spi-atmel.c 45.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Driver for Atmel AT32 and AT91 SPI Controllers
 *
 * Copyright (C) 2006 Atmel Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
17
#include <linux/dmaengine.h>
18 19 20
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/spi/spi.h>
21
#include <linux/slab.h>
22
#include <linux/platform_data/atmel.h>
23
#include <linux/platform_data/dma-atmel.h>
24
#include <linux/of.h>
25

26 27
#include <linux/io.h>
#include <linux/gpio.h>
W
Wenyou Yang 已提交
28
#include <linux/pinctrl/consumer.h>
29
#include <linux/pm_runtime.h>
30

G
Grant Likely 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
/* SPI register offsets */
#define SPI_CR					0x0000
#define SPI_MR					0x0004
#define SPI_RDR					0x0008
#define SPI_TDR					0x000c
#define SPI_SR					0x0010
#define SPI_IER					0x0014
#define SPI_IDR					0x0018
#define SPI_IMR					0x001c
#define SPI_CSR0				0x0030
#define SPI_CSR1				0x0034
#define SPI_CSR2				0x0038
#define SPI_CSR3				0x003c
44 45
#define SPI_FMR					0x0040
#define SPI_FLR					0x0044
46
#define SPI_VERSION				0x00fc
G
Grant Likely 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#define SPI_RPR					0x0100
#define SPI_RCR					0x0104
#define SPI_TPR					0x0108
#define SPI_TCR					0x010c
#define SPI_RNPR				0x0110
#define SPI_RNCR				0x0114
#define SPI_TNPR				0x0118
#define SPI_TNCR				0x011c
#define SPI_PTCR				0x0120
#define SPI_PTSR				0x0124

/* Bitfields in CR */
#define SPI_SPIEN_OFFSET			0
#define SPI_SPIEN_SIZE				1
#define SPI_SPIDIS_OFFSET			1
#define SPI_SPIDIS_SIZE				1
#define SPI_SWRST_OFFSET			7
#define SPI_SWRST_SIZE				1
#define SPI_LASTXFER_OFFSET			24
#define SPI_LASTXFER_SIZE			1
67 68 69 70 71 72 73 74
#define SPI_TXFCLR_OFFSET			16
#define SPI_TXFCLR_SIZE				1
#define SPI_RXFCLR_OFFSET			17
#define SPI_RXFCLR_SIZE				1
#define SPI_FIFOEN_OFFSET			30
#define SPI_FIFOEN_SIZE				1
#define SPI_FIFODIS_OFFSET			31
#define SPI_FIFODIS_SIZE			1
G
Grant Likely 已提交
75 76 77 78 79 80 81 82 83 84 85 86

/* Bitfields in MR */
#define SPI_MSTR_OFFSET				0
#define SPI_MSTR_SIZE				1
#define SPI_PS_OFFSET				1
#define SPI_PS_SIZE				1
#define SPI_PCSDEC_OFFSET			2
#define SPI_PCSDEC_SIZE				1
#define SPI_FDIV_OFFSET				3
#define SPI_FDIV_SIZE				1
#define SPI_MODFDIS_OFFSET			4
#define SPI_MODFDIS_SIZE			1
87 88
#define SPI_WDRBT_OFFSET			5
#define SPI_WDRBT_SIZE				1
G
Grant Likely 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
#define SPI_LLB_OFFSET				7
#define SPI_LLB_SIZE				1
#define SPI_PCS_OFFSET				16
#define SPI_PCS_SIZE				4
#define SPI_DLYBCS_OFFSET			24
#define SPI_DLYBCS_SIZE				8

/* Bitfields in RDR */
#define SPI_RD_OFFSET				0
#define SPI_RD_SIZE				16

/* Bitfields in TDR */
#define SPI_TD_OFFSET				0
#define SPI_TD_SIZE				16

/* Bitfields in SR */
#define SPI_RDRF_OFFSET				0
#define SPI_RDRF_SIZE				1
#define SPI_TDRE_OFFSET				1
#define SPI_TDRE_SIZE				1
#define SPI_MODF_OFFSET				2
#define SPI_MODF_SIZE				1
#define SPI_OVRES_OFFSET			3
#define SPI_OVRES_SIZE				1
#define SPI_ENDRX_OFFSET			4
#define SPI_ENDRX_SIZE				1
#define SPI_ENDTX_OFFSET			5
#define SPI_ENDTX_SIZE				1
#define SPI_RXBUFF_OFFSET			6
#define SPI_RXBUFF_SIZE				1
#define SPI_TXBUFE_OFFSET			7
#define SPI_TXBUFE_SIZE				1
#define SPI_NSSR_OFFSET				8
#define SPI_NSSR_SIZE				1
#define SPI_TXEMPTY_OFFSET			9
#define SPI_TXEMPTY_SIZE			1
#define SPI_SPIENS_OFFSET			16
#define SPI_SPIENS_SIZE				1
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
#define SPI_TXFEF_OFFSET			24
#define SPI_TXFEF_SIZE				1
#define SPI_TXFFF_OFFSET			25
#define SPI_TXFFF_SIZE				1
#define SPI_TXFTHF_OFFSET			26
#define SPI_TXFTHF_SIZE				1
#define SPI_RXFEF_OFFSET			27
#define SPI_RXFEF_SIZE				1
#define SPI_RXFFF_OFFSET			28
#define SPI_RXFFF_SIZE				1
#define SPI_RXFTHF_OFFSET			29
#define SPI_RXFTHF_SIZE				1
#define SPI_TXFPTEF_OFFSET			30
#define SPI_TXFPTEF_SIZE			1
#define SPI_RXFPTEF_OFFSET			31
#define SPI_RXFPTEF_SIZE			1
G
Grant Likely 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

/* Bitfields in CSR0 */
#define SPI_CPOL_OFFSET				0
#define SPI_CPOL_SIZE				1
#define SPI_NCPHA_OFFSET			1
#define SPI_NCPHA_SIZE				1
#define SPI_CSAAT_OFFSET			3
#define SPI_CSAAT_SIZE				1
#define SPI_BITS_OFFSET				4
#define SPI_BITS_SIZE				4
#define SPI_SCBR_OFFSET				8
#define SPI_SCBR_SIZE				8
#define SPI_DLYBS_OFFSET			16
#define SPI_DLYBS_SIZE				8
#define SPI_DLYBCT_OFFSET			24
#define SPI_DLYBCT_SIZE				8

/* Bitfields in RCR */
#define SPI_RXCTR_OFFSET			0
#define SPI_RXCTR_SIZE				16

/* Bitfields in TCR */
#define SPI_TXCTR_OFFSET			0
#define SPI_TXCTR_SIZE				16

/* Bitfields in RNCR */
#define SPI_RXNCR_OFFSET			0
#define SPI_RXNCR_SIZE				16

/* Bitfields in TNCR */
#define SPI_TXNCR_OFFSET			0
#define SPI_TXNCR_SIZE				16

