spi-atmel.c 46.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Driver for Atmel AT32 and AT91 SPI Controllers
 *
 * Copyright (C) 2006 Atmel Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
17
#include <linux/dmaengine.h>
18 19 20
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
21
#include <linux/slab.h>
22
#include <linux/platform_data/dma-atmel.h>
23
#include <linux/of.h>
24

25 26
#include <linux/io.h>
#include <linux/gpio.h>
27
#include <linux/of_gpio.h>
W
Wenyou Yang 已提交
28
#include <linux/pinctrl/consumer.h>
29
#include <linux/pm_runtime.h>
30

G
Grant Likely 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
/* SPI register offsets */
#define SPI_CR					0x0000
#define SPI_MR					0x0004
#define SPI_RDR					0x0008
#define SPI_TDR					0x000c
#define SPI_SR					0x0010
#define SPI_IER					0x0014
#define SPI_IDR					0x0018
#define SPI_IMR					0x001c
#define SPI_CSR0				0x0030
#define SPI_CSR1				0x0034
#define SPI_CSR2				0x0038
#define SPI_CSR3				0x003c
44 45
#define SPI_FMR					0x0040
#define SPI_FLR					0x0044
46
#define SPI_VERSION				0x00fc
G
Grant Likely 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#define SPI_RPR					0x0100
#define SPI_RCR					0x0104
#define SPI_TPR					0x0108
#define SPI_TCR					0x010c
#define SPI_RNPR				0x0110
#define SPI_RNCR				0x0114
#define SPI_TNPR				0x0118
#define SPI_TNCR				0x011c
#define SPI_PTCR				0x0120
#define SPI_PTSR				0x0124

/* Bitfields in CR */
#define SPI_SPIEN_OFFSET			0
#define SPI_SPIEN_SIZE				1
#define SPI_SPIDIS_OFFSET			1
#define SPI_SPIDIS_SIZE				1
#define SPI_SWRST_OFFSET			7
#define SPI_SWRST_SIZE				1
#define SPI_LASTXFER_OFFSET			24
#define SPI_LASTXFER_SIZE			1
67 68 69 70 71 72 73 74
#define SPI_TXFCLR_OFFSET			16
#define SPI_TXFCLR_SIZE				1
#define SPI_RXFCLR_OFFSET			17
#define SPI_RXFCLR_SIZE				1
#define SPI_FIFOEN_OFFSET			30
#define SPI_FIFOEN_SIZE				1
#define SPI_FIFODIS_OFFSET			31
#define SPI_FIFODIS_SIZE			1
G
Grant Likely 已提交
75 76 77 78 79 80 81 82 83 84 85 86

/* Bitfields in MR */
#define SPI_MSTR_OFFSET				0
#define SPI_MSTR_SIZE				1
#define SPI_PS_OFFSET				1
#define SPI_PS_SIZE				1
#define SPI_PCSDEC_OFFSET			2
#define SPI_PCSDEC_SIZE				1
#define SPI_FDIV_OFFSET				3
#define SPI_FDIV_SIZE				1
#define SPI_MODFDIS_OFFSET			4
#define SPI_MODFDIS_SIZE			1
87 88
#define SPI_WDRBT_OFFSET			5
#define SPI_WDRBT_SIZE				1
G
Grant Likely 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
#define SPI_LLB_OFFSET				7
#define SPI_LLB_SIZE				1
#define SPI_PCS_OFFSET				16
#define SPI_PCS_SIZE				4
#define SPI_DLYBCS_OFFSET			24
#define SPI_DLYBCS_SIZE				8

/* Bitfields in RDR */
#define SPI_RD_OFFSET				0
#define SPI_RD_SIZE				16

/* Bitfields in TDR */
#define SPI_TD_OFFSET				0
#define SPI_TD_SIZE				16

/* Bitfields in SR */
#define SPI_RDRF_OFFSET				0
#define SPI_RDRF_SIZE				1
#define SPI_TDRE_OFFSET				1
#define SPI_TDRE_SIZE				1
#define SPI_MODF_OFFSET				2
#define SPI_MODF_SIZE				1
#define SPI_OVRES_OFFSET			3
#define SPI_OVRES_SIZE				1
#define SPI_ENDRX_OFFSET			4
#define SPI_ENDRX_SIZE				1
#define SPI_ENDTX_OFFSET			5
#define SPI_ENDTX_SIZE				1
#define SPI_RXBUFF_OFFSET			6
#define SPI_RXBUFF_SIZE				1
#define SPI_TXBUFE_OFFSET			7
#define SPI_TXBUFE_SIZE				1
#define SPI_NSSR_OFFSET				8
#define SPI_NSSR_SIZE				1
#define SPI_TXEMPTY_OFFSET			9
#define SPI_TXEMPTY_SIZE			1
#define SPI_SPIENS_OFFSET			16
#define SPI_SPIENS_SIZE				1
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
#define SPI_TXFEF_OFFSET			24
#define SPI_TXFEF_SIZE				1
#define SPI_TXFFF_OFFSET			25
#define SPI_TXFFF_SIZE				1
#define SPI_TXFTHF_OFFSET			26
#define SPI_TXFTHF_SIZE				1
#define SPI_RXFEF_OFFSET			27
#define SPI_RXFEF_SIZE				1
#define SPI_RXFFF_OFFSET			28
#define SPI_RXFFF_SIZE				1
#define SPI_RXFTHF_OFFSET			29
#define SPI_RXFTHF_SIZE				1
#define SPI_TXFPTEF_OFFSET			30
#define SPI_TXFPTEF_SIZE			1
#define SPI_RXFPTEF_OFFSET			31
#define SPI_RXFPTEF_SIZE			1
G
Grant Likely 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

/* Bitfields in CSR0 */
#define SPI_CPOL_OFFSET				0
#define SPI_CPOL_SIZE				1
#define SPI_NCPHA_OFFSET			1
#define SPI_NCPHA_SIZE				1
#define SPI_CSAAT_OFFSET			3
#define SPI_CSAAT_SIZE				1
#define SPI_BITS_OFFSET				4
#define SPI_BITS_SIZE				4
#define SPI_SCBR_OFFSET				8
#define SPI_SCBR_SIZE				8
#define SPI_DLYBS_OFFSET			16
#define SPI_DLYBS_SIZE				8
#define SPI_DLYBCT_OFFSET			24
#define SPI_DLYBCT_SIZE				8

/* Bitfields in RCR */
#define SPI_RXCTR_OFFSET			0
#define SPI_RXCTR_SIZE				16

/* Bitfields in TCR */
#define SPI_TXCTR_OFFSET			0
#define SPI_TXCTR_SIZE				16

/* Bitfields in RNCR */
#define SPI_RXNCR_OFFSET			0
#define SPI_RXNCR_SIZE				16

/* Bitfields in TNCR */
#define SPI_TXNCR_OFFSET			0
#define SPI_TXNCR_SIZE				16

/* Bitfields in PTCR */
#define SPI_RXTEN_OFFSET			0
#define SPI_RXTEN_SIZE				1
#define SPI_RXTDIS_OFFSET			1
#define SPI_RXTDIS_SIZE				1
#define SPI_TXTEN_OFFSET			8
#define SPI_TXTEN_SIZE				1
#define SPI_TXTDIS_OFFSET			9
#define SPI_TXTDIS_SIZE				1

