spi-atmel.c 45.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Driver for Atmel AT32 and AT91 SPI Controllers
 *
 * Copyright (C) 2006 Atmel Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
17
#include <linux/dmaengine.h>
18 19 20
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
21
#include <linux/slab.h>
22
#include <linux/platform_data/dma-atmel.h>
23
#include <linux/of.h>
24

25 26
#include <linux/io.h>
#include <linux/gpio.h>
W
Wenyou Yang 已提交
27
#include <linux/pinctrl/consumer.h>
28
#include <linux/pm_runtime.h>
29

G
Grant Likely 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42
/* SPI register offsets */
#define SPI_CR					0x0000
#define SPI_MR					0x0004
#define SPI_RDR					0x0008
#define SPI_TDR					0x000c
#define SPI_SR					0x0010
#define SPI_IER					0x0014
#define SPI_IDR					0x0018
#define SPI_IMR					0x001c
#define SPI_CSR0				0x0030
#define SPI_CSR1				0x0034
#define SPI_CSR2				0x0038
#define SPI_CSR3				0x003c
43 44
#define SPI_FMR					0x0040
#define SPI_FLR					0x0044
45
#define SPI_VERSION				0x00fc
G
Grant Likely 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
#define SPI_RPR					0x0100
#define SPI_RCR					0x0104
#define SPI_TPR					0x0108
#define SPI_TCR					0x010c
#define SPI_RNPR				0x0110
#define SPI_RNCR				0x0114
#define SPI_TNPR				0x0118
#define SPI_TNCR				0x011c
#define SPI_PTCR				0x0120
#define SPI_PTSR				0x0124

/* Bitfields in CR */
#define SPI_SPIEN_OFFSET			0
#define SPI_SPIEN_SIZE				1
#define SPI_SPIDIS_OFFSET			1
#define SPI_SPIDIS_SIZE				1
#define SPI_SWRST_OFFSET			7
#define SPI_SWRST_SIZE				1
#define SPI_LASTXFER_OFFSET			24
#define SPI_LASTXFER_SIZE			1
66 67 68 69 70 71 72 73
#define SPI_TXFCLR_OFFSET			16
#define SPI_TXFCLR_SIZE				1
#define SPI_RXFCLR_OFFSET			17
#define SPI_RXFCLR_SIZE				1
#define SPI_FIFOEN_OFFSET			30
#define SPI_FIFOEN_SIZE				1
#define SPI_FIFODIS_OFFSET			31
#define SPI_FIFODIS_SIZE			1
G
Grant Likely 已提交
74 75 76 77 78 79 80 81 82 83 84 85

/* Bitfields in MR */
#define SPI_MSTR_OFFSET				0
#define SPI_MSTR_SIZE				1
#define SPI_PS_OFFSET				1
#define SPI_PS_SIZE				1
#define SPI_PCSDEC_OFFSET			2
#define SPI_PCSDEC_SIZE				1
#define SPI_FDIV_OFFSET				3
#define SPI_FDIV_SIZE				1
#define SPI_MODFDIS_OFFSET			4
#define SPI_MODFDIS_SIZE			1
86 87
#define SPI_WDRBT_OFFSET			5
#define SPI_WDRBT_SIZE				1
G
Grant Likely 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#define SPI_LLB_OFFSET				7
#define SPI_LLB_SIZE				1
#define SPI_PCS_OFFSET				16
#define SPI_PCS_SIZE				4
#define SPI_DLYBCS_OFFSET			24
#define SPI_DLYBCS_SIZE				8

/* Bitfields in RDR */
#define SPI_RD_OFFSET				0
#define SPI_RD_SIZE				16

/* Bitfields in TDR */
#define SPI_TD_OFFSET				0
#define SPI_TD_SIZE				16

/* Bitfields in SR */
#define SPI_RDRF_OFFSET				0
#define SPI_RDRF_SIZE				1
#define SPI_TDRE_OFFSET				1
#define SPI_TDRE_SIZE				1
#define SPI_MODF_OFFSET				2
#define SPI_MODF_SIZE				1
#define SPI_OVRES_OFFSET			3
#define SPI_OVRES_SIZE				1
#define SPI_ENDRX_OFFSET			4
#define SPI_ENDRX_SIZE				1
#define SPI_ENDTX_OFFSET			5
#define SPI_ENDTX_SIZE				1
#define SPI_RXBUFF_OFFSET			6
#define SPI_RXBUFF_SIZE				1
#define SPI_TXBUFE_OFFSET			7
#define SPI_TXBUFE_SIZE				1
#define SPI_NSSR_OFFSET				8
#define SPI_NSSR_SIZE				1
#define SPI_TXEMPTY_OFFSET			9
#define SPI_TXEMPTY_SIZE			1
#define SPI_SPIENS_OFFSET			16
#define SPI_SPIENS_SIZE				1
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#define SPI_TXFEF_OFFSET			24
#define SPI_TXFEF_SIZE				1
#define SPI_TXFFF_OFFSET			25
#define SPI_TXFFF_SIZE				1
#define SPI_TXFTHF_OFFSET			26
#define SPI_TXFTHF_SIZE				1
#define SPI_RXFEF_OFFSET			27
#define SPI_RXFEF_SIZE				1
#define SPI_RXFFF_OFFSET			28
#define SPI_RXFFF_SIZE				1
#define SPI_RXFTHF_OFFSET			29
#define SPI_RXFTHF_SIZE				1
#define SPI_TXFPTEF_OFFSET			30
#define SPI_TXFPTEF_SIZE			1
#define SPI_RXFPTEF_OFFSET			31
#define SPI_RXFPTEF_SIZE			1
G
Grant Likely 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

/* Bitfields in CSR0 */
#define SPI_CPOL_OFFSET				0
#define SPI_CPOL_SIZE				1
#define SPI_NCPHA_OFFSET			1
#define SPI_NCPHA_SIZE				1
#define SPI_CSAAT_OFFSET			3
#define SPI_CSAAT_SIZE				1
#define SPI_BITS_OFFSET				4
#define SPI_BITS_SIZE				4
#define SPI_SCBR_OFFSET				8
#define SPI_SCBR_SIZE				8
#define SPI_DLYBS_OFFSET			16
#define SPI_DLYBS_SIZE				8
#define SPI_DLYBCT_OFFSET			24
#define SPI_DLYBCT_SIZE				8

/* Bitfields in RCR */
#define SPI_RXCTR_OFFSET			0
#define SPI_RXCTR_SIZE				16

/* Bitfields in TCR */
#define SPI_TXCTR_OFFSET			0
#define SPI_TXCTR_SIZE				16

/* Bitfields in RNCR */
#define SPI_RXNCR_OFFSET			0
#define SPI_RXNCR_SIZE				16

/* Bitfields in TNCR */
#define SPI_TXNCR_OFFSET			0
#define SPI_TXNCR_SIZE				16