/* Bitfields in PTCR */
#define SPI_RXTEN_OFFSET			0
#define SPI_RXTEN_SIZE				1
#define SPI_RXTDIS_OFFSET			1
#define SPI_RXTDIS_SIZE				1
#define SPI_TXTEN_OFFSET			8
#define SPI_TXTEN_SIZE				1
#define SPI_TXTDIS_OFFSET			9
#define SPI_TXTDIS_SIZE				1

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/* Bitfields in FMR */
#define SPI_TXRDYM_OFFSET			0
#define SPI_TXRDYM_SIZE				2
#define SPI_RXRDYM_OFFSET			4
#define SPI_RXRDYM_SIZE				2
#define SPI_TXFTHRES_OFFSET			16
#define SPI_TXFTHRES_SIZE			6
#define SPI_RXFTHRES_OFFSET			24
#define SPI_RXFTHRES_SIZE			6

/* Bitfields in FLR */
#define SPI_TXFL_OFFSET				0
#define SPI_TXFL_SIZE				6
#define SPI_RXFL_OFFSET				16
#define SPI_RXFL_SIZE				6

G
Grant Likely 已提交
202 203 204 205 206 207 208 209 210 211
/* Constants for BITS */
#define SPI_BITS_8_BPT				0
#define SPI_BITS_9_BPT				1
#define SPI_BITS_10_BPT				2
#define SPI_BITS_11_BPT				3
#define SPI_BITS_12_BPT				4
#define SPI_BITS_13_BPT				5
#define SPI_BITS_14_BPT				6
#define SPI_BITS_15_BPT				7
#define SPI_BITS_16_BPT				8
212 213 214
#define SPI_ONE_DATA				0
#define SPI_TWO_DATA				1
#define SPI_FOUR_DATA				2
G
Grant Likely 已提交
215 216 217 218

/* Bit manipulation macros */
#define SPI_BIT(name) \
	(1 << SPI_##name##_OFFSET)
219
#define SPI_BF(name, value) \
G
Grant Likely 已提交
220
	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
221
#define SPI_BFEXT(name, value) \
G
Grant Likely 已提交
222
	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
223 224 225
#define SPI_BFINS(name, value, old) \
	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
	  | SPI_BF(name, value))
G
Grant Likely 已提交
226 227

/* Register access macros */
B
Ben Dooks 已提交
228
#ifdef CONFIG_AVR32
229
#define spi_readl(port, reg) \
G
Grant Likely 已提交
230
	__raw_readl((port)->regs + SPI_##reg)
231
#define spi_writel(port, reg, value) \
G
Grant Likely 已提交
232
	__raw_writel((value), (port)->regs + SPI_##reg)
233 234 235 236 237 238 239 240 241 242

#define spi_readw(port, reg) \
	__raw_readw((port)->regs + SPI_##reg)
#define spi_writew(port, reg, value) \
	__raw_writew((value), (port)->regs + SPI_##reg)

#define spi_readb(port, reg) \
	__raw_readb((port)->regs + SPI_##reg)
#define spi_writeb(port, reg, value) \
	__raw_writeb((value), (port)->regs + SPI_##reg)
B
Ben Dooks 已提交
243 244 245 246 247
#else
#define spi_readl(port, reg) \
	readl_relaxed((port)->regs + SPI_##reg)
#define spi_writel(port, reg, value) \
	writel_relaxed((value), (port)->regs + SPI_##reg)
248 249 250 251 252 253 254 255 256 257

#define spi_readw(port, reg) \
	readw_relaxed((port)->regs + SPI_##reg)
#define spi_writew(port, reg, value) \
	writew_relaxed((value), (port)->regs + SPI_##reg)

#define spi_readb(port, reg) \
	readb_relaxed((port)->regs + SPI_##reg)
#define spi_writeb(port, reg, value) \
	writeb_relaxed((value), (port)->regs + SPI_##reg)
B
Ben Dooks 已提交
258
#endif
259 260 261 262 263
/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 * cache operations; better heuristics consider wordsize and bitrate.
 */
#define DMA_MIN_BYTES	16

264 265
#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))

266 267
#define AUTOSUSPEND_TIMEOUT	2000

268 269 270 271 272 273 274 275 276 277 278
struct atmel_spi_dma {
	struct dma_chan			*chan_rx;
	struct dma_chan			*chan_tx;
	struct scatterlist		sgrx;
	struct scatterlist		sgtx;
	struct dma_async_tx_descriptor	*data_desc_rx;
	struct dma_async_tx_descriptor	*data_desc_tx;

	struct at_dma_slave	dma_slave;
};

279 280 281 282 283
struct atmel_spi_caps {
	bool	is_spi2;
	bool	has_wdrbt;
	bool	has_dma_support;
};
284 285 286 287 288 289 290 291

/*
 * The core SPI transfer engine just talks to a register bank to set up
 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 * framework provides the base clock, subdivided for each spi_device.
 */
struct atmel_spi {
	spinlock_t		lock;
292
	unsigned long		flags;
293

294
	phys_addr_t		phybase;
295 296 297 298 299 300
	void __iomem		*regs;
	int			irq;
	struct clk		*clk;
	struct platform_device	*pdev;

	struct spi_transfer	*current_transfer;
301
	int			current_remaining_bytes;
302
	int			done_status;
303

304 305
	struct completion	xfer_completion;

306
	/* scratch buffer */
307 308
	void			*buffer;
	dma_addr_t		buffer_dma;
309 310

	struct atmel_spi_caps	caps;
311 312 313

	bool			use_dma;
	bool			use_pdc;
314
	bool			use_cs_gpios;
315 316
	/* dmaengine data */
	struct atmel_spi_dma	dma;
317 318 319

	bool			keep_cs;
	bool			cs_active;
320 321

	u32			fifo_size;
322 323
};

324 325 326 327 328 329
/* Controller-specific per-slave state */
struct atmel_spi_device {
	unsigned int		npcs_pin;
	u32			csr;
};

330 331 332
#define BUFFER_SIZE		PAGE_SIZE
#define INVALID_DMA_ADDRESS	0xffffffff

333 334 335 336 337 338 339 340
/*
 * Version 2 of the SPI controller has
 *  - CR.LASTXFER
 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 *  - SPI_CSRx.CSAAT
 *  - SPI_CSRx.SBCR allows faster clocking
 */
341
static bool atmel_spi_is_v2(struct atmel_spi *as)
342
{
343
	return as->caps.is_spi2;
344 345
}

346 347 348
/*
 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 * they assume that spi slave device state will not change on deselect, so
349 350 351
 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 * controllers have CSAAT and friends.
352
 *
353 354 355 356 357 358 359 360 361 362 363
 * Since the CSAAT functionality is a bit weird on newer controllers as
 * well, we use GPIO to control nCSx pins on all controllers, updating
 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 * support active-high chipselects despite the controller's belief that
 * only active-low devices/systems exists.
 *
 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 * Master on Chip Select 0.")  No workaround exists for that ... so for
 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 * and (c) will trigger that first erratum in some cases.
364 365
 */

366
static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
367
{
368
	struct atmel_spi_device *asd = spi->controller_state;
369
	unsigned active = spi->mode & SPI_CS_HIGH;
370 371
	u32 mr;