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/* Bitfields in FMR */
#define SPI_TXRDYM_OFFSET			0
#define SPI_TXRDYM_SIZE				2
#define SPI_RXRDYM_OFFSET			4
#define SPI_RXRDYM_SIZE				2
#define SPI_TXFTHRES_OFFSET			16
#define SPI_TXFTHRES_SIZE			6
#define SPI_RXFTHRES_OFFSET			24
#define SPI_RXFTHRES_SIZE			6

/* Bitfields in FLR */
#define SPI_TXFL_OFFSET				0
#define SPI_TXFL_SIZE				6
#define SPI_RXFL_OFFSET				16
#define SPI_RXFL_SIZE				6

G
Grant Likely 已提交
202 203 204 205 206 207 208 209 210 211
/* Constants for BITS */
#define SPI_BITS_8_BPT				0
#define SPI_BITS_9_BPT				1
#define SPI_BITS_10_BPT				2
#define SPI_BITS_11_BPT				3
#define SPI_BITS_12_BPT				4
#define SPI_BITS_13_BPT				5
#define SPI_BITS_14_BPT				6
#define SPI_BITS_15_BPT				7
#define SPI_BITS_16_BPT				8
212 213 214
#define SPI_ONE_DATA				0
#define SPI_TWO_DATA				1
#define SPI_FOUR_DATA				2
G
Grant Likely 已提交
215 216 217 218

/* Bit manipulation macros */
#define SPI_BIT(name) \
	(1 << SPI_##name##_OFFSET)
219
#define SPI_BF(name, value) \
G
Grant Likely 已提交
220
	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
221
#define SPI_BFEXT(name, value) \
G
Grant Likely 已提交
222
	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
223 224 225
#define SPI_BFINS(name, value, old) \
	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
	  | SPI_BF(name, value))
G
Grant Likely 已提交
226 227

/* Register access macros */
B
Ben Dooks 已提交
228
#ifdef CONFIG_AVR32
229
#define spi_readl(port, reg) \
G
Grant Likely 已提交
230
	__raw_readl((port)->regs + SPI_##reg)
231
#define spi_writel(port, reg, value) \
G
Grant Likely 已提交
232
	__raw_writel((value), (port)->regs + SPI_##reg)
233 234 235 236 237 238 239 240 241 242

#define spi_readw(port, reg) \
	__raw_readw((port)->regs + SPI_##reg)
#define spi_writew(port, reg, value) \
	__raw_writew((value), (port)->regs + SPI_##reg)

#define spi_readb(port, reg) \
	__raw_readb((port)->regs + SPI_##reg)
#define spi_writeb(port, reg, value) \
	__raw_writeb((value), (port)->regs + SPI_##reg)
B
Ben Dooks 已提交
243 244 245 246 247
#else
#define spi_readl(port, reg) \
	readl_relaxed((port)->regs + SPI_##reg)
#define spi_writel(port, reg, value) \
	writel_relaxed((value), (port)->regs + SPI_##reg)
248 249 250 251 252 253 254 255 256 257

#define spi_readw(port, reg) \
	readw_relaxed((port)->regs + SPI_##reg)
#define spi_writew(port, reg, value) \
	writew_relaxed((value), (port)->regs + SPI_##reg)

#define spi_readb(port, reg) \
	readb_relaxed((port)->regs + SPI_##reg)
#define spi_writeb(port, reg, value) \
	writeb_relaxed((value), (port)->regs + SPI_##reg)
B
Ben Dooks 已提交
258
#endif
259 260 261 262 263
/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 * cache operations; better heuristics consider wordsize and bitrate.
 */
#define DMA_MIN_BYTES	16

264 265
#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))

266 267
#define AUTOSUSPEND_TIMEOUT	2000

268 269 270 271
struct atmel_spi_caps {
	bool	is_spi2;
	bool	has_wdrbt;
	bool	has_dma_support;
272
	bool	has_pdc_support;
273
};
274 275 276 277 278 279 280 281

/*
 * The core SPI transfer engine just talks to a register bank to set up
 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 * framework provides the base clock, subdivided for each spi_device.
 */
struct atmel_spi {
	spinlock_t		lock;
282
	unsigned long		flags;
283

284
	phys_addr_t		phybase;
285 286 287 288
	void __iomem		*regs;
	int			irq;
	struct clk		*clk;
	struct platform_device	*pdev;
289
	unsigned long		spi_clk;
290 291

	struct spi_transfer	*current_transfer;
292
	int			current_remaining_bytes;
293
	int			done_status;
294 295 296 297
	dma_addr_t		dma_addr_rx_bbuf;
	dma_addr_t		dma_addr_tx_bbuf;
	void			*addr_rx_bbuf;
	void			*addr_tx_bbuf;
298

299 300
	struct completion	xfer_completion;

301
	struct atmel_spi_caps	caps;
302 303 304

	bool			use_dma;
	bool			use_pdc;
305
	bool			use_cs_gpios;
306 307 308

	bool			keep_cs;
	bool			cs_active;
309 310

	u32			fifo_size;
311 312
};

313 314 315 316 317 318
/* Controller-specific per-slave state */
struct atmel_spi_device {
	unsigned int		npcs_pin;
	u32			csr;
};

319
#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
320 321
#define INVALID_DMA_ADDRESS	0xffffffff

322 323 324 325 326 327 328 329
/*
 * Version 2 of the SPI controller has
 *  - CR.LASTXFER
 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 *  - SPI_CSRx.CSAAT
 *  - SPI_CSRx.SBCR allows faster clocking
 */
330
static bool atmel_spi_is_v2(struct atmel_spi *as)
331
{
332
	return as->caps.is_spi2;
333 334
}

335 336 337
/*
 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 * they assume that spi slave device state will not change on deselect, so
338 339 340
 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 * controllers have CSAAT and friends.
341
 *
342 343 344 345 346 347 348 349 350 351 352
 * Since the CSAAT functionality is a bit weird on newer controllers as
 * well, we use GPIO to control nCSx pins on all controllers, updating
 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 * support active-high chipselects despite the controller's belief that
 * only active-low devices/systems exists.
 *
 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 * Master on Chip Select 0.")  No workaround exists for that ... so for
 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 * and (c) will trigger that first erratum in some cases.
353 354
 */

355
static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
356
{
357
	struct atmel_spi_device *asd = spi->controller_state;
358
	unsigned active = spi->mode & SPI_CS_HIGH;
359 360
	u32 mr;

361
	if (atmel_spi_is_v2(as)) {
362 363 364
		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
		/* For the low SPI version, there is a issue that PDC transfer
		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
365 366
		 */
		spi_writel(as, CSR0, asd->csr);
367
		if (as->caps.has_wdrbt) {
368 369 370 371 372
			spi_writel(as, MR,
					SPI_BF(PCS, ~(0x01 << spi->chip_select))
					| SPI_BIT(WDRBT)
					| SPI_BIT(MODFDIS)
					| SPI_BIT(MSTR));
373
		} else {
374 375 376 377
			spi_writel(as, MR,
					SPI_BF(PCS, ~(0x01 << spi->chip_select))
					| SPI_BIT(MODFDIS)
					| SPI_BIT(MSTR));
378
		}
379

380
		mr = spi_readl(as, MR);
381 382
		if (as->use_cs_gpios)
			gpio_set_value(asd->npcs_pin, active);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	} else {
		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
		int i;
		u32 csr;

