hpsa.c 243.5 KB
Newer Older
1 2
/*
 *    Disk Array driver for HP Smart Array SAS controllers
3
 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46
#include <scsi/scsi_eh.h>
47 48 49
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
50
#include <linux/atomic.h>
51
#include <linux/jiffies.h>
D
Don Brace 已提交
52
#include <linux/percpu-defs.h>
53
#include <linux/percpu.h>
D
Don Brace 已提交
54
#include <asm/unaligned.h>
55
#include <asm/div64.h>
56 57 58 59
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
60
#define HPSA_DRIVER_VERSION "3.4.4-1"
61
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
62
#define HPSA "hpsa"
63

64 65 66 67 68
/* How long to wait for CISS doorbell communication */
#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
86 87 88 89
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
90 91 92 93 94 95 96 97

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 99
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 102 103 104 105 106 107
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 109 110 111 112 113
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
114 115 116 117 118 119 120 121 122 123
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
124
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
125 126 127
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
128 129 130 131 132
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
133 134 135 136 137
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
138
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
139
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
155 156
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
157
	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
158 159 160 161 162 163 164
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
165 166 167 168 169 170 171
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
172 173 174 175
	{0x21BD103C, "Smart Array P244br", &SA5_access},
	{0x21BE103C, "Smart Array P741m", &SA5_access},
	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
	{0x21C0103C, "Smart Array P440ar", &SA5_access},
176
	{0x21C1103C, "Smart Array P840ar", &SA5_access},
177 178
	{0x21C2103C, "Smart Array P440", &SA5_access},
	{0x21C3103C, "Smart Array P441", &SA5_access},
179
	{0x21C4103C, "Smart Array", &SA5_access},
180 181 182 183
	{0x21C5103C, "Smart Array P841", &SA5_access},
	{0x21C6103C, "Smart HBA H244br", &SA5_access},
	{0x21C7103C, "Smart HBA H240", &SA5_access},
	{0x21C8103C, "Smart HBA H241", &SA5_access},
184
	{0x21C9103C, "Smart Array", &SA5_access},
185 186
	{0x21CA103C, "Smart Array P246br", &SA5_access},
	{0x21CB103C, "Smart Array P840", &SA5_access},
187 188
	{0x21CC103C, "Smart Array", &SA5_access},
	{0x21CD103C, "Smart Array", &SA5_access},
189
	{0x21CE103C, "Smart HBA", &SA5_access},
190 191 192 193 194
	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
195 196 197
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

198 199 200 201
#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
static const struct scsi_cmnd hpsa_cmd_busy;
#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
static const struct scsi_cmnd hpsa_cmd_idle;
202 203
static int number_of_controllers;

204 205
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
D
Don Brace 已提交
206
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
207 208

#ifdef CONFIG_COMPAT
D
Don Brace 已提交
209 210
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
	void __user *arg);
211 212 213 214
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
215
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
216
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
217
	int cmd_type);
218
static void hpsa_free_cmd_pool(struct ctlr_info *h);
219
#define VPD_PAGE (1 << 8)
220

J
Jeff Garzik 已提交
221
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
222 223 224
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
D
Don Brace 已提交
225
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
226 227

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
228
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
229
static int hpsa_slave_alloc(struct scsi_device *sdev);
230
static int hpsa_slave_configure(struct scsi_device *sdev);
231 232 233 234 235 236 237
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
238 239
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
D
Don Brace 已提交
240
	int nsgs, int min_blocks, u32 *bucket_map);
R
Robert Elliott 已提交
241 242
static void hpsa_free_performant_mode(struct ctlr_info *h);
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
243
static inline u32 next_command(struct ctlr_info *h, u8 q);
244 245 246 247 248 249 250 251
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
252
static inline void finish_cmd(struct CommandList *c);
253
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
254 255
#define BOARD_NOT_READY 0
#define BOARD_READY 1
256
static void hpsa_drain_accel_commands(struct ctlr_info *h);
257
static void hpsa_flush_cache(struct ctlr_info *h);
258 259
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
260
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
261
static void hpsa_command_resubmit_worker(struct work_struct *work);
262 263
static u32 lockup_detected(struct ctlr_info *h);
static int detect_controller_lockup(struct ctlr_info *h);
264 265 266 267 268 269 270

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

271 272 273 274 275 276
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

277 278 279 280 281
static inline bool hpsa_is_cmd_idle(struct CommandList *c)
{
	return c->scsi_cmd == SCSI_CMD_IDLE;
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
static void decode_sense_data(const u8 *sense_data, int sense_data_len,
			u8 *sense_key, u8 *asc, u8 *ascq)
{
	struct scsi_sense_hdr sshdr;
	bool rc;

	*sense_key = -1;
	*asc = -1;
	*ascq = -1;

	if (sense_data_len < 1)
		return;

	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
	if (rc) {
		*sense_key = sshdr.sense_key;
		*asc = sshdr.asc;
		*ascq = sshdr.ascq;
	}
}

304 305 306
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
307 308 309 310 311 312 313 314 315 316 317
	u8 sense_key, asc, ascq;
	int sense_len;

	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;

	decode_sense_data(c->err_info->SenseInfo, sense_len,
				&sense_key, &asc, &ascq);
	if (sense_key != UNIT_ATTENTION || asc == -1)
318 319
		return 0;

320
	switch (asc) {
321
	case STATE_CHANGED:
322 323 324
		dev_warn(&h->pdev->dev,
			HPSA "%d: a state change detected, command retried\n",
			h->ctlr);
325 326
		break;
	case LUN_FAILED:
327 328
		dev_warn(&h->pdev->dev,
			HPSA "%d: LUN failure detected\n", h->ctlr);
329 330
		break;
	case REPORT_LUNS_CHANGED:
331 332
		dev_warn(&h->pdev->dev,
			HPSA "%d: report LUN data changed\n", h->ctlr);
333
	/*
334 335
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
336 337 338
	 */
		break;
	case POWER_OR_RESET:
339
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
340 341 342
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
343
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
344 345 346
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
347
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
348 349 350 351 352 353
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

354 355 356 357 358 359 360 361 362 363
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377
static u32 lockup_detected(struct ctlr_info *h);
static ssize_t host_show_lockup_detected(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int ld;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	ld = lockup_detected(h);

	return sprintf(buf, "ld=%d\n", ld);
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
static ssize_t host_store_raid_offload_debug(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int debug_level, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
		return -EINVAL;
	if (debug_level < 0)
		debug_level = 0;
	h = shost_to_hba(shost);
	h->raid_offload_debug = debug_level;
	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
		h->raid_offload_debug);
	return count;
}

427 428 429 430 431 432
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
433
	h = shost_to_hba(shost);
M
Mike Miller 已提交
434
	hpsa_scan_start(h->scsi_host);
435 436 437
	return count;
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

453 454 455 456 457 458
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

459 460
	return snprintf(buf, 20, "%d\n",
			atomic_read(&h->commands_outstanding));
461 462
}

463 464 465 466 467 468 469 470
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
471
		h->transMethod & CFGTBL_Trans_Performant ?
472 473 474
			"performant" : "simple");
}

475 476 477 478 479 480 481 482 483 484 485
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

486
/* List of controllers which cannot be hard reset on kexec with reset_devices */
487 488
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
S
Stephen Cameron 已提交
489
	0x324b103C, /* Smart Array P711m */
490 491 492 493 494 495 496 497 498 499
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
500
	0x40800E11, /* Smart Array 5i */
501 502
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
503 504 505 506 507 508
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
509 510
};

511 512
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
513
	0x40800E11, /* Smart Array 5i */
514 515 516 517 518 519
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
520 521 522 523 524 525 526 527 528 529 530
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

S
Stephen Cameron 已提交
531 532 533 534 535 536 537
static u32 needs_abort_tags_swizzled[] = {
	0x323D103C, /* Smart Array P700m */
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
};

static int board_id_in_array(u32 a[], int nelems, u32 board_id)
538 539 540
{
	int i;

S
Stephen Cameron 已提交
541 542 543 544
	for (i = 0; i < nelems; i++)
		if (a[i] == board_id)
			return 1;
	return 0;
545 546
}

S
Stephen Cameron 已提交
547
static int ctlr_is_hard_resettable(u32 board_id)
548
{
S
Stephen Cameron 已提交
549 550 551
	return !board_id_in_array(unresettable_controller,
			ARRAY_SIZE(unresettable_controller), board_id);
}
552

S
Stephen Cameron 已提交
553 554 555 556
static int ctlr_is_soft_resettable(u32 board_id)
{
	return !board_id_in_array(soft_unresettable_controller,
			ARRAY_SIZE(soft_unresettable_controller), board_id);
557 558
}

559 560 561 562 563 564
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

S
Stephen Cameron 已提交
565 566 567 568 569 570
static int ctlr_needs_abort_tags_swizzled(u32 board_id)
{
	return board_id_in_array(needs_abort_tags_swizzled,
			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
}

571 572 573 574 575 576 577
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
578
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
579 580
}

581 582 583 584 585
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

586 587
static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
	"1(+0)ADM", "UNKNOWN"
588
};
589 590 591 592 593 594 595
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
596 597 598 599 600 601
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
602
	unsigned char rlevel;
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
626
	if (rlevel > RAID_UNKNOWN)
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

706 707 708 709
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
710 711
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
712 713 714
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
715 716
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
			host_store_raid_offload_debug);
717 718 719 720 721 722
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
723 724
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
725 726
static DEVICE_ATTR(lockup_detected, S_IRUGO,
	host_show_lockup_detected, NULL);
727 728 729 730 731

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
732
	&dev_attr_hp_ssd_smart_path_enabled,
733
	&dev_attr_lockup_detected,
734 735 736 737 738 739 740 741
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
742
	&dev_attr_resettable,
743
	&dev_attr_hp_ssd_smart_path_status,
744
	&dev_attr_raid_offload_debug,
745 746 747
	NULL,
};

748 749 750
#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)

751 752
static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
753 754
	.name			= HPSA,
	.proc_name		= HPSA,
755 756 757
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
D
Don Brace 已提交
758
	.change_queue_depth	= hpsa_change_queue_depth,
759 760
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
761
	.eh_abort_handler	= hpsa_eh_abort_handler,
762 763 764
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
765
	.slave_configure	= hpsa_slave_configure,
766 767 768 769 770 771
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
772
	.max_sectors = 8192,
773
	.no_write_same = 1,
774 775
};

776
static inline u32 next_command(struct ctlr_info *h, u8 q)
777 778
{
	u32 a;
779
	struct reply_queue_buffer *rq = &h->reply_queue[q];
780

781 782 783
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

784
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
785
		return h->access.command_completed(h, q);
786

787 788 789
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
790
		atomic_dec(&h->commands_outstanding);
791 792 793 794
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
795 796 797
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
798 799 800 801
	}
	return a;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

828 829
/*
 * set_performant_mode: Modify the tag for cciss performant
830 831 832
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
833 834 835
#define DEFAULT_REPLY_QUEUE (-1)
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
					int reply_queue)
836
{
837
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
838
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
839 840 841
		if (unlikely(!h->msix_vector))
			return;
		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
842
			c->Header.ReplyQueue =
843
				raw_smp_processor_id() % h->nreply_queues;
844 845
		else
			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
846
	}
847 848
}

849
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
850 851
						struct CommandList *c,
						int reply_queue)
852 853 854
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

855 856
	/*
	 * Tell the controller to post the reply to the queue for this
857 858
	 * processor.  This seems to give the best I/O throughput.
	 */
859 860 861 862 863 864
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	else
		cp->ReplyQueue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
865 866 867 868 869 870 871 872
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
						struct CommandList *c,
						int reply_queue)
{
	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
		&h->ioaccel2_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= h->ioaccel2_blockFetchTable[0];
}

895
static void set_ioaccel2_performant_mode(struct ctlr_info *h,
896 897
						struct CommandList *c,
						int reply_queue)
898 899 900
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

901 902
	/*
	 * Tell the controller to post the reply to the queue for this
903 904
	 * processor.  This seems to give the best I/O throughput.
	 */
905 906 907 908 909 910
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
911 912 913 914 915 916 917
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

947 948
static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c, int reply_queue)
949
{
950 951
	dial_down_lockup_detection_during_fw_flash(h, c);
	atomic_inc(&h->commands_outstanding);
952 953
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
954
		set_ioaccel1_performant_mode(h, c, reply_queue);
955
		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
956 957
		break;
	case CMD_IOACCEL2:
958
		set_ioaccel2_performant_mode(h, c, reply_queue);
959
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
960
		break;
961 962 963 964
	case IOACCEL2_TMF:
		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
		break;
965
	default:
966
		set_performant_mode(h, c, reply_queue);
967
		h->access.submit_command(h, c);
968
	}
969 970
}

971
static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
972
{
973 974 975
	if (unlikely(c->abort_pending))
		return finish_cmd(c);

976 977 978
	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992
static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

993 994 995 996 997 998 999
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
1000
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1001

1002
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1003 1004 1005

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1006
			__set_bit(h->dev[i]->target, lun_taken);
1007 1008
	}

1009 1010 1011 1012 1013 1014
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
1015 1016 1017 1018
	}
	return !found;
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
	struct hpsa_scsi_dev_t *dev, char *description)
{
	dev_printk(level, &h->pdev->dev,
			"scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
			description,
			scsi_device_type(dev->devtype),
			dev->vendor,
			dev->model,
			dev->raid_level > RAID_UNKNOWN ?
				"RAID-?" : raid_label[dev->raid_level],
			dev->offload_config ? '+' : '-',
			dev->offload_enabled ? '+' : '-',
			dev->expose_state);
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

1047
	if (n >= HPSA_MAX_DEVICES) {
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
D
Don Brace 已提交
1060
	 * unit no, zero otherwise.
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;
1103 1104
	hpsa_show_dev_msg(KERN_INFO, h, device,
		device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1105 1106
	device->offload_to_be_enabled = device->offload_enabled;
	device->offload_enabled = 0;
1107 1108 1109
	return 0;
}

1110 1111 1112 1113
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
1114
	int offload_enabled;
1115 1116 1117 1118 1119
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	/* Raid offload parameters changed.  Careful about the ordering. */
	if (new_entry->offload_config && new_entry->offload_enabled) {
		/*
		 * if drive is newly offload_enabled, we want to copy the
		 * raid map data first.  If previously offload_enabled and
		 * offload_config were set, raid map data had better be
		 * the same as it was before.  if raid map data is changed
		 * then it had better be the case that
		 * h->dev[entry]->offload_enabled is currently 0.
		 */
		h->dev[entry]->raid_map = new_entry->raid_map;
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	}
1134 1135 1136 1137 1138
	if (new_entry->hba_ioaccel_enabled) {
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
	}
	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1139
	h->dev[entry]->offload_config = new_entry->offload_config;
1140
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1141
	h->dev[entry]->queue_depth = new_entry->queue_depth;
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151
	/*
	 * We can turn off ioaccel offload now, but need to delay turning
	 * it on until we can update h->dev[entry]->phys_disk[], but we
	 * can't do that until all the devices are updated.
	 */
	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
	if (!new_entry->offload_enabled)
		h->dev[entry]->offload_enabled = 0;

1152 1153
	offload_enabled = h->dev[entry]->offload_enabled;
	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1154
	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1155
	h->dev[entry]->offload_enabled = offload_enabled;
1156 1157
}

1158 1159 1160 1161 1162 1163 1164
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
1165
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1166 1167
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

1178 1179 1180
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
1181
	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1182 1183
	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
	new_entry->offload_enabled = 0;
1184 1185
}

1186 1187 1188 1189 1190 1191 1192 1193
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

1194
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1195 1196 1197 1198 1199 1200 1201 1202

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
1203
	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1262 1263 1264 1265 1266 1267 1268 1269 1270
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1271 1272 1273 1274
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1275 1276
	if (dev1->queue_depth != dev2->queue_depth)
		return 1;
1277 1278 1279
	return 0;
}

1280 1281 1282
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1283 1284 1285 1286
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1287 1288 1289 1290 1291 1292 1293 1294 1295
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1296
#define DEVICE_UPDATED 3
1297
	for (i = 0; i < haystack_size; i++) {
1298 1299
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1300 1301
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1302 1303 1304
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1305
				return DEVICE_SAME;
1306
			} else {
1307 1308 1309
				/* Keep offline devices offline */
				if (needle->volume_offline)
					return DEVICE_NOT_FOUND;
1310
				return DEVICE_CHANGED;
1311
			}
1312 1313 1314 1315 1316 1317
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
static void hpsa_monitor_offline_device(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct offline_device_entry *device;
	unsigned long flags;

	/* Check to see if device is already on the list */
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_entry(device, &h->offline_device_list, offline_list) {
		if (memcmp(device->scsi3addr, scsi3addr,
			sizeof(device->scsi3addr)) == 0) {
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return;
		}
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);

	/* Device is not on the list, add it. */
	device = kmalloc(sizeof(*device), GFP_KERNEL);
	if (!device) {
		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
		return;
	}
	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_add_tail(&device->offline_list, &h->offline_device_list);
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
}

/* Print a message explaining various offline volume states */
static void hpsa_show_volume_status(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd)
{
	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
	switch (sd->volume_offline) {
	case HPSA_LV_OK:
		break;
	case HPSA_LV_UNDERGOING_ERASE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_RPI:
		dev_info(&h->pdev->dev,
				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
				h->scsi_host->host_no,
				sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_NO_KEY:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	}
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
/*
 * Figure the list of physical drive pointers for a logical drive with
 * raid offload configured.
 */
static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices,
				struct hpsa_scsi_dev_t *logical_drive)
{
	struct raid_map_data *map = &logical_drive->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int i, j;
	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
				le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int nphys_disk = le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int qdepth;

	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
		nraid_map_entries = RAID_MAP_MAX_ENTRIES;

	qdepth = 0;
	for (i = 0; i < nraid_map_entries; i++) {
		logical_drive->phys_disk[i] = NULL;
		if (!logical_drive->offload_config)
			continue;
		for (j = 0; j < ndevices; j++) {
			if (dev[j]->devtype != TYPE_DISK)
				continue;
			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
				continue;
			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
				continue;

			logical_drive->phys_disk[i] = dev[j];
			if (i < nphys_disk)
				qdepth = min(h->nr_cmds, qdepth +
				    logical_drive->phys_disk[i]->queue_depth);
			break;
		}