/* Bitfields in PTCR */
#define SPI_RXTEN_OFFSET			0
#define SPI_RXTEN_SIZE				1
#define SPI_RXTDIS_OFFSET			1
#define SPI_RXTDIS_SIZE				1
#define SPI_TXTEN_OFFSET			8
#define SPI_TXTEN_SIZE				1
#define SPI_TXTDIS_OFFSET			9
#define SPI_TXTDIS_SIZE				1

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/* Bitfields in FMR */
#define SPI_TXRDYM_OFFSET			0
#define SPI_TXRDYM_SIZE				2
#define SPI_RXRDYM_OFFSET			4
#define SPI_RXRDYM_SIZE				2
#define SPI_TXFTHRES_OFFSET			16
#define SPI_TXFTHRES_SIZE			6
#define SPI_RXFTHRES_OFFSET			24
#define SPI_RXFTHRES_SIZE			6

/* Bitfields in FLR */
#define SPI_TXFL_OFFSET				0
#define SPI_TXFL_SIZE				6
#define SPI_RXFL_OFFSET				16
#define SPI_RXFL_SIZE				6

G
Grant Likely 已提交
201 202 203 204 205 206 207 208 209 210
/* Constants for BITS */
#define SPI_BITS_8_BPT				0
#define SPI_BITS_9_BPT				1
#define SPI_BITS_10_BPT				2
#define SPI_BITS_11_BPT				3
#define SPI_BITS_12_BPT				4
#define SPI_BITS_13_BPT				5
#define SPI_BITS_14_BPT				6
#define SPI_BITS_15_BPT				7
#define SPI_BITS_16_BPT				8
211 212 213
#define SPI_ONE_DATA				0
#define SPI_TWO_DATA				1
#define SPI_FOUR_DATA				2
G
Grant Likely 已提交
214 215 216 217

/* Bit manipulation macros */
#define SPI_BIT(name) \
	(1 << SPI_##name##_OFFSET)
218
#define SPI_BF(name, value) \
G
Grant Likely 已提交
219
	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
220
#define SPI_BFEXT(name, value) \
G
Grant Likely 已提交
221
	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
222 223 224
#define SPI_BFINS(name, value, old) \
	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
	  | SPI_BF(name, value))
G
Grant Likely 已提交
225 226

/* Register access macros */
B
Ben Dooks 已提交
227
#ifdef CONFIG_AVR32
228
#define spi_readl(port, reg) \
G
Grant Likely 已提交
229
	__raw_readl((port)->regs + SPI_##reg)
230
#define spi_writel(port, reg, value) \
G
Grant Likely 已提交
231
	__raw_writel((value), (port)->regs + SPI_##reg)
232 233 234 235 236 237 238 239 240 241

#define spi_readw(port, reg) \
	__raw_readw((port)->regs + SPI_##reg)
#define spi_writew(port, reg, value) \
	__raw_writew((value), (port)->regs + SPI_##reg)

#define spi_readb(port, reg) \
	__raw_readb((port)->regs + SPI_##reg)
#define spi_writeb(port, reg, value) \
	__raw_writeb((value), (port)->regs + SPI_##reg)
B
Ben Dooks 已提交
242 243 244 245 246
#else
#define spi_readl(port, reg) \
	readl_relaxed((port)->regs + SPI_##reg)
#define spi_writel(port, reg, value) \
	writel_relaxed((value), (port)->regs + SPI_##reg)
247 248 249 250 251 252 253 254 255 256

#define spi_readw(port, reg) \
	readw_relaxed((port)->regs + SPI_##reg)
#define spi_writew(port, reg, value) \
	writew_relaxed((value), (port)->regs + SPI_##reg)

#define spi_readb(port, reg) \
	readb_relaxed((port)->regs + SPI_##reg)
#define spi_writeb(port, reg, value) \
	writeb_relaxed((value), (port)->regs + SPI_##reg)
B
Ben Dooks 已提交
257
#endif
258 259 260 261 262
/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 * cache operations; better heuristics consider wordsize and bitrate.
 */
#define DMA_MIN_BYTES	16

263 264
#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))

265 266
#define AUTOSUSPEND_TIMEOUT	2000

267 268 269 270 271 272 273 274 275 276 277
struct atmel_spi_dma {
	struct dma_chan			*chan_rx;
	struct dma_chan			*chan_tx;
	struct scatterlist		sgrx;
	struct scatterlist		sgtx;
	struct dma_async_tx_descriptor	*data_desc_rx;
	struct dma_async_tx_descriptor	*data_desc_tx;

	struct at_dma_slave	dma_slave;
};

278 279 280 281 282
struct atmel_spi_caps {
	bool	is_spi2;
	bool	has_wdrbt;
	bool	has_dma_support;
};
283 284 285 286 287 288 289 290

/*
 * The core SPI transfer engine just talks to a register bank to set up
 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 * framework provides the base clock, subdivided for each spi_device.
 */
struct atmel_spi {
	spinlock_t		lock;
291
	unsigned long		flags;
292

293
	phys_addr_t		phybase;
294 295 296 297 298 299
	void __iomem		*regs;
	int			irq;
	struct clk		*clk;
	struct platform_device	*pdev;

	struct spi_transfer	*current_transfer;
300
	int			current_remaining_bytes;
301
	int			done_status;
302

303 304
	struct completion	xfer_completion;

305
	/* scratch buffer */
306 307
	void			*buffer;
	dma_addr_t		buffer_dma;
308 309

	struct atmel_spi_caps	caps;
310 311 312

	bool			use_dma;
	bool			use_pdc;
313
	bool			use_cs_gpios;
314 315
	/* dmaengine data */
	struct atmel_spi_dma	dma;
316 317 318

	bool			keep_cs;
	bool			cs_active;
319 320

	u32			fifo_size;
321 322
};

323 324 325 326 327 328
/* Controller-specific per-slave state */
struct atmel_spi_device {
	unsigned int		npcs_pin;
	u32			csr;
};

329 330 331
#define BUFFER_SIZE		PAGE_SIZE
#define INVALID_DMA_ADDRESS	0xffffffff

332 333 334 335 336 337 338 339
/*
 * Version 2 of the SPI controller has
 *  - CR.LASTXFER
 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 *  - SPI_CSRx.CSAAT
 *  - SPI_CSRx.SBCR allows faster clocking
 */
340
static bool atmel_spi_is_v2(struct atmel_spi *as)
341
{
342
	return as->caps.is_spi2;
343 344
}

345 346 347
/*
 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 * they assume that spi slave device state will not change on deselect, so
348 349 350
 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 * controllers have CSAAT and friends.
351
 *
352 353 354 355 356 357 358 359 360 361 362
 * Since the CSAAT functionality is a bit weird on newer controllers as
 * well, we use GPIO to control nCSx pins on all controllers, updating
 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 * support active-high chipselects despite the controller's belief that
 * only active-low devices/systems exists.
 *
 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 * Master on Chip Select 0.")  No workaround exists for that ... so for
 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 * and (c) will trigger that first erratum in some cases.
363 364
 */

365
static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
366
{
367
	struct atmel_spi_device *asd = spi->controller_state;
368
	unsigned active = spi->mode & SPI_CS_HIGH;
369 370
	u32 mr;

