offset == 0)
			return false;
		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
	}

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
	j = 0;
	prev_j = (unsigned long)-1;
	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
		if (j > i)
			break;
		prev_j = j;
	}
	if (prev_j == i)
		return false;

	if (prev_j == (unsigned long)-1)
		bytes = (i + 1) * ctl->unit;
	else
		bytes = (i - prev_j) * ctl->unit;

	info->offset -= bytes;
	info->bytes += bytes;

2418 2419 2420 2421
	/* See try_merge_free_space() comment. */
	if (!btrfs_free_space_trimmed(bitmap))
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

/*
 * We prefer always to allocate from extent entries, both for clustered and
 * non-clustered allocation requests. So when attempting to add a new extent
 * entry, try to see if there's adjacent free space in bitmap entries, and if
 * there is, migrate that space from the bitmaps to the extent.
 * Like this we get better chances of satisfying space allocation requests
 * because we attempt to satisfy them based on a single cache entry, and never
 * on 2 or more entries - even if the entries represent a contiguous free space
 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 * ends).
 */
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info,
			      bool update_stat)
{
	/*
	 * Only work with disconnected entries, as we can change their offset,
	 * and must be extent entries.
	 */
	ASSERT(!info->bitmap);
	ASSERT(RB_EMPTY_NODE(&info->offset_index));

	if (ctl->total_bitmaps > 0) {
		bool stole_end;
		bool stole_front = false;

		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
		if (ctl->total_bitmaps > 0)
			stole_front = steal_from_bitmap_to_front(ctl, info,
								 update_stat);

		if (stole_end || stole_front)
			try_merge_free_space(ctl, info, update_stat);
	}
}

2469 2470
int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
			   struct btrfs_free_space_ctl *ctl,
2471 2472
			   u64 offset, u64 bytes,
			   enum btrfs_trim_state trim_state)
2473
{
2474
	struct btrfs_block_group *block_group = ctl->private;
2475 2476
	struct btrfs_free_space *info;
	int ret = 0;
D
Dennis Zhou 已提交
2477
	u64 filter_bytes = bytes;
2478

2479
	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2480 2481 2482 2483 2484
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;
2485
	info->trim_state = trim_state;
2486
	RB_CLEAR_NODE(&info->offset_index);
2487

2488
	spin_lock(&ctl->tree_lock);
2489

2490
	if (try_merge_free_space(ctl, info, true))
2491 2492 2493 2494 2495 2496 2497
		goto link;

	/*
	 * There was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
2498
	ret = insert_into_bitmap(ctl, info);
2499 2500 2501 2502 2503 2504 2505
	if (ret < 0) {
		goto out;
	} else if (ret) {
		ret = 0;
		goto out;
	}
link:
2506 2507 2508 2509 2510 2511 2512 2513
	/*
	 * Only steal free space from adjacent bitmaps if we're sure we're not
	 * going to add the new free space to existing bitmap entries - because
	 * that would mean unnecessary work that would be reverted. Therefore
	 * attempt to steal space from bitmaps if we're adding an extent entry.
	 */
	steal_from_bitmap(ctl, info, true);

D
Dennis Zhou 已提交
2514 2515
	filter_bytes = max(filter_bytes, info->bytes);

2516
	ret = link_free_space(ctl, info);
J
Josef Bacik 已提交
2517
	if (ret)
2518
		kmem_cache_free(btrfs_free_space_cachep, info);
2519
out:
2520
	btrfs_discard_update_discardable(block_group, ctl);
2521
	spin_unlock(&ctl->tree_lock);
2522

J
Josef Bacik 已提交
2523
	if (ret) {
2524
		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2525
		ASSERT(ret != -EEXIST);
J
Josef Bacik 已提交
2526 2527
	}

D
Dennis Zhou 已提交
2528 2529
	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
		btrfs_discard_check_filter(block_group, filter_bytes);
2530
		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
D
Dennis Zhou 已提交
2531
	}
2532

J
Josef Bacik 已提交
2533 2534 2535
	return ret;
}

2536
int btrfs_add_free_space(struct btrfs_block_group *block_group,
2537 2538
			 u64 bytenr, u64 size)
{
2539 2540 2541 2542 2543
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
		trim_state = BTRFS_TRIM_STATE_TRIMMED;

2544 2545
	return __btrfs_add_free_space(block_group->fs_info,
				      block_group->free_space_ctl,
2546
				      bytenr, size, trim_state);
2547 2548
}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
/*
 * This is a subtle distinction because when adding free space back in general,
 * we want it to be added as untrimmed for async. But in the case where we add
 * it on loading of a block group, we want to consider it trimmed.
 */
int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
				       u64 bytenr, u64 size)
{
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
		trim_state = BTRFS_TRIM_STATE_TRIMMED;

	return __btrfs_add_free_space(block_group->fs_info,
				      block_group->free_space_ctl,
				      bytenr, size, trim_state);
}

2568
int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2569
			    u64 offset, u64 bytes)
J
Josef Bacik 已提交
2570
{
2571
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2572
	struct btrfs_free_space *info;
2573 2574
	int ret;
	bool re_search = false;
J
Josef Bacik 已提交
2575

2576
	spin_lock(&ctl->tree_lock);
2577

2578
again:
2579
	ret = 0;
2580 2581 2582
	if (!bytes)
		goto out_lock;

2583
	info = tree_search_offset(ctl, offset, 0, 0);
2584
	if (!info) {
2585 2586 2587 2588
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
2589
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2590 2591
					  1, 0);
		if (!info) {
2592 2593 2594 2595
			/*
			 * If we found a partial bit of our free space in a
			 * bitmap but then couldn't find the other part this may
			 * be a problem, so WARN about it.
2596
			 */
2597
			WARN_ON(re_search);
2598 2599
			goto out_lock;
		}
2600 2601
	}

2602
	re_search = false;
2603
	if (!info->bitmap) {
2604
		unlink_free_space(ctl, info);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
		if (offset == info->offset) {
			u64 to_free = min(bytes, info->bytes);

			info->bytes -= to_free;
			info->offset += to_free;
			if (info->bytes) {
				ret = link_free_space(ctl, info);
				WARN_ON(ret);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, info);
			}
J
Josef Bacik 已提交
2616

2617 2618 2619 2620 2621
			offset += to_free;
			bytes -= to_free;
			goto again;
		} else {
			u64 old_end = info->bytes + info->offset;
2622