372
	if (atmel_spi_is_v2(as)) {
373 374 375
		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
		/* For the low SPI version, there is a issue that PDC transfer
		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
376 377
		 */
		spi_writel(as, CSR0, asd->csr);
378
		if (as->caps.has_wdrbt) {
379 380 381 382 383
			spi_writel(as, MR,
					SPI_BF(PCS, ~(0x01 << spi->chip_select))
					| SPI_BIT(WDRBT)
					| SPI_BIT(MODFDIS)
					| SPI_BIT(MSTR));
384
		} else {
385 386 387 388
			spi_writel(as, MR,
					SPI_BF(PCS, ~(0x01 << spi->chip_select))
					| SPI_BIT(MODFDIS)
					| SPI_BIT(MSTR));
389
		}
390

391
		mr = spi_readl(as, MR);
392 393
		if (as->use_cs_gpios)
			gpio_set_value(asd->npcs_pin, active);
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	} else {
		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
		int i;
		u32 csr;

		/* Make sure clock polarity is correct */
		for (i = 0; i < spi->master->num_chipselect; i++) {
			csr = spi_readl(as, CSR0 + 4 * i);
			if ((csr ^ cpol) & SPI_BIT(CPOL))
				spi_writel(as, CSR0 + 4 * i,
						csr ^ SPI_BIT(CPOL));
		}

		mr = spi_readl(as, MR);
		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
409
		if (as->use_cs_gpios && spi->chip_select != 0)
410 411 412
			gpio_set_value(asd->npcs_pin, active);
		spi_writel(as, MR, mr);
	}
413 414

	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
415
			asd->npcs_pin, active ? " (high)" : "",
416
			mr);
417 418
}

419
static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
420
{
421
	struct atmel_spi_device *asd = spi->controller_state;
422
	unsigned active = spi->mode & SPI_CS_HIGH;
423 424 425 426 427 428 429 430 431 432
	u32 mr;

	/* only deactivate *this* device; sometimes transfers to
	 * another device may be active when this routine is called.
	 */
	mr = spi_readl(as, MR);
	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
		mr = SPI_BFINS(PCS, 0xf, mr);
		spi_writel(as, MR, mr);
	}
433

434
	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
435
			asd->npcs_pin, active ? " (low)" : "",
436 437
			mr);

438 439 440
	if (!as->use_cs_gpios)
		spi_writel(as, CR, SPI_BIT(LASTXFER));
	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
441
		gpio_set_value(asd->npcs_pin, !active);
442 443
}

444
static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
445 446 447 448
{
	spin_lock_irqsave(&as->lock, as->flags);
}

449
static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
450 451 452 453
{
	spin_unlock_irqrestore(&as->lock, as->flags);
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static inline bool atmel_spi_use_dma(struct atmel_spi *as,
				struct spi_transfer *xfer)
{
	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
}

static int atmel_spi_dma_slave_config(struct atmel_spi *as,
				struct dma_slave_config *slave_config,
				u8 bits_per_word)
{
	int err = 0;

	if (bits_per_word > 8) {
		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
	} else {
		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
	}

	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
	slave_config->src_maxburst = 1;
	slave_config->dst_maxburst = 1;
	slave_config->device_fc = false;

480 481 482 483 484 485 486 487 488 489 490 491 492 493
	/*
	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
	 * the Mode Register).
	 * So according to the datasheet, when FIFOs are available (and
	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
	 * In this mode, up to 2 data, not 4, can be written into the Transmit
	 * Data Register in a single access.
	 * However, the first data has to be written into the lowest 16 bits and
	 * the second data into the highest 16 bits of the Transmit
	 * Data Register. For 8bit data (the most frequent case), it would
	 * require to rework tx_buf so each data would actualy fit 16 bits.
	 * So we'd rather write only one data at the time. Hence the transmit
	 * path works the same whether FIFOs are available (and enabled) or not.
	 */
494 495 496 497 498 499 500
	slave_config->direction = DMA_MEM_TO_DEV;
	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
		dev_err(&as->pdev->dev,
			"failed to configure tx dma channel\n");
		err = -EINVAL;
	}

501 502 503 504 505 506 507 508
	/*
	 * This driver configures the spi controller for master mode (MSTR bit
	 * set to '1' in the Mode Register).
	 * So according to the datasheet, when FIFOs are available (and
	 * enabled), the Receive FIFO operates in Single Data Mode.
	 * So the receive path works the same whether FIFOs are available (and
	 * enabled) or not.
	 */
509 510 511 512 513 514 515 516 517 518 519 520 521
	slave_config->direction = DMA_DEV_TO_MEM;
	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
		dev_err(&as->pdev->dev,
			"failed to configure rx dma channel\n");
		err = -EINVAL;
	}

	return err;
}

static int atmel_spi_configure_dma(struct atmel_spi *as)
{
	struct dma_slave_config	slave_config;
522
	struct device *dev = &as->pdev->dev;
523 524
	int err;

525 526 527
	dma_cap_mask_t mask;
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
528

529 530 531 532 533 534 535
	as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
	if (IS_ERR(as->dma.chan_tx)) {
		err = PTR_ERR(as->dma.chan_tx);
		if (err == -EPROBE_DEFER) {
			dev_warn(dev, "no DMA channel available at the moment\n");
			return err;
		}
536 537 538 539
		dev_err(dev,
			"DMA TX channel not available, SPI unable to use DMA\n");
		err = -EBUSY;
		goto error;
540
	}
541

542 543 544 545
	/*
	 * No reason to check EPROBE_DEFER here since we have already requested
	 * tx channel. If it fails here, it's for another reason.
	 */
546
	as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
547 548 549 550

	if (!as->dma.chan_rx) {
		dev_err(dev,
			"DMA RX channel not available, SPI unable to use DMA\n");
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		err = -EBUSY;
		goto error;
	}

	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
	if (err)
		goto error;

	dev_info(&as->pdev->dev,
			"Using %s (tx) and %s (rx) for DMA transfers\n",
			dma_chan_name(as->dma.chan_tx),
			dma_chan_name(as->dma.chan_rx));
	return 0;
error:
	if (as->dma.chan_rx)
		dma_release_channel(as->dma.chan_rx);
567
	if (!IS_ERR(as->dma.chan_tx))
568 569 570 571 572 573 574
		dma_release_channel(as->dma.chan_tx);
	return err;
}

static void atmel_spi_stop_dma(struct atmel_spi *as)
{
	if (as->dma.chan_rx)
575
		dmaengine_terminate_all(as->dma.chan_rx);
576
	if (as->dma.chan_tx)
577
		dmaengine_terminate_all(as->dma.chan_tx);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
}

static void atmel_spi_release_dma(struct atmel_spi *as)
{
	if (as->dma.chan_rx)
		dma_release_channel(as->dma.chan_rx);
	if (as->dma.chan_tx)
		dma_release_channel(as->dma.chan_tx);
}

/* This function is called by the DMA driver from tasklet context */
static void dma_callback(void *data)
{
	struct spi_master	*master = data;
	struct atmel_spi	*as = spi_master_get_devdata(master);