		/* Make sure clock polarity is correct */
		for (i = 0; i < spi->master->num_chipselect; i++) {
			csr = spi_readl(as, CSR0 + 4 * i);
			if ((csr ^ cpol) & SPI_BIT(CPOL))
				spi_writel(as, CSR0 + 4 * i,
						csr ^ SPI_BIT(CPOL));
		}

		mr = spi_readl(as, MR);
		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
398
		if (as->use_cs_gpios && spi->chip_select != 0)
399 400 401
			gpio_set_value(asd->npcs_pin, active);
		spi_writel(as, MR, mr);
	}
402 403

	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
404
			asd->npcs_pin, active ? " (high)" : "",
405
			mr);
406 407
}

408
static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
409
{
410
	struct atmel_spi_device *asd = spi->controller_state;
411
	unsigned active = spi->mode & SPI_CS_HIGH;
412 413 414 415 416 417 418 419 420 421
	u32 mr;

	/* only deactivate *this* device; sometimes transfers to
	 * another device may be active when this routine is called.
	 */
	mr = spi_readl(as, MR);
	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
		mr = SPI_BFINS(PCS, 0xf, mr);
		spi_writel(as, MR, mr);
	}
422

423
	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
424
			asd->npcs_pin, active ? " (low)" : "",
425 426
			mr);

427 428 429
	if (!as->use_cs_gpios)
		spi_writel(as, CR, SPI_BIT(LASTXFER));
	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
430
		gpio_set_value(asd->npcs_pin, !active);
431 432
}

433
static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
434 435 436 437
{
	spin_lock_irqsave(&as->lock, as->flags);
}

438
static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
439 440 441 442
{
	spin_unlock_irqrestore(&as->lock, as->flags);
}

443 444 445 446 447
static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
{
	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
}

448 449 450 451 452 453
static inline bool atmel_spi_use_dma(struct atmel_spi *as,
				struct spi_transfer *xfer)
{
	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
}

454 455 456 457 458 459
static bool atmel_spi_can_dma(struct spi_master *master,
			      struct spi_device *spi,
			      struct spi_transfer *xfer)
{
	struct atmel_spi *as = spi_master_get_devdata(master);

460 461 462 463 464 465
	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
		return atmel_spi_use_dma(as, xfer) &&
			!atmel_spi_is_vmalloc_xfer(xfer);
	else
		return atmel_spi_use_dma(as, xfer);

466 467
}

468 469 470 471
static int atmel_spi_dma_slave_config(struct atmel_spi *as,
				struct dma_slave_config *slave_config,
				u8 bits_per_word)
{
472
	struct spi_master *master = platform_get_drvdata(as->pdev);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	int err = 0;

	if (bits_per_word > 8) {
		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
	} else {
		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
	}

	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
	slave_config->src_maxburst = 1;
	slave_config->dst_maxburst = 1;
	slave_config->device_fc = false;

489 490 491 492 493 494 495 496 497 498 499 500 501 502
	/*
	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
	 * the Mode Register).
	 * So according to the datasheet, when FIFOs are available (and
	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
	 * In this mode, up to 2 data, not 4, can be written into the Transmit
	 * Data Register in a single access.
	 * However, the first data has to be written into the lowest 16 bits and
	 * the second data into the highest 16 bits of the Transmit
	 * Data Register. For 8bit data (the most frequent case), it would
	 * require to rework tx_buf so each data would actualy fit 16 bits.
	 * So we'd rather write only one data at the time. Hence the transmit
	 * path works the same whether FIFOs are available (and enabled) or not.
	 */
503
	slave_config->direction = DMA_MEM_TO_DEV;
504
	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
505 506 507 508 509
		dev_err(&as->pdev->dev,
			"failed to configure tx dma channel\n");
		err = -EINVAL;
	}

510 511 512 513 514 515 516 517
	/*
	 * This driver configures the spi controller for master mode (MSTR bit
	 * set to '1' in the Mode Register).
	 * So according to the datasheet, when FIFOs are available (and
	 * enabled), the Receive FIFO operates in Single Data Mode.
	 * So the receive path works the same whether FIFOs are available (and
	 * enabled) or not.
	 */
518
	slave_config->direction = DMA_DEV_TO_MEM;
519
	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
520 521 522 523 524 525 526 527
		dev_err(&as->pdev->dev,
			"failed to configure rx dma channel\n");
		err = -EINVAL;
	}

	return err;
}

528 529
static int atmel_spi_configure_dma(struct spi_master *master,
				   struct atmel_spi *as)
530 531
{
	struct dma_slave_config	slave_config;
532
	struct device *dev = &as->pdev->dev;
533 534
	int err;

535 536 537
	dma_cap_mask_t mask;
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
538

539 540 541
	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
	if (IS_ERR(master->dma_tx)) {
		err = PTR_ERR(master->dma_tx);
542 543
		if (err == -EPROBE_DEFER) {
			dev_warn(dev, "no DMA channel available at the moment\n");
544
			goto error_clear;
545
		}
546 547 548
		dev_err(dev,
			"DMA TX channel not available, SPI unable to use DMA\n");
		err = -EBUSY;
549
		goto error_clear;
550
	}
551

552 553 554 555
	/*
	 * No reason to check EPROBE_DEFER here since we have already requested
	 * tx channel. If it fails here, it's for another reason.
	 */
556
	master->dma_rx = dma_request_slave_channel(dev, "rx");
557

558
	if (!master->dma_rx) {
559 560
		dev_err(dev,
			"DMA RX channel not available, SPI unable to use DMA\n");
561 562 563 564 565 566 567 568 569 570
		err = -EBUSY;
		goto error;
	}

	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
	if (err)
		goto error;

	dev_info(&as->pdev->dev,
			"Using %s (tx) and %s (rx) for DMA transfers\n",
571 572 573
			dma_chan_name(master->dma_tx),
			dma_chan_name(master->dma_rx));

574 575
	return 0;
error:
576 577 578 579 580 581
	if (master->dma_rx)
		dma_release_channel(master->dma_rx);
	if (!IS_ERR(master->dma_tx))
		dma_release_channel(master->dma_tx);
error_clear:
	master->dma_tx = master->dma_rx = NULL;
582 583 584
	return err;
}

585
static void atmel_spi_stop_dma(struct spi_master *master)
586
{
587 588 589 590
	if (master->dma_rx)
		dmaengine_terminate_all(master->dma_rx);
	if (master->dma_tx)
		dmaengine_terminate_all(master->dma_tx);
591 592
}

593
static void atmel_spi_release_dma(struct spi_master *master)
594
{
595 596 597 598 599 600 601 602
	if (master->dma_rx) {
		dma_release_channel(master->dma_rx);
		master->dma_rx = NULL;
	}
	if (master->dma_tx) {
		dma_release_channel(master->dma_tx);
		master->dma_tx = NULL;
	}
603 604 605 606 607 608 609 610
}

/* This function is called by the DMA driver from tasklet context */
static void dma_callback(void *data)
{
	struct spi_master	*master = data;
	struct atmel_spi	*as = spi_master_get_devdata(master);

611 612 613 614 615
	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
		       as->current_transfer->len);
	}
616
	complete(&as->xfer_completion);
617 618 619
}

/*
620
 * Next transfer using PIO without FIFO.
621
 */
622 623
static void atmel_spi_next_xfer_single(struct spi_master *master,
				       struct spi_transfer *xfer)
624 625
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
626
	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
627 628 629 630 631 632 633 634 635 636