2623
			info->bytes = offset - info->offset;
2624
			ret = link_free_space(ctl, info);
2625 2626 2627 2628
			WARN_ON(ret);
			if (ret)
				goto out_lock;

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
			/* Not enough bytes in this entry to satisfy us */
			if (old_end < offset + bytes) {
				bytes -= old_end - offset;
				offset = old_end;
				goto again;
			} else if (old_end == offset + bytes) {
				/* all done */
				goto out_lock;
			}
			spin_unlock(&ctl->tree_lock);

2640 2641 2642 2643
			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
						     offset + bytes,
						     old_end - (offset + bytes),
						     info->trim_state);
2644 2645 2646
			WARN_ON(ret);
			goto out;
		}
J
Josef Bacik 已提交
2647
	}
2648

2649
	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2650 2651
	if (ret == -EAGAIN) {
		re_search = true;
2652
		goto again;
2653
	}
2654
out_lock:
2655
	btrfs_discard_update_discardable(block_group, ctl);
2656
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2657
out:
2658 2659 2660
	return ret;
}

2661
void btrfs_dump_free_space(struct btrfs_block_group *block_group,
J
Josef Bacik 已提交
2662 2663
			   u64 bytes)
{
2664
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2665
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2666 2667 2668 2669
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

2670
	spin_lock(&ctl->tree_lock);
2671
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
J
Josef Bacik 已提交
2672
		info = rb_entry(n, struct btrfs_free_space, offset_index);
L
Liu Bo 已提交
2673
		if (info->bytes >= bytes && !block_group->ro)
J
Josef Bacik 已提交
2674
			count++;
2675
		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2676
			   info->offset, info->bytes,
2677
		       (info->bitmap) ? "yes" : "no");
J
Josef Bacik 已提交
2678
	}
2679
	spin_unlock(&ctl->tree_lock);
2680
	btrfs_info(fs_info, "block group has cluster?: %s",
2681
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2682
	btrfs_info(fs_info,
2683
		   "%d blocks of free space at or bigger than bytes is", count);
J
Josef Bacik 已提交
2684 2685
}

2686
void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
J
Josef Bacik 已提交
2687
{
2688
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2689
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2690

2691
	spin_lock_init(&ctl->tree_lock);
2692
	ctl->unit = fs_info->sectorsize;
2693
	ctl->start = block_group->start;
2694 2695
	ctl->private = block_group;
	ctl->op = &free_space_op;
2696 2697
	INIT_LIST_HEAD(&ctl->trimming_ranges);
	mutex_init(&ctl->cache_writeout_mutex);
J
Josef Bacik 已提交
2698

2699 2700 2701 2702 2703
	/*
	 * we only want to have 32k of ram per block group for keeping
	 * track of free space, and if we pass 1/2 of that we want to
	 * start converting things over to using bitmaps
	 */
2704
	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
J
Josef Bacik 已提交
2705 2706
}

2707 2708 2709 2710 2711 2712 2713 2714
/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
static int
__btrfs_return_cluster_to_free_space(
2715
			     struct btrfs_block_group *block_group,
2716 2717
			     struct btrfs_free_cluster *cluster)
{
2718
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2719 2720 2721 2722 2723 2724 2725
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

2726
	cluster->block_group = NULL;
2727
	cluster->window_start = 0;
2728 2729
	list_del_init(&cluster->block_group_list);

2730
	node = rb_first(&cluster->root);
2731
	while (node) {
2732 2733
		bool bitmap;

2734 2735 2736
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
2737
		RB_CLEAR_NODE(&entry->offset_index);
2738 2739

		bitmap = (entry->bitmap != NULL);
2740
		if (!bitmap) {
2741
			/* Merging treats extents as if they were new */
2742
			if (!btrfs_free_space_trimmed(entry)) {
2743
				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2744 2745 2746
				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
					entry->bytes;
			}
2747

2748
			try_merge_free_space(ctl, entry, false);
2749
			steal_from_bitmap(ctl, entry, false);
2750 2751

			/* As we insert directly, update these statistics */
2752
			if (!btrfs_free_space_trimmed(entry)) {
2753
				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2754 2755 2756
				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
					entry->bytes;
			}
2757
		}
2758
		tree_insert_offset(&ctl->free_space_offset,
2759
				   entry->offset, &entry->offset_index, bitmap);
2760
	}
2761
	cluster->root = RB_ROOT;
2762

2763 2764
out:
	spin_unlock(&cluster->lock);
2765
	btrfs_put_block_group(block_group);
2766 2767 2768
	return 0;
}

2769 2770
static void __btrfs_remove_free_space_cache_locked(
				struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2771 2772 2773
{
	struct btrfs_free_space *info;
	struct rb_node *node;
2774 2775 2776

	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
2777 2778 2779 2780 2781 2782
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			free_bitmap(ctl, info);
		}
2783 2784

		cond_resched_lock(&ctl->tree_lock);
2785
	}
2786 2787 2788 2789 2790 2791
}

void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
	spin_lock(&ctl->tree_lock);
	__btrfs_remove_free_space_cache_locked(ctl);
2792 2793
	if (ctl->private)
		btrfs_discard_update_discardable(ctl->private, ctl);
2794 2795 2796
	spin_unlock(&ctl->tree_lock);
}

2797
void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2798 2799
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2800
	struct btrfs_free_cluster *cluster;
2801
	struct list_head *head;
J
Josef Bacik 已提交
2802

2803
	spin_lock(&ctl->tree_lock);
2804 2805 2806 2807
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);
2808 2809 2810

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
2811 2812

		cond_resched_lock(&ctl->tree_lock);
2813
	}
2814
	__btrfs_remove_free_space_cache_locked(ctl);
2815
	btrfs_discard_update_discardable(block_group, ctl);
2816
	spin_unlock(&ctl->tree_lock);
2817

J
Josef Bacik 已提交
2818 2819
}

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
/**
 * btrfs_is_free_space_trimmed - see if everything is trimmed
 * @block_group: block_group of interest
 *
 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
 */
bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *info;
	struct rb_node *node;
	bool ret = true;

	spin_lock(&ctl->tree_lock);
	node = rb_first(&ctl->free_space_offset);

	while (node) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);

		if (!btrfs_free_space_trimmed(info)) {
			ret = false;
			break;
		}

		node = rb_next(node);
	}

	spin_unlock(&ctl->tree_lock);
	return ret;
}

2851
u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2852 2853
			       u64 offset, u64 bytes, u64 empty_size,
			       u64 *max_extent_size)
J
Josef Bacik 已提交
2854
{
2855
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2856 2857
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
2858
	struct btrfs_free_space *entry = NULL;
2859
	u64 bytes_search = bytes + empty_size;
2860
	u64 ret = 0;
D
David Woodhouse 已提交
2861 2862
	u64 align_gap = 0;
	u64 align_gap_len = 0;
2863
	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
J
Josef Bacik 已提交
2864