		/*
		 * This can happen if a physical drive is removed and
		 * the logical drive is degraded.  In that case, the RAID
		 * map data will refer to a physical disk which isn't actually
		 * present.  And in that case offload_enabled should already
		 * be 0, but we'll turn it off here just in case
		 */
		if (!logical_drive->phys_disk[i]) {
			logical_drive->offload_enabled = 0;
1474 1475
			logical_drive->offload_to_be_enabled = 0;
			logical_drive->queue_depth = 8;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		}
	}
	if (nraid_map_entries)
		/*
		 * This is correct for reads, too high for full stripe writes,
		 * way too high for partial stripe writes
		 */
		logical_drive->queue_depth = qdepth;
	else
		logical_drive->queue_depth = h->nr_cmds;
}

static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices)
{
	int i;

	for (i = 0; i < ndevices; i++) {
		if (dev[i]->devtype != TYPE_DISK)
			continue;
		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
			continue;
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

		/*
		 * If offload is currently enabled, the RAID map and
		 * phys_disk[] assignment *better* not be changing
		 * and since it isn't changing, we do not need to
		 * update it.
		 */
		if (dev[i]->offload_enabled)
			continue;

1508 1509 1510 1511
		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
	}
}

1512
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1526 1527
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1541 1542
	 * If minor device attributes change, just update
	 * the existing device structure.
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1557 1558
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1559 1560 1561 1562
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1563 1564
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
1576 1577 1578 1579 1580 1581 1582 1583

		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
		 * as the SCSI mid-layer does not handle such devices well.
		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
		 * at 160Hz, and prevents the system from coming up.
		 */
		if (sd[i]->volume_offline) {
			hpsa_show_volume_status(h, sd[i]);
1584
			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1585 1586 1587
			continue;
		}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
1604 1605 1606 1607 1608 1609 1610 1611
	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);

	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
	 * any logical drives that need it enabled.
	 */
	for (i = 0; i < h->ndevices; i++)
		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;

1612 1613
	spin_unlock_irqrestore(&h->devlock, flags);

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	/* Monitor devices which are in one of several NOT READY states to be
	 * brought online later. This must be done without holding h->devlock,
	 * so don't touch h->dev[]
	 */
	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		if (sd[i]->volume_offline)
			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
	}

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		if (removed[i]->expose_state & HPSA_SCSI_ADD) {
			struct scsi_device *sdev =
				scsi_device_lookup(sh, removed[i]->bus,
					removed[i]->target, removed[i]->lun);
			if (sdev != NULL) {
				scsi_remove_device(sdev);
				scsi_device_put(sdev);
			} else {
				/*
				 * We don't expect to get here.
				 * future cmds to this device will get selection
				 * timeout as if the device was gone.
				 */
1648 1649
				hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
					"didn't find device for removal.");
1650
			}
1651 1652 1653 1654 1655 1656 1657
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
1658 1659
		if (!(added[i]->expose_state & HPSA_SCSI_ADD))
			continue;
1660 1661 1662
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
1663 1664
		hpsa_show_dev_msg(KERN_WARNING, h, added[i],
					"addition failed, device not added.");
1665 1666 1667 1668
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
R
Robert Elliott 已提交
1669
		added[i] = NULL;
1670 1671 1672 1673 1674 1675 1676 1677
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1678
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
1705
	if (likely(sd)) {
1706
		atomic_set(&sd->ioaccel_cmds_out, 0);
1707 1708 1709
		sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
	} else
		sdev->hostdata = NULL;
1710 1711 1712 1713
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
/* configure scsi device based on internal per-device structure */
static int hpsa_slave_configure(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	int queue_depth;

	sd = sdev->hostdata;
	sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);

	if (sd)
		queue_depth = sd->queue_depth != 0 ?
			sd->queue_depth : sdev->host->can_queue;
	else
		queue_depth = sdev->host->can_queue;

	scsi_change_queue_depth(sdev, queue_depth);

	return 0;
}

1734 1735
static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1736
	/* nothing to do. */
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->ioaccel2_cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->ioaccel2_cmd_sg_list[i]);
		h->ioaccel2_cmd_sg_list[i] = NULL;
	}
	kfree(h->ioaccel2_cmd_sg_list);
	h->ioaccel2_cmd_sg_list = NULL;
}

static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->ioaccel2_cmd_sg_list =
		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
					GFP_KERNEL);
	if (!h->ioaccel2_cmd_sg_list)
		return -ENOMEM;
	for (i = 0; i < h->nr_cmds; i++) {
		h->ioaccel2_cmd_sg_list[i] =
			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
					h->maxsgentries, GFP_KERNEL);
		if (!h->ioaccel2_cmd_sg_list[i])
			goto clean;
	}
	return 0;

clean:
	hpsa_free_ioaccel2_sg_chain_blocks(h);
	return -ENOMEM;
}

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

R
Robert Elliott 已提交
1793
static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1794 1795 1796 1797 1798 1799 1800 1801
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
1802 1803
	if (!h->cmd_sg_list) {
		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1804
		return -ENOMEM;
1805
	}
1806 1807 1808
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
1809 1810
		if (!h->cmd_sg_list[i]) {
			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1811
			goto clean;
1812
		}
1813 1814 1815 1816 1817 1818 1819 1820
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp, struct CommandList *c)
{
	struct ioaccel2_sg_element *chain_block;
	u64 temp64;
	u32 chain_size;

	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
	chain_size = le32_to_cpu(cp->data_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
				PCI_DMA_TODEVICE);
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		cp->sg->address = 0;
		return -1;
	}
	cp->sg->address = cpu_to_le64(temp64);
	return 0;
}

static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
	struct io_accel2_cmd *cp)
{
	struct ioaccel2_sg_element *chain_sg;
	u64 temp64;
	u32 chain_size;

	chain_sg = cp->sg;
	temp64 = le64_to_cpu(chain_sg->address);
	chain_size = le32_to_cpu(cp->data_len);
	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
}

1854
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1855 1856 1857 1858
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;
1859
	u32 chain_len;
1860 1861 1862

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
1863 1864
	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
	chain_len = sizeof(*chain_sg) *
D
Don Brace 已提交
1865
		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1866 1867
	chain_sg->Len = cpu_to_le32(chain_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1868
				PCI_DMA_TODEVICE);
1869 1870
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
1871
		chain_sg->Addr = cpu_to_le64(0);
1872 1873
		return -1;
	}
1874
	chain_sg->Addr = cpu_to_le64(temp64);
1875
	return 0;
1876 1877 1878 1879 1880 1881 1882
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;

1883
	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1884 1885 1886
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1887 1888
	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1889 1890
}

1891 1892 1893 1894 1895 1896

/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1897 1898 1899 1900 1901
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;
1902
	int retry = 0;
1903
	u32 ioaccel2_resid = 0;
1904 1905 1906 1907 1908 1909 1910

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1911
			cmd->result |= SAM_STAT_CHECK_CONDITION;
1912
			if (c2->error_data.data_present !=
1913 1914 1915
					IOACCEL2_SENSE_DATA_PRESENT) {
				memset(cmd->sense_buffer, 0,
					SCSI_SENSE_BUFFERSIZE);
1916
				break;
1917
			}
1918 1919 1920 1921 1922 1923 1924 1925 1926
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
1927
			retry = 1;
1928 1929
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1930
			retry = 1;
1931 1932
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1933
			retry = 1;
1934 1935
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1936
			retry = 1;
1937 1938
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1939
			retry = 1;
1940 1941
			break;
		default:
1942
			retry = 1;
1943 1944 1945 1946
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_IO_ERROR:
		case IOACCEL2_STATUS_SR_IO_ABORTED:
		case IOACCEL2_STATUS_SR_OVERRUN:
			retry = 1;
			break;
		case IOACCEL2_STATUS_SR_UNDERRUN:
			cmd->result = (DID_OK << 16);		/* host byte */
			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
			ioaccel2_resid = get_unaligned_le32(
						&c2->error_data.resid_cnt[0]);
			scsi_set_resid(cmd, ioaccel2_resid);
			break;
		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
			/* We will get an event from ctlr to trigger rescan */
			retry = 1;
			break;
		default:
			retry = 1;
		}
1969 1970 1971 1972 1973 1974
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1975
		retry = 1;
1976 1977 1978 1979
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		break;
	default:
1980
		retry = 1;
1981 1982
		break;
	}
1983 1984

	return retry;	/* retry on raid path? */
1985 1986
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
static void hpsa_cmd_resolve_events(struct ctlr_info *h,
		struct CommandList *c)
{
	/*
	 * Prevent the following race in the abort handler:
	 *
	 * 1. LLD is requested to abort a SCSI command
	 * 2. The SCSI command completes
	 * 3. The struct CommandList associated with step 2 is made available
	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
	 * 5. Abort handler follows scsi_cmnd->host_scribble and
	 *    finds struct CommandList and tries to aborts it
	 * Now we have aborted the wrong command.
	 *
	 * Clear c->scsi_cmd here so that the abort handler will know this
	 * command has completed.  Then, check to see if the abort handler is
	 * waiting for this command, and, if so, wake it.
	 */
	c->scsi_cmd = SCSI_CMD_IDLE;
	mb(); /* Ensure c->scsi_cmd is set to SCSI_CMD_IDLE */
	if (c->abort_pending) {
		c->abort_pending = false;
		wake_up_all(&h->abort_sync_wait_queue);
	}
}

2013 2014 2015
static void hpsa_cmd_free_and_done(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd)
{
2016
	hpsa_cmd_resolve_events(h, c);
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	cmd_free(h, c);
	cmd->scsi_done(cmd);
}

static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
{
	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
}

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
{
	cmd->result = DID_ABORT << 16;
}

static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
				    struct scsi_cmnd *cmd)
{
	hpsa_set_scsi_cmd_aborted(cmd);
	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
			 c->Request.CDB, c->err_info->ScsiStatus);
	hpsa_cmd_resolve_events(h, c);
	cmd_free(h, c);		/* FIX-ME:  change to cmd_tagged_free(h, c) */
}

2042 2043 2044 2045 2046 2047 2048 2049
static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
2050 2051
			c2->error_data.status == 0))
		return hpsa_cmd_free_and_done(h, c, cmd);
2052

2053 2054 2055 2056
	/* don't requeue a command which is being aborted */
	if (unlikely(c->abort_pending))
		return hpsa_cmd_abort_and_free(h, c, cmd);

2057 2058
	/*
	 * Any RAID offload error results in retry which will use
2059 2060 2061 2062 2063 2064
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
2065 2066 2067
		if (c2->error_data.status ==
			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
			dev->offload_enabled = 0;
2068 2069

		return hpsa_retry_cmd(h, c);
2070
	}
2071 2072

	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2073
		return hpsa_retry_cmd(h, c);
2074

2075
	return hpsa_cmd_free_and_done(h, c, cmd);
2076 2077
}

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
/* Returns 0 on success, < 0 otherwise. */
static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
					struct CommandList *cp)
{
	u8 tmf_status = cp->err_info->ScsiStatus;

	switch (tmf_status) {
	case CISS_TMF_COMPLETE:
		/*
		 * CISS_TMF_COMPLETE never happens, instead,
		 * ei->CommandStatus == 0 for this case.
		 */
	case CISS_TMF_SUCCESS:
		return 0;
	case CISS_TMF_INVALID_FRAME:
	case CISS_TMF_NOT_SUPPORTED:
	case CISS_TMF_FAILED:
	case CISS_TMF_WRONG_LUN:
	case CISS_TMF_OVERLAPPED_TAG:
		break;
	default:
		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
				tmf_status);
		break;
	}
	return -tmf_status;
}

2106
static void complete_scsi_command(struct CommandList *cp)
2107 2108 2109 2110
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
2111
	struct hpsa_scsi_dev_t *dev;
2112
	struct io_accel2_cmd *c2;
2113

2114 2115 2116
	u8 sense_key;
	u8 asc;      /* additional sense code */
	u8 ascq;     /* additional sense code qualifier */
2117
	unsigned long sense_data_size;
2118 2119

	ei = cp->err_info;
2120
	cmd = cp->scsi_cmd;
2121
	h = cp->h;
2122
	dev = cmd->device->hostdata;
2123
	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2124 2125

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2126
	if ((cp->cmd_type == CMD_SCSI) &&
D
Don Brace 已提交
2127
		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2128
		hpsa_unmap_sg_chain_block(h, cp);
2129

2130 2131 2132 2133
	if ((cp->cmd_type == CMD_IOACCEL2) &&
		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);

2134 2135
	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2136

2137 2138 2139
	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);

2140 2141 2142 2143 2144 2145 2146 2147
	/*
	 * We check for lockup status here as it may be set for
	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
	 * fail_all_oustanding_cmds()
	 */
	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
		/* DID_NO_CONNECT will prevent a retry */
		cmd->result = DID_NO_CONNECT << 16;
2148
		return hpsa_cmd_free_and_done(h, cp, cmd);
2149 2150
	}

2151 2152 2153
	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

2154
	scsi_set_resid(cmd, ei->ResidualCnt);
2155 2156
	if (ei->CommandStatus == 0)
		return hpsa_cmd_free_and_done(h, cp, cmd);
2157

2158 2159 2160 2161 2162
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
D
Don Brace 已提交
2163 2164 2165 2166
		cp->Header.SGList = scsi_sg_count(cmd);
		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2167
		cp->Header.tag = c->tag;
2168 2169
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2170 2171 2172 2173 2174 2175 2176 2177

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
2178 2179
			if (!cp->abort_pending)
				return hpsa_retry_cmd(h, cp);
2180
		}
2181 2182
	}

2183 2184 2185
	if (cp->abort_pending)
		ei->CommandStatus = CMD_ABORTED;

2186 2187 2188 2189
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
		cmd->result |= ei->ScsiStatus;
		/* copy the sense data */
		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
			sense_data_size = SCSI_SENSE_BUFFERSIZE;
		else
			sense_data_size = sizeof(ei->SenseInfo);
		if (ei->SenseLen < sense_data_size)
			sense_data_size = ei->SenseLen;
		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
		if (ei->ScsiStatus)
			decode_sense_data(ei->SenseInfo, sense_data_size,
				&sense_key, &asc, &ascq);
2202
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2203
			if (sense_key == ABORTED_COMMAND) {
2204
				cmd->result |= DID_SOFT_ERROR << 16;
2205 2206
				break;
			}
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
			break;
		}
		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2242 2243
		dev_warn(&h->pdev->dev,
			"CDB %16phN data overrun\n", cp->Request.CDB);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
2258
		cmd->result = DID_ERROR << 16;
2259 2260
		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
				cp->Request.CDB);
2261 2262 2263
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
2264 2265
		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
			cp->Request.CDB);
2266 2267 2268
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
2269 2270
		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
			cp->Request.CDB);
2271 2272
		break;
	case CMD_ABORTED:
2273 2274
		/* Return now to avoid calling scsi_done(). */
		return hpsa_cmd_abort_and_free(h, cp, cmd);
2275 2276
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
2277 2278
		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
			cp->Request.CDB);
2279 2280
		break;
	case CMD_UNSOLICITED_ABORT:
2281
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2282 2283
		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
			cp->Request.CDB);
2284 2285 2286
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
2287 2288
		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
			cp->Request.CDB);
2289
		break;
2290 2291 2292 2293
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
2294 2295 2296 2297
	case CMD_TMF_STATUS:
		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
			cmd->result = DID_ERROR << 16;
		break;
2298 2299 2300 2301 2302 2303 2304 2305
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
2306 2307 2308 2309 2310
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
2311 2312

	return hpsa_cmd_free_and_done(h, cp, cmd);
2313 2314 2315 2316 2317 2318 2319
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;

2320 2321 2322 2323
	for (i = 0; i < sg_used; i++)
		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
				le32_to_cpu(c->SG[i].Len),
				data_direction);
2324 2325
}

2326
static int hpsa_map_one(struct pci_dev *pdev,
2327 2328 2329 2330 2331
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
2332
	u64 addr64;
2333 2334 2335

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
2336
		cp->Header.SGTotal = cpu_to_le16(0);
2337
		return 0;
2338 2339
	}

2340
	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2341
	if (dma_mapping_error(&pdev->dev, addr64)) {
2342
		/* Prevent subsequent unmap of something never mapped */
2343
		cp->Header.SGList = 0;
2344
		cp->Header.SGTotal = cpu_to_le16(0);
2345
		return -1;
2346
	}
2347 2348 2349 2350 2351
	cp->SG[0].Addr = cpu_to_le64(addr64);
	cp->SG[0].Len = cpu_to_le32(buflen);
	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2352
	return 0;
2353 2354
}

2355 2356 2357 2358
#define NO_TIMEOUT ((unsigned long) -1)
#define DEFAULT_TIMEOUT 30000 /* milliseconds */
static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2359 2360 2361 2362
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	__enqueue_cmd_and_start_io(h, c, reply_queue);
	if (timeout_msecs == NO_TIMEOUT) {
		/* TODO: get rid of this no-timeout thing */
		wait_for_completion_io(&wait);
		return IO_OK;
	}
	if (!wait_for_completion_io_timeout(&wait,
					msecs_to_jiffies(timeout_msecs))) {
		dev_warn(&h->pdev->dev, "Command timed out.\n");
		return -ETIMEDOUT;
	}
	return IO_OK;
}

static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
				   int reply_queue, unsigned long timeout_msecs)
{
	if (unlikely(lockup_detected(h))) {
		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
		return IO_OK;
	}
	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2385 2386
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
static u32 lockup_detected(struct ctlr_info *h)
{
	int cpu;
	u32 rc, *lockup_detected;

	cpu = get_cpu();
	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
	rc = *lockup_detected;
	put_cpu();
	return rc;
}

2399
#define MAX_DRIVER_CMD_RETRIES 25
2400 2401
static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2402
{
2403
	int backoff_time = 10, retry_count = 0;
2404
	int rc;
2405 2406

	do {
2407
		memset(c->err_info, 0, sizeof(*c->err_info));
2408 2409 2410 2411
		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						  timeout_msecs);
		if (rc)
			break;
2412
		retry_count++;
2413 2414 2415 2416 2417
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
2418
	} while ((check_for_unit_attention(h, c) ||
2419 2420
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
2421
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2422 2423 2424
	if (retry_count > MAX_DRIVER_CMD_RETRIES)
		rc = -EIO;
	return rc;
2425 2426
}