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");

	/* Make sure data is not remaining in RDR */
	spi_readl(as, RDR);
	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
		spi_readl(as, RDR);
		cpu_relax();
	}

637 638 639 640
	if (xfer->bits_per_word > 8)
		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
	else
		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
641 642

	dev_dbg(master->dev.parent,
643 644 645
		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
		xfer->bits_per_word);
646 647 648 649 650

	/* Enable relevant interrupts */
	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
/*
 * Next transfer using PIO with FIFO.
 */
static void atmel_spi_next_xfer_fifo(struct spi_master *master,
				     struct spi_transfer *xfer)
{
	struct atmel_spi *as = spi_master_get_devdata(master);
	u32 current_remaining_data, num_data;
	u32 offset = xfer->len - as->current_remaining_bytes;
	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
	u16 td0, td1;
	u32 fifomr;

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");

	/* Compute the number of data to transfer in the current iteration */
	current_remaining_data = ((xfer->bits_per_word > 8) ?
				  ((u32)as->current_remaining_bytes >> 1) :
				  (u32)as->current_remaining_bytes);
	num_data = min(current_remaining_data, as->fifo_size);

	/* Flush RX and TX FIFOs */
	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
	while (spi_readl(as, FLR))
		cpu_relax();

	/* Set RX FIFO Threshold to the number of data to transfer */
	fifomr = spi_readl(as, FMR);
	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));

	/* Clear FIFO flags in the Status Register, especially RXFTHF */
	(void)spi_readl(as, SR);

	/* Fill TX FIFO */
	while (num_data >= 2) {
687 688 689
		if (xfer->bits_per_word > 8) {
			td0 = *words++;
			td1 = *words++;
690
		} else {
691 692
			td0 = *bytes++;
			td1 = *bytes++;
693 694 695 696 697 698 699
		}

		spi_writel(as, TDR, (td1 << 16) | td0);
		num_data -= 2;
	}

	if (num_data) {
700 701 702 703
		if (xfer->bits_per_word > 8)
			td0 = *words++;
		else
			td0 = *bytes++;
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

		spi_writew(as, TDR, td0);
		num_data--;
	}

	dev_dbg(master->dev.parent,
		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
		xfer->bits_per_word);

	/*
	 * Enable RX FIFO Threshold Flag interrupt to be notified about
	 * transfer completion.
	 */
	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
}

/*
 * Next transfer using PIO.
 */
static void atmel_spi_next_xfer_pio(struct spi_master *master,
				    struct spi_transfer *xfer)
{
	struct atmel_spi *as = spi_master_get_devdata(master);

	if (as->fifo_size)
		atmel_spi_next_xfer_fifo(master, xfer);
	else
		atmel_spi_next_xfer_single(master, xfer);
}

735 736 737 738 739 740 741 742
/*
 * Submit next transfer for DMA.
 */
static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
				struct spi_transfer *xfer,
				u32 *plen)
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
743 744
	struct dma_chan		*rxchan = master->dma_rx;
	struct dma_chan		*txchan = master->dma_tx;
745 746 747 748 749 750 751 752 753 754 755 756 757 758
	struct dma_async_tx_descriptor *rxdesc;
	struct dma_async_tx_descriptor *txdesc;
	struct dma_slave_config	slave_config;
	dma_cookie_t		cookie;

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");

	/* Check that the channels are available */
	if (!rxchan || !txchan)
		return -ENODEV;

	/* release lock for DMA operations */
	atmel_spi_unlock(as);

759
	*plen = xfer->len;
760

761 762
	if (atmel_spi_dma_slave_config(as, &slave_config,
				       xfer->bits_per_word))
763 764 765
		goto err_exit;

	/* Send both scatterlists */
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	if (atmel_spi_is_vmalloc_xfer(xfer) &&
	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
		rxdesc = dmaengine_prep_slave_single(rxchan,
						     as->dma_addr_rx_bbuf,
						     xfer->len,
						     DMA_FROM_DEVICE,
						     DMA_PREP_INTERRUPT |
						     DMA_CTRL_ACK);
	} else {
		rxdesc = dmaengine_prep_slave_sg(rxchan,
						 xfer->rx_sg.sgl,
						 xfer->rx_sg.nents,
						 DMA_FROM_DEVICE,
						 DMA_PREP_INTERRUPT |
						 DMA_CTRL_ACK);
	}
782 783 784
	if (!rxdesc)
		goto err_dma;

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	if (atmel_spi_is_vmalloc_xfer(xfer) &&
	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
		txdesc = dmaengine_prep_slave_single(txchan,
						     as->dma_addr_tx_bbuf,
						     xfer->len, DMA_TO_DEVICE,
						     DMA_PREP_INTERRUPT |
						     DMA_CTRL_ACK);
	} else {
		txdesc = dmaengine_prep_slave_sg(txchan,
						 xfer->tx_sg.sgl,
						 xfer->tx_sg.nents,
						 DMA_TO_DEVICE,
						 DMA_PREP_INTERRUPT |
						 DMA_CTRL_ACK);
	}
801 802 803 804
	if (!txdesc)
		goto err_dma;

	dev_dbg(master->dev.parent,
805 806 807
		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

	/* Enable relevant interrupts */
	spi_writel(as, IER, SPI_BIT(OVRES));

	/* Put the callback on the RX transfer only, that should finish last */
	rxdesc->callback = dma_callback;
	rxdesc->callback_param = master;

	/* Submit and fire RX and TX with TX last so we're ready to read! */
	cookie = rxdesc->tx_submit(rxdesc);
	if (dma_submit_error(cookie))
		goto err_dma;
	cookie = txdesc->tx_submit(txdesc);
	if (dma_submit_error(cookie))
		goto err_dma;
	rxchan->device->device_issue_pending(rxchan);
	txchan->device->device_issue_pending(txchan);

	/* take back lock */
	atmel_spi_lock(as);
	return 0;

err_dma:
	spi_writel(as, IDR, SPI_BIT(OVRES));
832
	atmel_spi_stop_dma(master);
833 834 835 836 837
err_exit:
	atmel_spi_lock(as);
	return -ENOMEM;
}

S
Silvester Erdeg 已提交
838 839 840 841 842 843
static void atmel_spi_next_xfer_data(struct spi_master *master,
				struct spi_transfer *xfer,
				dma_addr_t *tx_dma,
				dma_addr_t *rx_dma,
				u32 *plen)
{
844 845
	*rx_dma = xfer->rx_dma + xfer->len - *plen;
	*tx_dma = xfer->tx_dma + xfer->len - *plen;
846 847
	if (*plen > master->max_dma_len)
		*plen = master->max_dma_len;
S
Silvester Erdeg 已提交
848 849
}

850 851 852 853 854 855 856 857
static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
				    struct spi_device *spi,
				    struct spi_transfer *xfer)
{
	u32			scbr, csr;
	unsigned long		bus_hz;

	/* v1 chips start out at half the peripheral bus speed. */
858
	bus_hz = as->spi_clk;
859 860 861 862 863 864 865
	if (!atmel_spi_is_v2(as))
		bus_hz /= 2;

	/*
	 * Calculate the lowest divider that satisfies the
	 * constraint, assuming div32/fdiv/mbz == 0.
	 */
866
	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890