2865
	spin_lock(&ctl->tree_lock);
D
David Woodhouse 已提交
2866
	entry = find_free_space(ctl, &offset, &bytes_search,
2867
				block_group->full_stripe_len, max_extent_size);
2868
	if (!entry)
2869 2870 2871 2872
		goto out;

	ret = offset;
	if (entry->bitmap) {
2873
		bitmap_clear_bits(ctl, entry, offset, bytes);
2874 2875 2876 2877

		if (!btrfs_free_space_trimmed(entry))
			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

2878
		if (!entry->bytes)
2879
			free_bitmap(ctl, entry);
2880
	} else {
2881
		unlink_free_space(ctl, entry);
D
David Woodhouse 已提交
2882 2883
		align_gap_len = offset - entry->offset;
		align_gap = entry->offset;
2884
		align_gap_trim_state = entry->trim_state;
D
David Woodhouse 已提交
2885

2886 2887 2888
		if (!btrfs_free_space_trimmed(entry))
			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

D
David Woodhouse 已提交
2889 2890 2891 2892
		entry->offset = offset + bytes;
		WARN_ON(entry->bytes < bytes + align_gap_len);

		entry->bytes -= bytes + align_gap_len;
2893
		if (!entry->bytes)
2894
			kmem_cache_free(btrfs_free_space_cachep, entry);
2895
		else
2896
			link_free_space(ctl, entry);
2897
	}
2898
out:
2899
	btrfs_discard_update_discardable(block_group, ctl);
2900
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2901

D
David Woodhouse 已提交
2902
	if (align_gap_len)
2903
		__btrfs_add_free_space(block_group->fs_info, ctl,
2904 2905
				       align_gap, align_gap_len,
				       align_gap_trim_state);
J
Josef Bacik 已提交
2906 2907
	return ret;
}
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
int btrfs_return_cluster_to_free_space(
2918
			       struct btrfs_block_group *block_group,
2919 2920
			       struct btrfs_free_cluster *cluster)
{
2921
	struct btrfs_free_space_ctl *ctl;
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	int ret;

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
			return 0;
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
		return 0;
	}
	atomic_inc(&block_group->count);
	spin_unlock(&cluster->lock);

2940 2941
	ctl = block_group->free_space_ctl;

2942
	/* now return any extents the cluster had on it */
2943
	spin_lock(&ctl->tree_lock);
2944
	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2945
	spin_unlock(&ctl->tree_lock);
2946

2947 2948
	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);

2949 2950 2951 2952 2953
	/* finally drop our ref */
	btrfs_put_block_group(block_group);
	return ret;
}

2954
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2955
				   struct btrfs_free_cluster *cluster,
2956
				   struct btrfs_free_space *entry,
2957 2958
				   u64 bytes, u64 min_start,
				   u64 *max_extent_size)
2959
{
2960
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2961 2962 2963 2964 2965 2966 2967 2968
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	search_start = min_start;
	search_bytes = bytes;

2969
	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2970
	if (err) {
J
Josef Bacik 已提交
2971 2972
		*max_extent_size = max(get_max_extent_size(entry),
				       *max_extent_size);
2973
		return 0;
2974
	}
2975 2976

	ret = search_start;
2977
	__bitmap_clear_bits(ctl, entry, ret, bytes);
2978 2979 2980 2981

	return ret;
}

2982 2983 2984 2985 2986
/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
2987
u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2988
			     struct btrfs_free_cluster *cluster, u64 bytes,
2989
			     u64 min_start, u64 *max_extent_size)
2990
{
2991
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2992 2993
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3010
	while (1) {
J
Josef Bacik 已提交
3011 3012 3013
		if (entry->bytes < bytes)
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
3014

3015 3016
		if (entry->bytes < bytes ||
		    (!entry->bitmap && entry->offset < min_start)) {
3017 3018 3019 3020 3021 3022 3023 3024
			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}

3025 3026 3027
		if (entry->bitmap) {
			ret = btrfs_alloc_from_bitmap(block_group,
						      cluster, entry, bytes,
3028 3029
						      cluster->window_start,
						      max_extent_size);
3030 3031 3032 3033 3034 3035 3036 3037
			if (ret == 0) {
				node = rb_next(&entry->offset_index);
				if (!node)
					break;
				entry = rb_entry(node, struct btrfs_free_space,
						 offset_index);
				continue;
			}
3038
			cluster->window_start += bytes;
3039 3040 3041 3042 3043 3044
		} else {
			ret = entry->offset;

			entry->offset += bytes;
			entry->bytes -= bytes;
		}
3045

3046
		if (entry->bytes == 0)
3047 3048 3049 3050 3051
			rb_erase(&entry->offset_index, &cluster->root);
		break;
	}
out:
	spin_unlock(&cluster->lock);
3052

3053 3054 3055
	if (!ret)
		return 0;

3056
	spin_lock(&ctl->tree_lock);
3057

3058 3059 3060
	if (!btrfs_free_space_trimmed(entry))
		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

3061
	ctl->free_space -= bytes;
3062 3063
	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3064
	if (entry->bytes == 0) {
3065
		ctl->free_extents--;
3066
		if (entry->bitmap) {
3067 3068
			kmem_cache_free(btrfs_free_space_bitmap_cachep,
					entry->bitmap);
3069 3070
			ctl->total_bitmaps--;
			ctl->op->recalc_thresholds(ctl);
3071 3072
		} else if (!btrfs_free_space_trimmed(entry)) {
			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3073
		}
3074
		kmem_cache_free(btrfs_free_space_cachep, entry);
3075 3076
	}

3077
	spin_unlock(&ctl->tree_lock);
3078

3079 3080 3081
	return ret;
}

3082
static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3083 3084
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
3085 3086
				u64 offset, u64 bytes,
				u64 cont1_bytes, u64 min_bytes)
3087
{
3088
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3089 3090
	unsigned long next_zero;
	unsigned long i;
3091 3092
	unsigned long want_bits;
	unsigned long min_bits;
3093
	unsigned long found_bits;
3094
	unsigned long max_bits = 0;
3095 3096
	unsigned long start = 0;
	unsigned long total_found = 0;
3097
	int ret;
3098