2427 2428
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
2429
{
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		txt, lun[0], lun[1], lun[2], lun[3],
		lun[4], lun[5], lun[6], lun[7],
		cdb[0], cdb[1], cdb[2], cdb[3],
		cdb[4], cdb[5], cdb[6], cdb[7],
		cdb[8], cdb[9], cdb[10], cdb[11],
		cdb[12], cdb[13], cdb[14], cdb[15]);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
2447
	struct device *d = &cp->h->pdev->dev;
2448 2449
	u8 sense_key, asc, ascq;
	int sense_len;
2450 2451 2452

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
2453 2454 2455 2456 2457 2458
		if (ei->SenseLen > sizeof(ei->SenseInfo))
			sense_len = sizeof(ei->SenseInfo);
		else
			sense_len = ei->SenseLen;
		decode_sense_data(ei->SenseInfo, sense_len,
					&sense_key, &asc, &ascq);
2459 2460
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2461 2462
			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
				sense_key, asc, ascq);
2463
		else
2464
			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2465 2466 2467 2468 2469 2470 2471 2472 2473
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2474
		hpsa_print_cmd(h, "overrun condition", cp);
2475 2476 2477 2478 2479
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
2480 2481
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
2482 2483 2484
		}
		break;
	case CMD_PROTOCOL_ERR:
2485
		hpsa_print_cmd(h, "protocol error", cp);
2486 2487
		break;
	case CMD_HARDWARE_ERR:
2488
		hpsa_print_cmd(h, "hardware error", cp);
2489 2490
		break;
	case CMD_CONNECTION_LOST:
2491
		hpsa_print_cmd(h, "connection lost", cp);
2492 2493
		break;
	case CMD_ABORTED:
2494
		hpsa_print_cmd(h, "aborted", cp);
2495 2496
		break;
	case CMD_ABORT_FAILED:
2497
		hpsa_print_cmd(h, "abort failed", cp);
2498 2499
		break;
	case CMD_UNSOLICITED_ABORT:
2500
		hpsa_print_cmd(h, "unsolicited abort", cp);
2501 2502
		break;
	case CMD_TIMEOUT:
2503
		hpsa_print_cmd(h, "timed out", cp);
2504
		break;
2505
	case CMD_UNABORTABLE:
2506
		hpsa_print_cmd(h, "unabortable", cp);
2507
		break;
2508 2509 2510
	case CMD_CTLR_LOCKUP:
		hpsa_print_cmd(h, "controller lockup detected", cp);
		break;
2511
	default:
2512 2513
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
2514 2515 2516 2517 2518
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2519
			u16 page, unsigned char *buf,
2520 2521 2522 2523 2524 2525
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2526
	c = cmd_alloc(h);
2527

2528 2529 2530 2531 2532
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2533 2534 2535 2536
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2537 2538
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2539
		hpsa_scsi_interpret_error(h, c);
2540 2541
		rc = -1;
	}
2542
out:
2543
	cmd_free(h, c);
2544 2545 2546
	return rc;
}

2547 2548 2549 2550 2551 2552 2553 2554
static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
		unsigned char *scsi3addr, unsigned char page,
		struct bmic_controller_parameters *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2555
	c = cmd_alloc(h);
2556 2557 2558 2559 2560
	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2561 2562 2563 2564
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
			PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2565 2566 2567 2568 2569 2570
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
2571
	cmd_free(h, c);
2572
	return rc;
2573
}
2574

2575
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2576
	u8 reset_type, int reply_queue)
2577 2578 2579 2580 2581
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2582
	c = cmd_alloc(h);
2583 2584


2585
	/* fill_cmd can't fail here, no data buffer to map. */
2586 2587 2588
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2589 2590 2591 2592 2593
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc) {
		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
		goto out;
	}
2594 2595 2596 2597
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
2598
		hpsa_scsi_interpret_error(h, c);
2599 2600
		rc = -1;
	}
2601
out:
2602
	cmd_free(h, c);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2616
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2617 2618 2619 2620 2621 2622 2623 2624
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

2637 2638 2639 2640
	/* Show details only if debugging has been activated. */
	if (h->raid_offload_debug < 2)
		return;

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
D
Don Brace 已提交
2665
	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2666
			le16_to_cpu(map_buff->flags));
D
Don Brace 已提交
2667 2668 2669
	dev_info(&h->pdev->dev, "encrypytion = %s\n",
			le16_to_cpu(map_buff->flags) &
			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2670 2671
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

2710
	c = cmd_alloc(h);
2711

2712 2713 2714
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
2715 2716 2717
		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
		cmd_free(h, c);
		return -1;
2718
	}
2719 2720 2721 2722
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2723 2724
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2725
		hpsa_scsi_interpret_error(h, c);
2726 2727
		rc = -1;
		goto out;
2728
	}
2729
	cmd_free(h, c);
2730 2731 2732 2733 2734 2735 2736 2737 2738

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
2739 2740 2741
out:
	cmd_free(h, c);
	return rc;
2742 2743
}

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
		unsigned char scsi3addr[], u16 bmic_device_index,
		struct bmic_identify_physical_device *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);
	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
		0, RAID_CTLR_LUNID, TYPE_CMD);
	if (rc)
		goto out;

	c->Request.CDB[2] = bmic_device_index & 0xff;
	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;

2761 2762
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
						NO_TIMEOUT);
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
static int hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return 0;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return 0;
exit_supported:
	kfree(buf);
	return 1;
}

2816 2817 2818 2819 2820 2821 2822 2823 2824
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;
2825
	this_device->offload_to_be_enabled = 0;
2826 2827 2828 2829

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2830 2831
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
2832
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2833
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
2849
	this_device->offload_to_be_enabled = this_device->offload_enabled;
2850 2851 2852 2853 2854
out:
	kfree(buf);
	return;
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
2866
		return -ENOMEM;
2867
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2868 2869 2870 2871 2872 2873 2874
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2875
		void *buf, int bufsize,
2876 2877 2878 2879 2880 2881 2882
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

2883
	c = cmd_alloc(h);
2884

2885 2886
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
2887 2888 2889 2890 2891
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2892 2893
	if (extended_response)
		c->Request.CDB[1] = extended_response;
2894 2895 2896 2897
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2898 2899 2900
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2901
		hpsa_scsi_interpret_error(h, c);
2902
		rc = -1;
2903
	} else {
2904 2905 2906
		struct ReportLUNdata *rld = buf;

		if (rld->extended_response_flag != extended_response) {
2907 2908 2909
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
2910
				rld->extended_response_flag);
2911 2912
			rc = -1;
		}
2913
	}
2914
out:
2915
	cmd_free(h, c);
2916 2917 2918 2919
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2920
		struct ReportExtendedLUNdata *buf, int bufsize)
2921
{
2922 2923
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
						HPSA_REPORT_PHYS_EXTENDED);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/* Use VPD inquiry to get details of volume status */
static int hpsa_get_volume_status(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	int rc;
	int status;
	int size;
	unsigned char *buf;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;

	/* Does controller have VPD for logical volume status? */
2954
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2955 2956 2957 2958 2959
		goto exit_failed;

	/* Get the size of the VPD return buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, HPSA_VPD_HEADER_SZ);
2960
	if (rc != 0)
2961 2962 2963 2964 2965 2966
		goto exit_failed;
	size = buf[3];

	/* Now get the whole VPD buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, size + HPSA_VPD_HEADER_SZ);
2967
	if (rc != 0)
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
		goto exit_failed;
	status = buf[4]; /* status byte */

	kfree(buf);
	return status;
exit_failed:
	kfree(buf);
	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
}

/* Determine offline status of a volume.
 * Return either:
 *  0 (not offline)
2981
 *  0xff (offline for unknown reasons)
2982 2983 2984
 *  # (integer code indicating one of several NOT READY states
 *     describing why a volume is to be kept offline)
 */
2985
static int hpsa_volume_offline(struct ctlr_info *h,
2986 2987 2988
					unsigned char scsi3addr[])
{
	struct CommandList *c;
2989 2990 2991
	unsigned char *sense;
	u8 sense_key, asc, ascq;
	int sense_len;
2992
	int rc, ldstat = 0;
2993 2994 2995 2996 2997 2998 2999
	u16 cmd_status;
	u8 scsi_status;
#define ASC_LUN_NOT_READY 0x04
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02

	c = cmd_alloc(h);
3000

3001
	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3002 3003 3004 3005 3006
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	if (rc) {
		cmd_free(h, c);
		return 0;
	}
3007
	sense = c->err_info->SenseInfo;
3008 3009 3010 3011 3012
	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
		sense_len = sizeof(c->err_info->SenseInfo);
	else
		sense_len = c->err_info->SenseLen;
	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	cmd_status = c->err_info->CommandStatus;
	scsi_status = c->err_info->ScsiStatus;
	cmd_free(h, c);
	/* Is the volume 'not ready'? */
	if (cmd_status != CMD_TARGET_STATUS ||
		scsi_status != SAM_STAT_CHECK_CONDITION ||
		sense_key != NOT_READY ||
		asc != ASC_LUN_NOT_READY)  {
		return 0;
	}

	/* Determine the reason for not ready state */
	ldstat = hpsa_get_volume_status(h, scsi3addr);

	/* Keep volume offline in certain cases: */
	switch (ldstat) {
	case HPSA_LV_UNDERGOING_ERASE:
	case HPSA_LV_UNDERGOING_RPI:
	case HPSA_LV_PENDING_RPI:
	case HPSA_LV_ENCRYPTED_NO_KEY:
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
	case HPSA_LV_UNDERGOING_ENCRYPTION:
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		return ldstat;
	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
		/* If VPD status page isn't available,
		 * use ASC/ASCQ to determine state
		 */
		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
			return ldstat;
		break;
	default:
		break;
	}
	return 0;
}

S
Stephen Cameron 已提交
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
/*
 * Find out if a logical device supports aborts by simply trying one.
 * Smart Array may claim not to support aborts on logical drives, but
 * if a MSA2000 * is connected, the drives on that will be presented
 * by the Smart Array as logical drives, and aborts may be sent to
 * those devices successfully.  So the simplest way to find out is
 * to simply try an abort and see how the device responds.
 */
static int hpsa_device_supports_aborts(struct ctlr_info *h,
					unsigned char *scsi3addr)
{
	struct CommandList *c;
	struct ErrorInfo *ei;
	int rc = 0;

	u64 tag = (u64) -1; /* bogus tag */

	/* Assume that physical devices support aborts */
	if (!is_logical_dev_addr_mode(scsi3addr))
		return 1;

	c = cmd_alloc(h);
3074

S
Stephen Cameron 已提交
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	/* no unmap needed here because no data xfer. */
	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_INVALID:
		rc = 0;
		break;
	case CMD_UNABORTABLE:
	case CMD_ABORT_FAILED:
		rc = 1;
		break;
3087 3088 3089
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
S
Stephen Cameron 已提交
3090 3091 3092 3093 3094 3095 3096 3097
	default:
		rc = 0;
		break;
	}
	cmd_free(h, c);
	return rc;
}

3098
static int hpsa_update_device_info(struct ctlr_info *h,
3099 3100
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
3101
{
3102 3103 3104 3105 3106 3107

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

3108
	unsigned char *inq_buff;
3109
	unsigned char *obdr_sig;
3110

3111
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
3136
		is_logical_dev_addr_mode(scsi3addr)) {
3137 3138
		int volume_offline;

3139
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3140 3141
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3142 3143 3144 3145
		volume_offline = hpsa_volume_offline(h, scsi3addr);
		if (volume_offline < 0 || volume_offline > 0xff)
			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
		this_device->volume_offline = volume_offline & 0xff;
3146
	} else {
3147
		this_device->raid_level = RAID_UNKNOWN;
3148 3149
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
3150
		this_device->offload_to_be_enabled = 0;
3151
		this_device->hba_ioaccel_enabled = 0;
3152
		this_device->volume_offline = 0;
3153
		this_device->queue_depth = h->nr_cmds;
3154
	}
3155

3156 3157 3158 3159 3160 3161 3162 3163 3164
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}
3165 3166 3167 3168 3169 3170 3171 3172
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

S
Stephen Cameron 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
{
	unsigned long flags;
	int rc, entry;
	/*
	 * See if this device supports aborts.  If we already know
	 * the device, we already know if it supports aborts, otherwise
	 * we have to find out if it supports aborts by trying one.
	 */
	spin_lock_irqsave(&h->devlock, flags);
	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
		entry >= 0 && entry < h->ndevices) {
		dev->supports_aborts = h->dev[entry]->supports_aborts;
		spin_unlock_irqrestore(&h->devlock, flags);
	} else {
		spin_unlock_irqrestore(&h->devlock, flags);
		dev->supports_aborts =
				hpsa_device_supports_aborts(h, scsi3addr);
		if (dev->supports_aborts < 0)
			dev->supports_aborts = 0;
	}
}

3198
static unsigned char *ext_target_model[] = {
3199 3200 3201 3202
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
3203
	"P2000 G3 SAS",
3204
	"MSA 2040 SAS",
3205 3206 3207
	NULL,
};

3208
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3209 3210 3211
{
	int i;

3212 3213 3214
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
3215 3216 3217 3218 3219
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
3220
 * Puts non-external target logical volumes on bus 0, external target logical
3221 3222 3223 3224 3225 3226
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
3227
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3228
{
3229 3230 3231 3232
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
3233
		if (is_hba_lunid(lunaddrbytes))
3234
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3235
		else
3236 3237 3238 3239 3240
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
3241 3242
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
3243 3244 3245 3246 3247 3248
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
3249
	}
3250
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3251 3252 3253 3254
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
3255
 * For the external targets (arrays), we have to manually detect the enclosure
3256 3257 3258 3259 3260 3261 3262 3263
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
3264
static int add_ext_target_dev(struct ctlr_info *h,
3265
	struct hpsa_scsi_dev_t *tmpdevice,
3266
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3267
	unsigned long lunzerobits[], int *n_ext_target_devs)
3268 3269 3270
{
	unsigned char scsi3addr[8];

3271
	if (test_bit(tmpdevice->target, lunzerobits))
3272 3273 3274 3275 3276
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

3277 3278
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
3279

3280
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3281 3282
		return 0;

3283
	memset(scsi3addr, 0, 8);
3284
	scsi3addr[3] = tmpdevice->target;
3285 3286 3287
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

3288 3289 3290
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

3291
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3292 3293
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
3294 3295 3296 3297
			"configuration.");
		return 0;
	}

3298
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3299
		return 0;
3300
	(*n_ext_target_devs)++;
3301 3302
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
S
Stephen Cameron 已提交
3303
	hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3304
	set_bit(tmpdevice->target, lunzerobits);
3305 3306 3307
	return 1;
}

3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
3319 3320 3321
	struct io_accel2_cmd *c2 =
			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	unsigned long flags;
3322 3323
	int i;

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
	spin_lock_irqsave(&h->devlock, flags);
	for (i = 0; i < h->ndevices; i++)
		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
			memcpy(scsi3addr, h->dev[i]->scsi3addr,
				sizeof(h->dev[i]->scsi3addr));
			spin_unlock_irqrestore(&h->devlock, flags);
			return 1;
		}
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
3334
}
3335

3336 3337 3338 3339 3340 3341 3342
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
3343
	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3344
	struct ReportLUNdata *logdev, u32 *nlogicals)
3345
{
3346
	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3347 3348 3349
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
3350
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3351
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3352 3353
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3354 3355
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
3356
	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3357 3358 3359
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
3360
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

D
Don Brace 已提交
3379 3380
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlogicals,
3381
	struct ReportExtendedLUNdata *physdev_list,
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
3396 3397
		return &physdev_list->LUN[i -
				(raid_ctlr_position == 0)].lunid[0];
3398 3399 3400 3401 3402 3403 3404 3405

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

3406 3407 3408
static int hpsa_hba_mode_enabled(struct ctlr_info *h)
{
	int rc;
3409
	int hba_mode_enabled;
3410 3411 3412 3413 3414
	struct bmic_controller_parameters *ctlr_params;
	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
		GFP_KERNEL);

	if (!ctlr_params)
3415
		return -ENOMEM;
3416 3417
	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
		sizeof(struct bmic_controller_parameters));
3418
	if (rc) {
3419
		kfree(ctlr_params);
3420
		return rc;
3421
	}
3422 3423 3424 3425 3426

	hba_mode_enabled =
		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
	kfree(ctlr_params);
	return hba_mode_enabled;
3427 3428
}

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
/* get physical drive ioaccel handle and queue depth */
static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
		struct hpsa_scsi_dev_t *dev,
		u8 *lunaddrbytes,
		struct bmic_identify_physical_device *id_phys)
{
	int rc;
	struct ext_report_lun_entry *rle =
		(struct ext_report_lun_entry *) lunaddrbytes;

	dev->ioaccel_handle = rle->ioaccel_handle;
3440 3441
	if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
		dev->hba_ioaccel_enabled = 1;
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	memset(id_phys, 0, sizeof(*id_phys));
	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
			sizeof(*id_phys));
	if (!rc)
		/* Reserve space for FW operations */
#define DRIVE_CMDS_RESERVED_FOR_FW 2
#define DRIVE_QUEUE_DEPTH 7
		dev->queue_depth =
			le16_to_cpu(id_phys->current_queue_depth_limit) -
				DRIVE_CMDS_RESERVED_FOR_FW;
	else
		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
	atomic_set(&dev->ioaccel_cmds_out, 0);
}

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
3470
	struct ReportExtendedLUNdata *physdev_list = NULL;
3471
	struct ReportLUNdata *logdev_list = NULL;
3472
	struct bmic_identify_physical_device *id_phys = NULL;
3473 3474 3475
	u32 nphysicals = 0;
	u32 nlogicals = 0;
	u32 ndev_allocated = 0;
3476 3477
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
3478
	int i, n_ext_target_devs, ndevs_to_allocate;
3479
	int raid_ctlr_position;
3480
	int rescan_hba_mode;
3481
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3482

3483
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3484 3485
	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3486
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3487
	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3488

3489 3490
	if (!currentsd || !physdev_list || !logdev_list ||
		!tmpdevice || !id_phys) {
3491 3492 3493 3494 3495
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

3496
	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3497 3498
	if (rescan_hba_mode < 0)
		goto out;
3499 3500 3501 3502 3503 3504 3505 3506

	if (!h->hba_mode_enabled && rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
	else if (h->hba_mode_enabled && !rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode disabled\n");

	h->hba_mode_enabled = rescan_hba_mode;

3507 3508
	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
			logdev_list, &nlogicals))
3509 3510
		goto out;