	/*
	 * If the resulting divider doesn't fit into the
	 * register bitfield, we can't satisfy the constraint.
	 */
	if (scbr >= (1 << SPI_SCBR_SIZE)) {
		dev_err(&spi->dev,
			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
			xfer->speed_hz, scbr, bus_hz/255);
		return -EINVAL;
	}
	if (scbr == 0) {
		dev_err(&spi->dev,
			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
			xfer->speed_hz, scbr, bus_hz);
		return -EINVAL;
	}
	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
	csr = SPI_BFINS(SCBR, scbr, csr);
	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);

	return 0;
}

891
/*
892
 * Submit next transfer for PDC.
893 894
 * lock is held, spi irq is blocked
 */
895
static void atmel_spi_pdc_next_xfer(struct spi_master *master,
896 897
					struct spi_message *msg,
					struct spi_transfer *xfer)
898 899
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
900
	u32			len;
901 902
	dma_addr_t		tx_dma, rx_dma;

903
	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
904

905 906 907
	len = as->current_remaining_bytes;
	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
	as->current_remaining_bytes -= len;
908

909 910
	spi_writel(as, RPR, rx_dma);
	spi_writel(as, TPR, tx_dma);
911

912 913 914 915
	if (msg->spi->bits_per_word > 8)
		len >>= 1;
	spi_writel(as, RCR, len);
	spi_writel(as, TCR, len);
916

917 918 919 920 921
	dev_dbg(&msg->spi->dev,
		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
		xfer, xfer->len, xfer->tx_buf,
		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
		(unsigned long long)xfer->rx_dma);
922

923 924
	if (as->current_remaining_bytes) {
		len = as->current_remaining_bytes;
S
Silvester Erdeg 已提交
925
		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
926
		as->current_remaining_bytes -= len;
927

S
Silvester Erdeg 已提交
928 929
		spi_writel(as, RNPR, rx_dma);
		spi_writel(as, TNPR, tx_dma);
930

S
Silvester Erdeg 已提交
931 932 933 934
		if (msg->spi->bits_per_word > 8)
			len >>= 1;
		spi_writel(as, RNCR, len);
		spi_writel(as, TNCR, len);
935 936

		dev_dbg(&msg->spi->dev,
937 938 939 940
			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
			xfer, xfer->len, xfer->tx_buf,
			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
			(unsigned long long)xfer->rx_dma);
S
Silvester Erdeg 已提交
941 942
	}

943
	/* REVISIT: We're waiting for RXBUFF before we start the next
944
	 * transfer because we need to handle some difficult timing
945 946 947 948
	 * issues otherwise. If we wait for TXBUFE in one transfer and
	 * then starts waiting for RXBUFF in the next, it's difficult
	 * to tell the difference between the RXBUFF interrupt we're
	 * actually waiting for and the RXBUFF interrupt of the
949 950 951 952
	 * previous transfer.
	 *
	 * It should be doable, though. Just not now...
	 */
953
	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
954 955 956
	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
}

D
David Brownell 已提交
957 958 959
/*
 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 *  - The buffer is either valid for CPU access, else NULL
960
 *  - If the buffer is valid, so is its DMA address
D
David Brownell 已提交
961
 *
962
 * This driver manages the dma address unless message->is_dma_mapped.
D
David Brownell 已提交
963 964
 */
static int
965 966
atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
{
D
David Brownell 已提交
967 968
	struct device	*dev = &as->pdev->dev;

969
	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
D
David Brownell 已提交
970
	if (xfer->tx_buf) {
971 972 973 974
		/* tx_buf is a const void* where we need a void * for the dma
		 * mapping */
		void *nonconst_tx = (void *)xfer->tx_buf;

D
David Brownell 已提交
975
		xfer->tx_dma = dma_map_single(dev,
976
				nonconst_tx, xfer->len,
977
				DMA_TO_DEVICE);
978
		if (dma_mapping_error(dev, xfer->tx_dma))
D
David Brownell 已提交
979 980 981 982
			return -ENOMEM;
	}
	if (xfer->rx_buf) {
		xfer->rx_dma = dma_map_single(dev,
983 984
				xfer->rx_buf, xfer->len,
				DMA_FROM_DEVICE);
985
		if (dma_mapping_error(dev, xfer->rx_dma)) {
D
David Brownell 已提交
986 987 988 989 990 991 992 993
			if (xfer->tx_buf)
				dma_unmap_single(dev,
						xfer->tx_dma, xfer->len,
						DMA_TO_DEVICE);
			return -ENOMEM;
		}
	}
	return 0;
994 995 996 997 998 999
}

static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
				     struct spi_transfer *xfer)
{
	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
T
Tony Jones 已提交
1000
		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1001 1002
				 xfer->len, DMA_TO_DEVICE);
	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
T
Tony Jones 已提交
1003
		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1004 1005 1006
				 xfer->len, DMA_FROM_DEVICE);
}

1007 1008 1009 1010 1011 1012
static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
{
	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
}

static void
1013
atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1014 1015
{
	u8		*rxp;
1016
	u16		*rxp16;
1017 1018
	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;

1019 1020 1021
	if (xfer->bits_per_word > 8) {
		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
		*rxp16 = spi_readl(as, RDR);
1022
	} else {
1023 1024
		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
		*rxp = spi_readl(as, RDR);
1025
	}
1026
	if (xfer->bits_per_word > 8) {
1027 1028 1029
		if (as->current_remaining_bytes > 2)
			as->current_remaining_bytes -= 2;
		else
1030 1031 1032 1033
			as->current_remaining_bytes = 0;
	} else {
		as->current_remaining_bytes--;
	}
1034 1035
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
static void
atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
	u32 fifolr = spi_readl(as, FLR);
	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
	u32 offset = xfer->len - as->current_remaining_bytes;
	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
	u16 rd; /* RD field is the lowest 16 bits of RDR */

	/* Update the number of remaining bytes to transfer */
	num_bytes = ((xfer->bits_per_word > 8) ?
		     (num_data << 1) :
		     num_data);

	if (as->current_remaining_bytes > num_bytes)
		as->current_remaining_bytes -= num_bytes;
	else
		as->current_remaining_bytes = 0;

	/* Handle odd number of bytes when data are more than 8bit width */
	if (xfer->bits_per_word > 8)
		as->current_remaining_bytes &= ~0x1;

	/* Read data */
	while (num_data) {
		rd = spi_readl(as, RDR);
1063 1064 1065 1066
		if (xfer->bits_per_word > 8)
			*words++ = rd;
		else
			*bytes++ = rd;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		num_data--;
	}
}

/* Called from IRQ
 *
 * Must update "current_remaining_bytes" to keep track of data
 * to transfer.
 */
static void
atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
	if (as->fifo_size)
		atmel_spi_pump_fifo_data(as, xfer);
	else
		atmel_spi_pump_single_data(as, xfer);
}

1085 1086 1087
/* Interrupt
 *
 * No need for locking in this Interrupt handler: done_status is the
1088
 * only information modified.
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
 */
static irqreturn_t
atmel_spi_pio_interrupt(int irq, void *dev_id)
{
	struct spi_master	*master = dev_id;
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			status, pending, imr;
	struct spi_transfer	*xfer;
	int			ret = IRQ_NONE;

	imr = spi_readl(as, IMR);
	status = spi_readl(as, SR);
	pending = status & imr;

	if (pending & SPI_BIT(OVRES)) {
		ret = IRQ_HANDLED;
		spi_writel(as, IDR, SPI_BIT(OVRES));
		dev_warn(master->dev.parent, "overrun\n");