3099
	i = offset_to_bit(entry->offset, ctl->unit,
3100
			  max_t(u64, offset, entry->offset));
3101 3102
	want_bits = bytes_to_bits(bytes, ctl->unit);
	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3103

3104 3105 3106 3107 3108 3109 3110
	/*
	 * Don't bother looking for a cluster in this bitmap if it's heavily
	 * fragmented.
	 */
	if (entry->max_extent_size &&
	    entry->max_extent_size < cont1_bytes)
		return -ENOSPC;
3111 3112
again:
	found_bits = 0;
3113
	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3114 3115
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
3116
		if (next_zero - i >= min_bits) {
3117
			found_bits = next_zero - i;
3118 3119
			if (found_bits > max_bits)
				max_bits = found_bits;
3120 3121
			break;
		}
3122 3123
		if (next_zero - i > max_bits)
			max_bits = next_zero - i;
3124 3125 3126
		i = next_zero;
	}

3127 3128
	if (!found_bits) {
		entry->max_extent_size = (u64)max_bits * ctl->unit;
3129
		return -ENOSPC;
3130
	}
3131

3132
	if (!total_found) {
3133
		start = i;
3134
		cluster->max_size = 0;
3135 3136 3137 3138
	}

	total_found += found_bits;

3139 3140
	if (cluster->max_size < found_bits * ctl->unit)
		cluster->max_size = found_bits * ctl->unit;
3141

3142 3143
	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
		i = next_zero + 1;
3144 3145 3146
		goto again;
	}

3147
	cluster->window_start = start * ctl->unit + entry->offset;
3148
	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3149 3150
	ret = tree_insert_offset(&cluster->root, entry->offset,
				 &entry->offset_index, 1);
3151
	ASSERT(!ret); /* -EEXIST; Logic error */
3152

J
Josef Bacik 已提交
3153
	trace_btrfs_setup_cluster(block_group, cluster,
3154
				  total_found * ctl->unit, 1);
3155 3156 3157
	return 0;
}

3158 3159
/*
 * This searches the block group for just extents to fill the cluster with.
3160 3161
 * Try to find a cluster with at least bytes total bytes, at least one
 * extent of cont1_bytes, and other clusters of at least min_bytes.
3162
 */
3163
static noinline int
3164
setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3165 3166
			struct btrfs_free_cluster *cluster,
			struct list_head *bitmaps, u64 offset, u64 bytes,
3167
			u64 cont1_bytes, u64 min_bytes)
3168
{
3169
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3170 3171 3172 3173 3174 3175
	struct btrfs_free_space *first = NULL;
	struct btrfs_free_space *entry = NULL;
	struct btrfs_free_space *last;
	struct rb_node *node;
	u64 window_free;
	u64 max_extent;
J
Josef Bacik 已提交
3176
	u64 total_size = 0;
3177

3178
	entry = tree_search_offset(ctl, offset, 0, 1);
3179 3180 3181 3182 3183 3184 3185
	if (!entry)
		return -ENOSPC;

	/*
	 * We don't want bitmaps, so just move along until we find a normal
	 * extent entry.
	 */
3186 3187
	while (entry->bitmap || entry->bytes < min_bytes) {
		if (entry->bitmap && list_empty(&entry->list))
3188
			list_add_tail(&entry->list, bitmaps);
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
		node = rb_next(&entry->offset_index);
		if (!node)
			return -ENOSPC;
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	window_free = entry->bytes;
	max_extent = entry->bytes;
	first = entry;
	last = entry;

3200 3201
	for (node = rb_next(&entry->offset_index); node;
	     node = rb_next(&entry->offset_index)) {
3202 3203
		entry = rb_entry(node, struct btrfs_free_space, offset_index);

3204 3205 3206
		if (entry->bitmap) {
			if (list_empty(&entry->list))
				list_add_tail(&entry->list, bitmaps);
3207
			continue;
3208 3209
		}

3210 3211 3212 3213 3214 3215
		if (entry->bytes < min_bytes)
			continue;

		last = entry;
		window_free += entry->bytes;
		if (entry->bytes > max_extent)
3216 3217 3218
			max_extent = entry->bytes;
	}

3219 3220 3221
	if (window_free < bytes || max_extent < cont1_bytes)
		return -ENOSPC;

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
	cluster->window_start = first->offset;

	node = &first->offset_index;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 */
	do {
		int ret;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
3235
		if (entry->bitmap || entry->bytes < min_bytes)
3236 3237
			continue;

3238
		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3239 3240
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
J
Josef Bacik 已提交
3241
		total_size += entry->bytes;
3242
		ASSERT(!ret); /* -EEXIST; Logic error */
3243 3244 3245
	} while (node && entry != last);

	cluster->max_size = max_extent;
J
Josef Bacik 已提交
3246
	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3247 3248 3249 3250 3251 3252 3253
	return 0;
}

/*
 * This specifically looks for bitmaps that may work in the cluster, we assume
 * that we have already failed to find extents that will work.
 */
3254
static noinline int
3255
setup_cluster_bitmap(struct btrfs_block_group *block_group,
3256 3257
		     struct btrfs_free_cluster *cluster,
		     struct list_head *bitmaps, u64 offset, u64 bytes,
3258
		     u64 cont1_bytes, u64 min_bytes)
3259
{
3260
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3261
	struct btrfs_free_space *entry = NULL;
3262
	int ret = -ENOSPC;
3263
	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3264

3265
	if (ctl->total_bitmaps == 0)
3266 3267
		return -ENOSPC;

3268 3269 3270 3271
	/*
	 * The bitmap that covers offset won't be in the list unless offset
	 * is just its start offset.
	 */
3272 3273 3274 3275
	if (!list_empty(bitmaps))
		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);

	if (!entry || entry->offset != bitmap_offset) {
3276 3277 3278 3279 3280
		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
		if (entry && list_empty(&entry->list))
			list_add(&entry->list, bitmaps);
	}

3281
	list_for_each_entry(entry, bitmaps, list) {
3282
		if (entry->bytes < bytes)
3283 3284
			continue;
		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3285
					   bytes, cont1_bytes, min_bytes);
3286 3287 3288 3289 3290
		if (!ret)
			return 0;
	}

	/*
3291 3292
	 * The bitmaps list has all the bitmaps that record free space
	 * starting after offset, so no more search is required.
3293
	 */
3294
	return -ENOSPC;
3295 3296
}