3511 3512 3513
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
3514
	 */
3515
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3516 3517 3518

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
3519 3520 3521 3522 3523 3524 3525
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

3526 3527 3528 3529 3530 3531 3532 3533 3534
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

3535
	if (is_scsi_rev_5(h))
3536 3537 3538 3539
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

3540
	/* adjust our table of devices */
3541
	n_ext_target_devs = 0;
3542
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3543
		u8 *lunaddrbytes, is_OBDR = 0;
3544 3545

		/* Figure out where the LUN ID info is coming from */
3546 3547
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
3548 3549 3550 3551 3552 3553

		/* skip masked non-disk devices */
		if (MASKED_DEVICE(lunaddrbytes))
			if (i < nphysicals + (raid_ctlr_position == 0) &&
				NON_DISK_PHYS_DEV(lunaddrbytes))
				continue;
3554 3555

		/* Get device type, vendor, model, device id */
3556 3557
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
3558
			continue; /* skip it if we can't talk to it. */
3559
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
S
Stephen Cameron 已提交
3560
		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3561 3562 3563
		this_device = currentsd[ncurrent];

		/*
3564
		 * For external target devices, we have to insert a LUN 0 which
3565 3566 3567 3568 3569
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
3570
		if (add_ext_target_dev(h, tmpdevice, this_device,
3571
				lunaddrbytes, lunzerobits,
3572
				&n_ext_target_devs)) {
3573 3574 3575 3576 3577 3578
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
		/* do not expose masked devices */
		if (MASKED_DEVICE(lunaddrbytes) &&
			i < nphysicals + (raid_ctlr_position == 0)) {
			if (h->hba_mode_enabled)
				dev_warn(&h->pdev->dev,
					"Masked physical device detected\n");
			this_device->expose_state = HPSA_DO_NOT_EXPOSE;
		} else {
			this_device->expose_state =
					HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
		}

3591
		switch (this_device->devtype) {
3592
		case TYPE_ROM:
3593 3594 3595 3596 3597 3598 3599
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
3600 3601
			if (is_OBDR)
				ncurrent++;
3602 3603
			break;
		case TYPE_DISK:
3604
			if (i >= nphysicals) {
3605 3606
				ncurrent++;
				break;
3607
			}
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619

			if (h->hba_mode_enabled)
				/* never use raid mapper in HBA mode */
				this_device->offload_enabled = 0;
			else if (!(h->transMethod & CFGTBL_Trans_io_accel1 ||
				h->transMethod & CFGTBL_Trans_io_accel2))
				break;

			hpsa_get_ioaccel_drive_info(h, this_device,
						lunaddrbytes, id_phys);
			atomic_set(&this_device->ioaccel_cmds_out, 0);
			ncurrent++;
3620 3621 3622 3623 3624
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
3625 3626 3627 3628
		case TYPE_ENCLOSURE:
			if (h->hba_mode_enabled)
				ncurrent++;
			break;
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
3642
		if (ncurrent >= HPSA_MAX_DEVICES)
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
3653
	kfree(id_phys);
3654 3655
}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
				   struct scatterlist *sg)
{
	u64 addr64 = (u64) sg_dma_address(sg);
	unsigned int len = sg_dma_len(sg);

	desc->Addr = cpu_to_le64(addr64);
	desc->Len = cpu_to_le32(len);
	desc->Ext = 0;
}

3667 3668
/*
 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3669 3670 3671
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
3672
static int hpsa_scatter_gather(struct ctlr_info *h,
3673 3674 3675 3676
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	struct scatterlist *sg;
3677
	int use_sg, i, sg_limit, chained, last_sg;
3678
	struct SGDescriptor *curr_sg;
3679

3680
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3681 3682 3683 3684 3685 3686 3687 3688

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

3689 3690 3691 3692 3693 3694 3695
	/*
	 * If the number of entries is greater than the max for a single list,
	 * then we have a chained list; we will set up all but one entry in the
	 * first list (the last entry is saved for link information);
	 * otherwise, we don't have a chained list and we'll set up at each of
	 * the entries in the one list.
	 */
3696
	curr_sg = cp->SG;
3697 3698 3699 3700
	chained = use_sg > h->max_cmd_sg_entries;
	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
	last_sg = scsi_sg_count(cmd) - 1;
	scsi_for_each_sg(cmd, sg, sg_limit, i) {
3701
		hpsa_set_sg_descriptor(curr_sg, sg);
3702 3703
		curr_sg++;
	}
3704

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	if (chained) {
		/*
		 * Continue with the chained list.  Set curr_sg to the chained
		 * list.  Modify the limit to the total count less the entries
		 * we've already set up.  Resume the scan at the list entry
		 * where the previous loop left off.
		 */
		curr_sg = h->cmd_sg_list[cp->cmdindex];
		sg_limit = use_sg - sg_limit;
		for_each_sg(sg, sg, sg_limit, i) {
			hpsa_set_sg_descriptor(curr_sg, sg);
			curr_sg++;
		}
	}

3720
	/* Back the pointer up to the last entry and mark it as "last". */
3721
	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3722 3723 3724 3725 3726 3727

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
3728
		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3729 3730 3731 3732
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
3733
		return 0;
3734 3735 3736 3737
	}

sglist_finished:

3738
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3739
	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3740 3741 3742
	return 0;
}

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

3791
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3792
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3793
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

3805
	/* TODO: implement chaining support */
3806 3807
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3808
		return IO_ACCEL_INELIGIBLE;
3809
	}
3810

3811 3812
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

3813 3814
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3815
		return IO_ACCEL_INELIGIBLE;
3816
	}
3817

3818 3819 3820 3821 3822 3823 3824 3825
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
3826 3827
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3828
		return use_sg;
3829
	}
3830 3831 3832 3833 3834 3835 3836

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
3837 3838 3839
			curr_sg->Addr = cpu_to_le64(addr64);
			curr_sg->Len = cpu_to_le32(len);
			curr_sg->Ext = cpu_to_le32(0);
3840 3841
			curr_sg++;
		}
3842
		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

3864
	c->Header.SGList = use_sg;
3865
	/* Fill out the command structure to submit */
D
Don Brace 已提交
3866 3867 3868 3869 3870
	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
	cp->transfer_len = cpu_to_le32(total_len);
	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
	cp->control = cpu_to_le32(control);
3871 3872
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
3873
	/* Tag was already set at init time. */
3874
	enqueue_cmd_and_start_io(h, c);
3875 3876
	return 0;
}
3877

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

3888 3889
	c->phys_disk = dev;

3890
	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3891
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3892 3893
}

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	/* Are we doing encryption on this device */
D
Don Brace 已提交
3906
	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_6:
	case READ_6:
D
Don Brace 已提交
3922
		first_block = get_unaligned_be16(&cmd->cmnd[2]);
3923 3924 3925 3926 3927 3928
		break;
	case WRITE_10:
	case READ_10:
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
D
Don Brace 已提交
3929
		first_block = get_unaligned_be32(&cmd->cmnd[2]);
3930 3931 3932
		break;
	case WRITE_16:
	case READ_16:
D
Don Brace 已提交
3933
		first_block = get_unaligned_be64(&cmd->cmnd[2]);
3934 3935 3936
		break;
	default:
		dev_err(&h->pdev->dev,
D
Don Brace 已提交
3937 3938
			"ERROR: %s: size (0x%x) not supported for encryption\n",
			__func__, cmd->cmnd[0]);
3939 3940 3941
		BUG();
		break;
	}
D
Don Brace 已提交
3942 3943 3944 3945 3946 3947 3948

	if (le32_to_cpu(map->volume_blk_size) != 512)
		first_block = first_block *
				le32_to_cpu(map->volume_blk_size)/512;

	cp->tweak_lower = cpu_to_le32(first_block);
	cp->tweak_upper = cpu_to_le32(first_block >> 32);
3949 3950
}

3951 3952
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3953
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

3964
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3965

3966 3967
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3968
		return IO_ACCEL_INELIGIBLE;
3969 3970
	}

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
3981 3982
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3983
		return use_sg;
3984
	}
3985 3986 3987

	if (use_sg) {
		curr_sg = cp->sg;
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
		if (use_sg > h->ioaccel_maxsg) {
			addr64 = le64_to_cpu(
				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = 0;
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0x80;

			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
		}
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
4015 4016
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4017 4018
			break;
		case DMA_FROM_DEVICE:
4019 4020
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
4021 4022
			break;
		case DMA_NONE:
4023 4024
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
4025 4026 4027 4028 4029 4030 4031 4032
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
4033 4034
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
4035
	}
4036 4037 4038 4039

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

D
Don Brace 已提交
4040
	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4041
	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4042 4043 4044 4045 4046
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
4047
	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4048

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	/* fill in sg elements */
	if (use_sg > h->ioaccel_maxsg) {
		cp->sg_count = 1;
		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
			atomic_dec(&phys_disk->ioaccel_cmds_out);
			scsi_dma_unmap(cmd);
			return -1;
		}
	} else
		cp->sg_count = (u8) use_sg;

4060 4061 4062 4063 4064 4065 4066 4067 4068
	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4069
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4070
{
4071 4072 4073 4074 4075 4076
	/* Try to honor the device's queue depth */
	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
					phys_disk->queue_depth) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}
4077 4078
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4079 4080
						cdb, cdb_len, scsi3addr,
						phys_disk);
4081 4082
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4083 4084
						cdb, cdb_len, scsi3addr,
						phys_disk);
4085 4086
}

4087 4088 4089 4090 4091
static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
D
Don Brace 已提交
4092
		*map_index %= le16_to_cpu(map->data_disks_per_row);
4093 4094 4095 4096
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
D
Don Brace 已提交
4097 4098
		*current_group = *map_index /
			le16_to_cpu(map->data_disks_per_row);
4099 4100
		if (offload_to_mirror == *current_group)
			continue;
D
Don Brace 已提交
4101
		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4102
			/* select map index from next group */
D
Don Brace 已提交
4103
			*map_index += le16_to_cpu(map->data_disks_per_row);
4104 4105 4106
			(*current_group)++;
		} else {
			/* select map index from first group */
D
Don Brace 已提交
4107
			*map_index %= le16_to_cpu(map->data_disks_per_row);
4108 4109 4110 4111 4112
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
4131 4132 4133 4134 4135 4136 4137 4138
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
4139 4140 4141 4142 4143 4144
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
D
Don Brace 已提交
4145
	u16 strip_size;
4146 4147 4148
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
4149
	int offload_to_mirror;
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
4160 4161
		if (block_cnt == 0)
			block_cnt = 256;
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
D
Don Brace 已提交
4217 4218
	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
		last_block < first_block)
4219 4220 4221
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
D
Don Brace 已提交
4222 4223 4224
	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
				le16_to_cpu(map->strip_size);
	strip_size = le16_to_cpu(map->strip_size);
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
D
Don Brace 已提交
4235
	(void) do_div(tmpdiv, strip_size);
4236 4237
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
D
Don Brace 已提交
4238
	(void) do_div(tmpdiv, strip_size);
4239 4240 4241 4242 4243 4244
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
D
Don Brace 已提交
4245 4246
	first_column = first_row_offset / strip_size;
	last_column = last_row_offset / strip_size;
4247 4248 4249 4250 4251 4252 4253
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
D
Don Brace 已提交
4254 4255
	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
4256
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4257
				le16_to_cpu(map->row_cnt);
4258 4259 4260 4261 4262 4263 4264 4265 4266
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
4267
		 */
D
Don Brace 已提交
4268
		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4269
		if (dev->offload_to_mirror)
D
Don Brace 已提交
4270
			map_index += le16_to_cpu(map->data_disks_per_row);
4271
		dev->offload_to_mirror = !dev->offload_to_mirror;
4272 4273 4274 4275 4276
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 */
D
Don Brace 已提交
4277
		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4278 4279 4280 4281 4282 4283

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
D
Don Brace 已提交
4284 4285
			(offload_to_mirror >=
			le16_to_cpu(map->layout_map_count) - 1)
4286 4287 4288 4289 4290 4291 4292 4293 4294
			? 0 : offload_to_mirror + 1;
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
D
Don Brace 已提交
4295
		if (le16_to_cpu(map->layout_map_count) <= 1)
4296 4297 4298 4299
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
D
Don Brace 已提交
4300 4301
			le16_to_cpu(map->strip_size) *
			le16_to_cpu(map->data_disks_per_row);
4302
		BUG_ON(r5or6_blocks_per_row == 0);
D
Don Brace 已提交
4303 4304
		stripesize = r5or6_blocks_per_row *
			le16_to_cpu(map->layout_map_count);
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
4320
		if (first_group != last_group)
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
D
Don Brace 已提交
4367
			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4368
		r5or6_last_column =
D
Don Brace 已提交
4369
			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4370 4371 4372 4373 4374 4375
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4376
			le16_to_cpu(map->row_cnt);
4377 4378

		map_index = (first_group *
D
Don Brace 已提交
4379
			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4380 4381 4382 4383
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
4384
	}
4385

4386 4387 4388
	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
		return IO_ACCEL_INELIGIBLE;

4389 4390
	c->phys_disk = dev->phys_disk[map_index];

4391
	disk_handle = dd[map_index].ioaccel_handle;
D
Don Brace 已提交
4392 4393 4394 4395
	disk_block = le64_to_cpu(map->disk_starting_blk) +
			first_row * le16_to_cpu(map->strip_size) +
			(first_row_offset - first_column *
			le16_to_cpu(map->strip_size));
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4438 4439
						dev->scsi3addr,
						dev->phys_disk[map_index]);
4440 4441
}

4442 4443 4444 4445 4446
/*
 * Submit commands down the "normal" RAID stack path
 * All callers to hpsa_ciss_submit must check lockup_detected
 * beforehand, before (opt.) and after calling cmd_alloc
 */
4447 4448 4449
static int hpsa_ciss_submit(struct ctlr_info *h,
	struct CommandList *c, struct scsi_cmnd *cmd,
	unsigned char scsi3addr[])
4450 4451 4452 4453 4454 4455
{
	cmd->host_scribble = (unsigned char *) c;
	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4456
	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4457 4458 4459 4460 4461 4462 4463 4464 4465

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
4466 4467
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4468 4469
		break;
	case DMA_FROM_DEVICE:
4470 4471
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4472 4473
		break;
	case DMA_NONE:
4474 4475
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4476 4477 4478 4479 4480 4481 4482
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

4483 4484
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

4502
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4503 4504 4505 4506 4507 4508 4509 4510
		cmd_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
static void hpsa_cmd_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle, err_dma_handle;

	/* Zero out all of commandlist except the last field, refcount */
	memset(c, 0, offsetof(struct CommandList, refcount));
	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
	c->err_info = h->errinfo_pool + index;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + index * sizeof(*c->err_info);
	c->cmdindex = index;
	c->busaddr = (u32) cmd_dma_handle;
	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
	c->h = h;
4529
	c->scsi_cmd = SCSI_CMD_IDLE;
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
}

static void hpsa_preinitialize_commands(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nr_cmds; i++) {
		struct CommandList *c = h->cmd_pool + i;

		hpsa_cmd_init(h, i, c);
		atomic_set(&c->refcount, 0);
	}
}

static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
				struct CommandList *c)
{
	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);

	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	memset(c->err_info, 0, sizeof(*c->err_info));
	c->busaddr = (u32) cmd_dma_handle;
}

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
static int hpsa_ioaccel_submit(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		unsigned char *scsi3addr)
{
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	int rc = IO_ACCEL_INELIGIBLE;

	cmd->host_scribble = (unsigned char *) c;

	if (dev->offload_enabled) {
		hpsa_cmd_init(h, c->cmdindex, c);
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		rc = hpsa_scsi_ioaccel_raid_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
4570
	} else if (dev->hba_ioaccel_enabled) {
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
		hpsa_cmd_init(h, c->cmdindex, c);
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;
		rc = hpsa_scsi_ioaccel_direct_map(h, c);
		if (rc < 0)     /* scsi_dma_map failed. */
			rc = SCSI_MLQUEUE_HOST_BUSY;
	}
	return rc;
}

4581 4582 4583 4584
static void hpsa_command_resubmit_worker(struct work_struct *work)
{
	struct scsi_cmnd *cmd;
	struct hpsa_scsi_dev_t *dev;
4585
	struct CommandList *c = container_of(work, struct CommandList, work);
4586 4587 4588 4589 4590

	cmd = c->scsi_cmd;
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
4591
		return hpsa_cmd_free_and_done(c->h, c, cmd);
4592
	}
4593 4594
	if (c->abort_pending)
		return hpsa_cmd_abort_and_free(c->h, c, cmd);
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
	if (c->cmd_type == CMD_IOACCEL2) {
		struct ctlr_info *h = c->h;
		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
		int rc;

		if (c2->error_data.serv_response ==
				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
			if (rc == 0)
				return;
			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
				/*
				 * If we get here, it means dma mapping failed.
				 * Try again via scsi mid layer, which will
				 * then get SCSI_MLQUEUE_HOST_BUSY.
				 */
				cmd->result = DID_IMM_RETRY << 16;
4612
				return hpsa_cmd_free_and_done(h, c, cmd);
4613 4614 4615 4616
			}
			/* else, fall thru and resubmit down CISS path */
		}
	}
4617
	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4618 4619 4620 4621 4622
	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
		/*
		 * If we get here, it means dma mapping failed. Try
		 * again via scsi mid layer, which will then get
		 * SCSI_MLQUEUE_HOST_BUSY.
4623 4624 4625
		 *
		 * hpsa_ciss_submit will have already freed c
		 * if it encountered a dma mapping failure.
4626 4627 4628 4629 4630 4631
		 */
		cmd->result = DID_IMM_RETRY << 16;
		cmd->scsi_done(cmd);
	}
}

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
/* Running in struct Scsi_Host->host_lock less mode */
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	int rc = 0;

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		cmd->scsi_done(cmd);
		return 0;
	}
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));

	if (unlikely(lockup_detected(h))) {
4652
		cmd->result = DID_NO_CONNECT << 16;
4653 4654 4655 4656
		cmd->scsi_done(cmd);
		return 0;
	}
	c = cmd_alloc(h);
4657

4658
	if (unlikely(lockup_detected(h))) {
4659
		cmd->result = DID_NO_CONNECT << 16;
4660 4661 4662 4663
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return 0;
	}
4664