371
	if (atmel_spi_is_v2(as)) {
372 373 374
		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
		/* For the low SPI version, there is a issue that PDC transfer
		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
375 376
		 */
		spi_writel(as, CSR0, asd->csr);
377
		if (as->caps.has_wdrbt) {
378 379 380 381 382
			spi_writel(as, MR,
					SPI_BF(PCS, ~(0x01 << spi->chip_select))
					| SPI_BIT(WDRBT)
					| SPI_BIT(MODFDIS)
					| SPI_BIT(MSTR));
383
		} else {
384 385 386 387
			spi_writel(as, MR,
					SPI_BF(PCS, ~(0x01 << spi->chip_select))
					| SPI_BIT(MODFDIS)
					| SPI_BIT(MSTR));
388
		}
389

390
		mr = spi_readl(as, MR);
391 392
		if (as->use_cs_gpios)
			gpio_set_value(asd->npcs_pin, active);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	} else {
		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
		int i;
		u32 csr;

		/* Make sure clock polarity is correct */
		for (i = 0; i < spi->master->num_chipselect; i++) {
			csr = spi_readl(as, CSR0 + 4 * i);
			if ((csr ^ cpol) & SPI_BIT(CPOL))
				spi_writel(as, CSR0 + 4 * i,
						csr ^ SPI_BIT(CPOL));
		}

		mr = spi_readl(as, MR);
		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
408
		if (as->use_cs_gpios && spi->chip_select != 0)
409 410 411
			gpio_set_value(asd->npcs_pin, active);
		spi_writel(as, MR, mr);
	}
412 413

	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
414
			asd->npcs_pin, active ? " (high)" : "",
415
			mr);
416 417
}

418
static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
419
{
420
	struct atmel_spi_device *asd = spi->controller_state;
421
	unsigned active = spi->mode & SPI_CS_HIGH;
422 423 424 425 426 427 428 429 430 431
	u32 mr;

	/* only deactivate *this* device; sometimes transfers to
	 * another device may be active when this routine is called.
	 */
	mr = spi_readl(as, MR);
	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
		mr = SPI_BFINS(PCS, 0xf, mr);
		spi_writel(as, MR, mr);
	}
432

433
	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
434
			asd->npcs_pin, active ? " (low)" : "",
435 436
			mr);

437 438 439
	if (!as->use_cs_gpios)
		spi_writel(as, CR, SPI_BIT(LASTXFER));
	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
440
		gpio_set_value(asd->npcs_pin, !active);
441 442
}

443
static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
444 445 446 447
{
	spin_lock_irqsave(&as->lock, as->flags);
}

448
static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
449 450 451 452
{
	spin_unlock_irqrestore(&as->lock, as->flags);
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
static inline bool atmel_spi_use_dma(struct atmel_spi *as,
				struct spi_transfer *xfer)
{
	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
}

static int atmel_spi_dma_slave_config(struct atmel_spi *as,
				struct dma_slave_config *slave_config,
				u8 bits_per_word)
{
	int err = 0;

	if (bits_per_word > 8) {
		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
	} else {
		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
	}

	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
	slave_config->src_maxburst = 1;
	slave_config->dst_maxburst = 1;
	slave_config->device_fc = false;

479 480 481 482 483 484 485 486 487 488 489 490 491 492
	/*
	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
	 * the Mode Register).
	 * So according to the datasheet, when FIFOs are available (and
	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
	 * In this mode, up to 2 data, not 4, can be written into the Transmit
	 * Data Register in a single access.
	 * However, the first data has to be written into the lowest 16 bits and
	 * the second data into the highest 16 bits of the Transmit
	 * Data Register. For 8bit data (the most frequent case), it would
	 * require to rework tx_buf so each data would actualy fit 16 bits.
	 * So we'd rather write only one data at the time. Hence the transmit
	 * path works the same whether FIFOs are available (and enabled) or not.
	 */
493 494 495 496 497 498 499
	slave_config->direction = DMA_MEM_TO_DEV;
	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
		dev_err(&as->pdev->dev,
			"failed to configure tx dma channel\n");
		err = -EINVAL;
	}

500 501 502 503 504 505 506 507
	/*
	 * This driver configures the spi controller for master mode (MSTR bit
	 * set to '1' in the Mode Register).
	 * So according to the datasheet, when FIFOs are available (and
	 * enabled), the Receive FIFO operates in Single Data Mode.
	 * So the receive path works the same whether FIFOs are available (and
	 * enabled) or not.
	 */
508 509 510 511 512 513 514 515 516 517 518 519 520
	slave_config->direction = DMA_DEV_TO_MEM;
	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
		dev_err(&as->pdev->dev,
			"failed to configure rx dma channel\n");
		err = -EINVAL;
	}

	return err;
}

static int atmel_spi_configure_dma(struct atmel_spi *as)
{
	struct dma_slave_config	slave_config;
521
	struct device *dev = &as->pdev->dev;
522 523
	int err;

524 525 526
	dma_cap_mask_t mask;
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
527

528 529 530 531 532 533 534
	as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
	if (IS_ERR(as->dma.chan_tx)) {
		err = PTR_ERR(as->dma.chan_tx);
		if (err == -EPROBE_DEFER) {
			dev_warn(dev, "no DMA channel available at the moment\n");
			return err;
		}
535 536 537 538
		dev_err(dev,
			"DMA TX channel not available, SPI unable to use DMA\n");
		err = -EBUSY;
		goto error;
539
	}
540

541 542 543 544
	/*
	 * No reason to check EPROBE_DEFER here since we have already requested
	 * tx channel. If it fails here, it's for another reason.
	 */
545
	as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
546 547 548 549

	if (!as->dma.chan_rx) {
		dev_err(dev,
			"DMA RX channel not available, SPI unable to use DMA\n");
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		err = -EBUSY;
		goto error;
	}

	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
	if (err)
		goto error;

	dev_info(&as->pdev->dev,
			"Using %s (tx) and %s (rx) for DMA transfers\n",
			dma_chan_name(as->dma.chan_tx),
			dma_chan_name(as->dma.chan_rx));
	return 0;
error:
	if (as->dma.chan_rx)
		dma_release_channel(as->dma.chan_rx);
566
	if (!IS_ERR(as->dma.chan_tx))
567 568 569 570 571 572 573
		dma_release_channel(as->dma.chan_tx);
	return err;
}

static void atmel_spi_stop_dma(struct atmel_spi *as)
{
	if (as->dma.chan_rx)
574
		dmaengine_terminate_all(as->dma.chan_rx);
575
	if (as->dma.chan_tx)
576
		dmaengine_terminate_all(as->dma.chan_tx);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
}

static void atmel_spi_release_dma(struct atmel_spi *as)
{
	if (as->dma.chan_rx)
		dma_release_channel(as->dma.chan_rx);
	if (as->dma.chan_tx)
		dma_release_channel(as->dma.chan_tx);
}

/* This function is called by the DMA driver from tasklet context */
static void dma_callback(void *data)
{
	struct spi_master	*master = data;
	struct atmel_spi	*as = spi_master_get_devdata(master);