		/*
		 * When we get an overrun, we disregard the current
		 * transfer. Data will not be copied back from any
		 * bounce buffer and msg->actual_len will not be
		 * updated with the last xfer.
		 *
		 * We will also not process any remaning transfers in
		 * the message.
		 */
		as->done_status = -EIO;
		smp_wmb();

		/* Clear any overrun happening while cleaning up */
		spi_readl(as, SR);

1123
		complete(&as->xfer_completion);
1124

1125
	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1126 1127 1128 1129 1130 1131
		atmel_spi_lock(as);

		if (as->current_remaining_bytes) {
			ret = IRQ_HANDLED;
			xfer = as->current_transfer;
			atmel_spi_pump_pio_data(as, xfer);
1132
			if (!as->current_remaining_bytes)
1133
				spi_writel(as, IDR, pending);
1134 1135

			complete(&as->xfer_completion);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
		}

		atmel_spi_unlock(as);
	} else {
		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
		ret = IRQ_HANDLED;
		spi_writel(as, IDR, pending);
	}

	return ret;
1146 1147 1148
}

static irqreturn_t
1149
atmel_spi_pdc_interrupt(int irq, void *dev_id)
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
{
	struct spi_master	*master = dev_id;
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			status, pending, imr;
	int			ret = IRQ_NONE;

	imr = spi_readl(as, IMR);
	status = spi_readl(as, SR);
	pending = status & imr;

	if (pending & SPI_BIT(OVRES)) {

		ret = IRQ_HANDLED;

1164
		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1165 1166 1167 1168 1169
				     | SPI_BIT(OVRES)));

		/* Clear any overrun happening while cleaning up */
		spi_readl(as, SR);

1170
		as->done_status = -EIO;
1171 1172 1173

		complete(&as->xfer_completion);

1174
	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1175 1176 1177 1178
		ret = IRQ_HANDLED;

		spi_writel(as, IDR, pending);

1179
		complete(&as->xfer_completion);
1180 1181 1182 1183 1184 1185 1186 1187
	}

	return ret;
}

static int atmel_spi_setup(struct spi_device *spi)
{
	struct atmel_spi	*as;
1188
	struct atmel_spi_device	*asd;
1189
	u32			csr;
1190 1191 1192 1193 1194
	unsigned int		bits = spi->bits_per_word;
	unsigned int		npcs_pin;

	as = spi_master_get_devdata(spi->master);

1195
	/* see notes above re chipselect */
1196
	if (!atmel_spi_is_v2(as)
1197 1198 1199 1200 1201 1202
			&& spi->chip_select == 0
			&& (spi->mode & SPI_CS_HIGH)) {
		dev_dbg(&spi->dev, "setup: can't be active-high\n");
		return -EINVAL;
	}

1203
	csr = SPI_BF(BITS, bits - 8);
1204 1205 1206 1207
	if (spi->mode & SPI_CPOL)
		csr |= SPI_BIT(CPOL);
	if (!(spi->mode & SPI_CPHA))
		csr |= SPI_BIT(NCPHA);
1208 1209
	if (!as->use_cs_gpios)
		csr |= SPI_BIT(CSAAT);
1210

1211 1212 1213 1214 1215 1216 1217 1218
	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
	 *
	 * DLYBCT would add delays between words, slowing down transfers.
	 * It could potentially be useful to cope with DMA bottlenecks, but
	 * in those cases it's probably best to just use a lower bitrate.
	 */
	csr |= SPI_BF(DLYBS, 0);
	csr |= SPI_BF(DLYBCT, 0);
1219 1220

	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1221
	npcs_pin = (unsigned long)spi->controller_data;
1222

1223 1224 1225
	if (!as->use_cs_gpios)
		npcs_pin = spi->chip_select;
	else if (gpio_is_valid(spi->cs_gpio))
1226 1227
		npcs_pin = spi->cs_gpio;

1228 1229 1230 1231 1232 1233
	asd = spi->controller_state;
	if (!asd) {
		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
		if (!asd)
			return -ENOMEM;

1234
		if (as->use_cs_gpios)
1235 1236
			gpio_direction_output(npcs_pin,
					      !(spi->mode & SPI_CS_HIGH));
1237 1238 1239

		asd->npcs_pin = npcs_pin;
		spi->controller_state = asd;
1240 1241
	}

1242 1243
	asd->csr = csr;

1244
	dev_dbg(&spi->dev,
1245 1246
		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
		bits, spi->mode, spi->chip_select, csr);
1247

1248
	if (!atmel_spi_is_v2(as))
1249
		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1250 1251 1252 1253

	return 0;
}

1254 1255 1256
static int atmel_spi_one_transfer(struct spi_master *master,
					struct spi_message *msg,
					struct spi_transfer *xfer)
1257 1258
{
	struct atmel_spi	*as;
1259
	struct spi_device	*spi = msg->spi;
1260
	u8			bits;
1261
	u32			len;
1262
	struct atmel_spi_device	*asd;
1263 1264
	int			timeout;
	int			ret;
1265
	unsigned long		dma_timeout;
1266

1267
	as = spi_master_get_devdata(master);
1268

1269 1270
	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1271
		return -EINVAL;
1272
	}
1273

1274 1275 1276 1277
	asd = spi->controller_state;
	bits = (asd->csr >> 4) & 0xf;
	if (bits != xfer->bits_per_word - 8) {
		dev_dbg(&spi->dev,
1278
			"you can't yet change bits_per_word in transfers\n");
1279
		return -ENOPROTOOPT;
1280
	}
1281

1282 1283 1284 1285 1286
	/*
	 * DMA map early, for performance (empties dcache ASAP) and
	 * better fault reporting.
	 */
	if ((!msg->is_dma_mapped)
1287
		&& as->use_pdc) {
1288 1289 1290 1291 1292
		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
			return -ENOMEM;
	}

	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	as->done_status = 0;
	as->current_transfer = xfer;
	as->current_remaining_bytes = xfer->len;
	while (as->current_remaining_bytes) {
		reinit_completion(&as->xfer_completion);

		if (as->use_pdc) {
			atmel_spi_pdc_next_xfer(master, msg, xfer);
		} else if (atmel_spi_use_dma(as, xfer)) {
			len = as->current_remaining_bytes;
			ret = atmel_spi_next_xfer_dma_submit(master,
								xfer, &len);
			if (ret) {
				dev_err(&spi->dev,
					"unable to use DMA, fallback to PIO\n");
				atmel_spi_next_xfer_pio(master, xfer);
			} else {
				as->current_remaining_bytes -= len;
1312 1313
				if (as->current_remaining_bytes < 0)
					as->current_remaining_bytes = 0;
1314
			}
1315 1316
		} else {
			atmel_spi_next_xfer_pio(master, xfer);
1317 1318
		}

1319 1320
		/* interrupts are disabled, so free the lock for schedule */
		atmel_spi_unlock(as);
1321 1322
		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
							  SPI_DMA_TIMEOUT);
1323
		atmel_spi_lock(as);
1324 1325
		if (WARN_ON(dma_timeout == 0)) {
			dev_err(&spi->dev, "spi transfer timeout\n");
1326
			as->done_status = -EIO;
1327 1328
		}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		if (as->done_status)
			break;
	}

	if (as->done_status) {
		if (as->use_pdc) {
			dev_warn(master->dev.parent,
				"overrun (%u/%u remaining)\n",
				spi_readl(as, TCR), spi_readl(as, RCR));