4665 4666
	/*
	 * Call alternate submit routine for I/O accelerated commands.
4667 4668 4669 4670 4671
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
		cmd->request->cmd_type == REQ_TYPE_FS &&
		h->acciopath_status)) {
4672 4673 4674 4675
		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
		if (rc == 0)
			return 0;
		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4676
			cmd_free(h, c);
4677
			return SCSI_MLQUEUE_HOST_BUSY;
4678 4679 4680 4681 4682
		}
	}
	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
}

4683
static void hpsa_scan_complete(struct ctlr_info *h)
4684 4685 4686
{
	unsigned long flags;

4687 4688 4689 4690
	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1;
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
4691 4692
}

4693 4694 4695 4696 4697
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

4698 4699 4700 4701 4702 4703 4704 4705
	/*
	 * Don't let rescans be initiated on a controller known to be locked
	 * up.  If the controller locks up *during* a rescan, that thread is
	 * probably hosed, but at least we can prevent new rescan threads from
	 * piling up on a locked up controller.
	 */
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4706

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

4723 4724
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4725

4726 4727
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

4728
	hpsa_scan_complete(h);
4729 4730
}

D
Don Brace 已提交
4731 4732
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
4733 4734 4735 4736
	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;

	if (!logical_drive)
		return -ENODEV;
D
Don Brace 已提交
4737 4738 4739

	if (qdepth < 1)
		qdepth = 1;
4740 4741 4742 4743
	else if (qdepth > logical_drive->queue_depth)
		qdepth = logical_drive->queue_depth;

	return scsi_change_queue_depth(sdev, qdepth);
D
Don Brace 已提交
4744 4745
}

4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
4769 4770
	struct Scsi_Host *sh;
	int error;
4771

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
4783
	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4784
	sh->cmd_per_lun = sh->can_queue;
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
	error = scsi_add_host(sh, &h->pdev->dev);
	if (error)
		goto fail_host_put;
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	dev_err(&h->pdev->dev, "%s: scsi_add_host"
		" failed for controller %d\n", __func__, h->ctlr);
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
4805 4806
}

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
/*
 * Send a TEST_UNIT_READY command to the specified LUN using the specified
 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
 */
static int hpsa_send_test_unit_ready(struct ctlr_info *h,
				struct CommandList *c, unsigned char lunaddr[],
				int reply_queue)
{
	int rc;

	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
	(void) fill_cmd(c, TEST_UNIT_READY, h,
			NULL, 0, 0, lunaddr, TYPE_CMD);
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc)
		return rc;
	/* no unmap needed here because no data xfer. */

	/* Check if the unit is already ready. */
	if (c->err_info->CommandStatus == CMD_SUCCESS)
		return 0;

	/*
	 * The first command sent after reset will receive "unit attention" to
	 * indicate that the LUN has been reset...this is actually what we're
	 * looking for (but, success is good too).
	 */
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
		return 0;

	return 1;
}

/*
 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
 * returns zero when the unit is ready, and non-zero when giving up.
 */
static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
				struct CommandList *c,
				unsigned char lunaddr[], int reply_queue)
4850
{
4851
	int rc;
4852 4853 4854 4855
	int count = 0;
	int waittime = 1; /* seconds */

	/* Send test unit ready until device ready, or give up. */
4856
	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
4857

4858 4859
		/*
		 * Wait for a bit.  do this first, because if we send
4860 4861 4862
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
4863 4864 4865 4866

		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
		if (!rc)
			break;
4867 4868 4869

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4870
			waittime *= 2;
4871

4872 4873 4874 4875
		dev_warn(&h->pdev->dev,
			 "waiting %d secs for device to become ready.\n",
			 waittime);
	}
4876

4877 4878
	return rc;
}
4879

4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
static int wait_for_device_to_become_ready(struct ctlr_info *h,
					   unsigned char lunaddr[],
					   int reply_queue)
{
	int first_queue;
	int last_queue;
	int rq;
	int rc = 0;
	struct CommandList *c;

	c = cmd_alloc(h);

	/*
	 * If no specific reply queue was requested, then send the TUR
	 * repeatedly, requesting a reply on each reply queue; otherwise execute
	 * the loop exactly once using only the specified queue.
	 */
	if (reply_queue == DEFAULT_REPLY_QUEUE) {
		first_queue = 0;
		last_queue = h->nreply_queues - 1;
	} else {
		first_queue = reply_queue;
		last_queue = reply_queue;
	}

	for (rq = first_queue; rq <= last_queue; rq++) {
		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
		if (rc)
4908 4909 4910 4911 4912 4913 4914 4915
			break;
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

4916
	cmd_free(h, c);
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
4933 4934 4935 4936

	if (lockup_detected(h))
		return FAILED;

4937 4938 4939 4940 4941 4942
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963

	/* if controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		dev_warn(&h->pdev->dev,
			"scsi %d:%d:%d:%d RESET FAILED, lockup detected\n",
			h->scsi_host->host_no, dev->bus, dev->target,
			dev->lun);
		return FAILED;
	}

	/* this reset request might be the result of a lockup; check */
	if (detect_controller_lockup(h)) {
		dev_warn(&h->pdev->dev,
			 "scsi %d:%d:%d:%d RESET FAILED, new lockup detected\n",
			 h->scsi_host->host_no, dev->bus, dev->target,
			 dev->lun);
		return FAILED;
	}

	hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");

4964
	/* send a reset to the SCSI LUN which the command was sent to */
4965 4966
	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
			     DEFAULT_REPLY_QUEUE);
4967
	if (rc == 0)
4968 4969
		return SUCCESS;

4970 4971 4972
	dev_warn(&h->pdev->dev,
		"scsi %d:%d:%d:%d reset failed\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4973 4974 4975
	return FAILED;
}

4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

4991
static void hpsa_get_tag(struct ctlr_info *h,
D
Don Brace 已提交
4992
	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4993
{
D
Don Brace 已提交
4994
	u64 tag;
4995 4996 4997
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
D
Don Brace 已提交
4998 4999 5000
		tag = le64_to_cpu(cm1->tag);
		*tagupper = cpu_to_le32(tag >> 32);
		*taglower = cpu_to_le32(tag);
5001 5002 5003 5004 5005
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
5006 5007 5008
		/* upper tag not used in ioaccel2 mode */
		memset(tagupper, 0, sizeof(*tagupper));
		*taglower = cm2->Tag;
5009
		return;
5010
	}
D
Don Brace 已提交
5011 5012 5013
	tag = le64_to_cpu(c->Header.tag);
	*tagupper = cpu_to_le32(tag >> 32);
	*taglower = cpu_to_le32(tag);
5014 5015
}

5016
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
S
Stephen Cameron 已提交
5017
	struct CommandList *abort, int reply_queue)
5018 5019 5020 5021
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
D
Don Brace 已提交
5022
	__le32 tagupper, taglower;
5023

5024
	c = cmd_alloc(h);
5025

5026
	/* fill_cmd can't fail here, no buffer to map */
S
Stephen Cameron 已提交
5027
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5028
		0, 0, scsi3addr, TYPE_MSG);
S
Stephen Cameron 已提交
5029
	if (h->needs_abort_tags_swizzled)
5030
		swizzle_abort_tag(&c->Request.CDB[4]);
5031
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5032
	hpsa_get_tag(h, abort, &taglower, &tagupper);
5033
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5034
		__func__, tagupper, taglower);
5035 5036 5037 5038 5039 5040
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
5041 5042 5043
	case CMD_TMF_STATUS:
		rc = hpsa_evaluate_tmf_status(h, c);
		break;
5044 5045 5046 5047 5048
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5049
			__func__, tagupper, taglower);
5050
		hpsa_scsi_interpret_error(h, c);
5051 5052 5053
		rc = -1;
		break;
	}
5054
	cmd_free(h, c);
5055 5056
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
		__func__, tagupper, taglower);
5057 5058 5059
	return rc;
}

5060 5061 5062 5063 5064 5065 5066
static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
	struct CommandList *command_to_abort, int reply_queue)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
	struct io_accel2_cmd *c2a =
		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5067
	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;

	/*
	 * We're overlaying struct hpsa_tmf_struct on top of something which
	 * was allocated as a struct io_accel2_cmd, so we better be sure it
	 * actually fits, and doesn't overrun the error info space.
	 */
	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
			sizeof(struct io_accel2_cmd));
	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
			offsetof(struct hpsa_tmf_struct, error_len) +
				sizeof(ac->error_len));

	c->cmd_type = IOACCEL2_TMF;
5082 5083
	c->scsi_cmd = SCSI_CMD_BUSY;

5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(struct io_accel2_cmd));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
	ac->reply_queue = reply_queue;
	ac->tmf = IOACCEL2_TMF_ABORT;
	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
	memset(ac->lun_id, 0, sizeof(ac->lun_id));
	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
	ac->error_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
}

5102 5103 5104 5105 5106 5107 5108 5109
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5110
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5111 5112 5113 5114 5115 5116 5117 5118
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
5119
	scmd = abort->scsi_cmd;
5120 5121 5122 5123 5124 5125 5126
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

5127 5128
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
5129
			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5130
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5131
			"Reset as abort",
5132 5133 5134
			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
5148 5149 5150 5151 5152
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
5153
	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5154 5155 5156 5157 5158 5159 5160 5161 5162
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
5163
	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
	struct CommandList *abort, int reply_queue)
{
	int rc = IO_OK;
	struct CommandList *c;
	__le32 taglower, tagupper;
	struct hpsa_scsi_dev_t *dev;
	struct io_accel2_cmd *c2;

	dev = abort->scsi_cmd->device->hostdata;
	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
		return -1;

	c = cmd_alloc(h);
	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	hpsa_get_tag(h, abort, &taglower, &tagupper);
	dev_dbg(&h->pdev->dev,
		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
		__func__, tagupper, taglower);
	/* no unmap needed here because no data xfer. */

	dev_dbg(&h->pdev->dev,
		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
		__func__, tagupper, taglower, c2->error_data.serv_response);
	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		rc = 0;
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
	case IOACCEL2_SERV_RESPONSE_FAILURE:
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		rc = -1;
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
			__func__, tagupper, taglower,
			c2->error_data.serv_response);
		rc = -1;
	}
	cmd_free(h, c);
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
		tagupper, taglower);
	return rc;
}

5229
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5230
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5231
{
5232 5233
	/*
	 * ioccelerator mode 2 commands should be aborted via the
5234
	 * accelerated path, since RAID path is unaware of these commands,
5235 5236
	 * but not all underlying firmware can handle abort TMF.
	 * Change abort to physical device reset when abort TMF is unsupported.
5237
	 */
5238 5239 5240 5241 5242 5243
	if (abort->cmd_type == CMD_IOACCEL2) {
		if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
			return hpsa_send_abort_ioaccel2(h, abort,
						reply_queue);
		else
			return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5244
							abort, reply_queue);
5245
	}
S
Stephen Cameron 已提交
5246
	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5247
}
5248

5249 5250 5251 5252 5253 5254 5255
/* Find out which reply queue a command was meant to return on */
static int hpsa_extract_reply_queue(struct ctlr_info *h,
					struct CommandList *c)
{
	if (c->cmd_type == CMD_IOACCEL2)
		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
	return c->Header.ReplyQueue;
5256 5257
}

S
Stephen Cameron 已提交
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
/*
 * Limit concurrency of abort commands to prevent
 * over-subscription of commands
 */
static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
{
#define ABORT_CMD_WAIT_MSECS 5000
	return !wait_event_timeout(h->abort_cmd_wait_queue,
			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
}

5270 5271 5272 5273 5274 5275 5276
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

5277
	int rc;
5278 5279 5280 5281 5282 5283
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
D
Don Brace 已提交
5284
	__le32 tagupper, taglower;
5285 5286 5287 5288
	int refcount, reply_queue;

	if (sc == NULL)
		return FAILED;
5289

S
Stephen Cameron 已提交
5290 5291 5292
	if (sc->device == NULL)
		return FAILED;

5293 5294
	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
S
Stephen Cameron 已提交
5295
	if (h == NULL)
5296 5297
		return FAILED;

5298 5299 5300 5301 5302
	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
5303
		return FAILED;
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
	}

	/* If controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, lockup detected");
		return FAILED;
	}

	/* This is a good time to check if controller lockup has occurred */
	if (detect_controller_lockup(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, new lockup detected");
		return FAILED;
	}
5319

5320 5321 5322 5323 5324 5325
	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
5326
	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5327
		h->scsi_host->host_no, sc->device->channel,
5328
		sc->device->id, sc->device->lun,
5329
		"Aborting command", sc);
5330 5331 5332 5333

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
5334 5335 5336 5337 5338 5339 5340
		/* This can happen if the command already completed. */
		return SUCCESS;
	}
	refcount = atomic_inc_return(&abort->refcount);
	if (refcount == 1) { /* Command is done already. */
		cmd_free(h, abort);
		return SUCCESS;
5341
	}
S
Stephen Cameron 已提交
5342 5343 5344 5345 5346 5347 5348 5349

	/* Don't bother trying the abort if we know it won't work. */
	if (abort->cmd_type != CMD_IOACCEL2 &&
		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
		cmd_free(h, abort);
		return FAILED;
	}

5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
	/*
	 * Check that we're aborting the right command.
	 * It's possible the CommandList already completed and got re-used.
	 */
	if (abort->scsi_cmd != sc) {
		cmd_free(h, abort);
		return SUCCESS;
	}

	abort->abort_pending = true;
5360
	hpsa_get_tag(h, abort, &taglower, &tagupper);
5361
	reply_queue = hpsa_extract_reply_queue(h, abort);
5362
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5363
	as  = abort->scsi_cmd;
5364
	if (as != NULL)
5365 5366 5367 5368 5369
		ml += sprintf(msg+ml,
			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
			as->cmd_len, as->cmnd[0], as->cmnd[1],
			as->serial_number);
	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5370
	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5371

5372 5373 5374 5375 5376
	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
S
Stephen Cameron 已提交
5377 5378
	if (wait_for_available_abort_cmd(h)) {
		dev_warn(&h->pdev->dev,
5379 5380
			"%s FAILED, timeout waiting for an abort command to become available.\n",
			msg);
S
Stephen Cameron 已提交
5381 5382 5383
		cmd_free(h, abort);
		return FAILED;
	}
5384
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
S
Stephen Cameron 已提交
5385 5386
	atomic_inc(&h->abort_cmds_available);
	wake_up_all(&h->abort_cmd_wait_queue);
5387
	if (rc != 0) {
5388
		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5389
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5390
				"FAILED to abort command");
5391
		cmd_free(h, abort);
5392 5393
		return FAILED;
	}
5394
	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5395 5396
	wait_event(h->abort_sync_wait_queue,
		   abort->scsi_cmd != sc || lockup_detected(h));
5397
	cmd_free(h, abort);
5398
	return !lockup_detected(h) ? SUCCESS : FAILED;
5399 5400
}

5401 5402 5403 5404 5405
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
5406 5407
 * This function never gives up and returns NULL.  If it hangs,
 * another thread must call cmd_free() to free some tags.
5408
 */
5409

5410 5411 5412
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
5413
	int refcount, i;
5414
	unsigned long offset;
5415

5416 5417
	/*
	 * There is some *extremely* small but non-zero chance that that
5418 5419 5420 5421 5422 5423 5424 5425 5426
	 * multiple threads could get in here, and one thread could
	 * be scanning through the list of bits looking for a free
	 * one, but the free ones are always behind him, and other
	 * threads sneak in behind him and eat them before he can
	 * get to them, so that while there is always a free one, a
	 * very unlucky thread might be starved anyway, never able to
	 * beat the other threads.  In reality, this happens so
	 * infrequently as to be indistinguishable from never.
	 */
5427

5428
	offset = h->last_allocation; /* benignly racy */
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
	for (;;) {
		i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
		if (unlikely(i == h->nr_cmds)) {
			offset = 0;
			continue;
		}
		c = h->cmd_pool + i;
		refcount = atomic_inc_return(&c->refcount);
		if (unlikely(refcount > 1)) {
			cmd_free(h, c); /* already in use */
			offset = (i + 1) % h->nr_cmds;
			continue;
		}
		set_bit(i & (BITS_PER_LONG - 1),
			h->cmd_pool_bits + (i / BITS_PER_LONG));
		break; /* it's ours now. */
	}
5446
	h->last_allocation = i; /* benignly racy */
5447
	hpsa_cmd_partial_init(h, i, c);
5448 5449 5450 5451 5452
	return c;
}

static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
5453 5454
	if (atomic_dec_and_test(&c->refcount)) {
		int i;
5455

5456 5457 5458 5459
		i = c - h->cmd_pool;
		clear_bit(i & (BITS_PER_LONG - 1),
			  h->cmd_pool_bits + (i / BITS_PER_LONG));
	}
5460 5461 5462 5463
}

#ifdef CONFIG_COMPAT

D
Don Brace 已提交
5464 5465
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
	void __user *arg)
5466 5467 5468 5469 5470 5471 5472 5473
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5474
	memset(&arg64, 0, sizeof(arg64));
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5490
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
D
Don Brace 已提交
5501
	int cmd, void __user *arg)
5502 5503 5504 5505 5506 5507 5508 5509 5510
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5511
	memset(&arg64, 0, sizeof(arg64));
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5528
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5529 5530 5531 5532 5533 5534 5535 5536
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
5537

D
Don Brace 已提交
5538
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
5612
	u64 temp64;
5613
	int rc = 0;
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
5628
			return -ENOMEM;
5629
		if (iocommand.Request.Type.Direction & XFER_WRITE) {
5630 5631 5632
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
5633 5634
				rc = -EFAULT;
				goto out_kfree;
5635 5636 5637
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
5638
		}
5639
	}
5640
	c = cmd_alloc(h);
5641

5642 5643
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
5644
	c->scsi_cmd = SCSI_CMD_BUSY;
5645 5646 5647 5648
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
5649
		c->Header.SGTotal = cpu_to_le16(1);
5650 5651
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
5652
		c->Header.SGTotal = cpu_to_le16(0);
5653 5654 5655 5656 5657 5658 5659 5660 5661
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
5662
		temp64 = pci_map_single(h->pdev, buff,
5663
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5664 5665 5666
		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
			c->SG[0].Addr = cpu_to_le64(0);
			c->SG[0].Len = cpu_to_le32(0);
5667 5668 5669
			rc = -ENOMEM;
			goto out;
		}
5670 5671 5672
		c->SG[0].Addr = cpu_to_le64(temp64);
		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5673
	}
5674
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5675 5676
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5677
	check_ioctl_unit_attention(h, c);
5678 5679 5680 5681
	if (rc) {
		rc = -EIO;
		goto out;
	}
5682 5683 5684 5685 5686