3297 3298
/*
 * here we try to find a cluster of blocks in a block group.  The goal
3299
 * is to find at least bytes+empty_size.
3300 3301 3302 3303 3304
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
3305
int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3306 3307 3308
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
3309
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3310
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3311
	struct btrfs_free_space *entry, *tmp;
3312
	LIST_HEAD(bitmaps);
3313
	u64 min_bytes;
3314
	u64 cont1_bytes;
3315 3316
	int ret;

3317 3318 3319 3320 3321 3322
	/*
	 * Choose the minimum extent size we'll require for this
	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
	 * For metadata, allow allocates with smaller extents.  For
	 * data, keep it dense.
	 */
3323
	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3324
		cont1_bytes = min_bytes = bytes + empty_size;
3325
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3326
		cont1_bytes = bytes;
3327
		min_bytes = fs_info->sectorsize;
3328 3329
	} else {
		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3330
		min_bytes = fs_info->sectorsize;
3331
	}
3332

3333
	spin_lock(&ctl->tree_lock);
3334 3335 3336 3337 3338

	/*
	 * If we know we don't have enough space to make a cluster don't even
	 * bother doing all the work to try and find one.
	 */
3339
	if (ctl->free_space < bytes) {
3340
		spin_unlock(&ctl->tree_lock);
3341 3342 3343
		return -ENOSPC;
	}

3344 3345 3346 3347 3348 3349 3350 3351
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}

J
Josef Bacik 已提交
3352 3353 3354
	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
				 min_bytes);

3355
	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3356 3357
				      bytes + empty_size,
				      cont1_bytes, min_bytes);
3358
	if (ret)
3359
		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3360 3361
					   offset, bytes + empty_size,
					   cont1_bytes, min_bytes);
3362 3363 3364 3365

	/* Clear our temporary list */
	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
		list_del_init(&entry->list);
3366

3367 3368 3369 3370 3371
	if (!ret) {
		atomic_inc(&block_group->count);
		list_add_tail(&cluster->block_group_list,
			      &block_group->cluster_list);
		cluster->block_group = block_group;
J
Josef Bacik 已提交
3372 3373
	} else {
		trace_btrfs_failed_cluster_setup(block_group);
3374 3375 3376
	}
out:
	spin_unlock(&cluster->lock);
3377
	spin_unlock(&ctl->tree_lock);
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
3389
	cluster->root = RB_ROOT;
3390
	cluster->max_size = 0;
3391
	cluster->fragmented = false;
3392 3393 3394 3395
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}

3396
static int do_trimming(struct btrfs_block_group *block_group,
3397
		       u64 *total_trimmed, u64 start, u64 bytes,
3398
		       u64 reserved_start, u64 reserved_bytes,
3399
		       enum btrfs_trim_state reserved_trim_state,
3400
		       struct btrfs_trim_range *trim_entry)
3401
{
3402
	struct btrfs_space_info *space_info = block_group->space_info;
3403
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3404
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3405 3406
	int ret;
	int update = 0;
3407 3408 3409
	const u64 end = start + bytes;
	const u64 reserved_end = reserved_start + reserved_bytes;
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3410
	u64 trimmed = 0;
3411

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	spin_lock(&space_info->lock);
	spin_lock(&block_group->lock);
	if (!block_group->ro) {
		block_group->reserved += reserved_bytes;
		space_info->bytes_reserved += reserved_bytes;
		update = 1;
	}
	spin_unlock(&block_group->lock);
	spin_unlock(&space_info->lock);

3422
	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3423
	if (!ret) {
3424
		*total_trimmed += trimmed;
3425 3426
		trim_state = BTRFS_TRIM_STATE_TRIMMED;
	}
3427

3428
	mutex_lock(&ctl->cache_writeout_mutex);
3429 3430 3431 3432 3433 3434 3435 3436
	if (reserved_start < start)
		__btrfs_add_free_space(fs_info, ctl, reserved_start,
				       start - reserved_start,
				       reserved_trim_state);
	if (start + bytes < reserved_start + reserved_bytes)
		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
				       reserved_trim_state);
	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3437 3438
	list_del(&trim_entry->list);
	mutex_unlock(&ctl->cache_writeout_mutex);
3439 3440 3441 3442 3443 3444 3445 3446 3447

	if (update) {
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);
		if (block_group->ro)
			space_info->bytes_readonly += reserved_bytes;
		block_group->reserved -= reserved_bytes;
		space_info->bytes_reserved -= reserved_bytes;
		spin_unlock(&block_group->lock);
3448
		spin_unlock(&space_info->lock);
3449 3450 3451 3452 3453
	}

	return ret;
}

3454 3455 3456
/*
 * If @async is set, then we will trim 1 region and return.
 */
3457
static int trim_no_bitmap(struct btrfs_block_group *block_group,
3458 3459
			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
			  bool async)
3460
{
3461 3462
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
3463 3464 3465 3466 3467 3468
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret = 0;
	u64 extent_start;
	u64 extent_bytes;
3469
	enum btrfs_trim_state extent_trim_state;
3470
	u64 bytes;
3471
	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3472 3473

	while (start < end) {
3474 3475 3476
		struct btrfs_trim_range trim_entry;

		mutex_lock(&ctl->cache_writeout_mutex);
3477
		spin_lock(&ctl->tree_lock);
3478

3479 3480
		if (ctl->free_space < minlen)
			goto out_unlock;
3481

3482
		entry = tree_search_offset(ctl, start, 0, 1);
3483 3484
		if (!entry)
			goto out_unlock;
3485

3486 3487 3488
		/* Skip bitmaps and if async, already trimmed entries */
		while (entry->bitmap ||
		       (async && btrfs_free_space_trimmed(entry))) {
3489
			node = rb_next(&entry->offset_index);
3490 3491
			if (!node)
				goto out_unlock;
3492 3493
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
3494 3495
		}