594
	complete(&as->xfer_completion);
595 596 597
}

/*
598
 * Next transfer using PIO without FIFO.
599
 */
600 601
static void atmel_spi_next_xfer_single(struct spi_master *master,
				       struct spi_transfer *xfer)
602 603
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
604
	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
605 606 607 608 609 610 611 612 613 614

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");

	/* Make sure data is not remaining in RDR */
	spi_readl(as, RDR);
	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
		spi_readl(as, RDR);
		cpu_relax();
	}

615
	if (xfer->tx_buf) {
616
		if (xfer->bits_per_word > 8)
617
			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
618
		else
619 620
			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
	} else {
621
		spi_writel(as, TDR, 0);
622
	}
623 624

	dev_dbg(master->dev.parent,
625 626 627
		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
		xfer->bits_per_word);
628 629 630 631 632

	/* Enable relevant interrupts */
	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
/*
 * Next transfer using PIO with FIFO.
 */
static void atmel_spi_next_xfer_fifo(struct spi_master *master,
				     struct spi_transfer *xfer)
{
	struct atmel_spi *as = spi_master_get_devdata(master);
	u32 current_remaining_data, num_data;
	u32 offset = xfer->len - as->current_remaining_bytes;
	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
	u16 td0, td1;
	u32 fifomr;

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");

	/* Compute the number of data to transfer in the current iteration */
	current_remaining_data = ((xfer->bits_per_word > 8) ?
				  ((u32)as->current_remaining_bytes >> 1) :
				  (u32)as->current_remaining_bytes);
	num_data = min(current_remaining_data, as->fifo_size);

	/* Flush RX and TX FIFOs */
	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
	while (spi_readl(as, FLR))
		cpu_relax();

	/* Set RX FIFO Threshold to the number of data to transfer */
	fifomr = spi_readl(as, FMR);
	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));

	/* Clear FIFO flags in the Status Register, especially RXFTHF */
	(void)spi_readl(as, SR);

	/* Fill TX FIFO */
	while (num_data >= 2) {
		if (xfer->tx_buf) {
			if (xfer->bits_per_word > 8) {
				td0 = *words++;
				td1 = *words++;
			} else {
				td0 = *bytes++;
				td1 = *bytes++;
			}
		} else {
			td0 = 0;
			td1 = 0;
		}

		spi_writel(as, TDR, (td1 << 16) | td0);
		num_data -= 2;
	}

	if (num_data) {
		if (xfer->tx_buf) {
			if (xfer->bits_per_word > 8)
				td0 = *words++;
			else
				td0 = *bytes++;
		} else {
			td0 = 0;
		}

		spi_writew(as, TDR, td0);
		num_data--;
	}

	dev_dbg(master->dev.parent,
		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
		xfer->bits_per_word);

	/*
	 * Enable RX FIFO Threshold Flag interrupt to be notified about
	 * transfer completion.
	 */
	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
}

/*
 * Next transfer using PIO.
 */
static void atmel_spi_next_xfer_pio(struct spi_master *master,
				    struct spi_transfer *xfer)
{
	struct atmel_spi *as = spi_master_get_devdata(master);

	if (as->fifo_size)
		atmel_spi_next_xfer_fifo(master, xfer);
	else
		atmel_spi_next_xfer_single(master, xfer);
}

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/*
 * Submit next transfer for DMA.
 */
static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
				struct spi_transfer *xfer,
				u32 *plen)
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
	struct dma_chan		*rxchan = as->dma.chan_rx;
	struct dma_chan		*txchan = as->dma.chan_tx;
	struct dma_async_tx_descriptor *rxdesc;
	struct dma_async_tx_descriptor *txdesc;
	struct dma_slave_config	slave_config;
	dma_cookie_t		cookie;
	u32	len = *plen;

	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");

	/* Check that the channels are available */
	if (!rxchan || !txchan)
		return -ENODEV;

	/* release lock for DMA operations */
	atmel_spi_unlock(as);

	/* prepare the RX dma transfer */
	sg_init_table(&as->dma.sgrx, 1);
	if (xfer->rx_buf) {
		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
	} else {
		as->dma.sgrx.dma_address = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
	}

	/* prepare the TX dma transfer */
	sg_init_table(&as->dma.sgtx, 1);
	if (xfer->tx_buf) {
		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
	} else {
		as->dma.sgtx.dma_address = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
		memset(as->buffer, 0, len);
	}

	sg_dma_len(&as->dma.sgtx) = len;
	sg_dma_len(&as->dma.sgrx) = len;

	*plen = len;

	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
		goto err_exit;

	/* Send both scatterlists */
781 782 783
	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
					 DMA_FROM_DEVICE,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
784 785 786
	if (!rxdesc)
		goto err_dma;

787 788 789
	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
					 DMA_TO_DEVICE,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
790 791 792 793
	if (!txdesc)
		goto err_dma;

	dev_dbg(master->dev.parent,
794 795 796
		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	/* Enable relevant interrupts */
	spi_writel(as, IER, SPI_BIT(OVRES));

	/* Put the callback on the RX transfer only, that should finish last */
	rxdesc->callback = dma_callback;
	rxdesc->callback_param = master;

	/* Submit and fire RX and TX with TX last so we're ready to read! */
	cookie = rxdesc->tx_submit(rxdesc);
	if (dma_submit_error(cookie))
		goto err_dma;
	cookie = txdesc->tx_submit(txdesc);
	if (dma_submit_error(cookie))
		goto err_dma;
	rxchan->device->device_issue_pending(rxchan);
	txchan->device->device_issue_pending(txchan);

	/* take back lock */
	atmel_spi_lock(as);
	return 0;

err_dma:
	spi_writel(as, IDR, SPI_BIT(OVRES));
	atmel_spi_stop_dma(as);
err_exit:
	atmel_spi_lock(as);
	return -ENOMEM;
}

S
Silvester Erdeg 已提交
827 828 829 830 831 832 833 834 835 836 837
static void atmel_spi_next_xfer_data(struct spi_master *master,
				struct spi_transfer *xfer,
				dma_addr_t *tx_dma,
				dma_addr_t *rx_dma,
				u32 *plen)
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			len = *plen;

	/* use scratch buffer only when rx or tx data is unspecified */
	if (xfer->rx_buf)
838
		*rx_dma = xfer->rx_dma + xfer->len - *plen;
S
Silvester Erdeg 已提交
839 840 841 842 843
	else {
		*rx_dma = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
	}
844

S
Silvester Erdeg 已提交
845
	if (xfer->tx_buf)
846
		*tx_dma = xfer->tx_dma + xfer->len - *plen;
S
Silvester Erdeg 已提交
847 848 849 850 851 852 853 854 855 856 857 858
	else {
		*tx_dma = as->buffer_dma;
		if (len > BUFFER_SIZE)
			len = BUFFER_SIZE;
		memset(as->buffer, 0, len);
		dma_sync_single_for_device(&as->pdev->dev,
				as->buffer_dma, len, DMA_TO_DEVICE);
	}

	*plen = len;
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
				    struct spi_device *spi,
				    struct spi_transfer *xfer)
{
	u32			scbr, csr;
	unsigned long		bus_hz;