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5687 5688
		rc = -EFAULT;
		goto out;
5689
	}
5690
	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5691
		iocommand.buf_size > 0) {
5692 5693
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5694 5695
			rc = -EFAULT;
			goto out;
5696 5697
		}
	}
5698
out:
5699
	cmd_free(h, c);
5700 5701 5702
out_kfree:
	kfree(buff);
	return rc;
5703 5704 5705 5706 5707 5708 5709 5710
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
5711
	u64 temp64;
5712 5713
	BYTE sg_used = 0;
	int status = 0;
5714 5715
	u32 left;
	u32 sz;
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
5742
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5743 5744 5745
		status = -EINVAL;
		goto cleanup1;
	}
5746
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5747 5748 5749 5750
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
5751
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
5766
		if (ioc->Request.Type.Direction & XFER_WRITE) {
5767
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5768
				status = -EFAULT;
5769 5770 5771 5772 5773 5774 5775 5776
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
5777
	c = cmd_alloc(h);
5778

5779
	c->cmd_type = CMD_IOCTL_PEND;
5780
	c->scsi_cmd = SCSI_CMD_BUSY;
5781
	c->Header.ReplyQueue = 0;
5782 5783
	c->Header.SGList = (u8) sg_used;
	c->Header.SGTotal = cpu_to_le16(sg_used);
5784 5785 5786 5787 5788
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
5789
			temp64 = pci_map_single(h->pdev, buff[i],
5790
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5791 5792 5793 5794
			if (dma_mapping_error(&h->pdev->dev,
							(dma_addr_t) temp64)) {
				c->SG[i].Addr = cpu_to_le64(0);
				c->SG[i].Len = cpu_to_le32(0);
5795 5796 5797
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
5798
				goto cleanup0;
5799
			}
5800 5801 5802
			c->SG[i].Addr = cpu_to_le64(temp64);
			c->SG[i].Len = cpu_to_le32(buff_size[i]);
			c->SG[i].Ext = cpu_to_le32(0);
5803
		}
5804
		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5805
	}
5806
	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5807 5808
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5809
	check_ioctl_unit_attention(h, c);
5810 5811 5812 5813 5814
	if (status) {
		status = -EIO;
		goto cleanup0;
	}

5815 5816 5817 5818
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
5819
		goto cleanup0;
5820
	}
5821
	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
D
Don Brace 已提交
5822 5823
		int i;

5824 5825 5826 5827 5828
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
5829
				goto cleanup0;
5830 5831 5832 5833 5834
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
5835
cleanup0:
5836
	cmd_free(h, c);
5837 5838
cleanup1:
	if (buff) {
D
Don Brace 已提交
5839 5840
		int i;

5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
5857

5858 5859 5860
/*
 * ioctl
 */
D
Don Brace 已提交
5861
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5862 5863 5864
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
5865
	int rc;
5866 5867 5868 5869 5870 5871 5872

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
5873
		hpsa_scan_start(h->scsi_host);
5874 5875 5876 5877 5878 5879
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
5880
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5881 5882
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
5883
		atomic_inc(&h->passthru_cmds_avail);
5884
		return rc;
5885
	case CCISS_BIG_PASSTHRU:
5886
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5887 5888
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
5889
		atomic_inc(&h->passthru_cmds_avail);
5890
		return rc;
5891 5892 5893 5894 5895
	default:
		return -ENOTTY;
	}
}

5896
static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5897
				u8 reset_type)
5898 5899 5900 5901
{
	struct CommandList *c;

	c = cmd_alloc(h);
5902

5903 5904
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5905 5906 5907 5908 5909 5910 5911 5912
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
5913
	return;
5914 5915
}

5916
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5917
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5918 5919 5920
	int cmd_type)
{
	int pci_dir = XFER_NONE;
S
Stephen Cameron 已提交
5921
	u64 tag; /* for commands to be aborted */
5922 5923

	c->cmd_type = CMD_IOCTL_PEND;
5924
	c->scsi_cmd = SCSI_CMD_BUSY;
5925 5926 5927
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
5928
		c->Header.SGTotal = cpu_to_le16(1);
5929 5930
	} else {
		c->Header.SGList = 0;
5931
		c->Header.SGTotal = cpu_to_le16(0);
5932 5933 5934 5935 5936 5937 5938
	}
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
5939
			if (page_code & VPD_PAGE) {
5940
				c->Request.CDB[1] = 0x01;
5941
				c->Request.CDB[2] = (page_code & 0xff);
5942 5943
			}
			c->Request.CDBLen = 6;
5944 5945
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
5956 5957
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5958 5959 5960 5961 5962 5963 5964 5965 5966
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
5967 5968 5969
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
5970 5971 5972
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5973 5974
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
5975 5976 5977
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
5978 5979
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5980 5981
			c->Request.Timeout = 0;
			break;
5982 5983
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
5984 5985
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5986 5987 5988 5989 5990 5991 5992 5993
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
5994 5995
		case BMIC_SENSE_CONTROLLER_PARAMETERS:
			c->Request.CDBLen = 10;
5996 5997
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5998 5999 6000 6001 6002 6003
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			break;
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			break;
6014 6015 6016
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
6017
			return -1;
6018 6019 6020 6021 6022 6023
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
6024 6025
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6026
			c->Request.Timeout = 0; /* Don't time out */
6027 6028
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
6029
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6030 6031 6032 6033 6034 6035
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
6036 6037
			break;
		case  HPSA_ABORT_MSG:
S
Stephen Cameron 已提交
6038
			memcpy(&tag, buff, sizeof(tag));
D
Don Brace 已提交
6039
			dev_dbg(&h->pdev->dev,
S
Stephen Cameron 已提交
6040 6041
				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
				tag, c->Header.tag);
6042
			c->Request.CDBLen = 16;
6043 6044 6045
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
6046 6047 6048 6049 6050 6051
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
S
Stephen Cameron 已提交
6052
			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6053 6054 6055 6056
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

6068
	switch (GET_DIR(c->Request.type_attr_dir)) {
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
6081 6082 6083
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
6084 6085 6086 6087 6088 6089 6090 6091 6092
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
6093 6094
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
6095 6096 6097 6098

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

6099
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6100
{
6101
	return h->access.command_completed(h, q);
6102 6103
}

6104
static inline bool interrupt_pending(struct ctlr_info *h)
6105 6106 6107 6108 6109 6110
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
6111 6112
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
6113 6114
}

6115 6116
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
6117 6118 6119 6120 6121 6122 6123 6124
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

6125
static inline void finish_cmd(struct CommandList *c)
6126
{
6127
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6128 6129
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
6130
		complete_scsi_command(c);
6131
	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6132
		complete(c->waiting);
6133 6134
}

6135 6136

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6137
{
6138 6139
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
6140
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6141 6142
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
6143 6144
}

6145
/* process completion of an indexed ("direct lookup") command */
6146
static inline void process_indexed_cmd(struct ctlr_info *h,
6147 6148 6149 6150 6151
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

6152
	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6153 6154 6155 6156
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
6157 6158
}

6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

6178 6179 6180 6181 6182 6183
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
6184
{
6185 6186 6187 6188 6189 6190 6191
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
6192 6193 6194 6195 6196 6197 6198
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
6199
	h->last_intr_timestamp = get_jiffies_64();
6200
	while (interrupt_pending(h)) {
6201
		raw_tag = get_next_completion(h, q);
6202
		while (raw_tag != FIFO_EMPTY)
6203
			raw_tag = next_command(h, q);
6204 6205 6206 6207
	}
	return IRQ_HANDLED;
}

6208
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6209
{
6210
	struct ctlr_info *h = queue_to_hba(queue);
6211
	u32 raw_tag;
6212
	u8 q = *(u8 *) queue;
6213 6214 6215 6216

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

6217
	h->last_intr_timestamp = get_jiffies_64();
6218
	raw_tag = get_next_completion(h, q);
6219
	while (raw_tag != FIFO_EMPTY)
6220
		raw_tag = next_command(h, q);
6221 6222 6223
	return IRQ_HANDLED;
}

6224
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6225
{
6226
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6227
	u32 raw_tag;
6228
	u8 q = *(u8 *) queue;
6229 6230 6231

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
6232
	h->last_intr_timestamp = get_jiffies_64();
6233
	while (interrupt_pending(h)) {
6234
		raw_tag = get_next_completion(h, q);
6235
		while (raw_tag != FIFO_EMPTY) {
6236
			process_indexed_cmd(h, raw_tag);
6237
			raw_tag = next_command(h, q);
6238 6239 6240 6241 6242
		}
	}
	return IRQ_HANDLED;
}

6243
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6244
{
6245
	struct ctlr_info *h = queue_to_hba(queue);
6246
	u32 raw_tag;
6247
	u8 q = *(u8 *) queue;
6248

6249
	h->last_intr_timestamp = get_jiffies_64();
6250
	raw_tag = get_next_completion(h, q);
6251
	while (raw_tag != FIFO_EMPTY) {
6252
		process_indexed_cmd(h, raw_tag);
6253
		raw_tag = next_command(h, q);
6254 6255 6256 6257
	}
	return IRQ_HANDLED;
}

6258 6259 6260 6261
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
6262 6263
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
D
Don Brace 已提交
6274 6275
	__le32 paddr32;
	u32 tag;
6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
6290
		return err;
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
D
Don Brace 已提交
6303
	paddr32 = cpu_to_le32(paddr64);
6304 6305 6306

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
6307
	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
D
Don Brace 已提交
6308
	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6309 6310 6311
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
6312 6313
	cmd->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6314 6315 6316 6317
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6318
	cmd->ErrorDescriptor.Addr =
D
Don Brace 已提交
6319
			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6320
	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6321

D
Don Brace 已提交
6322
	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6323 6324 6325

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
D
Don Brace 已提交
6326
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

6357
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
D
Don Brace 已提交
6358
	void __iomem *vaddr, u32 use_doorbell)
6359 6360 6361 6362 6363 6364 6365 6366
{

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
6367
		writel(use_doorbell, vaddr + SA5_DOORBELL);
6368

6369
		/* PMC hardware guys tell us we need a 10 second delay after
6370 6371 6372 6373
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
6374
		msleep(10000);
6375 6376 6377 6378 6379 6380 6381 6382 6383
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */
6384 6385 6386

		int rc = 0;

6387
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6388

6389
		/* enter the D3hot power management state */
6390 6391 6392
		rc = pci_set_power_state(pdev, PCI_D3hot);
		if (rc)
			return rc;
6393 6394 6395 6396

		msleep(500);

		/* enter the D0 power management state */
6397 6398 6399
		rc = pci_set_power_state(pdev, PCI_D0);
		if (rc)
			return rc;
6400 6401 6402 6403 6404 6405 6406

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
6407 6408 6409 6410
	}
	return 0;
}

6411
static void init_driver_version(char *driver_version, int len)
6412 6413
{
	memset(driver_version, 0, len);
6414
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6415 6416
}

6417
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

6433 6434
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
6435 6436 6437 6438 6439 6440 6441
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

6442
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
6462
/* This does a hard reset of the controller using PCI power management
6463
 * states or the using the doorbell register.
6464
 */
6465
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6466
{
6467 6468 6469 6470 6471
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
6472
	u32 misc_fw_support;
6473
	int rc;
6474
	struct CfgTable __iomem *cfgtable;
6475
	u32 use_doorbell;
6476
	u16 command_register;
6477

6478 6479
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
6480 6481 6482 6483 6484 6485
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
6486 6487 6488
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
6489
	 */
6490

6491 6492
	if (!ctlr_is_resettable(board_id)) {
		dev_warn(&pdev->dev, "Controller not resettable\n");
6493 6494
		return -ENODEV;
	}
6495 6496 6497 6498

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
6499

6500 6501 6502
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	pci_save_state(pdev);
6503

6504 6505 6506 6507 6508 6509 6510
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
6511

6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
6523 6524
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
6525
		goto unmap_cfgtable;
6526

6527 6528 6529
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
6530
	misc_fw_support = readl(&cfgtable->misc_fw_support);
6531 6532 6533 6534 6535 6536
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
6537 6538
			dev_warn(&pdev->dev,
				"Soft reset not supported. Firmware update is required.\n");
6539
			rc = -ENOTSUPP; /* try soft reset */
6540 6541 6542
			goto unmap_cfgtable;
		}
	}
6543

6544 6545 6546
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
6547

6548 6549
	pci_restore_state(pdev);
	pci_write_config_word(pdev, 4, command_register);
6550

6551 6552 6553 6554
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

6555 6556 6557
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
6558
			"Failed waiting for board to become ready after hard reset\n");
6559 6560 6561
		goto unmap_cfgtable;
	}

6562 6563 6564 6565
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
6566 6567 6568
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
6569
	} else {
6570
		dev_info(&pdev->dev, "board ready after hard reset.\n");
6571 6572 6573 6574 6575 6576 6577 6578
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
6579 6580 6581 6582 6583 6584 6585
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
D
Don Brace 已提交
6586
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6587
{
6588
#ifdef HPSA_DEBUG
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
6609
	dev_info(dev, "   Max outstanding commands = %d\n",
6610 6611 6612 6613 6614 6615 6616 6617 6618
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
6619
}
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

6656 6657 6658 6659 6660
static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
{
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
R
Robert Elliott 已提交
6661
		h->msix_vector = 0;
6662 6663 6664
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
R
Robert Elliott 已提交
6665
		h->msi_vector = 0;
6666 6667 6668
	}
}

6669
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
6670
 * controllers that are capable. If not, we use legacy INTx mode.
6671
 */
6672
static void hpsa_interrupt_mode(struct ctlr_info *h)
6673 6674
{
#ifdef CONFIG_PCI_MSI
6675 6676 6677 6678 6679 6680 6681
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
6682 6683

	/* Some boards advertise MSI but don't really support it */
6684 6685
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6686
		goto default_int_mode;
6687
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6688
		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6689
		h->msix_vector = MAX_REPLY_QUEUES;
6690 6691
		if (h->msix_vector > num_online_cpus())
			h->msix_vector = num_online_cpus();
6692 6693 6694 6695 6696 6697 6698
		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
					    1, h->msix_vector);
		if (err < 0) {
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
			h->msix_vector = 0;
			goto single_msi_mode;
		} else if (err < h->msix_vector) {
6699
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6700 6701
			       "available\n", err);
		}
6702 6703 6704 6705
		h->msix_vector = err;
		for (i = 0; i < h->msix_vector; i++)
			h->intr[i] = hpsa_msix_entries[i].vector;
		return;
6706
	}
6707
single_msi_mode:
6708
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6709
		dev_info(&h->pdev->dev, "MSI capable controller\n");
6710
		if (!pci_enable_msi(h->pdev))
6711 6712
			h->msi_vector = 1;
		else
6713
			dev_warn(&h->pdev->dev, "MSI init failed\n");
6714 6715 6716 6717
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
6718
	h->intr[h->intr_mode] = h->pdev->irq;
6719 6720
}

6721
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

6735 6736 6737
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
6738 6739 6740 6741 6742 6743 6744
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

6745 6746
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
6747 6748 6749 6750
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6751
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6752
			/* addressing mode bits already removed */
6753 6754
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6755 6756 6757
				*memory_bar);
			return 0;
		}
6758
	dev_warn(&pdev->dev, "no memory BAR found\n");
6759 6760 6761
	return -ENODEV;
}

6762 6763
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
6764
{
6765
	int i, iterations;
6766
	u32 scratchpad;
6767 6768 6769 6770
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6771

6772 6773 6774 6775 6776 6777 6778 6779 6780
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
6781 6782
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
6783
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6784 6785 6786
	return -ENODEV;
}

6787 6788 6789
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

R
Robert Elliott 已提交
6802 6803
static void hpsa_free_cfgtables(struct ctlr_info *h)
{
R
Robert Elliott 已提交
6804
	if (h->transtable) {
R
Robert Elliott 已提交
6805
		iounmap(h->transtable);
R
Robert Elliott 已提交
6806 6807 6808
		h->transtable = NULL;
	}
	if (h->cfgtable) {
R
Robert Elliott 已提交
6809
		iounmap(h->cfgtable);
R
Robert Elliott 已提交
6810 6811
		h->cfgtable = NULL;
	}
R
Robert Elliott 已提交
6812 6813 6814 6815 6816
}

/* Find and map CISS config table and transfer table
+ * several items must be unmapped (freed) later
+ * */
6817
static int hpsa_find_cfgtables(struct ctlr_info *h)
6818
{
6819 6820 6821
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
6822
	u32 trans_offset;
6823
	int rc;
6824

6825 6826 6827 6828
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
6829
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6830
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6831 6832
	if (!h->cfgtable) {
		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6833
		return -ENOMEM;
6834
	}
6835 6836 6837
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
6838
	/* Find performant mode table. */
6839
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6840 6841 6842
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
R
Robert Elliott 已提交
6843 6844 6845
	if (!h->transtable) {
		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
		hpsa_free_cfgtables(h);
6846
		return -ENOMEM;
R
Robert Elliott 已提交
6847
	}
6848 6849 6850
	return 0;
}

6851
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6852
{
6853 6854 6855 6856
#define MIN_MAX_COMMANDS 16
	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);

	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
6857 6858 6859 6860 6861

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

6862 6863 6864 6865 6866 6867
	if (h->max_commands < MIN_MAX_COMMANDS) {
		dev_warn(&h->pdev->dev,
			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
			h->max_commands,
			MIN_MAX_COMMANDS);
		h->max_commands = MIN_MAX_COMMANDS;
6868 6869 6870
	}
}

6871 6872 6873 6874 6875 6876 6877 6878 6879
/* If the controller reports that the total max sg entries is greater than 512,
 * then we know that chained SG blocks work.  (Original smart arrays did not
 * support chained SG blocks and would return zero for max sg entries.)
 */
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
{
	return h->maxsgentries > 512;
}