593
	complete(&as->xfer_completion);
594 595 596
}

/*
597
 * Next transfer using PIO without FIFO.
598
 */
599 600
static void atmel_spi_next_xfer_single(struct spi_master *master,
				       struct spi_transfer *xfer)
601 602
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
603
	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
604 605 606 607 608 609 610 611 612 613

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");

	/* Make sure data is not remaining in RDR */
	spi_readl(as, RDR);
	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
		spi_readl(as, RDR);
		cpu_relax();
	}

614
	if (xfer->tx_buf) {
615
		if (xfer->bits_per_word > 8)
616
			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
617
		else
618 619
			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
	} else {
620
		spi_writel(as, TDR, 0);
621
	}
622 623

	dev_dbg(master->dev.parent,
624 625 626
		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
		xfer->bits_per_word);
627 628 629 630 631

	/* Enable relevant interrupts */
	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
/*
 * Next transfer using PIO with FIFO.
 */
static void atmel_spi_next_xfer_fifo(struct spi_master *master,
				     struct spi_transfer *xfer)
{
	struct atmel_spi *as = spi_master_get_devdata(master);
	u32 current_remaining_data, num_data;
	u32 offset = xfer->len - as->current_remaining_bytes;
	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
	u16 td0, td1;
	u32 fifomr;

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");

	/* Compute the number of data to transfer in the current iteration */
	current_remaining_data = ((xfer->bits_per_word > 8) ?
				  ((u32)as->current_remaining_bytes >> 1) :
				  (u32)as->current_remaining_bytes);
	num_data = min(current_remaining_data, as->fifo_size);

	/* Flush RX and TX FIFOs */
	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
	while (spi_readl(as, FLR))
		cpu_relax();

	/* Set RX FIFO Threshold to the number of data to transfer */
	fifomr = spi_readl(as, FMR);
	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));

	/* Clear FIFO flags in the Status Register, especially RXFTHF */
	(void)spi_readl(as, SR);

	/* Fill TX FIFO */
	while (num_data >= 2) {
		if (xfer->tx_buf) {
			if (xfer->bits_per_word > 8) {
				td0 = *words++;
				td1 = *words++;
			} else {
				td0 = *bytes++;
				td1 = *bytes++;
			}
		} else {
			td0 = 0;
			td1 = 0;
		}

		spi_writel(as, TDR, (td1 << 16) | td0);
		num_data -= 2;
	}

	if (num_data) {
		if (xfer->tx_buf) {
			if (xfer->bits_per_word > 8)
				td0 = *words++;
			else
				td0 = *bytes++;
		} else {
			td0 = 0;
		}

		spi_writew(as, TDR, td0);
		num_data--;
	}

	dev_dbg(master->dev.parent,
		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
		xfer->bits_per_word);

	/*
	 * Enable RX FIFO Threshold Flag interrupt to be notified about
	 * transfer completion.
	 */
	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
}

/*
 * Next transfer using PIO.
 */
static void atmel_spi_next_xfer_pio(struct spi_master *master,
				    struct spi_transfer *xfer)
{
	struct atmel_spi *as = spi_master_get_devdata(master);

	if (as->fifo_size)
		atmel_spi_next_xfer_fifo(master, xfer);
	else
		atmel_spi_next_xfer_single(master, xfer);
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
/*
 * Submit next transfer for DMA.
 */
static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
				struct spi_transfer *xfer,
				u32 *plen)
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
	struct dma_chan		*rxchan = as->dma.chan_rx;
	struct dma_chan		*txchan = as->dma.chan_tx;
	struct dma_async_tx_descriptor *rxdesc;
	struct dma_async_tx_descriptor *txdesc;
	struct dma_slave_config	slave_config;
	dma_cookie_t		cookie;
	u32	len = *plen;

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");

	/* Check that the channels are available */
	if (!rxchan || !txchan)
		return -ENODEV;

	/* release lock for DMA operations */
	atmel_spi_unlock(as);

	/* prepare the RX dma transfer */
	sg_init_table(&as->dma.sgrx, 1);
	if (xfer->rx_buf) {
		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
	} else {
		as->dma.sgrx.dma_address = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
	}

	/* prepare the TX dma transfer */
	sg_init_table(&as->dma.sgtx, 1);
	if (xfer->tx_buf) {
		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
	} else {
		as->dma.sgtx.dma_address = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
		memset(as->buffer, 0, len);
	}

	sg_dma_len(&as->dma.sgtx) = len;
	sg_dma_len(&as->dma.sgrx) = len;

	*plen = len;

776 777
	if (atmel_spi_dma_slave_config(as, &slave_config,
				       xfer->bits_per_word))
778 779 780
		goto err_exit;

	/* Send both scatterlists */
781 782 783
	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
					 DMA_FROM_DEVICE,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
784 785 786
	if (!rxdesc)
		goto err_dma;

787 788 789
	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
					 DMA_TO_DEVICE,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
790 791 792 793
	if (!txdesc)
		goto err_dma;

	dev_dbg(master->dev.parent,
794 795 796
		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	/* Enable relevant interrupts */
	spi_writel(as, IER, SPI_BIT(OVRES));

	/* Put the callback on the RX transfer only, that should finish last */
	rxdesc->callback = dma_callback;
	rxdesc->callback_param = master;

	/* Submit and fire RX and TX with TX last so we're ready to read! */
	cookie = rxdesc->tx_submit(rxdesc);
	if (dma_submit_error(cookie))
		goto err_dma;
	cookie = txdesc->tx_submit(txdesc);
	if (dma_submit_error(cookie))
		goto err_dma;
	rxchan->device->device_issue_pending(rxchan);
	txchan->device->device_issue_pending(txchan);

	/* take back lock */
	atmel_spi_lock(as);
	return 0;

err_dma:
	spi_writel(as, IDR, SPI_BIT(OVRES));
	atmel_spi_stop_dma(as);
err_exit:
	atmel_spi_lock(as);
	return -ENOMEM;
}

S
Silvester Erdeg 已提交
827 828 829 830 831 832 833 834 835 836 837
static void atmel_spi_next_xfer_data(struct spi_master *master,
				struct spi_transfer *xfer,
				dma_addr_t *tx_dma,
				dma_addr_t *rx_dma,
				u32 *plen)
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			len = *plen;

	/* use scratch buffer only when rx or tx data is unspecified */
	if (xfer->rx_buf)
838
		*rx_dma = xfer->rx_dma + xfer->len - *plen;
S
Silvester Erdeg 已提交
839 840 841 842 843
	else {
		*rx_dma = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
	}
844

S
Silvester Erdeg 已提交
845
	if (xfer->tx_buf)
846
		*tx_dma = xfer->tx_dma + xfer->len - *plen;
S
Silvester Erdeg 已提交
847 848 849 850 851 852 853 854 855 856 857 858
	else {
		*tx_dma = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
		memset(as->buffer, 0, len);
		dma_sync_single_for_device(&as->pdev->dev,
				as->buffer_dma, len, DMA_TO_DEVICE);
	}