	/* v1 chips start out at half the peripheral bus speed. */
	bus_hz = clk_get_rate(as->clk);
	if (!atmel_spi_is_v2(as))
		bus_hz /= 2;

	/*
	 * Calculate the lowest divider that satisfies the
	 * constraint, assuming div32/fdiv/mbz == 0.
	 */
	if (xfer->speed_hz)
		scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
	else
		/*
		 * This can happend if max_speed is null.
		 * In this case, we set the lowest possible speed
		 */
		scbr = 0xff;

	/*
	 * If the resulting divider doesn't fit into the
	 * register bitfield, we can't satisfy the constraint.
	 */
	if (scbr >= (1 << SPI_SCBR_SIZE)) {
		dev_err(&spi->dev,
			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
			xfer->speed_hz, scbr, bus_hz/255);
		return -EINVAL;
	}
	if (scbr == 0) {
		dev_err(&spi->dev,
			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
			xfer->speed_hz, scbr, bus_hz);
		return -EINVAL;
	}
	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
	csr = SPI_BFINS(SCBR, scbr, csr);
	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);

	return 0;
}

907
/*
908
 * Submit next transfer for PDC.
909 910
 * lock is held, spi irq is blocked
 */
911
static void atmel_spi_pdc_next_xfer(struct spi_master *master,
912 913
					struct spi_message *msg,
					struct spi_transfer *xfer)
914 915
{
	struct atmel_spi	*as = spi_master_get_devdata(master);
916
	u32			len;
917 918
	dma_addr_t		tx_dma, rx_dma;

919
	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
920

921 922 923
	len = as->current_remaining_bytes;
	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
	as->current_remaining_bytes -= len;
924

925 926
	spi_writel(as, RPR, rx_dma);
	spi_writel(as, TPR, tx_dma);
927

928 929 930 931
	if (msg->spi->bits_per_word > 8)
		len >>= 1;
	spi_writel(as, RCR, len);
	spi_writel(as, TCR, len);
932

933 934 935 936 937
	dev_dbg(&msg->spi->dev,
		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
		xfer, xfer->len, xfer->tx_buf,
		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
		(unsigned long long)xfer->rx_dma);
938

939 940
	if (as->current_remaining_bytes) {
		len = as->current_remaining_bytes;
S
Silvester Erdeg 已提交
941
		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
942
		as->current_remaining_bytes -= len;
943

S
Silvester Erdeg 已提交
944 945
		spi_writel(as, RNPR, rx_dma);
		spi_writel(as, TNPR, tx_dma);
946

S
Silvester Erdeg 已提交
947 948 949 950
		if (msg->spi->bits_per_word > 8)
			len >>= 1;
		spi_writel(as, RNCR, len);
		spi_writel(as, TNCR, len);
951 952

		dev_dbg(&msg->spi->dev,
953 954 955 956
			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
			xfer, xfer->len, xfer->tx_buf,
			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
			(unsigned long long)xfer->rx_dma);
S
Silvester Erdeg 已提交
957 958
	}

959
	/* REVISIT: We're waiting for RXBUFF before we start the next
960
	 * transfer because we need to handle some difficult timing
961 962 963 964
	 * issues otherwise. If we wait for TXBUFE in one transfer and
	 * then starts waiting for RXBUFF in the next, it's difficult
	 * to tell the difference between the RXBUFF interrupt we're
	 * actually waiting for and the RXBUFF interrupt of the
965 966 967 968
	 * previous transfer.
	 *
	 * It should be doable, though. Just not now...
	 */
969
	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
970 971 972
	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
}

D
David Brownell 已提交
973 974 975
/*
 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 *  - The buffer is either valid for CPU access, else NULL
976
 *  - If the buffer is valid, so is its DMA address
D
David Brownell 已提交
977
 *
978
 * This driver manages the dma address unless message->is_dma_mapped.
D
David Brownell 已提交
979 980
 */
static int
981 982
atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
{
D
David Brownell 已提交
983 984
	struct device	*dev = &as->pdev->dev;

985
	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
D
David Brownell 已提交
986
	if (xfer->tx_buf) {
987 988 989 990
		/* tx_buf is a const void* where we need a void * for the dma
		 * mapping */
		void *nonconst_tx = (void *)xfer->tx_buf;

D
David Brownell 已提交
991
		xfer->tx_dma = dma_map_single(dev,
992
				nonconst_tx, xfer->len,
993
				DMA_TO_DEVICE);
994
		if (dma_mapping_error(dev, xfer->tx_dma))
D
David Brownell 已提交
995 996 997 998
			return -ENOMEM;
	}
	if (xfer->rx_buf) {
		xfer->rx_dma = dma_map_single(dev,
999 1000
				xfer->rx_buf, xfer->len,
				DMA_FROM_DEVICE);
1001
		if (dma_mapping_error(dev, xfer->rx_dma)) {
D
David Brownell 已提交
1002 1003 1004 1005 1006 1007 1008 1009
			if (xfer->tx_buf)
				dma_unmap_single(dev,
						xfer->tx_dma, xfer->len,
						DMA_TO_DEVICE);
			return -ENOMEM;
		}
	}
	return 0;
1010 1011 1012 1013 1014 1015
}

static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
				     struct spi_transfer *xfer)
{
	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
T
Tony Jones 已提交
1016
		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1017 1018
				 xfer->len, DMA_TO_DEVICE);
	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
T
Tony Jones 已提交
1019
		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1020 1021 1022
				 xfer->len, DMA_FROM_DEVICE);
}

1023 1024 1025 1026 1027 1028
static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
{
	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
}

static void
1029
atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1030 1031
{
	u8		*rxp;
1032
	u16		*rxp16;
1033 1034 1035
	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;

	if (xfer->rx_buf) {
1036 1037 1038 1039 1040 1041 1042
		if (xfer->bits_per_word > 8) {
			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
			*rxp16 = spi_readl(as, RDR);
		} else {
			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
			*rxp = spi_readl(as, RDR);
		}
1043 1044 1045
	} else {
		spi_readl(as, RDR);
	}
1046
	if (xfer->bits_per_word > 8) {
1047 1048 1049
		if (as->current_remaining_bytes > 2)
			as->current_remaining_bytes -= 2;
		else
1050 1051 1052 1053
			as->current_remaining_bytes = 0;
	} else {
		as->current_remaining_bytes--;
	}
1054 1055
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
static void
atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
	u32 fifolr = spi_readl(as, FLR);
	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
	u32 offset = xfer->len - as->current_remaining_bytes;
	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
	u16 rd; /* RD field is the lowest 16 bits of RDR */

	/* Update the number of remaining bytes to transfer */
	num_bytes = ((xfer->bits_per_word > 8) ?
		     (num_data << 1) :
		     num_data);

	if (as->current_remaining_bytes > num_bytes)
		as->current_remaining_bytes -= num_bytes;
	else
		as->current_remaining_bytes = 0;

	/* Handle odd number of bytes when data are more than 8bit width */
	if (xfer->bits_per_word > 8)
		as->current_remaining_bytes &= ~0x1;