6880 6881 6882 6883
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
6884
static void hpsa_find_board_params(struct ctlr_info *h)
6885
{
6886
	hpsa_get_max_perf_mode_cmds(h);
6887
	h->nr_cmds = h->max_commands;
6888
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6889
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6890 6891
	if (hpsa_supports_chained_sg_blocks(h)) {
		/* Limit in-command s/g elements to 32 save dma'able memory. */
6892
		h->max_cmd_sg_entries = 32;
6893
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6894 6895
		h->maxsgentries--; /* save one for chain pointer */
	} else {
6896 6897 6898 6899 6900 6901
		/*
		 * Original smart arrays supported at most 31 s/g entries
		 * embedded inline in the command (trying to use more
		 * would lock up the controller)
		 */
		h->max_cmd_sg_entries = 31;
6902
		h->maxsgentries = 31; /* default to traditional values */
6903
		h->chainsize = 0;
6904
	}
6905 6906 6907

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6908 6909 6910 6911
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6912 6913
	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
6914 6915
}

6916 6917
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
6918
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6919
		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6920 6921 6922 6923 6924
		return false;
	}
	return true;
}

6925
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6926
{
6927
	u32 driver_support;
6928

6929
	driver_support = readl(&(h->cfgtable->driver_support));
A
Arnd Bergmann 已提交
6930 6931
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
#ifdef CONFIG_X86
6932
	driver_support |= ENABLE_SCSI_PREFETCH;
6933
#endif
6934 6935
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
6936 6937
}

6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

6952
static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6953 6954 6955 6956 6957
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6958
	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
6959 6960 6961 6962
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6963
			goto done;
6964
		/* delay and try again */
6965
		msleep(CLEAR_EVENT_WAIT_INTERVAL);
6966
	}
6967 6968 6969
	return -ENODEV;
done:
	return 0;
6970 6971
}

6972
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6973 6974
{
	int i;
6975 6976
	u32 doorbell_value;
	unsigned long flags;
6977 6978 6979 6980 6981

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
6982
	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
6983 6984
		if (h->remove_in_progress)
			goto done;
6985 6986 6987
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
6988
		if (!(doorbell_value & CFGTBL_ChangeReq))
6989
			goto done;
6990
		/* delay and try again */
6991
		msleep(MODE_CHANGE_WAIT_INTERVAL);
6992
	}
6993 6994 6995
	return -ENODEV;
done:
	return 0;
6996 6997
}

6998
/* return -ENODEV or other reason on error, 0 on success */
6999
static int hpsa_enter_simple_mode(struct ctlr_info *h)
7000 7001 7002 7003 7004 7005 7006 7007
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7008

7009 7010
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7011
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7012
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7013 7014
	if (hpsa_wait_for_mode_change_ack(h))
		goto error;
7015
	print_cfg_table(&h->pdev->dev, h->cfgtable);
7016 7017
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
7018
	h->transMethod = CFGTBL_Trans_Simple;
7019
	return 0;
7020
error:
7021
	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7022
	return -ENODEV;
7023 7024
}

R
Robert Elliott 已提交
7025 7026 7027 7028 7029
/* free items allocated or mapped by hpsa_pci_init */
static void hpsa_free_pci_init(struct ctlr_info *h)
{
	hpsa_free_cfgtables(h);			/* pci_init 4 */
	iounmap(h->vaddr);			/* pci_init 3 */
R
Robert Elliott 已提交
7030
	h->vaddr = NULL;
R
Robert Elliott 已提交
7031
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7032 7033 7034 7035
	/*
	 * call pci_disable_device before pci_release_regions per
	 * Documentation/PCI/pci.txt
	 */
R
Robert Elliott 已提交
7036
	pci_disable_device(h->pdev);		/* pci_init 1 */
7037
	pci_release_regions(h->pdev);		/* pci_init 2 */
R
Robert Elliott 已提交
7038 7039 7040
}

/* several items must be freed later */
7041
static int hpsa_pci_init(struct ctlr_info *h)
7042
{
7043
	int prod_index, err;
7044

7045 7046
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
7047
		return prod_index;
7048 7049
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
7050

S
Stephen Cameron 已提交
7051 7052 7053
	h->needs_abort_tags_swizzled =
		ctlr_needs_abort_tags_swizzled(h->board_id);

M
Matthew Garrett 已提交
7054 7055 7056
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

7057
	err = pci_enable_device(h->pdev);
7058
	if (err) {
R
Robert Elliott 已提交
7059
		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7060
		pci_disable_device(h->pdev);
7061 7062 7063
		return err;
	}

7064
	err = pci_request_regions(h->pdev, HPSA);
7065
	if (err) {
7066
		dev_err(&h->pdev->dev,
R
Robert Elliott 已提交
7067
			"failed to obtain PCI resources\n");
7068 7069
		pci_disable_device(h->pdev);
		return err;
7070
	}
7071 7072 7073

	pci_set_master(h->pdev);

7074
	hpsa_interrupt_mode(h);
7075
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7076
	if (err)
R
Robert Elliott 已提交
7077
		goto clean2;	/* intmode+region, pci */
7078
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7079
	if (!h->vaddr) {
R
Robert Elliott 已提交
7080
		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7081
		err = -ENOMEM;
R
Robert Elliott 已提交
7082
		goto clean2;	/* intmode+region, pci */
7083
	}
7084
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7085
	if (err)
R
Robert Elliott 已提交
7086
		goto clean3;	/* vaddr, intmode+region, pci */
7087 7088
	err = hpsa_find_cfgtables(h);
	if (err)
R
Robert Elliott 已提交
7089
		goto clean3;	/* vaddr, intmode+region, pci */
7090
	hpsa_find_board_params(h);
7091

7092
	if (!hpsa_CISS_signature_present(h)) {
7093
		err = -ENODEV;
R
Robert Elliott 已提交
7094
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7095
	}
7096
	hpsa_set_driver_support_bits(h);
7097
	hpsa_p600_dma_prefetch_quirk(h);
7098 7099
	err = hpsa_enter_simple_mode(h);
	if (err)
R
Robert Elliott 已提交
7100
		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7101 7102
	return 0;

R
Robert Elliott 已提交
7103 7104 7105 7106
clean4:	/* cfgtables, vaddr, intmode+region, pci */
	hpsa_free_cfgtables(h);
clean3:	/* vaddr, intmode+region, pci */
	iounmap(h->vaddr);
R
Robert Elliott 已提交
7107
	h->vaddr = NULL;
R
Robert Elliott 已提交
7108 7109
clean2:	/* intmode+region, pci */
	hpsa_disable_interrupt_mode(h);
7110 7111 7112 7113
	/*
	 * call pci_disable_device before pci_release_regions per
	 * Documentation/PCI/pci.txt
	 */
R
Robert Elliott 已提交
7114
	pci_disable_device(h->pdev);
7115
	pci_release_regions(h->pdev);
7116 7117 7118
	return err;
}

7119
static void hpsa_hba_inquiry(struct ctlr_info *h)
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

7135
static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7136
{
7137
	int rc, i;
7138
	void __iomem *vaddr;
7139 7140 7141 7142

	if (!reset_devices)
		return 0;

7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
	/* kdump kernel is loading, we don't know in which state is
	 * the pci interface. The dev->enable_cnt is equal zero
	 * so we call enable+disable, wait a while and switch it on.
	 */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}
	pci_disable_device(pdev);
	msleep(260);			/* a randomly chosen number */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		return -ENODEV;
	}
7159

7160
	pci_set_master(pdev);
7161

7162 7163 7164 7165 7166 7167 7168 7169
	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL) {
		rc = -ENOMEM;
		goto out_disable;
	}
	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
	iounmap(vaddr);

7170
	/* Reset the controller with a PCI power-cycle or via doorbell */
7171
	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7172

7173 7174
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
7175 7176
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
7177
	 */
7178
	if (rc)
7179
		goto out_disable;
7180 7181

	/* Now try to get the controller to respond to a no-op */
7182
	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7183 7184 7185 7186 7187 7188 7189
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
7190 7191 7192 7193 7194

out_disable:

	pci_disable_device(pdev);
	return rc;
7195 7196
}

7197 7198 7199
static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
R
Robert Elliott 已提交
7200 7201
	h->cmd_pool_bits = NULL;
	if (h->cmd_pool) {
7202 7203 7204 7205
		pci_free_consistent(h->pdev,
				h->nr_cmds * sizeof(struct CommandList),
				h->cmd_pool,
				h->cmd_pool_dhandle);
R
Robert Elliott 已提交
7206 7207 7208 7209
		h->cmd_pool = NULL;
		h->cmd_pool_dhandle = 0;
	}
	if (h->errinfo_pool) {
7210 7211 7212 7213
		pci_free_consistent(h->pdev,
				h->nr_cmds * sizeof(struct ErrorInfo),
				h->errinfo_pool,
				h->errinfo_pool_dhandle);
R
Robert Elliott 已提交
7214 7215 7216
		h->errinfo_pool = NULL;
		h->errinfo_pool_dhandle = 0;
	}
7217 7218
}

7219
static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7234
		goto clean_up;
7235
	}
7236
	hpsa_preinitialize_commands(h);
7237
	return 0;
7238 7239 7240
clean_up:
	hpsa_free_cmd_pool(h);
	return -ENOMEM;
7241 7242
}

7243 7244
static void hpsa_irq_affinity_hints(struct ctlr_info *h)
{
7245
	int i, cpu;
7246 7247 7248

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < h->msix_vector; i++) {
7249
		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7250 7251 7252 7253
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
}

7254 7255 7256 7257 7258 7259 7260 7261 7262 7263
/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
static void hpsa_free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
R
Robert Elliott 已提交
7264
		h->q[i] = 0;
7265 7266 7267 7268 7269 7270
		return;
	}

	for (i = 0; i < h->msix_vector; i++) {
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
R
Robert Elliott 已提交
7271
		h->q[i] = 0;
7272
	}
7273 7274
	for (; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = 0;
7275 7276
}

7277 7278
/* returns 0 on success; cleans up and returns -Enn on error */
static int hpsa_request_irqs(struct ctlr_info *h,
7279 7280 7281
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
7282
	int rc, i;
7283

7284 7285 7286 7287 7288 7289 7290
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

7291
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7292
		/* If performant mode and MSI-X, use multiple reply queues */
7293
		for (i = 0; i < h->msix_vector; i++) {
7294
			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7295
			rc = request_irq(h->intr[i], msixhandler,
7296
					0, h->intrname[i],
7297
					&h->q[i]);
7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
			if (rc) {
				int j;

				dev_err(&h->pdev->dev,
					"failed to get irq %d for %s\n",
				       h->intr[i], h->devname);
				for (j = 0; j < i; j++) {
					free_irq(h->intr[j], &h->q[j]);
					h->q[j] = 0;
				}
				for (; j < MAX_REPLY_QUEUES; j++)
					h->q[j] = 0;
				return rc;
			}
		}
7313
		hpsa_irq_affinity_hints(h);
7314 7315
	} else {
		/* Use single reply pool */
7316
		if (h->msix_vector > 0 || h->msi_vector) {
7317 7318 7319 7320 7321 7322
			if (h->msix_vector)
				sprintf(h->intrname[h->intr_mode],
					"%s-msix", h->devname);
			else
				sprintf(h->intrname[h->intr_mode],
					"%s-msi", h->devname);
7323
			rc = request_irq(h->intr[h->intr_mode],
7324 7325
				msixhandler, 0,
				h->intrname[h->intr_mode],
7326 7327
				&h->q[h->intr_mode]);
		} else {
7328 7329
			sprintf(h->intrname[h->intr_mode],
				"%s-intx", h->devname);
7330
			rc = request_irq(h->intr[h->intr_mode],
7331 7332
				intxhandler, IRQF_SHARED,
				h->intrname[h->intr_mode],
7333 7334
				&h->q[h->intr_mode]);
		}
R
Robert Elliott 已提交
7335
		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7336
	}
7337
	if (rc) {
R
Robert Elliott 已提交
7338
		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7339
		       h->intr[h->intr_mode], h->devname);
R
Robert Elliott 已提交
7340
		hpsa_free_irqs(h);
7341 7342 7343 7344 7345
		return -ENODEV;
	}
	return 0;
}

7346
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7347
{
7348
	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

7366 7367 7368 7369 7370 7371 7372
static void hpsa_free_reply_queues(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nreply_queues; i++) {
		if (!h->reply_queue[i].head)
			continue;
7373 7374 7375 7376
		pci_free_consistent(h->pdev,
					h->reply_queue_size,
					h->reply_queue[i].head,
					h->reply_queue[i].busaddr);
7377 7378 7379
		h->reply_queue[i].head = NULL;
		h->reply_queue[i].busaddr = 0;
	}
R
Robert Elliott 已提交
7380
	h->reply_queue_size = 0;
7381 7382
}

7383 7384
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
R
Robert Elliott 已提交
7385 7386 7387 7388 7389
	hpsa_free_performant_mode(h);		/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
	hpsa_free_cmd_pool(h);			/* init_one 5 */
	hpsa_free_irqs(h);			/* init_one 4 */
	hpsa_free_pci_init(h);			/* init_one 3 */
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399
	free_percpu(h->lockup_detected);	/* init_one 2 */
	h->lockup_detected = NULL;		/* init_one 2 */
	if (h->resubmit_wq) {
		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
		h->resubmit_wq = NULL;
	}
	if (h->rescan_ctlr_wq) {
		destroy_workqueue(h->rescan_ctlr_wq);
		h->rescan_ctlr_wq = NULL;
	}
R
Robert Elliott 已提交
7400
	kfree(h);				/* init_one 1 */
7401 7402
}

7403
/* Called when controller lockup detected. */
7404
static void fail_all_outstanding_cmds(struct ctlr_info *h)
7405
{
7406 7407
	int i, refcount;
	struct CommandList *c;
7408
	int failcount = 0;
7409

7410
	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7411 7412
	for (i = 0; i < h->nr_cmds; i++) {
		c = h->cmd_pool + i;
7413 7414
		refcount = atomic_inc_return(&c->refcount);
		if (refcount > 1) {
7415
			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7416
			finish_cmd(c);
7417
			atomic_dec(&h->commands_outstanding);
7418
			failcount++;
7419 7420
		}
		cmd_free(h, c);
7421
	}
7422 7423
	dev_warn(&h->pdev->dev,
		"failed %d commands in fail_all\n", failcount);
7424 7425
}

7426 7427
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
{
7428
	int cpu;
7429

7430
	for_each_online_cpu(cpu) {
7431 7432 7433 7434 7435 7436 7437
		u32 *lockup_detected;
		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
		*lockup_detected = value;
	}
	wmb(); /* be sure the per-cpu variables are out to memory */
}

7438 7439 7440
static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;
7441
	u32 lockup_detected;
7442 7443 7444

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
7445 7446 7447 7448
	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	if (!lockup_detected) {
		/* no heartbeat, but controller gave us a zero. */
		dev_warn(&h->pdev->dev,
7449 7450
			"lockup detected after %d but scratchpad register is zero\n",
			h->heartbeat_sample_interval / HZ);
7451 7452 7453
		lockup_detected = 0xffffffff;
	}
	set_lockup_detected_for_all_cpus(h, lockup_detected);
7454
	spin_unlock_irqrestore(&h->lock, flags);
7455 7456
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
			lockup_detected, h->heartbeat_sample_interval / HZ);
7457
	pci_disable_device(h->pdev);
7458
	fail_all_outstanding_cmds(h);
7459 7460
}

7461
static int detect_controller_lockup(struct ctlr_info *h)
7462 7463 7464 7465 7466 7467 7468 7469
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
7470
				(h->heartbeat_sample_interval), now))
7471
		return false;
7472 7473 7474 7475 7476 7477 7478

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
7479
				(h->heartbeat_sample_interval), now))
7480
		return false;
7481 7482 7483 7484 7485 7486 7487

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
7488
		return true;
7489 7490 7491 7492 7493
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
7494
	return false;
7495 7496
}

7497
static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7498 7499 7500 7501
{
	int i;
	char *event_type;

7502 7503 7504
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return;

7505
	/* Ask the controller to clear the events we're handling. */
7506 7507
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
7519
		hpsa_drain_accel_commands(h);
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}
7540
	return;
7541 7542 7543 7544
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
7545 7546
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
7547
 */
7548
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7549 7550
{
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7551
		return 0;
7552 7553

	h->events = readl(&(h->cfgtable->event_notify));
7554 7555
	return h->events & RESCAN_REQUIRED_EVENT_BITS;
}
7556

7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570
/*
 * Check if any of the offline devices have become ready
 */
static int hpsa_offline_devices_ready(struct ctlr_info *h)
{
	unsigned long flags;
	struct offline_device_entry *d;
	struct list_head *this, *tmp;

	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_safe(this, tmp, &h->offline_device_list) {
		d = list_entry(this, struct offline_device_entry,
				offline_list);
		spin_unlock_irqrestore(&h->offline_device_lock, flags);
7571 7572 7573 7574
		if (!hpsa_volume_offline(h, d->scsi3addr)) {
			spin_lock_irqsave(&h->offline_device_lock, flags);
			list_del(&d->offline_list);
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
7575
			return 1;
7576
		}
7577 7578 7579 7580
		spin_lock_irqsave(&h->offline_device_lock, flags);
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
	return 0;
7581 7582
}

7583
static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7584 7585
{
	unsigned long flags;
7586
	struct ctlr_info *h = container_of(to_delayed_work(work),
7587 7588 7589 7590
					struct ctlr_info, rescan_ctlr_work);


	if (h->remove_in_progress)
7591
		return;
7592 7593 7594 7595 7596 7597 7598

	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
		scsi_host_get(h->scsi_host);
		hpsa_ack_ctlr_events(h);
		hpsa_scan_start(h->scsi_host);
		scsi_host_put(h->scsi_host);
	}
7599
	spin_lock_irqsave(&h->lock, flags);
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
	if (!h->remove_in_progress)
		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void hpsa_monitor_ctlr_worker(struct work_struct *work)
{
	unsigned long flags;
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);

	detect_controller_lockup(h);
	if (lockup_detected(h))
7614
		return;
7615 7616 7617 7618

	spin_lock_irqsave(&h->lock, flags);
	if (!h->remove_in_progress)
		schedule_delayed_work(&h->monitor_ctlr_work,
7619 7620
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
7621 7622
}

7623 7624 7625 7626 7627
static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
						char *name)
{
	struct workqueue_struct *wq = NULL;

7628
	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7629 7630 7631 7632 7633 7634
	if (!wq)
		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);

	return wq;
}

7635
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7636
{
7637
	int dac, rc;
7638
	struct ctlr_info *h;
7639 7640
	int try_soft_reset = 0;
	unsigned long flags;
7641
	u32 board_id;
7642 7643 7644 7645