	*plen = len;
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
				    struct spi_device *spi,
				    struct spi_transfer *xfer)
{
	u32			scbr, csr;
	unsigned long		bus_hz;

	/* v1 chips start out at half the peripheral bus speed. */
	bus_hz = clk_get_rate(as->clk);
	if (!atmel_spi_is_v2(as))
		bus_hz /= 2;

	/*
	 * Calculate the lowest divider that satisfies the
	 * constraint, assuming div32/fdiv/mbz == 0.
	 */
875
	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

	/*
	 * If the resulting divider doesn't fit into the
	 * register bitfield, we can't satisfy the constraint.
	 */
	if (scbr >= (1 << SPI_SCBR_SIZE)) {
		dev_err(&spi->dev,
			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
			xfer->speed_hz, scbr, bus_hz/255);
		return -EINVAL;
	}
	if (scbr == 0) {
		dev_err(&spi->dev,
			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
			xfer->speed_hz, scbr, bus_hz);
		return -EINVAL;
	}
	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
	csr = SPI_BFINS(SCBR, scbr, csr);
	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);

	return 0;
}

900
/*
901
 * Submit next transfer for PDC.
902 903
 * lock is held, spi irq is blocked
 */
904
static void atmel_spi_pdc_next_xfer(struct spi_master *master,
905 906
					struct spi_message *msg,
					struct spi_transfer *xfer)
907 908
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
909
	u32			len;
910 911
	dma_addr_t		tx_dma, rx_dma;

912
	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
913

914 915 916
	len = as->current_remaining_bytes;
	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
	as->current_remaining_bytes -= len;
917

918 919
	spi_writel(as, RPR, rx_dma);
	spi_writel(as, TPR, tx_dma);
920

921 922 923 924
	if (msg->spi->bits_per_word > 8)
		len >>= 1;
	spi_writel(as, RCR, len);
	spi_writel(as, TCR, len);
925

926 927 928 929 930
	dev_dbg(&msg->spi->dev,
		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
		xfer, xfer->len, xfer->tx_buf,
		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
		(unsigned long long)xfer->rx_dma);
931

932 933
	if (as->current_remaining_bytes) {
		len = as->current_remaining_bytes;
S
Silvester Erdeg 已提交
934
		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
935
		as->current_remaining_bytes -= len;
936

S
Silvester Erdeg 已提交
937 938
		spi_writel(as, RNPR, rx_dma);
		spi_writel(as, TNPR, tx_dma);
939

S
Silvester Erdeg 已提交
940 941 942 943
		if (msg->spi->bits_per_word > 8)
			len >>= 1;
		spi_writel(as, RNCR, len);
		spi_writel(as, TNCR, len);
944 945

		dev_dbg(&msg->spi->dev,
946 947 948 949
			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
			xfer, xfer->len, xfer->tx_buf,
			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
			(unsigned long long)xfer->rx_dma);
S
Silvester Erdeg 已提交
950 951
	}

952
	/* REVISIT: We're waiting for RXBUFF before we start the next
953
	 * transfer because we need to handle some difficult timing
954 955 956 957
	 * issues otherwise. If we wait for TXBUFE in one transfer and
	 * then starts waiting for RXBUFF in the next, it's difficult
	 * to tell the difference between the RXBUFF interrupt we're
	 * actually waiting for and the RXBUFF interrupt of the
958 959 960 961
	 * previous transfer.
	 *
	 * It should be doable, though. Just not now...
	 */
962
	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
963 964 965
	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
}

D
David Brownell 已提交
966 967 968
/*
 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 *  - The buffer is either valid for CPU access, else NULL
969
 *  - If the buffer is valid, so is its DMA address
D
David Brownell 已提交
970
 *
971
 * This driver manages the dma address unless message->is_dma_mapped.
D
David Brownell 已提交
972 973
 */
static int
974 975
atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
{
D
David Brownell 已提交
976 977
	struct device	*dev = &as->pdev->dev;

978
	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
D
David Brownell 已提交
979
	if (xfer->tx_buf) {
980 981 982 983
		/* tx_buf is a const void* where we need a void * for the dma
		 * mapping */
		void *nonconst_tx = (void *)xfer->tx_buf;

D
David Brownell 已提交
984
		xfer->tx_dma = dma_map_single(dev,
985
				nonconst_tx, xfer->len,
986
				DMA_TO_DEVICE);
987
		if (dma_mapping_error(dev, xfer->tx_dma))
D
David Brownell 已提交
988 989 990 991
			return -ENOMEM;
	}
	if (xfer->rx_buf) {
		xfer->rx_dma = dma_map_single(dev,
992 993
				xfer->rx_buf, xfer->len,
				DMA_FROM_DEVICE);
994
		if (dma_mapping_error(dev, xfer->rx_dma)) {
D
David Brownell 已提交
995 996 997 998 999 1000 1001 1002
			if (xfer->tx_buf)
				dma_unmap_single(dev,
						xfer->tx_dma, xfer->len,
						DMA_TO_DEVICE);
			return -ENOMEM;
		}
	}
	return 0;
1003 1004 1005 1006 1007 1008
}

static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
				     struct spi_transfer *xfer)
{
	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
T
Tony Jones 已提交
1009
		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1010 1011
				 xfer->len, DMA_TO_DEVICE);
	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
T
Tony Jones 已提交
1012
		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1013 1014 1015
				 xfer->len, DMA_FROM_DEVICE);
}

1016 1017 1018 1019 1020 1021
static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
{
	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
}

static void
1022
atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1023 1024
{
	u8		*rxp;
1025
	u16		*rxp16;
1026 1027 1028
	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;

	if (xfer->rx_buf) {
1029 1030 1031 1032 1033 1034 1035
		if (xfer->bits_per_word > 8) {
			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
			*rxp16 = spi_readl(as, RDR);
		} else {
			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
			*rxp = spi_readl(as, RDR);
		}
1036 1037 1038
	} else {
		spi_readl(as, RDR);
	}
1039
	if (xfer->bits_per_word > 8) {
1040 1041 1042
		if (as->current_remaining_bytes > 2)
			as->current_remaining_bytes -= 2;
		else
1043 1044 1045 1046
			as->current_remaining_bytes = 0;
	} else {
		as->current_remaining_bytes--;
	}
1047 1048
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
static void
atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
	u32 fifolr = spi_readl(as, FLR);
	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
	u32 offset = xfer->len - as->current_remaining_bytes;
	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
	u16 rd; /* RD field is the lowest 16 bits of RDR */

	/* Update the number of remaining bytes to transfer */
	num_bytes = ((xfer->bits_per_word > 8) ?
		     (num_data << 1) :
		     num_data);

	if (as->current_remaining_bytes > num_bytes)
		as->current_remaining_bytes -= num_bytes;
	else
		as->current_remaining_bytes = 0;

	/* Handle odd number of bytes when data are more than 8bit width */
	if (xfer->bits_per_word > 8)
		as->current_remaining_bytes &= ~0x1;