	/* Read data */
	while (num_data) {
		rd = spi_readl(as, RDR);
		if (xfer->rx_buf) {
			if (xfer->bits_per_word > 8)
				*words++ = rd;
			else
				*bytes++ = rd;
		}
		num_data--;
	}
}

/* Called from IRQ
 *
 * Must update "current_remaining_bytes" to keep track of data
 * to transfer.
 */
static void
atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
{
	if (as->fifo_size)
		atmel_spi_pump_fifo_data(as, xfer);
	else
		atmel_spi_pump_single_data(as, xfer);
}

1107 1108 1109
/* Interrupt
 *
 * No need for locking in this Interrupt handler: done_status is the
1110
 * only information modified.
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
 */
static irqreturn_t
atmel_spi_pio_interrupt(int irq, void *dev_id)
{
	struct spi_master	*master = dev_id;
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			status, pending, imr;
	struct spi_transfer	*xfer;
	int			ret = IRQ_NONE;

	imr = spi_readl(as, IMR);
	status = spi_readl(as, SR);
	pending = status & imr;

	if (pending & SPI_BIT(OVRES)) {
		ret = IRQ_HANDLED;
		spi_writel(as, IDR, SPI_BIT(OVRES));
		dev_warn(master->dev.parent, "overrun\n");

		/*
		 * When we get an overrun, we disregard the current
		 * transfer. Data will not be copied back from any
		 * bounce buffer and msg->actual_len will not be
		 * updated with the last xfer.
		 *
		 * We will also not process any remaning transfers in
		 * the message.
		 */
		as->done_status = -EIO;
		smp_wmb();

		/* Clear any overrun happening while cleaning up */
		spi_readl(as, SR);

1145
		complete(&as->xfer_completion);
1146

1147
	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1148 1149 1150 1151 1152 1153
		atmel_spi_lock(as);

		if (as->current_remaining_bytes) {
			ret = IRQ_HANDLED;
			xfer = as->current_transfer;
			atmel_spi_pump_pio_data(as, xfer);
1154
			if (!as->current_remaining_bytes)
1155
				spi_writel(as, IDR, pending);
1156 1157

			complete(&as->xfer_completion);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		}

		atmel_spi_unlock(as);
	} else {
		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
		ret = IRQ_HANDLED;
		spi_writel(as, IDR, pending);
	}

	return ret;
1168 1169 1170
}

static irqreturn_t
1171
atmel_spi_pdc_interrupt(int irq, void *dev_id)
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
{
	struct spi_master	*master = dev_id;
	struct atmel_spi	*as = spi_master_get_devdata(master);
	u32			status, pending, imr;
	int			ret = IRQ_NONE;

	imr = spi_readl(as, IMR);
	status = spi_readl(as, SR);
	pending = status & imr;

	if (pending & SPI_BIT(OVRES)) {

		ret = IRQ_HANDLED;

1186
		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1187 1188 1189 1190 1191
				     | SPI_BIT(OVRES)));

		/* Clear any overrun happening while cleaning up */
		spi_readl(as, SR);

1192
		as->done_status = -EIO;
1193 1194 1195

		complete(&as->xfer_completion);

1196
	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1197 1198 1199 1200
		ret = IRQ_HANDLED;

		spi_writel(as, IDR, pending);

1201
		complete(&as->xfer_completion);
1202 1203 1204 1205 1206 1207 1208 1209
	}

	return ret;
}

static int atmel_spi_setup(struct spi_device *spi)
{
	struct atmel_spi	*as;
1210
	struct atmel_spi_device	*asd;
1211
	u32			csr;
1212 1213 1214 1215 1216 1217
	unsigned int		bits = spi->bits_per_word;
	unsigned int		npcs_pin;
	int			ret;

	as = spi_master_get_devdata(spi->master);

1218
	/* see notes above re chipselect */
1219
	if (!atmel_spi_is_v2(as)
1220 1221 1222 1223 1224 1225
			&& spi->chip_select == 0
			&& (spi->mode & SPI_CS_HIGH)) {
		dev_dbg(&spi->dev, "setup: can't be active-high\n");
		return -EINVAL;
	}

1226
	csr = SPI_BF(BITS, bits - 8);
1227 1228 1229 1230
	if (spi->mode & SPI_CPOL)
		csr |= SPI_BIT(CPOL);
	if (!(spi->mode & SPI_CPHA))
		csr |= SPI_BIT(NCPHA);
1231 1232
	if (!as->use_cs_gpios)
		csr |= SPI_BIT(CSAAT);
1233

1234 1235 1236 1237 1238 1239 1240 1241
	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
	 *
	 * DLYBCT would add delays between words, slowing down transfers.
	 * It could potentially be useful to cope with DMA bottlenecks, but
	 * in those cases it's probably best to just use a lower bitrate.
	 */
	csr |= SPI_BF(DLYBS, 0);
	csr |= SPI_BF(DLYBCT, 0);
1242 1243

	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1244
	npcs_pin = (unsigned long)spi->controller_data;
1245

1246 1247 1248
	if (!as->use_cs_gpios)
		npcs_pin = spi->chip_select;
	else if (gpio_is_valid(spi->cs_gpio))
1249 1250
		npcs_pin = spi->cs_gpio;

1251 1252 1253 1254 1255 1256
	asd = spi->controller_state;
	if (!asd) {
		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
		if (!asd)
			return -ENOMEM;

1257 1258 1259 1260 1261 1262 1263 1264 1265
		if (as->use_cs_gpios) {
			ret = gpio_request(npcs_pin, dev_name(&spi->dev));
			if (ret) {
				kfree(asd);
				return ret;
			}

			gpio_direction_output(npcs_pin,
					      !(spi->mode & SPI_CS_HIGH));
1266 1267 1268 1269
		}

		asd->npcs_pin = npcs_pin;
		spi->controller_state = asd;
1270 1271
	}

1272 1273
	asd->csr = csr;

1274
	dev_dbg(&spi->dev,
1275 1276
		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
		bits, spi->mode, spi->chip_select, csr);
1277

1278
	if (!atmel_spi_is_v2(as))
1279
		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1280 1281 1282 1283

	return 0;
}

1284 1285 1286
static int atmel_spi_one_transfer(struct spi_master *master,
					struct spi_message *msg,
					struct spi_transfer *xfer)
1287 1288
{
	struct atmel_spi	*as;
1289
	struct spi_device	*spi = msg->spi;
1290
	u8			bits;
1291
	u32			len;
1292
	struct atmel_spi_device	*asd;
1293 1294
	int			timeout;
	int			ret;
1295
	unsigned long		dma_timeout;
1296

1297
	as = spi_master_get_devdata(master);
1298

1299 1300
	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1301
		return -EINVAL;
1302
	}
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312
	if (xfer->bits_per_word) {
		asd = spi->controller_state;
		bits = (asd->csr >> 4) & 0xf;
		if (bits != xfer->bits_per_word - 8) {
			dev_dbg(&spi->dev,
			"you can't yet change bits_per_word in transfers\n");
			return -ENOPROTOOPT;
		}
	}
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	/*
	 * DMA map early, for performance (empties dcache ASAP) and
	 * better fault reporting.
	 */
	if ((!msg->is_dma_mapped)
		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
			return -ENOMEM;
	}