			/*
			 * Clean up DMA registers and make sure the data
			 * registers are empty.
			 */
			spi_writel(as, RNCR, 0);
			spi_writel(as, TNCR, 0);
			spi_writel(as, RCR, 0);
			spi_writel(as, TCR, 0);
			for (timeout = 1000; timeout; timeout--)
				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
					break;
			if (!timeout)
				dev_warn(master->dev.parent,
					 "timeout waiting for TXEMPTY");
			while (spi_readl(as, SR) & SPI_BIT(RDRF))
				spi_readl(as, RDR);

			/* Clear any overrun happening while cleaning up */
			spi_readl(as, SR);

		} else if (atmel_spi_use_dma(as, xfer)) {
1360
			atmel_spi_stop_dma(master);
1361 1362 1363
		}

		if (!msg->is_dma_mapped
1364
			&& as->use_pdc)
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
			atmel_spi_dma_unmap_xfer(master, xfer);

		return 0;

	} else {
		/* only update length if no error */
		msg->actual_length += xfer->len;
	}

	if (!msg->is_dma_mapped
1375
		&& as->use_pdc)
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		atmel_spi_dma_unmap_xfer(master, xfer);

	if (xfer->delay_usecs)
		udelay(xfer->delay_usecs);

	if (xfer->cs_change) {
		if (list_is_last(&xfer->transfer_list,
				 &msg->transfers)) {
			as->keep_cs = true;
		} else {
			as->cs_active = !as->cs_active;
			if (as->cs_active)
				cs_activate(as, msg->spi);
			else
				cs_deactivate(as, msg->spi);
D
David Brownell 已提交
1391
		}
1392 1393
	}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	return 0;
}

static int atmel_spi_transfer_one_message(struct spi_master *master,
						struct spi_message *msg)
{
	struct atmel_spi *as;
	struct spi_transfer *xfer;
	struct spi_device *spi = msg->spi;
	int ret = 0;

	as = spi_master_get_devdata(master);

	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
					msg, dev_name(&spi->dev));

	atmel_spi_lock(as);
	cs_activate(as, spi);

	as->cs_active = true;
	as->keep_cs = false;

	msg->status = 0;
	msg->actual_length = 0;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		ret = atmel_spi_one_transfer(master, msg, xfer);
		if (ret)
			goto msg_done;
	}

	if (as->use_pdc)
		atmel_spi_disable_pdc_transfer(as);

1428
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1429
		dev_dbg(&spi->dev,
1430
			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1431
			xfer, xfer->len,
1432 1433
			xfer->tx_buf, &xfer->tx_dma,
			xfer->rx_buf, &xfer->rx_dma);
1434 1435
	}

1436 1437 1438
msg_done:
	if (!as->keep_cs)
		cs_deactivate(as, msg->spi);
1439

1440
	atmel_spi_unlock(as);
1441

1442 1443 1444 1445
	msg->status = as->done_status;
	spi_finalize_current_message(spi->master);

	return ret;
1446 1447
}

1448
static void atmel_spi_cleanup(struct spi_device *spi)
1449
{
1450
	struct atmel_spi_device	*asd = spi->controller_state;
1451

1452
	if (!asd)
1453 1454
		return;

1455 1456
	spi->controller_state = NULL;
	kfree(asd);
1457 1458
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static inline unsigned int atmel_get_version(struct atmel_spi *as)
{
	return spi_readl(as, VERSION) & 0x00000fff;
}

static void atmel_get_caps(struct atmel_spi *as)
{
	unsigned int version;

	version = atmel_get_version(as);

	as->caps.is_spi2 = version > 0x121;
	as->caps.has_wdrbt = version >= 0x210;
	as->caps.has_dma_support = version >= 0x212;
1473
	as->caps.has_pdc_support = version < 0x212;
1474 1475
}

1476
/*-------------------------------------------------------------------------*/
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
static int atmel_spi_gpio_cs(struct platform_device *pdev)
{
	struct spi_master	*master = platform_get_drvdata(pdev);
	struct atmel_spi	*as = spi_master_get_devdata(master);
	struct device_node	*np = master->dev.of_node;
	int			i;
	int			ret = 0;
	int			nb = 0;

	if (!as->use_cs_gpios)
		return 0;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
	for (i = 0; i < nb; i++) {
		int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
						"cs-gpios", i);

1497 1498
		if (cs_gpio == -EPROBE_DEFER)
			return cs_gpio;
1499

1500 1501 1502 1503 1504 1505
		if (gpio_is_valid(cs_gpio)) {
			ret = devm_gpio_request(&pdev->dev, cs_gpio,
						dev_name(&pdev->dev));
			if (ret)
				return ret;
		}
1506 1507 1508 1509
	}

	return 0;
}
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static void atmel_spi_init(struct atmel_spi *as)
{
	spi_writel(as, CR, SPI_BIT(SWRST));
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
	if (as->caps.has_wdrbt) {
		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
				| SPI_BIT(MSTR));
	} else {
		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
	}

	if (as->use_pdc)
		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
	spi_writel(as, CR, SPI_BIT(SPIEN));

	if (as->fifo_size)
		spi_writel(as, CR, SPI_BIT(FIFOEN));
}

1530
static int atmel_spi_probe(struct platform_device *pdev)
1531 1532 1533 1534 1535 1536 1537 1538
{
	struct resource		*regs;
	int			irq;
	struct clk		*clk;
	int			ret;
	struct spi_master	*master;
	struct atmel_spi	*as;

W
Wenyou Yang 已提交
1539 1540 1541
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

1542 1543 1544 1545 1546 1547 1548 1549
	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!regs)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

J
Jingoo Han 已提交
1550
	clk = devm_clk_get(&pdev->dev, "spi_clk");
1551 1552 1553 1554 1555
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	/* setup spi core then atmel-specific driver state */
	ret = -ENOMEM;
1556
	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1557 1558 1559
	if (!master)
		goto out_free;

1560 1561
	/* the spi->mode bits understood by this driver: */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1562
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1563
	master->dev.of_node = pdev->dev.of_node;
1564
	master->bus_num = pdev->id;
1565
	master->num_chipselect = master->dev.of_node ? 0 : 4;
1566
	master->setup = atmel_spi_setup;
1567
	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1568
	master->transfer_one_message = atmel_spi_transfer_one_message;
1569
	master->cleanup = atmel_spi_cleanup;
1570
	master->auto_runtime_pm = true;
1571
	master->max_dma_len = SPI_MAX_DMA_XFER;
1572
	master->can_dma = atmel_spi_can_dma;
1573 1574 1575 1576 1577
	platform_set_drvdata(pdev, master);

	as = spi_master_get_devdata(master);

	spin_lock_init(&as->lock);
1578

1579
	as->pdev = pdev;
1580
	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1581 1582
	if (IS_ERR(as->regs)) {
		ret = PTR_ERR(as->regs);
1583
		goto out_unmap_regs;
1584
	}
1585
	as->phybase = regs->start;
1586 1587 1588
	as->irq = irq;
	as->clk = clk;

1589 1590
	init_completion(&as->xfer_completion);

1591 1592
	atmel_get_caps(as);