	/* Read data */
	while (num_data) {
		rd = spi_readl(as, RDR);
		if (xfer->rx_buf) {
			if (xfer->bits_per_word > 8)
				*words++ = rd;
			else
				*bytes++ = rd;
		}
		num_data--;
	}
}

/* Called from IRQ
 *
 * Must update "current_remaining_bytes" to keep track of data
 * to transfer.
 */
static void
atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
	if (as->fifo_size)
		atmel_spi_pump_fifo_data(as, xfer);
	else
		atmel_spi_pump_single_data(as, xfer);
}

1100 1101 1102
/* Interrupt
 *
 * No need for locking in this Interrupt handler: done_status is the
1103
 * only information modified.
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
 */
static irqreturn_t
atmel_spi_pio_interrupt(int irq, void *dev_id)
{
	struct spi_master	*master = dev_id;
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			status, pending, imr;
	struct spi_transfer	*xfer;
	int			ret = IRQ_NONE;

	imr = spi_readl(as, IMR);
	status = spi_readl(as, SR);
	pending = status & imr;

	if (pending & SPI_BIT(OVRES)) {
		ret = IRQ_HANDLED;
		spi_writel(as, IDR, SPI_BIT(OVRES));
		dev_warn(master->dev.parent, "overrun\n");

		/*
		 * When we get an overrun, we disregard the current
		 * transfer. Data will not be copied back from any
		 * bounce buffer and msg->actual_len will not be
		 * updated with the last xfer.
		 *
		 * We will also not process any remaning transfers in
		 * the message.
		 */
		as->done_status = -EIO;
		smp_wmb();

		/* Clear any overrun happening while cleaning up */
		spi_readl(as, SR);

1138
		complete(&as->xfer_completion);
1139

1140
	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1141 1142 1143 1144 1145 1146
		atmel_spi_lock(as);

		if (as->current_remaining_bytes) {
			ret = IRQ_HANDLED;
			xfer = as->current_transfer;
			atmel_spi_pump_pio_data(as, xfer);
1147
			if (!as->current_remaining_bytes)
1148
				spi_writel(as, IDR, pending);
1149 1150

			complete(&as->xfer_completion);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		}

		atmel_spi_unlock(as);
	} else {
		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
		ret = IRQ_HANDLED;
		spi_writel(as, IDR, pending);
	}

	return ret;
1161 1162 1163
}

static irqreturn_t
1164
atmel_spi_pdc_interrupt(int irq, void *dev_id)
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
{
	struct spi_master	*master = dev_id;
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			status, pending, imr;
	int			ret = IRQ_NONE;

	imr = spi_readl(as, IMR);
	status = spi_readl(as, SR);
	pending = status & imr;

	if (pending & SPI_BIT(OVRES)) {

		ret = IRQ_HANDLED;

1179
		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1180 1181 1182 1183 1184
				     | SPI_BIT(OVRES)));

		/* Clear any overrun happening while cleaning up */
		spi_readl(as, SR);

1185
		as->done_status = -EIO;
1186 1187 1188

		complete(&as->xfer_completion);

1189
	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1190 1191 1192 1193
		ret = IRQ_HANDLED;

		spi_writel(as, IDR, pending);

1194
		complete(&as->xfer_completion);
1195 1196 1197 1198 1199 1200 1201 1202
	}

	return ret;
}

static int atmel_spi_setup(struct spi_device *spi)
{
	struct atmel_spi	*as;
1203
	struct atmel_spi_device	*asd;
1204
	u32			csr;
1205 1206 1207 1208 1209 1210
	unsigned int		bits = spi->bits_per_word;
	unsigned int		npcs_pin;
	int			ret;

	as = spi_master_get_devdata(spi->master);

1211
	/* see notes above re chipselect */
1212
	if (!atmel_spi_is_v2(as)
1213 1214 1215 1216 1217 1218
			&& spi->chip_select == 0
			&& (spi->mode & SPI_CS_HIGH)) {
		dev_dbg(&spi->dev, "setup: can't be active-high\n");
		return -EINVAL;
	}

1219
	csr = SPI_BF(BITS, bits - 8);
1220 1221 1222 1223
	if (spi->mode & SPI_CPOL)
		csr |= SPI_BIT(CPOL);
	if (!(spi->mode & SPI_CPHA))
		csr |= SPI_BIT(NCPHA);
1224 1225
	if (!as->use_cs_gpios)
		csr |= SPI_BIT(CSAAT);
1226

1227 1228 1229 1230 1231 1232 1233 1234
	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
	 *
	 * DLYBCT would add delays between words, slowing down transfers.
	 * It could potentially be useful to cope with DMA bottlenecks, but
	 * in those cases it's probably best to just use a lower bitrate.
	 */
	csr |= SPI_BF(DLYBS, 0);
	csr |= SPI_BF(DLYBCT, 0);
1235 1236

	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1237
	npcs_pin = (unsigned long)spi->controller_data;
1238

1239 1240 1241
	if (!as->use_cs_gpios)
		npcs_pin = spi->chip_select;
	else if (gpio_is_valid(spi->cs_gpio))
1242 1243
		npcs_pin = spi->cs_gpio;

1244 1245 1246 1247 1248 1249
	asd = spi->controller_state;
	if (!asd) {
		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
		if (!asd)
			return -ENOMEM;

1250 1251 1252 1253 1254 1255 1256 1257 1258
		if (as->use_cs_gpios) {
			ret = gpio_request(npcs_pin, dev_name(&spi->dev));
			if (ret) {
				kfree(asd);
				return ret;
			}

			gpio_direction_output(npcs_pin,
					      !(spi->mode & SPI_CS_HIGH));
1259 1260 1261 1262
		}

		asd->npcs_pin = npcs_pin;
		spi->controller_state = asd;
1263 1264
	}

1265 1266
	asd->csr = csr;

1267
	dev_dbg(&spi->dev,
1268 1269
		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
		bits, spi->mode, spi->chip_select, csr);
1270

1271
	if (!atmel_spi_is_v2(as))
1272
		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1273 1274 1275 1276

	return 0;
}

1277 1278 1279
static int atmel_spi_one_transfer(struct spi_master *master,
					struct spi_message *msg,
					struct spi_transfer *xfer)
1280 1281
{
	struct atmel_spi	*as;
1282
	struct spi_device	*spi = msg->spi;
1283
	u8			bits;
1284
	u32			len;
1285
	struct atmel_spi_device	*asd;
1286 1287
	int			timeout;
	int			ret;
1288
	unsigned long		dma_timeout;
1289

1290
	as = spi_master_get_devdata(master);
1291

1292 1293
	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1294
		return -EINVAL;
1295
	}
1296

1297 1298 1299 1300
	asd = spi->controller_state;
	bits = (asd->csr >> 4) & 0xf;
	if (bits != xfer->bits_per_word - 8) {
		dev_dbg(&spi->dev,
1301
			"you can't yet change bits_per_word in transfers\n");
1302
		return -ENOPROTOOPT;
1303
	}
1304

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	/*
	 * DMA map early, for performance (empties dcache ASAP) and
	 * better fault reporting.
	 */
	if ((!msg->is_dma_mapped)
		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
			return -ENOMEM;
	}