3496 3497
		if (entry->offset >= end)
			goto out_unlock;
3498

3499 3500
		extent_start = entry->offset;
		extent_bytes = entry->bytes;
3501
		extent_trim_state = entry->trim_state;
3502 3503 3504 3505 3506 3507 3508 3509 3510
		if (async) {
			start = entry->offset;
			bytes = entry->bytes;
			if (bytes < minlen) {
				spin_unlock(&ctl->tree_lock);
				mutex_unlock(&ctl->cache_writeout_mutex);
				goto next;
			}
			unlink_free_space(ctl, entry);
D
Dennis Zhou 已提交
3511 3512 3513 3514 3515 3516 3517 3518
			/*
			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
			 * X when we come back around.  So trim it now.
			 */
			if (max_discard_size &&
			    bytes >= (max_discard_size +
				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3519 3520 3521 3522
				bytes = max_discard_size;
				extent_bytes = max_discard_size;
				entry->offset += max_discard_size;
				entry->bytes -= max_discard_size;
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
				link_free_space(ctl, entry);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, entry);
			}
		} else {
			start = max(start, extent_start);
			bytes = min(extent_start + extent_bytes, end) - start;
			if (bytes < minlen) {
				spin_unlock(&ctl->tree_lock);
				mutex_unlock(&ctl->cache_writeout_mutex);
				goto next;
			}
3535

3536 3537 3538
			unlink_free_space(ctl, entry);
			kmem_cache_free(btrfs_free_space_cachep, entry);
		}
3539

3540
		spin_unlock(&ctl->tree_lock);
3541 3542 3543 3544
		trim_entry.start = extent_start;
		trim_entry.bytes = extent_bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3545

3546
		ret = do_trimming(block_group, total_trimmed, start, bytes,
3547 3548
				  extent_start, extent_bytes, extent_trim_state,
				  &trim_entry);
3549 3550
		if (ret) {
			block_group->discard_cursor = start + bytes;
3551
			break;
3552
		}
3553 3554
next:
		start += bytes;
3555 3556 3557
		block_group->discard_cursor = start;
		if (async && *total_trimmed)
			break;
3558

3559 3560 3561 3562 3563 3564 3565
		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}
3566 3567 3568 3569 3570 3571 3572 3573

	return ret;

out_unlock:
	block_group->discard_cursor = btrfs_block_group_end(block_group);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

3574 3575 3576
	return ret;
}

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
/*
 * If we break out of trimming a bitmap prematurely, we should reset the
 * trimming bit.  In a rather contrieved case, it's possible to race here so
 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
 *
 * start = start of bitmap
 * end = near end of bitmap
 *
 * Thread 1:			Thread 2:
 * trim_bitmaps(start)
 *				trim_bitmaps(end)
 *				end_trimming_bitmap()
 * reset_trimming_bitmap()
 */
static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
{
	struct btrfs_free_space *entry;

	spin_lock(&ctl->tree_lock);
	entry = tree_search_offset(ctl, offset, 1, 0);
3597
	if (entry) {
3598
		if (btrfs_free_space_trimmed(entry)) {
3599 3600
			ctl->discardable_extents[BTRFS_STAT_CURR] +=
				entry->bitmap_extents;
3601 3602
			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
		}
3603
		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3604 3605
	}

3606 3607 3608
	spin_unlock(&ctl->tree_lock);
}

3609 3610
static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
				struct btrfs_free_space *entry)
3611
{
3612
	if (btrfs_free_space_trimming_bitmap(entry)) {
3613
		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3614 3615
		ctl->discardable_extents[BTRFS_STAT_CURR] -=
			entry->bitmap_extents;
3616
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3617
	}
3618 3619
}

3620 3621 3622
/*
 * If @async is set, then we will trim 1 region and return.
 */
3623
static int trim_bitmaps(struct btrfs_block_group *block_group,
3624
			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
D
Dennis Zhou 已提交
3625
			u64 maxlen, bool async)
3626
{
3627 3628
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
3629 3630 3631 3632 3633 3634
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	int ret = 0;
	int ret2;
	u64 bytes;
	u64 offset = offset_to_bitmap(ctl, start);
3635
	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3636 3637 3638

	while (offset < end) {
		bool next_bitmap = false;
3639
		struct btrfs_trim_range trim_entry;
3640

3641
		mutex_lock(&ctl->cache_writeout_mutex);
3642 3643 3644
		spin_lock(&ctl->tree_lock);

		if (ctl->free_space < minlen) {
3645 3646
			block_group->discard_cursor =
				btrfs_block_group_end(block_group);
3647
			spin_unlock(&ctl->tree_lock);
3648
			mutex_unlock(&ctl->cache_writeout_mutex);
3649 3650 3651 3652
			break;
		}

		entry = tree_search_offset(ctl, offset, 1, 0);
D
Dennis Zhou 已提交
3653 3654 3655 3656 3657 3658 3659 3660 3661
		/*
		 * Bitmaps are marked trimmed lossily now to prevent constant
		 * discarding of the same bitmap (the reason why we are bound
		 * by the filters).  So, retrim the block group bitmaps when we
		 * are preparing to punt to the unused_bgs list.  This uses
		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
		 * which is the only discard index which sets minlen to 0.
		 */
		if (!entry || (async && minlen && start == offset &&
3662
			       btrfs_free_space_trimmed(entry))) {
3663
			spin_unlock(&ctl->tree_lock);
3664
			mutex_unlock(&ctl->cache_writeout_mutex);
3665 3666 3667 3668
			next_bitmap = true;
			goto next;
		}

3669 3670 3671 3672 3673 3674 3675 3676 3677
		/*
		 * Async discard bitmap trimming begins at by setting the start
		 * to be key.objectid and the offset_to_bitmap() aligns to the
		 * start of the bitmap.  This lets us know we are fully
		 * scanning the bitmap rather than only some portion of it.
		 */
		if (start == offset)
			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;

3678
		bytes = minlen;
3679
		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3680
		if (ret2 || start >= end) {
3681
			/*
D
Dennis Zhou 已提交
3682 3683
			 * We lossily consider a bitmap trimmed if we only skip
			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3684
			 */
D
Dennis Zhou 已提交
3685
			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3686
				end_trimming_bitmap(ctl, entry);
3687 3688
			else
				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3689
			spin_unlock(&ctl->tree_lock);
3690
			mutex_unlock(&ctl->cache_writeout_mutex);
3691 3692 3693 3694
			next_bitmap = true;
			goto next;
		}

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		/*
		 * We already trimmed a region, but are using the locking above
		 * to reset the trim_state.
		 */
		if (async && *total_trimmed) {
			spin_unlock(&ctl->tree_lock);
			mutex_unlock(&ctl->cache_writeout_mutex);
			goto out;
		}

3705
		bytes = min(bytes, end - start);
D
Dennis Zhou 已提交
3706
		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3707
			spin_unlock(&ctl->tree_lock);
3708
			mutex_unlock(&ctl->cache_writeout_mutex);
3709 3710 3711
			goto next;
		}