1593 1594
	as->use_cs_gpios = true;
	if (atmel_spi_is_v2(as) &&
1595
	    pdev->dev.of_node &&
1596 1597 1598 1599 1600
	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
		as->use_cs_gpios = false;
		master->num_chipselect = 4;
	}

1601 1602 1603 1604
	ret = atmel_spi_gpio_cs(pdev);
	if (ret)
		goto out_unmap_regs;

1605 1606 1607
	as->use_dma = false;
	as->use_pdc = false;
	if (as->caps.has_dma_support) {
1608
		ret = atmel_spi_configure_dma(master, as);
1609
		if (ret == 0) {
1610
			as->use_dma = true;
1611
		} else if (ret == -EPROBE_DEFER) {
1612
			return ret;
1613
		}
1614
	} else if (as->caps.has_pdc_support) {
1615 1616 1617
		as->use_pdc = true;
	}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
						      SPI_MAX_DMA_XFER,
						      &as->dma_addr_rx_bbuf,
						      GFP_KERNEL | GFP_DMA);
		if (!as->addr_rx_bbuf) {
			as->use_dma = false;
		} else {
			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
					SPI_MAX_DMA_XFER,
					&as->dma_addr_tx_bbuf,
					GFP_KERNEL | GFP_DMA);
			if (!as->addr_tx_bbuf) {
				as->use_dma = false;
				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
						  as->addr_rx_bbuf,
						  as->dma_addr_rx_bbuf);
			}
		}
		if (!as->use_dma)
			dev_info(master->dev.parent,
				 "  can not allocate dma coherent memory\n");
	}

1642 1643 1644 1645
	if (as->caps.has_dma_support && !as->use_dma)
		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");

	if (as->use_pdc) {
J
Jingoo Han 已提交
1646 1647
		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
					0, dev_name(&pdev->dev), master);
1648
	} else {
J
Jingoo Han 已提交
1649 1650
		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
					0, dev_name(&pdev->dev), master);
1651
	}
1652 1653 1654 1655
	if (ret)
		goto out_unmap_regs;

	/* Initialize the hardware */
1656 1657
	ret = clk_prepare_enable(clk);
	if (ret)
1658
		goto out_free_irq;
1659 1660 1661

	as->spi_clk = clk_get_rate(clk);

1662 1663 1664 1665 1666 1667
	as->fifo_size = 0;
	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
				  &as->fifo_size)) {
		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
	}

1668 1669
	atmel_spi_init(as);

1670 1671 1672 1673 1674
	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
	pm_runtime_use_autosuspend(&pdev->dev);
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

J
Jingoo Han 已提交
1675
	ret = devm_spi_register_master(&pdev->dev, master);
1676
	if (ret)
1677
		goto out_free_dma;
1678

1679
	/* go! */
1680 1681 1682
	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
			atmel_get_version(as), (unsigned long)regs->start,
			irq);
1683

1684 1685
	return 0;

1686
out_free_dma:
1687 1688 1689
	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);

1690
	if (as->use_dma)
1691
		atmel_spi_release_dma(master);
1692

1693
	spi_writel(as, CR, SPI_BIT(SWRST));
1694
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1695
	clk_disable_unprepare(clk);
1696
out_free_irq:
1697 1698 1699 1700 1701 1702
out_unmap_regs:
out_free:
	spi_master_put(master);
	return ret;
}

1703
static int atmel_spi_remove(struct platform_device *pdev)
1704 1705 1706 1707
{
	struct spi_master	*master = platform_get_drvdata(pdev);
	struct atmel_spi	*as = spi_master_get_devdata(master);

1708 1709
	pm_runtime_get_sync(&pdev->dev);

1710
	/* reset the hardware and block queue progress */
1711
	if (as->use_dma) {
1712 1713
		atmel_spi_stop_dma(master);
		atmel_spi_release_dma(master);
1714 1715 1716 1717 1718 1719 1720 1721
		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
					  as->addr_tx_bbuf,
					  as->dma_addr_tx_bbuf);
			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
					  as->addr_rx_bbuf,
					  as->dma_addr_rx_bbuf);
		}
1722 1723
	}

1724
	spin_lock_irq(&as->lock);
1725
	spi_writel(as, CR, SPI_BIT(SWRST));
1726
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1727 1728 1729
	spi_readl(as, SR);
	spin_unlock_irq(&as->lock);

1730
	clk_disable_unprepare(as->clk);
1731

1732 1733 1734
	pm_runtime_put_noidle(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

1735 1736 1737
	return 0;
}

1738
#ifdef CONFIG_PM
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static int atmel_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct atmel_spi *as = spi_master_get_devdata(master);

	clk_disable_unprepare(as->clk);
	pinctrl_pm_select_sleep_state(dev);

	return 0;
}

static int atmel_spi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct atmel_spi *as = spi_master_get_devdata(master);

	pinctrl_pm_select_default_state(dev);

	return clk_prepare_enable(as->clk);
}

1760
#ifdef CONFIG_PM_SLEEP
1761
static int atmel_spi_suspend(struct device *dev)
1762
{
1763
	struct spi_master *master = dev_get_drvdata(dev);
1764 1765 1766 1767 1768 1769 1770 1771
	int ret;

	/* Stop the queue running */
	ret = spi_master_suspend(master);
	if (ret) {
		dev_warn(dev, "cannot suspend master\n");
		return ret;
	}
1772

1773 1774
	if (!pm_runtime_suspended(dev))
		atmel_spi_runtime_suspend(dev);
W
Wenyou Yang 已提交
1775

1776 1777 1778
	return 0;
}

1779
static int atmel_spi_resume(struct device *dev)
1780
{
1781
	struct spi_master *master = dev_get_drvdata(dev);
1782
	struct atmel_spi *as = spi_master_get_devdata(master);
1783
	int ret;
1784

1785 1786 1787 1788 1789 1790 1791 1792
	ret = clk_prepare_enable(as->clk);
	if (ret)
		return ret;

	atmel_spi_init(as);

	clk_disable_unprepare(as->clk);

1793
	if (!pm_runtime_suspended(dev)) {
1794
		ret = atmel_spi_runtime_resume(dev);
1795 1796 1797
		if (ret)
			return ret;
	}
1798 1799 1800 1801 1802 1803 1804

	/* Start the queue running */
	ret = spi_master_resume(master);
	if (ret)
		dev_err(dev, "problem starting queue (%d)\n", ret);

	return ret;
1805
}
1806
#endif
1807 1808 1809 1810 1811 1812

static const struct dev_pm_ops atmel_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
			   atmel_spi_runtime_resume, NULL)
};
1813
#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1814
#else
1815
#define ATMEL_SPI_PM_OPS	NULL
1816 1817
#endif

1818 1819 1820 1821 1822 1823 1824 1825
#if defined(CONFIG_OF)
static const struct of_device_id atmel_spi_dt_ids[] = {
	{ .compatible = "atmel,at91rm9200-spi" },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
#endif
1826 1827 1828 1829

static struct platform_driver atmel_spi_driver = {
	.driver		= {
		.name	= "atmel_spi",
1830
		.pm	= ATMEL_SPI_PM_OPS,
1831
		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1832
	},
1833
	.probe		= atmel_spi_probe,
1834
	.remove		= atmel_spi_remove,
1835
};
1836
module_platform_driver(atmel_spi_driver);
1837 1838

MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
J
Jean Delvare 已提交
1839
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1840
MODULE_LICENSE("GPL");
1841
MODULE_ALIAS("platform:atmel_spi");