	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1325

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	as->done_status = 0;
	as->current_transfer = xfer;
	as->current_remaining_bytes = xfer->len;
	while (as->current_remaining_bytes) {
		reinit_completion(&as->xfer_completion);

		if (as->use_pdc) {
			atmel_spi_pdc_next_xfer(master, msg, xfer);
		} else if (atmel_spi_use_dma(as, xfer)) {
			len = as->current_remaining_bytes;
			ret = atmel_spi_next_xfer_dma_submit(master,
								xfer, &len);
			if (ret) {
				dev_err(&spi->dev,
					"unable to use DMA, fallback to PIO\n");
				atmel_spi_next_xfer_pio(master, xfer);
			} else {
				as->current_remaining_bytes -= len;
1344 1345
				if (as->current_remaining_bytes < 0)
					as->current_remaining_bytes = 0;
1346
			}
1347 1348
		} else {
			atmel_spi_next_xfer_pio(master, xfer);
1349 1350
		}

1351 1352
		/* interrupts are disabled, so free the lock for schedule */
		atmel_spi_unlock(as);
1353 1354
		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
							  SPI_DMA_TIMEOUT);
1355
		atmel_spi_lock(as);
1356 1357
		if (WARN_ON(dma_timeout == 0)) {
			dev_err(&spi->dev, "spi transfer timeout\n");
1358
			as->done_status = -EIO;
1359 1360
		}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		if (as->done_status)
			break;
	}

	if (as->done_status) {
		if (as->use_pdc) {
			dev_warn(master->dev.parent,
				"overrun (%u/%u remaining)\n",
				spi_readl(as, TCR), spi_readl(as, RCR));

			/*
			 * Clean up DMA registers and make sure the data
			 * registers are empty.
			 */
			spi_writel(as, RNCR, 0);
			spi_writel(as, TNCR, 0);
			spi_writel(as, RCR, 0);
			spi_writel(as, TCR, 0);
			for (timeout = 1000; timeout; timeout--)
				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
					break;
			if (!timeout)
				dev_warn(master->dev.parent,
					 "timeout waiting for TXEMPTY");
			while (spi_readl(as, SR) & SPI_BIT(RDRF))
				spi_readl(as, RDR);

			/* Clear any overrun happening while cleaning up */
			spi_readl(as, SR);

		} else if (atmel_spi_use_dma(as, xfer)) {
			atmel_spi_stop_dma(as);
		}

		if (!msg->is_dma_mapped
			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
			atmel_spi_dma_unmap_xfer(master, xfer);

		return 0;

	} else {
		/* only update length if no error */
		msg->actual_length += xfer->len;
	}

	if (!msg->is_dma_mapped
		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
		atmel_spi_dma_unmap_xfer(master, xfer);

	if (xfer->delay_usecs)
		udelay(xfer->delay_usecs);

	if (xfer->cs_change) {
		if (list_is_last(&xfer->transfer_list,
				 &msg->transfers)) {
			as->keep_cs = true;
		} else {
			as->cs_active = !as->cs_active;
			if (as->cs_active)
				cs_activate(as, msg->spi);
			else
				cs_deactivate(as, msg->spi);
D
David Brownell 已提交
1423
		}
1424 1425
	}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	return 0;
}

static int atmel_spi_transfer_one_message(struct spi_master *master,
						struct spi_message *msg)
{
	struct atmel_spi *as;
	struct spi_transfer *xfer;
	struct spi_device *spi = msg->spi;
	int ret = 0;

	as = spi_master_get_devdata(master);

	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
					msg, dev_name(&spi->dev));

	atmel_spi_lock(as);
	cs_activate(as, spi);

	as->cs_active = true;
	as->keep_cs = false;

	msg->status = 0;
	msg->actual_length = 0;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		ret = atmel_spi_one_transfer(master, msg, xfer);
		if (ret)
			goto msg_done;
	}

	if (as->use_pdc)
		atmel_spi_disable_pdc_transfer(as);

1460
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1461
		dev_dbg(&spi->dev,
1462
			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1463
			xfer, xfer->len,
1464 1465
			xfer->tx_buf, &xfer->tx_dma,
			xfer->rx_buf, &xfer->rx_dma);
1466 1467
	}

1468 1469 1470
msg_done:
	if (!as->keep_cs)
		cs_deactivate(as, msg->spi);
1471

1472
	atmel_spi_unlock(as);
1473

1474 1475 1476 1477
	msg->status = as->done_status;
	spi_finalize_current_message(spi->master);

	return ret;
1478 1479
}

1480
static void atmel_spi_cleanup(struct spi_device *spi)
1481
{
1482
	struct atmel_spi_device	*asd = spi->controller_state;
1483
	unsigned		gpio = (unsigned long) spi->controller_data;
1484

1485
	if (!asd)
1486 1487
		return;

1488
	spi->controller_state = NULL;
1489
	gpio_free(gpio);
1490
	kfree(asd);
1491 1492
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
static inline unsigned int atmel_get_version(struct atmel_spi *as)
{
	return spi_readl(as, VERSION) & 0x00000fff;
}

static void atmel_get_caps(struct atmel_spi *as)
{
	unsigned int version;

	version = atmel_get_version(as);
	dev_info(&as->pdev->dev, "version: 0x%x\n", version);

	as->caps.is_spi2 = version > 0x121;
	as->caps.has_wdrbt = version >= 0x210;
	as->caps.has_dma_support = version >= 0x212;
}

1510 1511
/*-------------------------------------------------------------------------*/

1512
static int atmel_spi_probe(struct platform_device *pdev)
1513 1514 1515 1516 1517 1518 1519 1520
{
	struct resource		*regs;
	int			irq;
	struct clk		*clk;
	int			ret;
	struct spi_master	*master;
	struct atmel_spi	*as;

W
Wenyou Yang 已提交
1521 1522 1523
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

1524 1525 1526 1527 1528 1529 1530 1531
	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!regs)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

J
Jingoo Han 已提交
1532
	clk = devm_clk_get(&pdev->dev, "spi_clk");
1533 1534 1535 1536 1537
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	/* setup spi core then atmel-specific driver state */
	ret = -ENOMEM;
1538
	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1539 1540 1541
	if (!master)
		goto out_free;

1542 1543
	/* the spi->mode bits understood by this driver: */
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1544
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1545
	master->dev.of_node = pdev->dev.of_node;
1546
	master->bus_num = pdev->id;
1547
	master->num_chipselect = master->dev.of_node ? 0 : 4;
1548
	master->setup = atmel_spi_setup;
1549
	master->transfer_one_message = atmel_spi_transfer_one_message;
1550
	master->cleanup = atmel_spi_cleanup;
1551
	master->auto_runtime_pm = true;
1552 1553 1554 1555
	platform_set_drvdata(pdev, master);

	as = spi_master_get_devdata(master);