	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	as->done_status = 0;
	as->current_transfer = xfer;
	as->current_remaining_bytes = xfer->len;
	while (as->current_remaining_bytes) {
		reinit_completion(&as->xfer_completion);

		if (as->use_pdc) {
			atmel_spi_pdc_next_xfer(master, msg, xfer);
		} else if (atmel_spi_use_dma(as, xfer)) {
			len = as->current_remaining_bytes;
			ret = atmel_spi_next_xfer_dma_submit(master,
								xfer, &len);
			if (ret) {
				dev_err(&spi->dev,
					"unable to use DMA, fallback to PIO\n");
				atmel_spi_next_xfer_pio(master, xfer);
			} else {
				as->current_remaining_bytes -= len;
1335 1336
				if (as->current_remaining_bytes < 0)
					as->current_remaining_bytes = 0;
1337
			}
1338 1339
		} else {
			atmel_spi_next_xfer_pio(master, xfer);
1340 1341
		}

1342 1343
		/* interrupts are disabled, so free the lock for schedule */
		atmel_spi_unlock(as);
1344 1345
		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
							  SPI_DMA_TIMEOUT);
1346
		atmel_spi_lock(as);
1347 1348
		if (WARN_ON(dma_timeout == 0)) {
			dev_err(&spi->dev, "spi transfer timeout\n");
1349
			as->done_status = -EIO;
1350 1351
		}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		if (as->done_status)
			break;
	}

	if (as->done_status) {
		if (as->use_pdc) {
			dev_warn(master->dev.parent,
				"overrun (%u/%u remaining)\n",
				spi_readl(as, TCR), spi_readl(as, RCR));

			/*
			 * Clean up DMA registers and make sure the data
			 * registers are empty.
			 */
			spi_writel(as, RNCR, 0);
			spi_writel(as, TNCR, 0);
			spi_writel(as, RCR, 0);
			spi_writel(as, TCR, 0);
			for (timeout = 1000; timeout; timeout--)
				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
					break;
			if (!timeout)
				dev_warn(master->dev.parent,
					 "timeout waiting for TXEMPTY");
			while (spi_readl(as, SR) & SPI_BIT(RDRF))
				spi_readl(as, RDR);

			/* Clear any overrun happening while cleaning up */
			spi_readl(as, SR);

		} else if (atmel_spi_use_dma(as, xfer)) {
			atmel_spi_stop_dma(as);
		}

		if (!msg->is_dma_mapped
			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
			atmel_spi_dma_unmap_xfer(master, xfer);

		return 0;

	} else {
		/* only update length if no error */
		msg->actual_length += xfer->len;
	}

	if (!msg->is_dma_mapped
		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
		atmel_spi_dma_unmap_xfer(master, xfer);

	if (xfer->delay_usecs)
		udelay(xfer->delay_usecs);

	if (xfer->cs_change) {
		if (list_is_last(&xfer->transfer_list,
				 &msg->transfers)) {
			as->keep_cs = true;
		} else {
			as->cs_active = !as->cs_active;
			if (as->cs_active)
				cs_activate(as, msg->spi);
			else
				cs_deactivate(as, msg->spi);
D
David Brownell 已提交
1414
		}
1415 1416
	}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	return 0;
}

static int atmel_spi_transfer_one_message(struct spi_master *master,
						struct spi_message *msg)
{
	struct atmel_spi *as;
	struct spi_transfer *xfer;
	struct spi_device *spi = msg->spi;
	int ret = 0;

	as = spi_master_get_devdata(master);

	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
					msg, dev_name(&spi->dev));

	atmel_spi_lock(as);
	cs_activate(as, spi);

	as->cs_active = true;
	as->keep_cs = false;

	msg->status = 0;
	msg->actual_length = 0;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		ret = atmel_spi_one_transfer(master, msg, xfer);
		if (ret)
			goto msg_done;
	}

	if (as->use_pdc)
		atmel_spi_disable_pdc_transfer(as);

1451
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1452
		dev_dbg(&spi->dev,
1453
			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1454
			xfer, xfer->len,
1455 1456
			xfer->tx_buf, &xfer->tx_dma,
			xfer->rx_buf, &xfer->rx_dma);
1457 1458
	}

1459 1460 1461
msg_done:
	if (!as->keep_cs)
		cs_deactivate(as, msg->spi);
1462

1463
	atmel_spi_unlock(as);
1464

1465 1466 1467 1468
	msg->status = as->done_status;
	spi_finalize_current_message(spi->master);

	return ret;
1469 1470
}

1471
static void atmel_spi_cleanup(struct spi_device *spi)
1472
{
1473
	struct atmel_spi_device	*asd = spi->controller_state;
1474
	unsigned		gpio = (unsigned long) spi->controller_data;
1475

1476
	if (!asd)
1477 1478
		return;

1479
	spi->controller_state = NULL;
1480
	gpio_free(gpio);
1481
	kfree(asd);
1482 1483
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static inline unsigned int atmel_get_version(struct atmel_spi *as)
{
	return spi_readl(as, VERSION) & 0x00000fff;
}

static void atmel_get_caps(struct atmel_spi *as)
{
	unsigned int version;

	version = atmel_get_version(as);
	dev_info(&as->pdev->dev, "version: 0x%x\n", version);

	as->caps.is_spi2 = version > 0x121;
	as->caps.has_wdrbt = version >= 0x210;
	as->caps.has_dma_support = version >= 0x212;
}

1501 1502
/*-------------------------------------------------------------------------*/

1503
static int atmel_spi_probe(struct platform_device *pdev)
1504 1505 1506 1507 1508 1509 1510 1511
{
	struct resource		*regs;
	int			irq;
	struct clk		*clk;
	int			ret;
	struct spi_master	*master;
	struct atmel_spi	*as;

W
Wenyou Yang 已提交
1512 1513 1514
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

1515 1516 1517 1518 1519 1520 1521 1522
	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!regs)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

J
Jingoo Han 已提交
1523
	clk = devm_clk_get(&pdev->dev, "spi_clk");
1524 1525 1526 1527 1528
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	/* setup spi core then atmel-specific driver state */
	ret = -ENOMEM;
1529
	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1530 1531 1532
	if (!master)
		goto out_free;

1533 1534
	/* the spi->mode bits understood by this driver: */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1535
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1536
	master->dev.of_node = pdev->dev.of_node;
1537
	master->bus_num = pdev->id;
1538
	master->num_chipselect = master->dev.of_node ? 0 : 4;
1539
	master->setup = atmel_spi_setup;
1540
	master->transfer_one_message = atmel_spi_transfer_one_message;
1541
	master->cleanup = atmel_spi_cleanup;
1542
	master->auto_runtime_pm = true;
1543 1544 1545 1546
	platform_set_drvdata(pdev, master);

	as = spi_master_get_devdata(master);