D
Dennis Zhou 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720
		/*
		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
		 * If X < @minlen, we won't trim X when we come back around.
		 * So trim it now.  We differ here from trimming extents as we
		 * don't keep individual state per bit.
		 */
		if (async &&
		    max_discard_size &&
		    bytes > (max_discard_size + minlen))
3721
			bytes = max_discard_size;
3722

3723 3724 3725 3726 3727
		bitmap_clear_bits(ctl, entry, start, bytes);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);

		spin_unlock(&ctl->tree_lock);
3728 3729 3730 3731
		trim_entry.start = start;
		trim_entry.bytes = bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3732 3733

		ret = do_trimming(block_group, total_trimmed, start, bytes,
3734
				  start, bytes, 0, &trim_entry);
3735 3736
		if (ret) {
			reset_trimming_bitmap(ctl, offset);
3737 3738
			block_group->discard_cursor =
				btrfs_block_group_end(block_group);
3739
			break;
3740
		}
3741 3742 3743
next:
		if (next_bitmap) {
			offset += BITS_PER_BITMAP * ctl->unit;
3744
			start = offset;
3745 3746
		} else {
			start += bytes;
3747
		}
3748
		block_group->discard_cursor = start;
3749 3750

		if (fatal_signal_pending(current)) {
3751 3752
			if (start != offset)
				reset_trimming_bitmap(ctl, offset);
3753 3754 3755 3756 3757 3758 3759
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}

3760 3761 3762 3763
	if (offset >= end)
		block_group->discard_cursor = end;

out:
3764 3765
	return ret;
}
3766

3767
void btrfs_get_block_group_trimming(struct btrfs_block_group *cache)
3768
{
3769 3770
	atomic_inc(&cache->trimming);
}
3771

3772
void btrfs_put_block_group_trimming(struct btrfs_block_group *block_group)
3773
{
3774
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3775 3776 3777
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	bool cleanup;
3778

3779
	spin_lock(&block_group->lock);
3780 3781
	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
		   block_group->removed);
3782 3783
	spin_unlock(&block_group->lock);

3784
	if (cleanup) {
3785
		mutex_lock(&fs_info->chunk_mutex);
3786
		em_tree = &fs_info->mapping_tree;
3787
		write_lock(&em_tree->lock);
3788
		em = lookup_extent_mapping(em_tree, block_group->start,
3789 3790 3791 3792
					   1);
		BUG_ON(!em); /* logic error, can't happen */
		remove_extent_mapping(em_tree, em);
		write_unlock(&em_tree->lock);
3793
		mutex_unlock(&fs_info->chunk_mutex);
3794 3795 3796 3797

		/* once for us and once for the tree */
		free_extent_map(em);
		free_extent_map(em);
3798 3799 3800 3801 3802 3803

		/*
		 * We've left one free space entry and other tasks trimming
		 * this block group have left 1 entry each one. Free them.
		 */
		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3804 3805 3806
	}
}

3807
int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3808 3809
			   u64 *trimmed, u64 start, u64 end, u64 minlen)
{
3810
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3811
	int ret;
3812
	u64 rem = 0;
3813 3814 3815 3816 3817

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
3818
		spin_unlock(&block_group->lock);
3819
		return 0;
3820
	}
3821 3822 3823
	btrfs_get_block_group_trimming(block_group);
	spin_unlock(&block_group->lock);

3824
	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3825 3826
	if (ret)
		goto out;
3827

D
Dennis Zhou 已提交
3828
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3829 3830 3831 3832
	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
	/* If we ended in the middle of a bitmap, reset the trimming flag */
	if (rem)
		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3833 3834
out:
	btrfs_put_block_group_trimming(block_group);
3835 3836 3837
	return ret;
}

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
				   u64 *trimmed, u64 start, u64 end, u64 minlen,
				   bool async)
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
		spin_unlock(&block_group->lock);
		return 0;
	}
	btrfs_get_block_group_trimming(block_group);
	spin_unlock(&block_group->lock);

	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
	btrfs_put_block_group_trimming(block_group);

	return ret;
}

int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
				   u64 *trimmed, u64 start, u64 end, u64 minlen,
D
Dennis Zhou 已提交
3862
				   u64 maxlen, bool async)
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
		spin_unlock(&block_group->lock);
		return 0;
	}
	btrfs_get_block_group_trimming(block_group);
	spin_unlock(&block_group->lock);

D
Dennis Zhou 已提交
3876 3877 3878
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
			   async);

3879 3880 3881 3882 3883
	btrfs_put_block_group_trimming(block_group);

	return ret;
}

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
/*
 * Find the left-most item in the cache tree, and then return the
 * smallest inode number in the item.
 *
 * Note: the returned inode number may not be the smallest one in
 * the tree, if the left-most item is a bitmap.
 */
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
{
	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
	struct btrfs_free_space *entry = NULL;
	u64 ino = 0;

	spin_lock(&ctl->tree_lock);

	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
		goto out;

	entry = rb_entry(rb_first(&ctl->free_space_offset),
			 struct btrfs_free_space, offset_index);

	if (!entry->bitmap) {
		ino = entry->offset;

		unlink_free_space(ctl, entry);
		entry->offset++;
		entry->bytes--;
		if (!entry->bytes)
			kmem_cache_free(btrfs_free_space_cachep, entry);
		else
			link_free_space(ctl, entry);
	} else {
		u64 offset = 0;
		u64 count = 1;
		int ret;

3920
		ret = search_bitmap(ctl, entry, &offset, &count, true);
3921
		/* Logic error; Should be empty if it can't find anything */
3922
		ASSERT(!ret);
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933

		ino = offset;
		bitmap_clear_bits(ctl, entry, offset, 1);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);
	}
out:
	spin_unlock(&ctl->tree_lock);

	return ino;
}
3934 3935 3936 3937 3938 3939

struct inode *lookup_free_ino_inode(struct btrfs_root *root,
				    struct btrfs_path *path)
{
	struct inode *inode = NULL;

3940 3941 3942 3943
	spin_lock(&root->ino_cache_lock);
	if (root->ino_cache_inode)
		inode = igrab(root->ino_cache_inode);
	spin_unlock(&root->ino_cache_lock);
3944 3945 3946 3947 3948 3949 3950
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path, 0);
	if (IS_ERR(inode))
		return inode;