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

7646 7647 7648 7649 7650 7651 7652
	rc = hpsa_lookup_board_id(pdev, &board_id);
	if (rc < 0) {
		dev_warn(&pdev->dev, "Board ID not found\n");
		return rc;
	}

	rc = hpsa_init_reset_devices(pdev, board_id);
7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
7666

7667 7668 7669 7670 7671
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7672
	h = kzalloc(sizeof(*h), GFP_KERNEL);
R
Robert Elliott 已提交
7673 7674
	if (!h) {
		dev_err(&pdev->dev, "Failed to allocate controller head\n");
7675
		return -ENOMEM;
R
Robert Elliott 已提交
7676
	}
7677

7678
	h->pdev = pdev;
R
Robert Elliott 已提交
7679

7680
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7681
	INIT_LIST_HEAD(&h->offline_device_list);
7682
	spin_lock_init(&h->lock);
7683
	spin_lock_init(&h->offline_device_lock);
7684
	spin_lock_init(&h->scan_lock);
7685
	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
S
Stephen Cameron 已提交
7686
	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7687 7688 7689

	/* Allocate and clear per-cpu variable lockup_detected */
	h->lockup_detected = alloc_percpu(u32);
7690
	if (!h->lockup_detected) {
R
Robert Elliott 已提交
7691
		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
7692
		rc = -ENOMEM;
7693
		goto clean1;	/* aer/h */
7694
	}
7695 7696
	set_lockup_detected_for_all_cpus(h, 0);

7697
	rc = hpsa_pci_init(h);
R
Robert Elliott 已提交
7698
	if (rc)
7699
		goto clean2;	/* lockup, aer/h */
7700

7701
	sprintf(h->devname, HPSA "%d", number_of_controllers);
7702 7703 7704 7705
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
7706 7707
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
7708
		dac = 1;
7709 7710 7711 7712 7713 7714
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
7715
			goto clean3;	/* pci, lockup, aer/h */
7716
		}
7717 7718 7719 7720
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7721

R
Robert Elliott 已提交
7722 7723
	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
	if (rc)
7724
		goto clean3;	/* pci, lockup, aer/h */
7725
	rc = hpsa_alloc_cmd_pool(h);
7726
	if (rc)
7727
		goto clean4;	/* irq, pci, lockup, aer/h */
R
Robert Elliott 已提交
7728 7729
	rc = hpsa_alloc_sg_chain_blocks(h);
	if (rc)
7730
		goto clean5;	/* cmd, irq, pci, lockup, aer/h */
7731
	init_waitqueue_head(&h->scan_wait_queue);
S
Stephen Cameron 已提交
7732
	init_waitqueue_head(&h->abort_cmd_wait_queue);
7733
	init_waitqueue_head(&h->abort_sync_wait_queue);
7734
	h->scan_finished = 1; /* no scan currently in progress */
7735 7736

	pci_set_drvdata(pdev, h);
7737
	h->ndevices = 0;
7738
	h->hba_mode_enabled = 0;
7739 7740
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
R
Robert Elliott 已提交
7741 7742
	rc = hpsa_put_ctlr_into_performant_mode(h);
	if (rc)
7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
		goto clean6;	/* sg, cmd, irq, pci, lockup, aer/h */

	/* create the resubmit workqueue */
	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
	if (!h->rescan_ctlr_wq) {
		rc = -ENOMEM;
		goto clean7;
	}

	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
	if (!h->resubmit_wq) {
		rc = -ENOMEM;
		goto clean7;	/* aer/h */
	}
7757

R
Robert Elliott 已提交
7758 7759
	/*
	 * At this point, the controller is ready to take commands.
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
7775
		hpsa_free_irqs(h);
7776
		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
7777 7778
					hpsa_intx_discard_completions);
		if (rc) {
7779 7780
			dev_warn(&h->pdev->dev,
				"Failed to request_irq after soft reset.\n");
7781
			/*
7782 7783 7784 7785 7786 7787 7788 7789 7790
			 * cannot goto clean7 or free_irqs will be called
			 * again. Instead, do its work
			 */
			hpsa_free_performant_mode(h);	/* clean7 */
			hpsa_free_sg_chain_blocks(h);	/* clean6 */
			hpsa_free_cmd_pool(h);		/* clean5 */
			/*
			 * skip hpsa_free_irqs(h) clean4 since that
			 * was just called before request_irqs failed
7791 7792
			 */
			goto clean3;
7793 7794 7795 7796 7797
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
7798
			goto clean8;
7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
7819
			/* don't goto clean, we already unallocated */
7820 7821 7822 7823
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
7824

R
Robert Elliott 已提交
7825 7826
	/* Enable Accelerated IO path at driver layer */
	h->acciopath_status = 1;
7827

7828

7829 7830 7831
	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

7832
	hpsa_hba_inquiry(h);
R
Robert Elliott 已提交
7833
	rc = hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7834
	if (rc)
7835
		goto clean8; /* wq, perf, sg, cmd, irq, pci, lockup, aer/h */
7836 7837 7838 7839 7840 7841

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
7842 7843 7844
	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
7845
	return 0;
7846

7847
clean8: /* perf, sg, cmd, irq, pci, lockup, aer/h */
R
Robert Elliott 已提交
7848
	kfree(h->hba_inquiry_data);
7849
clean7: /* perf, sg, cmd, irq, pci, lockup, aer/h */
R
Robert Elliott 已提交
7850 7851 7852
	hpsa_free_performant_mode(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
7853
	hpsa_free_sg_chain_blocks(h);
7854
clean5: /* cmd, irq, pci, lockup, aer/h */
7855
	hpsa_free_cmd_pool(h);
7856
clean4: /* irq, pci, lockup, aer/h */
7857
	hpsa_free_irqs(h);
7858
clean3: /* pci, lockup, aer/h */
R
Robert Elliott 已提交
7859
	hpsa_free_pci_init(h);
7860
clean2: /* lockup, aer/h */
R
Robert Elliott 已提交
7861 7862 7863 7864 7865 7866
	if (h->lockup_detected) {
		free_percpu(h->lockup_detected);
		h->lockup_detected = NULL;
	}
clean1:	/* wq/aer/h */
	if (h->resubmit_wq) {
7867
		destroy_workqueue(h->resubmit_wq);
R
Robert Elliott 已提交
7868 7869 7870
		h->resubmit_wq = NULL;
	}
	if (h->rescan_ctlr_wq) {
7871
		destroy_workqueue(h->rescan_ctlr_wq);
R
Robert Elliott 已提交
7872 7873
		h->rescan_ctlr_wq = NULL;
	}
7874
	kfree(h);
7875
	return rc;
7876 7877 7878 7879 7880 7881
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
7882
	int rc;
7883

7884
	if (unlikely(lockup_detected(h)))
7885
		return;
7886 7887 7888 7889
	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

7890
	c = cmd_alloc(h);
7891

7892 7893 7894 7895
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
7896 7897 7898 7899
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_TODEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
7900
	if (c->err_info->CommandStatus != 0)
7901
out:
7902 7903
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
7904
	cmd_free(h, c);
7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
R
Robert Elliott 已提交
7919
	hpsa_free_irqs(h);			/* init_one 4 */
7920
	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7921 7922
}

7923
static void hpsa_free_device_info(struct ctlr_info *h)
7924 7925 7926
{
	int i;

R
Robert Elliott 已提交
7927
	for (i = 0; i < h->ndevices; i++) {
7928
		kfree(h->dev[i]);
R
Robert Elliott 已提交
7929 7930
		h->dev[i] = NULL;
	}
7931 7932
}

7933
static void hpsa_remove_one(struct pci_dev *pdev)
7934 7935
{
	struct ctlr_info *h;
7936
	unsigned long flags;
7937 7938

	if (pci_get_drvdata(pdev) == NULL) {
7939
		dev_err(&pdev->dev, "unable to remove device\n");
7940 7941 7942
		return;
	}
	h = pci_get_drvdata(pdev);
7943 7944 7945 7946 7947

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	spin_unlock_irqrestore(&h->lock, flags);
7948 7949 7950 7951
	cancel_delayed_work_sync(&h->monitor_ctlr_work);
	cancel_delayed_work_sync(&h->rescan_ctlr_work);
	destroy_workqueue(h->rescan_ctlr_wq);
	destroy_workqueue(h->resubmit_wq);
7952

R
Robert Elliott 已提交
7953
	/* includes hpsa_free_irqs - init_one 4 */
R
Robert Elliott 已提交
7954
	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
7955
	hpsa_shutdown(pdev);
7956

R
Robert Elliott 已提交
7957 7958
	hpsa_free_device_info(h);		/* scan */

7959 7960 7961
	hpsa_unregister_scsi(h);			/* init_one 9 */
	kfree(h->hba_inquiry_data);			/* init_one 9 */
	h->hba_inquiry_data = NULL;			/* init_one 9 */
R
Robert Elliott 已提交
7962 7963 7964 7965 7966
	hpsa_free_performant_mode(h);			/* init_one 7 */
	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
	hpsa_free_cmd_pool(h);				/* init_one 5 */

	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
R
Robert Elliott 已提交
7967 7968

	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
R
Robert Elliott 已提交
7969
	hpsa_free_pci_init(h);				/* init_one 3 */
R
Robert Elliott 已提交
7970

R
Robert Elliott 已提交
7971 7972 7973 7974
	free_percpu(h->lockup_detected);		/* init_one 2 */
	h->lockup_detected = NULL;			/* init_one 2 */
	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
	kfree(h);					/* init_one 1 */
7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
7989
	.name = HPSA,
7990
	.probe = hpsa_init_one,
7991
	.remove = hpsa_remove_one,
7992 7993 7994 7995 7996 7997
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
D
Don Brace 已提交
8011
	int nsgs, int min_blocks, u32 *bucket_map)
8012 8013 8014 8015 8016 8017
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
8018
		size = i + min_blocks;
8019 8020
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
8021
		for (j = 0; j < num_buckets; j++) {
8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

R
Robert Elliott 已提交
8032 8033 8034 8035
/*
 * return -ENODEV on err, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
8036
static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8037
{
8038 8039
	int i;
	unsigned long register_value;
8040 8041
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
8042 8043 8044
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
8045
	struct access_method access = SA5_performant_access;
8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
8057
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8058 8059 8060 8061 8062 8063
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
8064
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8075
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8076 8077 8078 8079 8080 8081
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

8082 8083 8084 8085 8086 8087 8088
	/* If the controller supports either ioaccel method then
	 * we can also use the RAID stack submit path that does not
	 * perform the superfluous readl() after each command submission.
	 */
	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
		access = SA5_performant_access_no_read;

8089
	/* Controller spec: zero out this buffer. */
8090 8091
	for (i = 0; i < h->nreply_queues; i++)
		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8092

8093 8094
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
8095
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8096 8097 8098 8099 8100
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
8101
	writel(h->nreply_queues, &h->transtable->RepQCount);
8102 8103
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
8104 8105 8106

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
8107
		writel(h->reply_queue[i].busaddr,
8108 8109 8110
			&h->transtable->RepQAddr[i].lower);
	}

8111
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8112 8113 8114 8115 8116 8117 8118 8119
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8120 8121 8122 8123 8124 8125
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
8126
	}
8127
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8128 8129 8130 8131 8132
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - doorbell timeout\n");
		return -ENODEV;
	}
8133 8134
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
8135 8136
		dev_err(&h->pdev->dev,
			"performant mode problem - transport not active\n");
8137
		return -ENODEV;
8138
	}
8139
	/* Change the access methods to the performant access methods */
8140 8141 8142
	h->access = access;
	h->transMethod = transMethod;

8143 8144
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
8145
		return 0;
8146

8147 8148 8149 8150 8151 8152 8153 8154 8155 8156
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
8157

8158
		/* initialize all reply queue entries to unused */
8159 8160 8161 8162
		for (i = 0; i < h->nreply_queues; i++)
			memset(h->reply_queue[i].head,
				(u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_queue_size);
8163

8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
D
Don Brace 已提交
8175 8176
			cp->host_context_flags =
				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8177 8178
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
8179
			cp->tag =
8180
				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8181 8182
			cp->host_addr =
				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206
					(i * sizeof(struct io_accel1_cmd)));
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8207
	}
8208
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8209 8210 8211 8212 8213 8214
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - enabling ioaccel mode\n");
		return -ENODEV;
	}
	return 0;
8215 8216
}

8217 8218 8219
/* Free ioaccel1 mode command blocks and block fetch table */
static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
{
R
Robert Elliott 已提交
8220
	if (h->ioaccel_cmd_pool) {
8221 8222 8223 8224
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool,
			h->ioaccel_cmd_pool_dhandle);
R
Robert Elliott 已提交
8225 8226 8227
		h->ioaccel_cmd_pool = NULL;
		h->ioaccel_cmd_pool_dhandle = 0;
	}
8228
	kfree(h->ioaccel1_blockFetchTable);
R
Robert Elliott 已提交
8229
	h->ioaccel1_blockFetchTable = NULL;
8230 8231
}

8232 8233
/* Allocate ioaccel1 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8234
{
8235 8236 8237 8238 8239
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
8252
		kmalloc(((h->ioaccel_maxsg + 1) *
8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
8264
	hpsa_free_ioaccel1_cmd_and_bft(h);
8265
	return -ENOMEM;
8266 8267
}

8268 8269 8270
/* Free ioaccel2 mode command blocks and block fetch table */
static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
{
8271 8272
	hpsa_free_ioaccel2_sg_chain_blocks(h);

R
Robert Elliott 已提交
8273
	if (h->ioaccel2_cmd_pool) {
8274 8275 8276 8277
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool,
			h->ioaccel2_cmd_pool_dhandle);
R
Robert Elliott 已提交
8278 8279 8280
		h->ioaccel2_cmd_pool = NULL;
		h->ioaccel2_cmd_pool_dhandle = 0;
	}
8281
	kfree(h->ioaccel2_blockFetchTable);
R
Robert Elliott 已提交
8282
	h->ioaccel2_blockFetchTable = NULL;
8283 8284
}

8285 8286
/* Allocate ioaccel2 mode command blocks and block fetch table */
static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8287
{
8288 8289
	int rc;

8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
8309 8310 8311 8312 8313 8314 8315
		(h->ioaccel2_blockFetchTable == NULL)) {
		rc = -ENOMEM;
		goto clean_up;
	}

	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
	if (rc)
8316 8317 8318 8319 8320 8321 8322
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
8323
	hpsa_free_ioaccel2_cmd_and_bft(h);
8324
	return rc;
8325 8326
}

R
Robert Elliott 已提交
8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340
/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
static void hpsa_free_performant_mode(struct ctlr_info *h)
{
	kfree(h->blockFetchTable);
	h->blockFetchTable = NULL;
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
}

/* return -ENODEV on error, 0 on success (or no action)
 * allocates numerous items that must be freed later
 */
static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8341 8342
{
	u32 trans_support;
8343 8344
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
R
Robert Elliott 已提交
8345
	int i, rc;
8346

8347
	if (hpsa_simple_mode)
R
Robert Elliott 已提交
8348
		return 0;
8349

8350 8351
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
R
Robert Elliott 已提交
8352
		return 0;
8353

8354 8355 8356 8357
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
R
Robert Elliott 已提交
8358 8359 8360 8361 8362
		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
		if (rc)
			return rc;
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		transMethod |= CFGTBL_Trans_io_accel2 |
8363
				CFGTBL_Trans_enable_directed_msix;
R
Robert Elliott 已提交
8364 8365 8366
		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
		if (rc)
			return rc;
8367 8368
	}

8369
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8370
	hpsa_get_max_perf_mode_cmds(h);
8371
	/* Performant mode ring buffer and supporting data structures */
8372
	h->reply_queue_size = h->max_commands * sizeof(u64);
8373

8374
	for (i = 0; i < h->nreply_queues; i++) {
8375 8376 8377
		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
						h->reply_queue_size,
						&(h->reply_queue[i].busaddr));
R
Robert Elliott 已提交
8378 8379 8380 8381
		if (!h->reply_queue[i].head) {
			rc = -ENOMEM;
			goto clean1;	/* rq, ioaccel */
		}
8382 8383 8384 8385 8386
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

8387
	/* Need a block fetch table for performant mode */
8388
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8389
				sizeof(u32)), GFP_KERNEL);
R
Robert Elliott 已提交
8390 8391 8392 8393
	if (!h->blockFetchTable) {
		rc = -ENOMEM;
		goto clean1;	/* rq, ioaccel */
	}
8394

R
Robert Elliott 已提交
8395 8396 8397 8398
	rc = hpsa_enter_performant_mode(h, trans_support);
	if (rc)
		goto clean2;	/* bft, rq, ioaccel */
	return 0;
8399

R
Robert Elliott 已提交
8400
clean2:	/* bft, rq, ioaccel */
8401
	kfree(h->blockFetchTable);
R
Robert Elliott 已提交
8402 8403 8404 8405 8406 8407
	h->blockFetchTable = NULL;
clean1:	/* rq, ioaccel */
	hpsa_free_reply_queues(h);
	hpsa_free_ioaccel1_cmd_and_bft(h);
	hpsa_free_ioaccel2_cmd_and_bft(h);
	return rc;
8408 8409
}

8410
static int is_accelerated_cmd(struct CommandList *c)
8411
{
8412 8413 8414 8415 8416 8417
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
8418
	int i, accel_cmds_out;
8419
	int refcount;
8420

8421
	do { /* wait for all outstanding ioaccel commands to drain out */
8422
		accel_cmds_out = 0;
8423 8424
		for (i = 0; i < h->nr_cmds; i++) {
			c = h->cmd_pool + i;
8425 8426 8427 8428
			refcount = atomic_inc_return(&c->refcount);
			if (refcount > 1) /* Command is allocated */
				accel_cmds_out += is_accelerated_cmd(c);
			cmd_free(h, c);
8429
		}
8430
		if (accel_cmds_out <= 0)
8431
			break;
8432 8433 8434 8435
		msleep(100);
	} while (1);
}

8436 8437 8438 8439 8440 8441
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
8442
	return pci_register_driver(&hpsa_pci_driver);
8443 8444 8445 8446 8447 8448 8449
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

8450 8451
static void __attribute__((unused)) verify_offsets(void)
{
8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
8521
	VERIFY_OFFSET(tag, 0x68);
8522 8523 8524 8525 8526 8527
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

8528 8529
module_init(hpsa_init);
module_exit(hpsa_cleanup);