D
David Brownell 已提交
1547 1548 1549 1550
	/*
	 * Scratch buffer is used for throwaway rx and tx data.
	 * It's coherent to minimize dcache pollution.
	 */
1551 1552 1553 1554 1555 1556
	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
					&as->buffer_dma, GFP_KERNEL);
	if (!as->buffer)
		goto out_free;

	spin_lock_init(&as->lock);
1557

1558
	as->pdev = pdev;
1559
	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1560 1561
	if (IS_ERR(as->regs)) {
		ret = PTR_ERR(as->regs);
1562
		goto out_free_buffer;
1563
	}
1564
	as->phybase = regs->start;
1565 1566 1567
	as->irq = irq;
	as->clk = clk;

1568 1569
	init_completion(&as->xfer_completion);

1570 1571
	atmel_get_caps(as);

1572 1573 1574 1575 1576 1577 1578
	as->use_cs_gpios = true;
	if (atmel_spi_is_v2(as) &&
	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
		as->use_cs_gpios = false;
		master->num_chipselect = 4;
	}

1579 1580 1581
	as->use_dma = false;
	as->use_pdc = false;
	if (as->caps.has_dma_support) {
1582 1583
		ret = atmel_spi_configure_dma(as);
		if (ret == 0)
1584
			as->use_dma = true;
1585 1586
		else if (ret == -EPROBE_DEFER)
			return ret;
1587 1588 1589 1590 1591 1592 1593 1594
	} else {
		as->use_pdc = true;
	}

	if (as->caps.has_dma_support && !as->use_dma)
		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");

	if (as->use_pdc) {
J
Jingoo Han 已提交
1595 1596
		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
					0, dev_name(&pdev->dev), master);
1597
	} else {
J
Jingoo Han 已提交
1598 1599
		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
					0, dev_name(&pdev->dev), master);
1600
	}
1601 1602 1603 1604
	if (ret)
		goto out_unmap_regs;

	/* Initialize the hardware */
1605 1606
	ret = clk_prepare_enable(clk);
	if (ret)
1607
		goto out_free_irq;
1608
	spi_writel(as, CR, SPI_BIT(SWRST));
1609
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1610 1611 1612 1613 1614 1615
	if (as->caps.has_wdrbt) {
		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
				| SPI_BIT(MSTR));
	} else {
		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
	}
1616 1617 1618

	if (as->use_pdc)
		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1619 1620
	spi_writel(as, CR, SPI_BIT(SPIEN));

1621 1622 1623 1624 1625 1626 1627
	as->fifo_size = 0;
	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
				  &as->fifo_size)) {
		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
		spi_writel(as, CR, SPI_BIT(FIFOEN));
	}

1628 1629 1630 1631
	/* go! */
	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
			(unsigned long)regs->start, irq);

1632 1633 1634 1635 1636
	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
	pm_runtime_use_autosuspend(&pdev->dev);
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

J
Jingoo Han 已提交
1637
	ret = devm_spi_register_master(&pdev->dev, master);
1638
	if (ret)
1639
		goto out_free_dma;
1640 1641 1642

	return 0;

1643
out_free_dma:
1644 1645 1646
	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);

1647 1648 1649
	if (as->use_dma)
		atmel_spi_release_dma(as);

1650
	spi_writel(as, CR, SPI_BIT(SWRST));
1651
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1652
	clk_disable_unprepare(clk);
1653
out_free_irq:
1654 1655 1656 1657 1658 1659 1660 1661 1662
out_unmap_regs:
out_free_buffer:
	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
			as->buffer_dma);
out_free:
	spi_master_put(master);
	return ret;
}

1663
static int atmel_spi_remove(struct platform_device *pdev)
1664 1665 1666 1667
{
	struct spi_master	*master = platform_get_drvdata(pdev);
	struct atmel_spi	*as = spi_master_get_devdata(master);

1668 1669
	pm_runtime_get_sync(&pdev->dev);

1670 1671
	/* reset the hardware and block queue progress */
	spin_lock_irq(&as->lock);
1672 1673 1674 1675 1676
	if (as->use_dma) {
		atmel_spi_stop_dma(as);
		atmel_spi_release_dma(as);
	}

1677
	spi_writel(as, CR, SPI_BIT(SWRST));
1678
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1679 1680 1681 1682 1683 1684
	spi_readl(as, SR);
	spin_unlock_irq(&as->lock);

	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
			as->buffer_dma);

1685
	clk_disable_unprepare(as->clk);
1686

1687 1688 1689
	pm_runtime_put_noidle(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

1690 1691 1692
	return 0;
}

1693
#ifdef CONFIG_PM
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
static int atmel_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct atmel_spi *as = spi_master_get_devdata(master);

	clk_disable_unprepare(as->clk);
	pinctrl_pm_select_sleep_state(dev);

	return 0;
}

static int atmel_spi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct atmel_spi *as = spi_master_get_devdata(master);

	pinctrl_pm_select_default_state(dev);

	return clk_prepare_enable(as->clk);
}

1715
#ifdef CONFIG_PM_SLEEP
1716
static int atmel_spi_suspend(struct device *dev)
1717
{
1718
	struct spi_master *master = dev_get_drvdata(dev);
1719 1720 1721 1722 1723 1724 1725 1726
	int ret;

	/* Stop the queue running */
	ret = spi_master_suspend(master);
	if (ret) {
		dev_warn(dev, "cannot suspend master\n");
		return ret;
	}
1727

1728 1729
	if (!pm_runtime_suspended(dev))
		atmel_spi_runtime_suspend(dev);
W
Wenyou Yang 已提交
1730

1731 1732 1733
	return 0;
}

1734
static int atmel_spi_resume(struct device *dev)
1735
{
1736
	struct spi_master *master = dev_get_drvdata(dev);
1737
	int ret;
1738

1739
	if (!pm_runtime_suspended(dev)) {
1740
		ret = atmel_spi_runtime_resume(dev);
1741 1742 1743
		if (ret)
			return ret;
	}
1744 1745 1746 1747 1748 1749 1750

	/* Start the queue running */
	ret = spi_master_resume(master);
	if (ret)
		dev_err(dev, "problem starting queue (%d)\n", ret);

	return ret;
1751
}
1752
#endif
1753 1754 1755 1756 1757 1758

static const struct dev_pm_ops atmel_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
			   atmel_spi_runtime_resume, NULL)
};
1759
#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1760
#else
1761
#define ATMEL_SPI_PM_OPS	NULL
1762 1763
#endif

1764 1765 1766 1767 1768 1769 1770 1771
#if defined(CONFIG_OF)
static const struct of_device_id atmel_spi_dt_ids[] = {
	{ .compatible = "atmel,at91rm9200-spi" },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
#endif
1772 1773 1774 1775

static struct platform_driver atmel_spi_driver = {
	.driver		= {
		.name	= "atmel_spi",
1776
		.pm	= ATMEL_SPI_PM_OPS,
1777
		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1778
	},
1779
	.probe		= atmel_spi_probe,
1780
	.remove		= atmel_spi_remove,
1781
};
1782
module_platform_driver(atmel_spi_driver);
1783 1784

MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
J
Jean Delvare 已提交
1785
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1786
MODULE_LICENSE("GPL");
1787
MODULE_ALIAS("platform:atmel_spi");