D
David Brownell 已提交
1556 1557 1558 1559
	/*
	 * Scratch buffer is used for throwaway rx and tx data.
	 * It's coherent to minimize dcache pollution.
	 */
1560 1561 1562 1563 1564 1565
	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
					&as->buffer_dma, GFP_KERNEL);
	if (!as->buffer)
		goto out_free;

	spin_lock_init(&as->lock);
1566

1567
	as->pdev = pdev;
1568
	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1569 1570
	if (IS_ERR(as->regs)) {
		ret = PTR_ERR(as->regs);
1571
		goto out_free_buffer;
1572
	}
1573
	as->phybase = regs->start;
1574 1575 1576
	as->irq = irq;
	as->clk = clk;

1577 1578
	init_completion(&as->xfer_completion);

1579 1580
	atmel_get_caps(as);

1581 1582 1583 1584 1585 1586 1587
	as->use_cs_gpios = true;
	if (atmel_spi_is_v2(as) &&
	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
		as->use_cs_gpios = false;
		master->num_chipselect = 4;
	}

1588 1589 1590
	as->use_dma = false;
	as->use_pdc = false;
	if (as->caps.has_dma_support) {
1591 1592
		ret = atmel_spi_configure_dma(as);
		if (ret == 0)
1593
			as->use_dma = true;
1594 1595
		else if (ret == -EPROBE_DEFER)
			return ret;
1596 1597 1598 1599 1600 1601 1602 1603
	} else {
		as->use_pdc = true;
	}

	if (as->caps.has_dma_support && !as->use_dma)
		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");

	if (as->use_pdc) {
J
Jingoo Han 已提交
1604 1605
		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
					0, dev_name(&pdev->dev), master);
1606
	} else {
J
Jingoo Han 已提交
1607 1608
		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
					0, dev_name(&pdev->dev), master);
1609
	}
1610 1611 1612 1613
	if (ret)
		goto out_unmap_regs;

	/* Initialize the hardware */
1614 1615
	ret = clk_prepare_enable(clk);
	if (ret)
1616
		goto out_free_irq;
1617
	spi_writel(as, CR, SPI_BIT(SWRST));
1618
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1619 1620 1621 1622 1623 1624
	if (as->caps.has_wdrbt) {
		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
				| SPI_BIT(MSTR));
	} else {
		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
	}
1625 1626 1627

	if (as->use_pdc)
		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1628 1629
	spi_writel(as, CR, SPI_BIT(SPIEN));

1630 1631 1632 1633 1634 1635 1636
	as->fifo_size = 0;
	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
				  &as->fifo_size)) {
		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
		spi_writel(as, CR, SPI_BIT(FIFOEN));
	}

1637 1638 1639 1640
	/* go! */
	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
			(unsigned long)regs->start, irq);

1641 1642 1643 1644 1645
	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
	pm_runtime_use_autosuspend(&pdev->dev);
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

J
Jingoo Han 已提交
1646
	ret = devm_spi_register_master(&pdev->dev, master);
1647
	if (ret)
1648
		goto out_free_dma;
1649 1650 1651

	return 0;

1652
out_free_dma:
1653 1654 1655
	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);

1656 1657 1658
	if (as->use_dma)
		atmel_spi_release_dma(as);

1659
	spi_writel(as, CR, SPI_BIT(SWRST));
1660
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1661
	clk_disable_unprepare(clk);
1662
out_free_irq:
1663 1664 1665 1666 1667 1668 1669 1670 1671
out_unmap_regs:
out_free_buffer:
	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
			as->buffer_dma);
out_free:
	spi_master_put(master);
	return ret;
}

1672
static int atmel_spi_remove(struct platform_device *pdev)
1673 1674 1675 1676
{
	struct spi_master	*master = platform_get_drvdata(pdev);
	struct atmel_spi	*as = spi_master_get_devdata(master);

1677 1678
	pm_runtime_get_sync(&pdev->dev);

1679 1680
	/* reset the hardware and block queue progress */
	spin_lock_irq(&as->lock);
1681 1682 1683 1684 1685
	if (as->use_dma) {
		atmel_spi_stop_dma(as);
		atmel_spi_release_dma(as);
	}

1686
	spi_writel(as, CR, SPI_BIT(SWRST));
1687
	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1688 1689 1690 1691 1692 1693
	spi_readl(as, SR);
	spin_unlock_irq(&as->lock);

	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
			as->buffer_dma);

1694
	clk_disable_unprepare(as->clk);
1695

1696 1697 1698
	pm_runtime_put_noidle(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

1699 1700 1701
	return 0;
}

1702
#ifdef CONFIG_PM
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static int atmel_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct atmel_spi *as = spi_master_get_devdata(master);

	clk_disable_unprepare(as->clk);
	pinctrl_pm_select_sleep_state(dev);

	return 0;
}

static int atmel_spi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct atmel_spi *as = spi_master_get_devdata(master);

	pinctrl_pm_select_default_state(dev);

	return clk_prepare_enable(as->clk);
}

1724
static int atmel_spi_suspend(struct device *dev)
1725
{
1726
	struct spi_master *master = dev_get_drvdata(dev);
1727 1728 1729 1730 1731 1732 1733 1734
	int ret;

	/* Stop the queue running */
	ret = spi_master_suspend(master);
	if (ret) {
		dev_warn(dev, "cannot suspend master\n");
		return ret;
	}
1735

1736 1737
	if (!pm_runtime_suspended(dev))
		atmel_spi_runtime_suspend(dev);
W
Wenyou Yang 已提交
1738

1739 1740 1741
	return 0;
}

1742
static int atmel_spi_resume(struct device *dev)
1743
{
1744
	struct spi_master *master = dev_get_drvdata(dev);
1745
	int ret;
1746

1747
	if (!pm_runtime_suspended(dev)) {
1748
		ret = atmel_spi_runtime_resume(dev);
1749 1750 1751
		if (ret)
			return ret;
	}
1752 1753 1754 1755 1756 1757 1758

	/* Start the queue running */
	ret = spi_master_resume(master);
	if (ret)
		dev_err(dev, "problem starting queue (%d)\n", ret);

	return ret;
1759
}
1760 1761 1762 1763 1764 1765

static const struct dev_pm_ops atmel_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
			   atmel_spi_runtime_resume, NULL)
};
1766
#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1767
#else
1768
#define ATMEL_SPI_PM_OPS	NULL
1769 1770
#endif

1771 1772 1773 1774 1775 1776 1777 1778
#if defined(CONFIG_OF)
static const struct of_device_id atmel_spi_dt_ids[] = {
	{ .compatible = "atmel,at91rm9200-spi" },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
#endif
1779 1780 1781 1782

static struct platform_driver atmel_spi_driver = {
	.driver		= {
		.name	= "atmel_spi",
1783
		.pm	= ATMEL_SPI_PM_OPS,
1784
		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1785
	},
1786
	.probe		= atmel_spi_probe,
1787
	.remove		= atmel_spi_remove,
1788
};
1789
module_platform_driver(atmel_spi_driver);
1790 1791

MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
J
Jean Delvare 已提交
1792
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1793
MODULE_LICENSE("GPL");
1794
MODULE_ALIAS("platform:atmel_spi");