3951
	spin_lock(&root->ino_cache_lock);
3952
	if (!btrfs_fs_closing(root->fs_info))
3953 3954
		root->ino_cache_inode = igrab(inode);
	spin_unlock(&root->ino_cache_lock);
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974

	return inode;
}

int create_free_ino_inode(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_path *path)
{
	return __create_free_space_inode(root, trans, path,
					 BTRFS_FREE_INO_OBJECTID, 0);
}

int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	struct btrfs_path *path;
	struct inode *inode;
	int ret = 0;
	u64 root_gen = btrfs_root_generation(&root->root_item);

3975
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3976 3977
		return 0;

3978 3979 3980 3981
	/*
	 * If we're unmounting then just return, since this does a search on the
	 * normal root and not the commit root and we could deadlock.
	 */
3982
	if (btrfs_fs_closing(fs_info))
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return 0;

	inode = lookup_free_ino_inode(root, path);
	if (IS_ERR(inode))
		goto out;

	if (root_gen != BTRFS_I(inode)->generation)
		goto out_put;

	ret = __load_free_space_cache(root, inode, ctl, path, 0);

	if (ret < 0)
3999 4000 4001
		btrfs_err(fs_info,
			"failed to load free ino cache for root %llu",
			root->root_key.objectid);
4002 4003 4004 4005 4006 4007 4008 4009 4010
out_put:
	iput(inode);
out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_write_out_ino_cache(struct btrfs_root *root,
			      struct btrfs_trans_handle *trans,
4011 4012
			      struct btrfs_path *path,
			      struct inode *inode)
4013
{
4014
	struct btrfs_fs_info *fs_info = root->fs_info;
4015 4016
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	int ret;
4017
	struct btrfs_io_ctl io_ctl;
4018
	bool release_metadata = true;
4019

4020
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
4021 4022
		return 0;

C
Chris Mason 已提交
4023
	memset(&io_ctl, 0, sizeof(io_ctl));
4024
	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
4025 4026 4027 4028 4029 4030 4031 4032
	if (!ret) {
		/*
		 * At this point writepages() didn't error out, so our metadata
		 * reservation is released when the writeback finishes, at
		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
		 * with or without an error.
		 */
		release_metadata = false;
4033
		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
4034
	}
C
Chris Mason 已提交
4035

4036
	if (ret) {
4037
		if (release_metadata)
4038
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
4039
					inode->i_size, true);
4040
#ifdef DEBUG
4041 4042 4043
		btrfs_err(fs_info,
			  "failed to write free ino cache for root %llu",
			  root->root_key.objectid);
4044 4045
#endif
	}
4046 4047 4048

	return ret;
}
4049 4050

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4051 4052 4053 4054 4055 4056
/*
 * Use this if you need to make a bitmap or extent entry specifically, it
 * doesn't do any of the merging that add_free_space does, this acts a lot like
 * how the free space cache loading stuff works, so you can get really weird
 * configurations.
 */
4057
int test_add_free_space_entry(struct btrfs_block_group *cache,
4058
			      u64 offset, u64 bytes, bool bitmap)
4059
{
4060 4061 4062
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info = NULL, *bitmap_info;
	void *map = NULL;
4063
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4064 4065
	u64 bytes_added;
	int ret;
4066

4067 4068 4069 4070 4071
again:
	if (!info) {
		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
		if (!info)
			return -ENOMEM;
4072 4073
	}

4074 4075 4076 4077
	if (!bitmap) {
		spin_lock(&ctl->tree_lock);
		info->offset = offset;
		info->bytes = bytes;
4078
		info->max_extent_size = 0;
4079 4080 4081 4082 4083 4084 4085 4086
		ret = link_free_space(ctl, info);
		spin_unlock(&ctl->tree_lock);
		if (ret)
			kmem_cache_free(btrfs_free_space_cachep, info);
		return ret;
	}

	if (!map) {
4087
		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
		if (!map) {
			kmem_cache_free(btrfs_free_space_cachep, info);
			return -ENOMEM;
		}
	}

	spin_lock(&ctl->tree_lock);
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					 1, 0);
	if (!bitmap_info) {
		info->bitmap = map;
		map = NULL;
		add_new_bitmap(ctl, info, offset);
		bitmap_info = info;
4102
		info = NULL;
4103
	}
4104

4105 4106
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
					  trim_state);
4107

4108 4109 4110
	bytes -= bytes_added;
	offset += bytes_added;
	spin_unlock(&ctl->tree_lock);
4111

4112 4113
	if (bytes)
		goto again;
4114

4115 4116
	if (info)
		kmem_cache_free(btrfs_free_space_cachep, info);
4117 4118
	if (map)
		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4119
	return 0;
4120 4121 4122 4123 4124 4125 4126
}

/*
 * Checks to see if the given range is in the free space cache.  This is really
 * just used to check the absence of space, so if there is free space in the
 * range at all we will return 1.
 */
4127
int test_check_exists(struct btrfs_block_group *cache,
4128
		      u64 offset, u64 bytes)
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
{
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&ctl->tree_lock);
	info = tree_search_offset(ctl, offset, 0, 0);
	if (!info) {
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					  1, 0);
		if (!info)
			goto out;
	}

have_info:
	if (info->bitmap) {
		u64 bit_off, bit_bytes;
		struct rb_node *n;
		struct btrfs_free_space *tmp;

		bit_off = offset;
		bit_bytes = ctl->unit;
4151
		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
		if (!ret) {
			if (bit_off == offset) {
				ret = 1;
				goto out;
			} else if (bit_off > offset &&
				   offset + bytes > bit_off) {
				ret = 1;
				goto out;
			}
		}

		n = rb_prev(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (tmp->offset + tmp->bytes < offset)
				break;
			if (offset + bytes < tmp->offset) {
4170
				n = rb_prev(&tmp->offset_index);
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
				continue;
			}
			info = tmp;
			goto have_info;
		}

		n = rb_next(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (offset + bytes < tmp->offset)
				break;
			if (tmp->offset + tmp->bytes < offset) {
4184
				n = rb_next(&tmp->offset_index);
4185 4186 4187 4188 4189 4190
				continue;
			}
			info = tmp;
			goto have_info;
		}

4191
		ret = 0;
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
		goto out;
	}

	if (info->offset == offset) {
		ret = 1;
		goto out;
	}

	if (offset > info->offset && offset < info->offset + info->bytes)
		ret = 1;
out:
	spin_unlock(&ctl->tree_lock);
	return ret;
}
4206
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */