hpsa.c 209.8 KB
Newer Older
1 2
/*
 *    Disk Array driver for HP Smart Array SAS controllers
3
 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46 47 48
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
49
#include <linux/atomic.h>
50
#include <linux/jiffies.h>
D
Don Brace 已提交
51
#include <linux/percpu-defs.h>
52
#include <linux/percpu.h>
D
Don Brace 已提交
53
#include <asm/unaligned.h>
54
#include <asm/div64.h>
55 56 57 58
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59
#define HPSA_DRIVER_VERSION "3.4.4-1"
60
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61
#define HPSA "hpsa"
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

/* How long to wait (in milliseconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
82 83 84 85
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
86 87 88 89 90 91 92 93

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
94 95
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
96
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
97 98 99 100 101 102 103
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
104 105 106 107 108 109
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110 111 112 113 114 115 116 117 118 119
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
120
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
121 122 123
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
124 125 126 127 128
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
129 130 131 132 133
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
134
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
135
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
151 152
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
153
	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
154 155 156 157 158 159 160
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
161 162 163 164 165 166 167
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
168 169 170 171 172 173 174 175 176
	{0x21BD103C, "Smart Array", &SA5_access},
	{0x21BE103C, "Smart Array", &SA5_access},
	{0x21BF103C, "Smart Array", &SA5_access},
	{0x21C0103C, "Smart Array", &SA5_access},
	{0x21C1103C, "Smart Array", &SA5_access},
	{0x21C2103C, "Smart Array", &SA5_access},
	{0x21C3103C, "Smart Array", &SA5_access},
	{0x21C4103C, "Smart Array", &SA5_access},
	{0x21C5103C, "Smart Array", &SA5_access},
177
	{0x21C6103C, "Smart Array", &SA5_access},
178 179 180
	{0x21C7103C, "Smart Array", &SA5_access},
	{0x21C8103C, "Smart Array", &SA5_access},
	{0x21C9103C, "Smart Array", &SA5_access},
181 182 183 184 185
	{0x21CA103C, "Smart Array", &SA5_access},
	{0x21CB103C, "Smart Array", &SA5_access},
	{0x21CC103C, "Smart Array", &SA5_access},
	{0x21CD103C, "Smart Array", &SA5_access},
	{0x21CE103C, "Smart Array", &SA5_access},
186 187 188 189 190
	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
191 192 193 194 195
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

static int number_of_controllers;

196 197
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
D
Don Brace 已提交
198
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
199 200

#ifdef CONFIG_COMPAT
D
Don Brace 已提交
201 202
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
	void __user *arg);
203 204 205 206
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
207
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
208
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
209
	int cmd_type);
210
static void hpsa_free_cmd_pool(struct ctlr_info *h);
211
#define VPD_PAGE (1 << 8)
212

J
Jeff Garzik 已提交
213
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
214 215 216
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
D
Don Brace 已提交
217
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
218 219

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
220
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
221 222 223 224 225 226 227 228
static int hpsa_slave_alloc(struct scsi_device *sdev);
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
229 230
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
D
Don Brace 已提交
231
	int nsgs, int min_blocks, u32 *bucket_map);
232
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
233
static inline u32 next_command(struct ctlr_info *h, u8 q);
234 235 236 237 238 239 240 241
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
242
static inline void finish_cmd(struct CommandList *c);
243
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
244 245
#define BOARD_NOT_READY 0
#define BOARD_READY 1
246
static void hpsa_drain_accel_commands(struct ctlr_info *h);
247
static void hpsa_flush_cache(struct ctlr_info *h);
248 249 250
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr);
251 252 253 254 255 256 257

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

258 259 260 261 262 263
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

264 265 266 267 268 269 270 271
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
		return 0;

	switch (c->err_info->SenseInfo[12]) {
	case STATE_CHANGED:
272
		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
273 274 275
			"detected, command retried\n", h->ctlr);
		break;
	case LUN_FAILED:
276 277
		dev_warn(&h->pdev->dev,
			HPSA "%d: LUN failure detected\n", h->ctlr);
278 279
		break;
	case REPORT_LUNS_CHANGED:
280 281
		dev_warn(&h->pdev->dev,
			HPSA "%d: report LUN data changed\n", h->ctlr);
282
	/*
283 284
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
285 286 287
	 */
		break;
	case POWER_OR_RESET:
288
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
289 290 291
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
292
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
293 294 295
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
296
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
297 298 299 300 301 302
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

303 304 305 306 307 308 309 310 311 312
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static ssize_t host_store_raid_offload_debug(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int debug_level, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
		return -EINVAL;
	if (debug_level < 0)
		debug_level = 0;
	h = shost_to_hba(shost);
	h->raid_offload_debug = debug_level;
	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
		h->raid_offload_debug);
	return count;
}

362 363 364 365 366 367
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
368
	h = shost_to_hba(shost);
M
Mike Miller 已提交
369
	hpsa_scan_start(h->scsi_host);
370 371 372
	return count;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

388 389 390 391 392 393
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

394 395
	return snprintf(buf, 20, "%d\n",
			atomic_read(&h->commands_outstanding));
396 397
}

398 399 400 401 402 403 404 405
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
406
		h->transMethod & CFGTBL_Trans_Performant ?
407 408 409
			"performant" : "simple");
}

410 411 412 413 414 415 416 417 418 419 420
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

421
/* List of controllers which cannot be hard reset on kexec with reset_devices */
422 423 424 425 426 427 428 429 430 431 432 433 434
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
435
	0x40800E11, /* Smart Array 5i */
436 437
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
438 439 440 441 442 443
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
444 445
};

446 447
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
448
	0x40800E11, /* Smart Array 5i */
449 450 451 452 453 454
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
455 456 457 458 459 460 461 462 463 464 465 466
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

static int ctlr_is_hard_resettable(u32 board_id)
467 468 469 470
{
	int i;

	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
471 472 473 474 475 476 477 478 479 480 481
		if (unresettable_controller[i] == board_id)
			return 0;
	return 1;
}

static int ctlr_is_soft_resettable(u32 board_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
		if (soft_unresettable_controller[i] == board_id)
482 483 484 485
			return 0;
	return 1;
}

486 487 488 489 490 491
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

492 493 494 495 496 497 498
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
499
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
500 501
}

502 503 504 505 506
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

507 508
static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
	"1(+0)ADM", "UNKNOWN"
509
};
510 511 512 513 514 515 516
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
517 518 519 520 521 522
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
523
	unsigned char rlevel;
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
547
	if (rlevel > RAID_UNKNOWN)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

627 628 629 630
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
631 632
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
633 634 635
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
636 637
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
			host_store_raid_offload_debug);
638 639 640 641 642 643
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
644 645
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
646 647 648 649 650

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
651
	&dev_attr_hp_ssd_smart_path_enabled,
652 653 654 655 656 657 658 659
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
660
	&dev_attr_resettable,
661
	&dev_attr_hp_ssd_smart_path_status,
662
	&dev_attr_raid_offload_debug,
663 664 665 666 667
	NULL,
};

static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
668 669
	.name			= HPSA,
	.proc_name		= HPSA,
670 671 672
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
D
Don Brace 已提交
673
	.change_queue_depth	= hpsa_change_queue_depth,
674 675
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
676
	.eh_abort_handler	= hpsa_eh_abort_handler,
677 678 679 680 681 682 683 684 685
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
686
	.max_sectors = 8192,
687
	.no_write_same = 1,
688 689
};

690
static inline u32 next_command(struct ctlr_info *h, u8 q)
691 692
{
	u32 a;
693
	struct reply_queue_buffer *rq = &h->reply_queue[q];
694

695 696 697
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

698
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
699
		return h->access.command_completed(h, q);
700

701 702 703
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
704
		atomic_dec(&h->commands_outstanding);
705 706 707 708
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
709 710 711
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
712 713 714 715
	}
	return a;
}

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

742 743 744 745 746 747
/* set_performant_mode: Modify the tag for cciss performant
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
{
748
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
749
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
750
		if (likely(h->msix_vector > 0))
751
			c->Header.ReplyQueue =
752
				raw_smp_processor_id() % h->nreply_queues;
753
	}
754 755
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
						struct CommandList *c)
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

static void set_ioaccel2_performant_mode(struct ctlr_info *h,
						struct CommandList *c)
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->reply_queue = smp_processor_id() % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

820 821 822
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c)
{
823 824 825 826 827 828 829 830 831 832
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
		set_ioaccel1_performant_mode(h, c);
		break;
	case CMD_IOACCEL2:
		set_ioaccel2_performant_mode(h, c);
		break;
	default:
		set_performant_mode(h, c);
	}
833
	dial_down_lockup_detection_during_fw_flash(h, c);
834 835
	atomic_inc(&h->commands_outstanding);
	h->access.submit_command(h, c);
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
}

static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

852 853 854 855 856 857 858
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
859
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
860

861
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
862 863 864

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
865
			__set_bit(h->dev[i]->target, lun_taken);
866 867
	}

868 869 870 871 872 873
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	}
	return !found;
}

/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

889
	if (n >= HPSA_MAX_DEVICES) {
890 891 892 893 894 895 896 897 898 899 900 901
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
D
Don Brace 已提交
902
	 * unit no, zero otherwise.
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;

	/* initially, (before registering with scsi layer) we don't
	 * know our hostno and we don't want to print anything first
	 * time anyway (the scsi layer's inquiries will show that info)
	 */
	/* if (hostno != -1) */
		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
			scsi_device_type(device->devtype), hostno,
			device->bus, device->target, device->lun);
	return 0;
}

957 958 959 960 961 962 963 964 965
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
966 967 968 969

	/* Raid offload parameters changed. */
	h->dev[entry]->offload_config = new_entry->offload_config;
	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
970 971 972
	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
	h->dev[entry]->raid_map = new_entry->raid_map;
973

974 975 976 977 978
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
		new_entry->target, new_entry->lun);
}

979 980 981 982 983 984 985
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
986
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
987 988
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
989 990 991 992 993 994 995 996 997 998

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

999 1000 1001 1002 1003 1004 1005 1006
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
			new_entry->target, new_entry->lun);
}

1007 1008 1009 1010 1011 1012 1013 1014
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

1015
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
		sd->lun);
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1085 1086 1087 1088 1089 1090 1091 1092 1093
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1094 1095 1096 1097
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1098 1099 1100
	return 0;
}

1101 1102 1103
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1104 1105 1106 1107
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1108 1109 1110 1111 1112 1113 1114 1115 1116
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1117
#define DEVICE_UPDATED 3
1118
	for (i = 0; i < haystack_size; i++) {
1119 1120
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1121 1122
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1123 1124 1125
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1126
				return DEVICE_SAME;
1127
			} else {
1128 1129 1130
				/* Keep offline devices offline */
				if (needle->volume_offline)
					return DEVICE_NOT_FOUND;
1131
				return DEVICE_CHANGED;
1132
			}
1133 1134 1135 1136 1137 1138
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
static void hpsa_monitor_offline_device(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct offline_device_entry *device;
	unsigned long flags;

	/* Check to see if device is already on the list */
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_entry(device, &h->offline_device_list, offline_list) {
		if (memcmp(device->scsi3addr, scsi3addr,
			sizeof(device->scsi3addr)) == 0) {
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return;
		}
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);

	/* Device is not on the list, add it. */
	device = kmalloc(sizeof(*device), GFP_KERNEL);
	if (!device) {
		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
		return;
	}
	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_add_tail(&device->offline_list, &h->offline_device_list);
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
}

/* Print a message explaining various offline volume states */
static void hpsa_show_volume_status(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd)
{
	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
	switch (sd->volume_offline) {
	case HPSA_LV_OK:
		break;
	case HPSA_LV_UNDERGOING_ERASE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_RPI:
		dev_info(&h->pdev->dev,
				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
				h->scsi_host->host_no,
				sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_NO_KEY:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	}
}

1243
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1257 1258
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1272 1273
	 * If minor device attributes change, just update
	 * the existing device structure.
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1288 1289
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1290 1291 1292 1293
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1294 1295
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
		 * as the SCSI mid-layer does not handle such devices well.
		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
		 * at 160Hz, and prevents the system from coming up.
		 */
		if (sd[i]->volume_offline) {
			hpsa_show_volume_status(h, sd[i]);
			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
				h->scsi_host->host_no,
				sd[i]->bus, sd[i]->target, sd[i]->lun);
			continue;
		}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
	spin_unlock_irqrestore(&h->devlock, flags);

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	/* Monitor devices which are in one of several NOT READY states to be
	 * brought online later. This must be done without holding h->devlock,
	 * so don't touch h->dev[]
	 */
	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		if (sd[i]->volume_offline)
			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
	}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
		struct scsi_device *sdev =
			scsi_device_lookup(sh, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		if (sdev != NULL) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
		} else {
			/* We don't expect to get here.
			 * future cmds to this device will get selection
			 * timeout as if the device was gone.
			 */
			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
				" for removal.", hostno, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
			"device not added.\n", hostno, added[i]->bus,
			added[i]->target, added[i]->lun);
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1399
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

/* link sdev->hostdata to our per-device structure. */
static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
	if (sd != NULL)
		sdev->hostdata = sd;
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1435
	/* nothing to do. */
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
1461 1462
	if (!h->cmd_sg_list) {
		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1463
		return -ENOMEM;
1464
	}
1465 1466 1467
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
1468 1469
		if (!h->cmd_sg_list[i]) {
			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1470
			goto clean;
1471
		}
1472 1473 1474 1475 1476 1477 1478 1479
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1480
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1481 1482 1483 1484
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;
1485
	u32 chain_len;
1486 1487 1488

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
1489 1490
	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
	chain_len = sizeof(*chain_sg) *
D
Don Brace 已提交
1491
		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1492 1493
	chain_sg->Len = cpu_to_le32(chain_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1494
				PCI_DMA_TODEVICE);
1495 1496
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
1497
		chain_sg->Addr = cpu_to_le64(0);
1498 1499
		return -1;
	}
1500
	chain_sg->Addr = cpu_to_le64(temp64);
1501
	return 0;
1502 1503 1504 1505 1506 1507 1508
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;

1509
	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1510 1511 1512
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1513 1514
	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1515 1516
}

1517 1518 1519 1520 1521 1522

/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1523 1524 1525 1526 1527
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;
1528
	int retry = 0;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
			dev_warn(&h->pdev->dev,
				"%s: task complete with check condition.\n",
				"HP SSD Smart Path");
1539
			cmd->result |= SAM_STAT_CHECK_CONDITION;
1540
			if (c2->error_data.data_present !=
1541 1542 1543
					IOACCEL2_SENSE_DATA_PRESENT) {
				memset(cmd->sense_buffer, 0,
					SCSI_SENSE_BUFFERSIZE);
1544
				break;
1545
			}
1546 1547 1548 1549 1550 1551 1552 1553 1554
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
1555
			retry = 1;
1556 1557 1558 1559 1560
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
			dev_warn(&h->pdev->dev,
				"%s: task complete with BUSY status.\n",
				"HP SSD Smart Path");
1561
			retry = 1;
1562 1563 1564 1565 1566
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
			dev_warn(&h->pdev->dev,
				"%s: task complete with reservation conflict.\n",
				"HP SSD Smart Path");
1567
			retry = 1;
1568 1569 1570 1571 1572 1573 1574 1575 1576
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
			/* Make scsi midlayer do unlimited retries */
			cmd->result = DID_IMM_RETRY << 16;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
			dev_warn(&h->pdev->dev,
				"%s: task complete with aborted status.\n",
				"HP SSD Smart Path");
1577
			retry = 1;
1578 1579 1580 1581 1582
			break;
		default:
			dev_warn(&h->pdev->dev,
				"%s: task complete with unrecognized status: 0x%02x\n",
				"HP SSD Smart Path", c2->error_data.status);
1583
			retry = 1;
1584 1585 1586 1587 1588 1589 1590 1591
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
		/* don't expect to get here. */
		dev_warn(&h->pdev->dev,
			"unexpected delivery or target failure, status = 0x%02x\n",
			c2->error_data.status);
1592
		retry = 1;
1593 1594 1595 1596 1597 1598 1599
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1600
		retry = 1;
1601 1602 1603 1604 1605 1606 1607
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Unrecognized server response: 0x%02x\n",
1608 1609 1610
			"HP SSD Smart Path",
			c2->error_data.serv_response);
		retry = 1;
1611 1612
		break;
	}
1613 1614

	return retry;	/* retry on raid path? */
1615 1616 1617 1618 1619 1620 1621
}

static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1622
	int raid_retry = 0;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
			c2->error_data.status == 0)) {
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}

	/* Any RAID offload error results in retry which will use
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
		dev->offload_enabled = 0;
		cmd->result = DID_SOFT_ERROR << 16;
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}
1645
	raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1646 1647
	/* If error found, disable Smart Path,
	 * force a retry on the standard path.
1648 1649 1650 1651 1652 1653 1654
	 */
	if (raid_retry) {
		dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
			"HP SSD Smart Path");
		dev->offload_enabled = 0; /* Disable Smart Path */
		cmd->result = DID_SOFT_ERROR << 16;
	}
1655 1656 1657 1658
	cmd_free(h, c);
	cmd->scsi_done(cmd);
}

1659
static void complete_scsi_command(struct CommandList *cp)
1660 1661 1662 1663
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
1664
	struct hpsa_scsi_dev_t *dev;
1665 1666 1667 1668

	unsigned char sense_key;
	unsigned char asc;      /* additional sense code */
	unsigned char ascq;     /* additional sense code qualifier */
1669
	unsigned long sense_data_size;
1670 1671 1672 1673

	ei = cp->err_info;
	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
	h = cp->h;
1674
	dev = cmd->device->hostdata;
1675 1676

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1677
	if ((cp->cmd_type == CMD_SCSI) &&
D
Don Brace 已提交
1678
		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1679
		hpsa_unmap_sg_chain_block(h, cp);
1680 1681 1682

	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1683 1684 1685 1686

	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

1687
	cmd->result |= ei->ScsiStatus;
1688

1689 1690 1691 1692 1693 1694 1695 1696
	scsi_set_resid(cmd, ei->ResidualCnt);
	if (ei->CommandStatus == 0) {
		cmd_free(h, cp);
		cmd->scsi_done(cmd);
		return;
	}

	/* copy the sense data */
1697 1698 1699 1700 1701 1702 1703 1704
	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
		sense_data_size = SCSI_SENSE_BUFFERSIZE;
	else
		sense_data_size = sizeof(ei->SenseInfo);
	if (ei->SenseLen < sense_data_size)
		sense_data_size = ei->SenseLen;

	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1705

1706 1707 1708 1709 1710
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
D
Don Brace 已提交
1711 1712 1713 1714
		cp->Header.SGList = scsi_sg_count(cmd);
		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
			IOACCEL1_IOFLAGS_CDBLEN_MASK;
1715
		cp->Header.tag = c->tag;
1716 1717
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
			cmd->result = DID_SOFT_ERROR << 16;
			cmd_free(h, cp);
			cmd->scsi_done(cmd);
			return;
		}
1731 1732
	}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
		if (ei->ScsiStatus) {
			/* Get sense key */
			sense_key = 0xf & ei->SenseInfo[2];
			/* Get additional sense code */
			asc = ei->SenseInfo[12];
			/* Get addition sense code qualifier */
			ascq = ei->SenseInfo[13];
		}
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1746
			if (sense_key == ABORTED_COMMAND) {
1747
				cmd->result |= DID_SOFT_ERROR << 16;
1748 1749
				break;
			}
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
			break;
		}
		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
		dev_warn(&h->pdev->dev, "cp %p has"
			" completed with data overrun "
			"reported\n", cp);
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
1802
		cmd->result = DID_ERROR << 16;
1803
		dev_warn(&h->pdev->dev, "cp %p has "
1804
			"protocol error\n", cp);
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
		break;
	case CMD_ABORTED:
		cmd->result = DID_ABORT << 16;
		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
				cp, ei->ScsiStatus);
		break;
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
		break;
	case CMD_UNSOLICITED_ABORT:
1824 1825
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1826 1827 1828 1829 1830 1831
			"abort\n", cp);
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
		break;
1832 1833 1834 1835
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
1836 1837 1838 1839 1840 1841 1842 1843
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
1844 1845 1846 1847 1848 1849
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
	cmd_free(h, cp);
1850
	cmd->scsi_done(cmd);
1851 1852 1853 1854 1855 1856 1857
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;

1858 1859 1860 1861
	for (i = 0; i < sg_used; i++)
		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
				le32_to_cpu(c->SG[i].Len),
				data_direction);
1862 1863
}

1864
static int hpsa_map_one(struct pci_dev *pdev,
1865 1866 1867 1868 1869
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
1870
	u64 addr64;
1871 1872 1873

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
1874
		cp->Header.SGTotal = cpu_to_le16(0);
1875
		return 0;
1876 1877
	}

1878
	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1879
	if (dma_mapping_error(&pdev->dev, addr64)) {
1880
		/* Prevent subsequent unmap of something never mapped */
1881
		cp->Header.SGList = 0;
1882
		cp->Header.SGTotal = cpu_to_le16(0);
1883
		return -1;
1884
	}
1885 1886 1887 1888 1889
	cp->SG[0].Addr = cpu_to_le64(addr64);
	cp->SG[0].Len = cpu_to_le32(buflen);
	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1890
	return 0;
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
}

static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c)
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
	enqueue_cmd_and_start_io(h, c);
	wait_for_completion(&wait);
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static u32 lockup_detected(struct ctlr_info *h)
{
	int cpu;
	u32 rc, *lockup_detected;

	cpu = get_cpu();
	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
	rc = *lockup_detected;
	put_cpu();
	return rc;
}

1915 1916 1917 1918
static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
	struct CommandList *c)
{
	/* If controller lockup detected, fake a hardware error. */
1919
	if (unlikely(lockup_detected(h)))
1920
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1921
	else
1922 1923 1924
		hpsa_scsi_do_simple_cmd_core(h, c);
}

1925
#define MAX_DRIVER_CMD_RETRIES 25
1926 1927 1928
static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction)
{
1929
	int backoff_time = 10, retry_count = 0;
1930 1931

	do {
1932
		memset(c->err_info, 0, sizeof(*c->err_info));
1933 1934
		hpsa_scsi_do_simple_cmd_core(h, c);
		retry_count++;
1935 1936 1937 1938 1939
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
1940
	} while ((check_for_unit_attention(h, c) ||
1941 1942
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
1943 1944 1945
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
}

1946 1947
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
1948
{
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		txt, lun[0], lun[1], lun[2], lun[3],
		lun[4], lun[5], lun[6], lun[7],
		cdb[0], cdb[1], cdb[2], cdb[3],
		cdb[4], cdb[5], cdb[6], cdb[7],
		cdb[8], cdb[9], cdb[10], cdb[11],
		cdb[12], cdb[13], cdb[14], cdb[15]);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
1966
	struct device *d = &cp->h->pdev->dev;
1967
	const u8 *sd = ei->SenseInfo;
1968 1969 1970

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
1971 1972 1973 1974 1975 1976
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
				sd[2] & 0x0f, sd[12], sd[13]);
		else
			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
1977 1978 1979 1980 1981 1982 1983 1984 1985
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
1986
		hpsa_print_cmd(h, "overrun condition", cp);
1987 1988 1989 1990 1991
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
1992 1993
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
1994 1995 1996
		}
		break;
	case CMD_PROTOCOL_ERR:
1997
		hpsa_print_cmd(h, "protocol error", cp);
1998 1999
		break;
	case CMD_HARDWARE_ERR:
2000
		hpsa_print_cmd(h, "hardware error", cp);
2001 2002
		break;
	case CMD_CONNECTION_LOST:
2003
		hpsa_print_cmd(h, "connection lost", cp);
2004 2005
		break;
	case CMD_ABORTED:
2006
		hpsa_print_cmd(h, "aborted", cp);
2007 2008
		break;
	case CMD_ABORT_FAILED:
2009
		hpsa_print_cmd(h, "abort failed", cp);
2010 2011
		break;
	case CMD_UNSOLICITED_ABORT:
2012
		hpsa_print_cmd(h, "unsolicited abort", cp);
2013 2014
		break;
	case CMD_TIMEOUT:
2015
		hpsa_print_cmd(h, "timed out", cp);
2016
		break;
2017
	case CMD_UNABORTABLE:
2018
		hpsa_print_cmd(h, "unabortable", cp);
2019
		break;
2020
	default:
2021 2022
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
2023 2024 2025 2026 2027
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2028
			u16 page, unsigned char *buf,
2029 2030 2031 2032 2033 2034
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2035
	c = cmd_alloc(h);
2036 2037

	if (c == NULL) {			/* trouble... */
2038
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2039
		return -ENOMEM;
2040 2041
	}

2042 2043 2044 2045 2046
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2047 2048 2049
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2050
		hpsa_scsi_interpret_error(h, c);
2051 2052
		rc = -1;
	}
2053
out:
2054
	cmd_free(h, c);
2055 2056 2057
	return rc;
}

2058 2059 2060 2061 2062 2063 2064 2065
static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
		unsigned char *scsi3addr, unsigned char page,
		struct bmic_controller_parameters *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2066
	c = cmd_alloc(h);
2067
	if (c == NULL) {			/* trouble... */
2068
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		return -ENOMEM;
	}

	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
2084
	cmd_free(h, c);
2085 2086 2087
	return rc;
	}

2088 2089
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
	u8 reset_type)
2090 2091 2092 2093 2094
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2095
	c = cmd_alloc(h);
2096 2097

	if (c == NULL) {			/* trouble... */
2098
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2099
		return -ENOMEM;
2100 2101
	}

2102
	/* fill_cmd can't fail here, no data buffer to map. */
2103 2104 2105
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2106 2107 2108 2109 2110
	hpsa_scsi_do_simple_cmd_core(h, c);
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
2111
		hpsa_scsi_interpret_error(h, c);
2112 2113
		rc = -1;
	}
2114
	cmd_free(h, c);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2128
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2129 2130 2131 2132 2133 2134 2135 2136
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

2149 2150 2151 2152
	/* Show details only if debugging has been activated. */
	if (h->raid_offload_debug < 2)
		return;

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
D
Don Brace 已提交
2177
	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2178
			le16_to_cpu(map_buff->flags));
D
Don Brace 已提交
2179 2180 2181
	dev_info(&h->pdev->dev, "encrypytion = %s\n",
			le16_to_cpu(map_buff->flags) &
			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2182 2183
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

2222
	c = cmd_alloc(h);
2223
	if (c == NULL) {
2224
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2225 2226 2227 2228 2229 2230
		return -ENOMEM;
	}
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2231
		cmd_free(h, c);
2232 2233 2234 2235 2236
		return -ENOMEM;
	}
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2237
		hpsa_scsi_interpret_error(h, c);
2238
		cmd_free(h, c);
2239 2240
		return -1;
	}
2241
	cmd_free(h, c);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
static int hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return 0;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return 0;
exit_supported:
	kfree(buf);
	return 1;
}

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2309 2310
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
2311
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2312
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
out:
	kfree(buf);
	return;
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
2344
		return -ENOMEM;
2345
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
		struct ReportLUNdata *buf, int bufsize,
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

2361
	c = cmd_alloc(h);
2362
	if (c == NULL) {			/* trouble... */
2363
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2364 2365
		return -1;
	}
2366 2367
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
2368 2369 2370 2371 2372
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2373 2374 2375 2376 2377 2378
	if (extended_response)
		c->Request.CDB[1] = extended_response;
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2379
		hpsa_scsi_interpret_error(h, c);
2380
		rc = -1;
2381 2382 2383 2384 2385 2386 2387 2388
	} else {
		if (buf->extended_response_flag != extended_response) {
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
				buf->extended_response_flag);
			rc = -1;
		}
2389
	}
2390
out:
2391
	cmd_free(h, c);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf,
		int bufsize, int extended_response)
{
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
/* Use VPD inquiry to get details of volume status */
static int hpsa_get_volume_status(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	int rc;
	int status;
	int size;
	unsigned char *buf;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;

	/* Does controller have VPD for logical volume status? */
2430
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2431 2432 2433 2434 2435
		goto exit_failed;

	/* Get the size of the VPD return buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, HPSA_VPD_HEADER_SZ);
2436
	if (rc != 0)
2437 2438 2439 2440 2441 2442
		goto exit_failed;
	size = buf[3];

	/* Now get the whole VPD buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, size + HPSA_VPD_HEADER_SZ);
2443
	if (rc != 0)
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
		goto exit_failed;
	status = buf[4]; /* status byte */

	kfree(buf);
	return status;
exit_failed:
	kfree(buf);
	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
}

/* Determine offline status of a volume.
 * Return either:
 *  0 (not offline)
2457
 *  0xff (offline for unknown reasons)
2458 2459 2460
 *  # (integer code indicating one of several NOT READY states
 *     describing why a volume is to be kept offline)
 */
2461
static int hpsa_volume_offline(struct ctlr_info *h,
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
					unsigned char scsi3addr[])
{
	struct CommandList *c;
	unsigned char *sense, sense_key, asc, ascq;
	int ldstat = 0;
	u16 cmd_status;
	u8 scsi_status;
#define ASC_LUN_NOT_READY 0x04
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02

	c = cmd_alloc(h);
	if (!c)
		return 0;
	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
	hpsa_scsi_do_simple_cmd_core(h, c);
	sense = c->err_info->SenseInfo;
	sense_key = sense[2];
	asc = sense[12];
	ascq = sense[13];
	cmd_status = c->err_info->CommandStatus;
	scsi_status = c->err_info->ScsiStatus;
	cmd_free(h, c);
	/* Is the volume 'not ready'? */
	if (cmd_status != CMD_TARGET_STATUS ||
		scsi_status != SAM_STAT_CHECK_CONDITION ||
		sense_key != NOT_READY ||
		asc != ASC_LUN_NOT_READY)  {
		return 0;
	}

	/* Determine the reason for not ready state */
	ldstat = hpsa_get_volume_status(h, scsi3addr);

	/* Keep volume offline in certain cases: */
	switch (ldstat) {
	case HPSA_LV_UNDERGOING_ERASE:
	case HPSA_LV_UNDERGOING_RPI:
	case HPSA_LV_PENDING_RPI:
	case HPSA_LV_ENCRYPTED_NO_KEY:
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
	case HPSA_LV_UNDERGOING_ENCRYPTION:
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		return ldstat;
	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
		/* If VPD status page isn't available,
		 * use ASC/ASCQ to determine state
		 */
		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
			return ldstat;
		break;
	default:
		break;
	}
	return 0;
}

2521
static int hpsa_update_device_info(struct ctlr_info *h,
2522 2523
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
2524
{
2525 2526 2527 2528 2529 2530

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

2531
	unsigned char *inq_buff;
2532
	unsigned char *obdr_sig;
2533

2534
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
2559
		is_logical_dev_addr_mode(scsi3addr)) {
2560 2561
		int volume_offline;

2562
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2563 2564
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2565 2566 2567 2568
		volume_offline = hpsa_volume_offline(h, scsi3addr);
		if (volume_offline < 0 || volume_offline > 0xff)
			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
		this_device->volume_offline = volume_offline & 0xff;
2569
	} else {
2570
		this_device->raid_level = RAID_UNKNOWN;
2571 2572
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
2573
		this_device->volume_offline = 0;
2574
	}
2575

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}

2586 2587 2588 2589 2590 2591 2592 2593
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

2594
static unsigned char *ext_target_model[] = {
2595 2596 2597 2598
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
2599
	"P2000 G3 SAS",
2600
	"MSA 2040 SAS",
2601 2602 2603
	NULL,
};

2604
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2605 2606 2607
{
	int i;

2608 2609 2610
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
2611 2612 2613 2614 2615
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
2616
 * Puts non-external target logical volumes on bus 0, external target logical
2617 2618 2619 2620 2621 2622
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
2623
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2624
{
2625 2626 2627 2628
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
2629
		if (is_hba_lunid(lunaddrbytes))
2630
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2631
		else
2632 2633 2634 2635 2636
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
2637 2638
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
2639 2640 2641 2642 2643 2644
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
2645
	}
2646
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2647 2648 2649 2650
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
2651
 * For the external targets (arrays), we have to manually detect the enclosure
2652 2653 2654 2655 2656 2657 2658 2659
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
2660
static int add_ext_target_dev(struct ctlr_info *h,
2661
	struct hpsa_scsi_dev_t *tmpdevice,
2662
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2663
	unsigned long lunzerobits[], int *n_ext_target_devs)
2664 2665 2666
{
	unsigned char scsi3addr[8];

2667
	if (test_bit(tmpdevice->target, lunzerobits))
2668 2669 2670 2671 2672
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

2673 2674
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
2675

2676
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2677 2678
		return 0;

2679
	memset(scsi3addr, 0, 8);
2680
	scsi3addr[3] = tmpdevice->target;
2681 2682 2683
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

2684 2685 2686
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

2687
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2688 2689
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
2690 2691 2692 2693
			"configuration.");
		return 0;
	}

2694
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2695
		return 0;
2696
	(*n_ext_target_devs)++;
2697 2698 2699
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
	set_bit(tmpdevice->target, lunzerobits);
2700 2701 2702
	return 1;
}

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
	struct ReportExtendedLUNdata *physicals = NULL;
	int responsesize = 24;	/* size of physical extended response */
	int extended = 2;	/* flag forces reporting 'other dev info'. */
	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
	u32 nphysicals = 0;	/* number of reported physical devs */
	int found = 0;		/* found match (1) or not (0) */
	u32 find;		/* handle we need to match */
	int i;
	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
D
Don Brace 已提交
2725 2726
	__le32 it_nexus;	/* 4 byte device handle for the ioaccel2 cmd */
	__le32 scsi_nexus;	/* 4 byte device handle for the ioaccel2 cmd */
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743

	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
		return 0; /* no match */

	/* point to the ioaccel2 device handle */
	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	if (c2a == NULL)
		return 0; /* no match */

	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
	if (scmd == NULL)
		return 0; /* no match */

	d = scmd->device->hostdata;
	if (d == NULL)
		return 0; /* no match */

2744
	it_nexus = cpu_to_le32(d->ioaccel_handle);
D
Don Brace 已提交
2745 2746
	scsi_nexus = c2a->scsi_nexus;
	find = le32_to_cpu(c2a->scsi_nexus);
2747

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
			__func__, scsi_nexus,
			d->device_id[0], d->device_id[1], d->device_id[2],
			d->device_id[3], d->device_id[4], d->device_id[5],
			d->device_id[6], d->device_id[7], d->device_id[8],
			d->device_id[9], d->device_id[10], d->device_id[11],
			d->device_id[12], d->device_id[13], d->device_id[14],
			d->device_id[15]);

2759 2760
	/* Get the list of physical devices */
	physicals = kzalloc(reportsize, GFP_KERNEL);
2761 2762
	if (physicals == NULL)
		return 0;
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
		reportsize, extended)) {
		dev_err(&h->pdev->dev,
			"Can't lookup %s device handle: report physical LUNs failed.\n",
			"HP SSD Smart Path");
		kfree(physicals);
		return 0;
	}
	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
							responsesize;

	/* find ioaccel2 handle in list of physicals: */
	for (i = 0; i < nphysicals; i++) {
2776 2777
		struct ext_report_lun_entry *entry = &physicals->LUN[i];

2778
		/* handle is in bytes 28-31 of each lun */
2779
		if (entry->ioaccel_handle != find)
2780 2781
			continue; /* didn't match */
		found = 1;
2782
		memcpy(scsi3addr, entry->lunid, 8);
2783 2784
		if (h->raid_offload_debug > 0)
			dev_info(&h->pdev->dev,
2785
				"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2786
				__func__, find,
2787
				entry->ioaccel_handle, scsi3addr);
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
		break; /* found it */
	}

	kfree(physicals);
	if (found)
		return 1;
	else
		return 0;

}
2798 2799 2800 2801 2802 2803 2804
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
2805
	int reportphyslunsize, int reportloglunsize,
2806
	struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2807
	struct ReportLUNdata *logdev, u32 *nlogicals)
2808
{
2809 2810 2811 2812 2813
	int physical_entry_size = 8;

	*physical_mode = 0;

	/* For I/O accelerator mode we need to read physical device handles */
2814 2815
	if (h->transMethod & CFGTBL_Trans_io_accel1 ||
		h->transMethod & CFGTBL_Trans_io_accel2) {
2816 2817 2818
		*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
		physical_entry_size = 24;
	}
2819
	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
2820
							*physical_mode)) {
2821 2822 2823
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
2824 2825
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
							physical_entry_size;
2826 2827 2828 2829 2830 2831
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals - HPSA_MAX_PHYS_LUN);
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
2832
	if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
2833 2834 2835
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
2836
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

D
Don Brace 已提交
2855 2856
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlogicals,
2857
	struct ReportExtendedLUNdata *physdev_list,
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
2872 2873
		return &physdev_list->LUN[i -
				(raid_ctlr_position == 0)].lunid[0];
2874 2875 2876 2877 2878 2879 2880 2881

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

2882 2883 2884
static int hpsa_hba_mode_enabled(struct ctlr_info *h)
{
	int rc;
2885
	int hba_mode_enabled;
2886 2887 2888 2889 2890
	struct bmic_controller_parameters *ctlr_params;
	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
		GFP_KERNEL);

	if (!ctlr_params)
2891
		return -ENOMEM;
2892 2893
	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
		sizeof(struct bmic_controller_parameters));
2894
	if (rc) {
2895
		kfree(ctlr_params);
2896
		return rc;
2897
	}
2898 2899 2900 2901 2902

	hba_mode_enabled =
		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
	kfree(ctlr_params);
	return hba_mode_enabled;
2903 2904
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
2917
	struct ReportExtendedLUNdata *physdev_list = NULL;
2918
	struct ReportLUNdata *logdev_list = NULL;
2919 2920
	u32 nphysicals = 0;
	u32 nlogicals = 0;
2921
	int physical_mode = 0;
2922
	u32 ndev_allocated = 0;
2923 2924
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
2925
	int i, n_ext_target_devs, ndevs_to_allocate;
2926
	int raid_ctlr_position;
2927
	int rescan_hba_mode;
2928
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2929

2930
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2931 2932
	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
2933 2934
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);

2935
	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2936 2937 2938 2939 2940
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

2941
	rescan_hba_mode = hpsa_hba_mode_enabled(h);
2942 2943
	if (rescan_hba_mode < 0)
		goto out;
2944 2945 2946 2947 2948 2949 2950 2951

	if (!h->hba_mode_enabled && rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
	else if (h->hba_mode_enabled && !rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode disabled\n");

	h->hba_mode_enabled = rescan_hba_mode;

2952 2953
	if (hpsa_gather_lun_info(h,
			sizeof(*physdev_list), sizeof(*logdev_list),
2954
			(struct ReportLUNdata *) physdev_list, &nphysicals,
2955
			&physical_mode, logdev_list, &nlogicals))
2956 2957
		goto out;

2958 2959 2960
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
2961
	 */
2962
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2963 2964 2965

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
2966 2967 2968 2969 2970 2971 2972
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

2973 2974 2975 2976 2977 2978 2979 2980 2981
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

2982
	if (is_scsi_rev_5(h))
2983 2984 2985 2986
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

2987
	/* adjust our table of devices */
2988
	n_ext_target_devs = 0;
2989
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2990
		u8 *lunaddrbytes, is_OBDR = 0;
2991 2992

		/* Figure out where the LUN ID info is coming from */
2993 2994
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
2995
		/* skip masked physical devices. */
2996 2997
		if (lunaddrbytes[3] & 0xC0 &&
			i < nphysicals + (raid_ctlr_position == 0))
2998 2999 3000
			continue;

		/* Get device type, vendor, model, device id */
3001 3002
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
3003
			continue; /* skip it if we can't talk to it. */
3004
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3005 3006 3007
		this_device = currentsd[ncurrent];

		/*
3008
		 * For external target devices, we have to insert a LUN 0 which
3009 3010 3011 3012 3013
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
3014
		if (add_ext_target_dev(h, tmpdevice, this_device,
3015
				lunaddrbytes, lunzerobits,
3016
				&n_ext_target_devs)) {
3017 3018 3019 3020 3021 3022 3023
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

		switch (this_device->devtype) {
3024
		case TYPE_ROM:
3025 3026 3027 3028 3029 3030 3031
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
3032 3033
			if (is_OBDR)
				ncurrent++;
3034 3035
			break;
		case TYPE_DISK:
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
			if (h->hba_mode_enabled) {
				/* never use raid mapper in HBA mode */
				this_device->offload_enabled = 0;
				ncurrent++;
				break;
			} else if (h->acciopath_status) {
				if (i >= nphysicals) {
					ncurrent++;
					break;
				}
			} else {
				if (i < nphysicals)
					break;
3049
				ncurrent++;
3050
				break;
3051 3052 3053 3054 3055 3056 3057
			}
			if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
				memcpy(&this_device->ioaccel_handle,
					&lunaddrbytes[20],
					sizeof(this_device->ioaccel_handle));
				ncurrent++;
			}
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
3076
		if (ncurrent >= HPSA_MAX_DEVICES)
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
}

3089 3090
/*
 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3091 3092 3093
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
3094
static int hpsa_scatter_gather(struct ctlr_info *h,
3095 3096 3097 3098 3099
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	unsigned int len;
	struct scatterlist *sg;
3100
	u64 addr64;
3101 3102
	int use_sg, i, sg_index, chained;
	struct SGDescriptor *curr_sg;
3103

3104
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3105 3106 3107 3108 3109 3110 3111 3112

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

3113 3114 3115
	curr_sg = cp->SG;
	chained = 0;
	sg_index = 0;
3116
	scsi_for_each_sg(cmd, sg, use_sg, i) {
3117 3118 3119 3120 3121 3122
		if (i == h->max_cmd_sg_entries - 1 &&
			use_sg > h->max_cmd_sg_entries) {
			chained = 1;
			curr_sg = h->cmd_sg_list[cp->cmdindex];
			sg_index = 0;
		}
3123
		addr64 = (u64) sg_dma_address(sg);
3124
		len  = sg_dma_len(sg);
3125 3126 3127
		curr_sg->Addr = cpu_to_le64(addr64);
		curr_sg->Len = cpu_to_le32(len);
		curr_sg->Ext = cpu_to_le32(0);
3128 3129
		curr_sg++;
	}
3130
	(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3131 3132 3133 3134 3135 3136

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
3137
		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3138 3139 3140 3141
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
3142
		return 0;
3143 3144 3145 3146
	}

sglist_finished:

3147
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3148
	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3149 3150 3151
	return 0;
}

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

3200
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3201 3202
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

3214 3215 3216 3217
	/* TODO: implement chaining support */
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
		return IO_ACCEL_INELIGIBLE;

3218 3219
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

3220 3221 3222
	if (fixup_ioaccel_cdb(cdb, &cdb_len))
		return IO_ACCEL_INELIGIBLE;

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
3240 3241 3242
			curr_sg->Addr = cpu_to_le64(addr64);
			curr_sg->Len = cpu_to_le32(len);
			curr_sg->Ext = cpu_to_le32(0);
3243 3244
			curr_sg++;
		}
3245
		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

3267
	c->Header.SGList = use_sg;
3268
	/* Fill out the command structure to submit */
D
Don Brace 已提交
3269 3270 3271 3272 3273
	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
	cp->transfer_len = cpu_to_le32(total_len);
	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
	cp->control = cpu_to_le32(control);
3274 3275
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
3276
	/* Tag was already set at init time. */
3277
	enqueue_cmd_and_start_io(h, c);
3278 3279
	return 0;
}
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
}

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	BUG_ON(!(dev->offload_config && dev->offload_enabled));

	/* Are we doing encryption on this device */
D
Don Brace 已提交
3309
	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_6:
	case READ_6:
D
Don Brace 已提交
3325
		first_block = get_unaligned_be16(&cmd->cmnd[2]);
3326 3327 3328 3329 3330 3331
		break;
	case WRITE_10:
	case READ_10:
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
D
Don Brace 已提交
3332
		first_block = get_unaligned_be32(&cmd->cmnd[2]);
3333 3334 3335
		break;
	case WRITE_16:
	case READ_16:
D
Don Brace 已提交
3336
		first_block = get_unaligned_be64(&cmd->cmnd[2]);
3337 3338 3339
		break;
	default:
		dev_err(&h->pdev->dev,
D
Don Brace 已提交
3340 3341
			"ERROR: %s: size (0x%x) not supported for encryption\n",
			__func__, cmd->cmnd[0]);
3342 3343 3344
		BUG();
		break;
	}
D
Don Brace 已提交
3345 3346 3347 3348 3349 3350 3351

	if (le32_to_cpu(map->volume_blk_size) != 512)
		first_block = first_block *
				le32_to_cpu(map->volume_blk_size)/512;

	cp->tweak_lower = cpu_to_le32(first_block);
	cp->tweak_upper = cpu_to_le32(first_block >> 32);
3352 3353
}

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
		return IO_ACCEL_INELIGIBLE;

	if (fixup_ioaccel_cdb(cdb, &cdb_len))
		return IO_ACCEL_INELIGIBLE;
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (use_sg) {
		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
		curr_sg = cp->sg;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
3403 3404
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3405 3406
			break;
		case DMA_FROM_DEVICE:
3407 3408
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
3409 3410
			break;
		case DMA_NONE:
3411 3412
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
3413 3414 3415 3416 3417 3418 3419 3420
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
3421 3422
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
3423
	}
3424 3425 3426 3427

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

D
Don Brace 已提交
3428
	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3429
	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3430 3431 3432 3433 3434 3435 3436 3437
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));

	/* fill in sg elements */
	cp->sg_count = (u8) use_sg;

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
3438
	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458

	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
{
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
						cdb, cdb_len, scsi3addr);
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
						cdb, cdb_len, scsi3addr);
}

3459 3460 3461 3462 3463
static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
D
Don Brace 已提交
3464
		*map_index %= le16_to_cpu(map->data_disks_per_row);
3465 3466 3467 3468
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
D
Don Brace 已提交
3469 3470
		*current_group = *map_index /
			le16_to_cpu(map->data_disks_per_row);
3471 3472
		if (offload_to_mirror == *current_group)
			continue;
D
Don Brace 已提交
3473
		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3474
			/* select map index from next group */
D
Don Brace 已提交
3475
			*map_index += le16_to_cpu(map->data_disks_per_row);
3476 3477 3478
			(*current_group)++;
		} else {
			/* select map index from first group */
D
Don Brace 已提交
3479
			*map_index %= le16_to_cpu(map->data_disks_per_row);
3480 3481 3482 3483 3484
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
3503 3504 3505 3506 3507 3508 3509 3510
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
3511 3512 3513 3514 3515 3516
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
D
Don Brace 已提交
3517
	u16 strip_size;
3518 3519 3520
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
3521
	int offload_to_mirror;
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533

	BUG_ON(!(dev->offload_config && dev->offload_enabled));

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
3534 3535
		if (block_cnt == 0)
			block_cnt = 256;
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
D
Don Brace 已提交
3591 3592
	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
		last_block < first_block)
3593 3594 3595
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
D
Don Brace 已提交
3596 3597 3598
	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
				le16_to_cpu(map->strip_size);
	strip_size = le16_to_cpu(map->strip_size);
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
D
Don Brace 已提交
3609
	(void) do_div(tmpdiv, strip_size);
3610 3611
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
D
Don Brace 已提交
3612
	(void) do_div(tmpdiv, strip_size);
3613 3614 3615 3616 3617 3618
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
D
Don Brace 已提交
3619 3620
	first_column = first_row_offset / strip_size;
	last_column = last_row_offset / strip_size;
3621 3622 3623 3624 3625 3626 3627
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
D
Don Brace 已提交
3628 3629
	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
3630
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
3631
				le16_to_cpu(map->row_cnt);
3632 3633 3634 3635 3636 3637 3638 3639 3640
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
3641
		 */
D
Don Brace 已提交
3642
		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3643
		if (dev->offload_to_mirror)
D
Don Brace 已提交
3644
			map_index += le16_to_cpu(map->data_disks_per_row);
3645
		dev->offload_to_mirror = !dev->offload_to_mirror;
3646 3647 3648 3649 3650
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 */
D
Don Brace 已提交
3651
		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3652 3653 3654 3655 3656 3657

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
D
Don Brace 已提交
3658 3659
			(offload_to_mirror >=
			le16_to_cpu(map->layout_map_count) - 1)
3660 3661 3662 3663 3664 3665 3666 3667 3668
			? 0 : offload_to_mirror + 1;
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
D
Don Brace 已提交
3669
		if (le16_to_cpu(map->layout_map_count) <= 1)
3670 3671 3672 3673
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
D
Don Brace 已提交
3674 3675
			le16_to_cpu(map->strip_size) *
			le16_to_cpu(map->data_disks_per_row);
3676
		BUG_ON(r5or6_blocks_per_row == 0);
D
Don Brace 已提交
3677 3678
		stripesize = r5or6_blocks_per_row *
			le16_to_cpu(map->layout_map_count);
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
3694
		if (first_group != last_group)
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
D
Don Brace 已提交
3741
			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3742
		r5or6_last_column =
D
Don Brace 已提交
3743
			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3744 3745 3746 3747 3748 3749
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
3750
			le16_to_cpu(map->row_cnt);
3751 3752

		map_index = (first_group *
D
Don Brace 已提交
3753
			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3754 3755 3756 3757
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
3758
	}
3759

3760
	disk_handle = dd[map_index].ioaccel_handle;
D
Don Brace 已提交
3761 3762 3763 3764
	disk_block = le64_to_cpu(map->disk_starting_blk) +
			first_row * le16_to_cpu(map->strip_size) +
			(first_row_offset - first_column *
			le16_to_cpu(map->strip_size));
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
						dev->scsi3addr);
}

3810
/* Running in struct Scsi_Host->host_lock less mode */
3811
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
3812 3813 3814 3815 3816
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
3817
	int rc = 0;
3818 3819 3820 3821 3822 3823

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
3824
		cmd->scsi_done(cmd);
3825 3826 3827 3828
		return 0;
	}
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));

3829
	if (unlikely(lockup_detected(h))) {
3830
		cmd->result = DID_ERROR << 16;
3831
		cmd->scsi_done(cmd);
3832 3833
		return 0;
	}
3834
	c = cmd_alloc(h);
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
		return SCSI_MLQUEUE_HOST_BUSY;
	}

	/* Fill in the command list header */
	/* save c in case we have to abort it  */
	cmd->host_scribble = (unsigned char *) c;

	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
3846

3847 3848 3849 3850
	/* Call alternate submit routine for I/O accelerated commands.
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
3851 3852
		cmd->request->cmd_type == REQ_TYPE_FS &&
		h->acciopath_status)) {
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
		if (dev->offload_enabled) {
			rc = hpsa_scsi_ioaccel_raid_map(h, c);
			if (rc == 0)
				return 0; /* Sent on ioaccel path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		} else if (dev->ioaccel_handle) {
			rc = hpsa_scsi_ioaccel_direct_map(h, c);
			if (rc == 0)
				return 0; /* Sent on direct map path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		}
	}
3871

3872 3873
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3874
	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
3885 3886
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
3887 3888
		break;
	case DMA_FROM_DEVICE:
3889 3890
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
3891 3892
		break;
	case DMA_NONE:
3893 3894
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
3895 3896 3897 3898 3899 3900 3901
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

3902 3903
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

3921
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3922 3923 3924 3925 3926 3927 3928 3929
		cmd_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
{
	unsigned long flags;

	/*
	 * Don't let rescans be initiated on a controller known
	 * to be locked up.  If the controller locks up *during*
	 * a rescan, that thread is probably hosed, but at least
	 * we can prevent new rescan threads from piling up on a
	 * locked up controller.
	 */
3941
	if (unlikely(lockup_detected(h))) {
3942 3943 3944 3945 3946 3947 3948 3949 3950
		spin_lock_irqsave(&h->scan_lock, flags);
		h->scan_finished = 1;
		wake_up_all(&h->scan_wait_queue);
		spin_unlock_irqrestore(&h->scan_lock, flags);
		return 1;
	}
	return 0;
}

3951 3952 3953 3954 3955
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

3956 3957 3958
	if (do_not_scan_if_controller_locked_up(h))
		return;

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

3975 3976 3977
	if (do_not_scan_if_controller_locked_up(h))
		return;

3978 3979 3980 3981 3982 3983 3984 3985
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1; /* mark scan as finished. */
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
}

D
Don Brace 已提交
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
	struct ctlr_info *h = sdev_to_hba(sdev);

	if (qdepth < 1)
		qdepth = 1;
	else
		if (qdepth > h->nr_cmds)
			qdepth = h->nr_cmds;
	scsi_change_queue_depth(sdev, qdepth);
	return sdev->queue_depth;
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
4022 4023
	struct Scsi_Host *sh;
	int error;
4024

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
4036 4037 4038 4039
	sh->can_queue = h->nr_cmds -
			HPSA_CMDS_RESERVED_FOR_ABORTS -
			HPSA_CMDS_RESERVED_FOR_DRIVER -
			HPSA_MAX_CONCURRENT_PASSTHRUS;
4040 4041 4042
	if (h->hba_mode_enabled)
		sh->cmd_per_lun = 7;
	else
4043
		sh->cmd_per_lun = sh->can_queue;
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
	error = scsi_add_host(sh, &h->pdev->dev);
	if (error)
		goto fail_host_put;
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	dev_err(&h->pdev->dev, "%s: scsi_add_host"
		" failed for controller %d\n", __func__, h->ctlr);
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
4064 4065 4066 4067 4068
}

static int wait_for_device_to_become_ready(struct ctlr_info *h,
	unsigned char lunaddr[])
{
4069
	int rc;
4070 4071 4072 4073
	int count = 0;
	int waittime = 1; /* seconds */
	struct CommandList *c;

4074
	c = cmd_alloc(h);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	if (!c) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"wait_for_device_to_become_ready.\n");
		return IO_ERROR;
	}

	/* Send test unit ready until device ready, or give up. */
	while (count < HPSA_TUR_RETRY_LIMIT) {

		/* Wait for a bit.  do this first, because if we send
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
		count++;
4089
		rc = 0; /* Device ready. */
4090 4091 4092 4093 4094

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
			waittime = waittime * 2;

4095 4096 4097
		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
		(void) fill_cmd(c, TEST_UNIT_READY, h,
				NULL, 0, 0, lunaddr, TYPE_CMD);
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
		hpsa_scsi_do_simple_cmd_core(h, c);
		/* no unmap needed here because no data xfer. */

		if (c->err_info->CommandStatus == CMD_SUCCESS)
			break;

		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
			break;

		dev_warn(&h->pdev->dev, "waiting %d secs "
			"for device to become ready.\n", waittime);
		rc = 1; /* device not ready. */
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

4120
	cmd_free(h, c);
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
4143 4144
	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4145
	/* send a reset to the SCSI LUN which the command was sent to */
4146
	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4147 4148 4149 4150 4151 4152 4153
	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
		return SUCCESS;

	dev_warn(&h->pdev->dev, "resetting device failed.\n");
	return FAILED;
}

4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

4169
static void hpsa_get_tag(struct ctlr_info *h,
D
Don Brace 已提交
4170
	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4171
{
D
Don Brace 已提交
4172
	u64 tag;
4173 4174 4175
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
D
Don Brace 已提交
4176 4177 4178
		tag = le64_to_cpu(cm1->tag);
		*tagupper = cpu_to_le32(tag >> 32);
		*taglower = cpu_to_le32(tag);
4179 4180 4181 4182 4183
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
4184 4185 4186
		/* upper tag not used in ioaccel2 mode */
		memset(tagupper, 0, sizeof(*tagupper));
		*taglower = cm2->Tag;
4187
		return;
4188
	}
D
Don Brace 已提交
4189 4190 4191
	tag = le64_to_cpu(c->Header.tag);
	*tagupper = cpu_to_le32(tag >> 32);
	*taglower = cpu_to_le32(tag);
4192 4193
}

4194
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4195
	struct CommandList *abort, int swizzle)
4196 4197 4198 4199
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
D
Don Brace 已提交
4200
	__le32 tagupper, taglower;
4201

4202
	c = cmd_alloc(h);
4203
	if (c == NULL) {	/* trouble... */
4204
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4205 4206 4207
		return -ENOMEM;
	}

4208 4209 4210
	/* fill_cmd can't fail here, no buffer to map */
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
		0, 0, scsi3addr, TYPE_MSG);
4211 4212
	if (swizzle)
		swizzle_abort_tag(&c->Request.CDB[4]);
4213
	hpsa_scsi_do_simple_cmd_core(h, c);
4214
	hpsa_get_tag(h, abort, &taglower, &tagupper);
4215
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4216
		__func__, tagupper, taglower);
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4228
			__func__, tagupper, taglower);
4229
		hpsa_scsi_interpret_error(h, c);
4230 4231 4232
		rc = -1;
		break;
	}
4233
	cmd_free(h, c);
4234 4235
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
		__func__, tagupper, taglower);
4236 4237 4238
	return rc;
}

4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

4264 4265 4266 4267 4268 4269 4270
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
4284 4285 4286 4287 4288
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
	if (wait_for_device_to_become_ready(h, psa) != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

4316 4317 4318 4319 4320 4321 4322 4323 4324
/* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
 * tell which kind we're dealing with, so we send the abort both ways.  There
 * shouldn't be any collisions between swizzled and unswizzled tags due to the
 * way we construct our tags but we check anyway in case the assumptions which
 * make this true someday become false.
 */
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
4325 4326 4327 4328 4329 4330 4331 4332
	/* ioccelerator mode 2 commands should be aborted via the
	 * accelerated path, since RAID path is unaware of these commands,
	 * but underlying firmware can't handle abort TMF.
	 * Change abort to physical device reset.
	 */
	if (abort->cmd_type == CMD_IOACCEL2)
		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);

4333 4334
	return hpsa_send_abort(h, scsi3addr, abort, 0) &&
			hpsa_send_abort(h, scsi3addr, abort, 1);
4335 4336
}

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

	int i, rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
D
Don Brace 已提交
4351
	__le32 tagupper, taglower;
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364

	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
	if (WARN(h == NULL,
			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
		return FAILED;

	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
H
Hannes Reinecke 已提交
4365
	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
		h->scsi_host->host_no, sc->device->channel,
		sc->device->id, sc->device->lun);

	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
		return FAILED;
	}

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
				msg);
		return FAILED;
	}
4384 4385
	hpsa_get_tag(h, abort, &taglower, &tagupper);
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
	as  = (struct scsi_cmnd *) abort->scsi_cmd;
	if (as != NULL)
		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
			as->cmnd[0], as->serial_number);
	dev_dbg(&h->pdev->dev, "%s\n", msg);
	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
4398
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
	if (rc != 0) {
		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
			h->scsi_host->host_no,
			dev->bus, dev->target, dev->lun);
		return FAILED;
	}
	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);

	/* If the abort(s) above completed and actually aborted the
	 * command, then the command to be aborted should already be
	 * completed.  If not, wait around a bit more to see if they
	 * manage to complete normally.
	 */
#define ABORT_COMPLETE_WAIT_SECS 30
	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4415 4416 4417 4418 4419
		if (test_bit(abort->cmdindex & (BITS_PER_LONG - 1),
				h->cmd_pool_bits +
				(abort->cmdindex / BITS_PER_LONG)))
			msleep(100);
		else
4420 4421 4422 4423 4424 4425 4426 4427
			return SUCCESS;
	}
	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
		msg, ABORT_COMPLETE_WAIT_SECS);
	return FAILED;
}


4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
 */
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	int i;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	int loopcount;

	/* There is some *extremely* small but non-zero chance that that
	 * multiple threads could get in here, and one thread could
	 * be scanning through the list of bits looking for a free
	 * one, but the free ones are always behind him, and other
	 * threads sneak in behind him and eat them before he can
	 * get to them, so that while there is always a free one, a
	 * very unlucky thread might be starved anyway, never able to
	 * beat the other threads.  In reality, this happens so
	 * infrequently as to be indistinguishable from never.
	 */
4452

4453
	loopcount = 0;
4454 4455
	do {
		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
		if (i == h->nr_cmds)
			i = 0;
		loopcount++;
	} while (test_and_set_bit(i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
		loopcount < 10);

	/* Thread got starved?  We do not expect this to ever happen. */
	if (loopcount >= 10)
		return NULL;
4466

4467 4468
	c = h->cmd_pool + i;
	memset(c, 0, sizeof(*c));
4469 4470
	c->Header.tag = cpu_to_le64((u64) i << DIRECT_LOOKUP_SHIFT);
	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c);
4471 4472 4473 4474 4475 4476 4477
	c->err_info = h->errinfo_pool + i;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + i * sizeof(*c->err_info);

	c->cmdindex = i;

4478 4479
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
4480 4481
	c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
	c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497

	c->h = h;
	return c;
}

static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
	int i;

	i = c - h->cmd_pool;
	clear_bit(i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG));
}

#ifdef CONFIG_COMPAT

D
Don Brace 已提交
4498 4499
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
	void __user *arg)
4500 4501 4502 4503 4504 4505 4506 4507
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

4508
	memset(&arg64, 0, sizeof(arg64));
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
4524
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
D
Don Brace 已提交
4535
	int cmd, void __user *arg)
4536 4537 4538 4539 4540 4541 4542 4543 4544
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

4545
	memset(&arg64, 0, sizeof(arg64));
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
4562
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4563 4564 4565 4566 4567 4568 4569 4570
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
4571

D
Don Brace 已提交
4572
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
4646
	u64 temp64;
4647
	int rc = 0;
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
			return -EFAULT;
4663
		if (iocommand.Request.Type.Direction & XFER_WRITE) {
4664 4665 4666
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
4667 4668
				rc = -EFAULT;
				goto out_kfree;
4669 4670 4671
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
4672
		}
4673
	}
4674
	c = cmd_alloc(h);
4675
	if (c == NULL) {
4676 4677
		rc = -ENOMEM;
		goto out_kfree;
4678 4679 4680 4681 4682 4683 4684
	}
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
4685
		c->Header.SGTotal = cpu_to_le16(1);
4686 4687
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
4688
		c->Header.SGTotal = cpu_to_le16(0);
4689 4690 4691 4692 4693 4694 4695 4696 4697
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
4698
		temp64 = pci_map_single(h->pdev, buff,
4699
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4700 4701 4702
		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
			c->SG[0].Addr = cpu_to_le64(0);
			c->SG[0].Len = cpu_to_le32(0);
4703 4704 4705
			rc = -ENOMEM;
			goto out;
		}
4706 4707 4708
		c->SG[0].Addr = cpu_to_le64(temp64);
		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4709
	}
4710
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4711 4712
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4713 4714 4715 4716 4717 4718
	check_ioctl_unit_attention(h, c);

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4719 4720
		rc = -EFAULT;
		goto out;
4721
	}
4722
	if ((iocommand.Request.Type.Direction & XFER_READ) &&
4723
		iocommand.buf_size > 0) {
4724 4725
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4726 4727
			rc = -EFAULT;
			goto out;
4728 4729
		}
	}
4730
out:
4731
	cmd_free(h, c);
4732 4733 4734
out_kfree:
	kfree(buff);
	return rc;
4735 4736 4737 4738 4739 4740 4741 4742
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
4743
	u64 temp64;
4744 4745
	BYTE sg_used = 0;
	int status = 0;
4746 4747
	u32 left;
	u32 sz;
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
4774
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4775 4776 4777
		status = -EINVAL;
		goto cleanup1;
	}
4778
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4779 4780 4781 4782
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
4783
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
4798
		if (ioc->Request.Type.Direction & XFER_WRITE) {
4799
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
4800
				status = -EFAULT;
4801 4802 4803 4804 4805 4806 4807 4808
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
4809
	c = cmd_alloc(h);
4810 4811 4812 4813 4814 4815
	if (c == NULL) {
		status = -ENOMEM;
		goto cleanup1;
	}
	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
4816 4817
	c->Header.SGList = (u8) sg_used;
	c->Header.SGTotal = cpu_to_le16(sg_used);
4818 4819 4820 4821 4822
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
4823
			temp64 = pci_map_single(h->pdev, buff[i],
4824
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
4825 4826 4827 4828
			if (dma_mapping_error(&h->pdev->dev,
							(dma_addr_t) temp64)) {
				c->SG[i].Addr = cpu_to_le64(0);
				c->SG[i].Len = cpu_to_le32(0);
4829 4830 4831
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
4832
				goto cleanup0;
4833
			}
4834 4835 4836
			c->SG[i].Addr = cpu_to_le64(temp64);
			c->SG[i].Len = cpu_to_le32(buff_size[i]);
			c->SG[i].Ext = cpu_to_le32(0);
4837
		}
4838
		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
4839
	}
4840
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4841 4842
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
4843 4844 4845 4846 4847
	check_ioctl_unit_attention(h, c);
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
4848
		goto cleanup0;
4849
	}
4850
	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
D
Don Brace 已提交
4851 4852
		int i;

4853 4854 4855 4856 4857
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
4858
				goto cleanup0;
4859 4860 4861 4862 4863
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
4864
cleanup0:
4865
	cmd_free(h, c);
4866 4867
cleanup1:
	if (buff) {
D
Don Brace 已提交
4868 4869
		int i;

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915

static int increment_passthru_count(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->passthru_count_lock, flags);
	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
		return -1;
	}
	h->passthru_count++;
	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
	return 0;
}

static void decrement_passthru_count(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->passthru_count_lock, flags);
	if (h->passthru_count <= 0) {
		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
		/* not expecting to get here. */
		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
		return;
	}
	h->passthru_count--;
	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
}

4916 4917 4918
/*
 * ioctl
 */
D
Don Brace 已提交
4919
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4920 4921 4922
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
4923
	int rc;
4924 4925 4926 4927 4928 4929 4930

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
4931
		hpsa_scan_start(h->scsi_host);
4932 4933 4934 4935 4936 4937
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
4938 4939 4940 4941 4942
		if (increment_passthru_count(h))
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
		decrement_passthru_count(h);
		return rc;
4943
	case CCISS_BIG_PASSTHRU:
4944 4945 4946 4947 4948
		if (increment_passthru_count(h))
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
		decrement_passthru_count(h);
		return rc;
4949 4950 4951 4952 4953
	default:
		return -ENOTTY;
	}
}

4954 4955
static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
				u8 reset_type)
4956 4957 4958 4959 4960 4961
{
	struct CommandList *c;

	c = cmd_alloc(h);
	if (!c)
		return -ENOMEM;
4962 4963
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
	return 0;
}

4975
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
4976
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
4977 4978 4979
	int cmd_type)
{
	int pci_dir = XFER_NONE;
4980
	struct CommandList *a; /* for commands to be aborted */
4981 4982 4983 4984 4985

	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
4986
		c->Header.SGTotal = cpu_to_le16(1);
4987 4988
	} else {
		c->Header.SGList = 0;
4989
		c->Header.SGTotal = cpu_to_le16(0);
4990 4991 4992 4993 4994 4995 4996
	}
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
4997
			if (page_code & VPD_PAGE) {
4998
				c->Request.CDB[1] = 0x01;
4999
				c->Request.CDB[2] = (page_code & 0xff);
5000 5001
			}
			c->Request.CDBLen = 6;
5002 5003
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
5014 5015
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5016 5017 5018 5019 5020 5021 5022 5023 5024
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
5025 5026 5027
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
5028 5029 5030
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5031 5032
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
5033 5034 5035
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
5036 5037
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5038 5039
			c->Request.Timeout = 0;
			break;
5040 5041
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
5042 5043
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5044 5045 5046 5047 5048 5049 5050 5051
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
5052 5053
		case BMIC_SENSE_CONTROLLER_PARAMETERS:
			c->Request.CDBLen = 10;
5054 5055
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5056 5057 5058 5059 5060 5061
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			break;
5062 5063 5064
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
5065
			return -1;
5066 5067 5068 5069 5070 5071
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
5072 5073
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5074
			c->Request.Timeout = 0; /* Don't time out */
5075 5076
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
5077
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5078 5079 5080 5081 5082 5083
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
5084 5085 5086
			break;
		case  HPSA_ABORT_MSG:
			a = buff;       /* point to command to be aborted */
D
Don Brace 已提交
5087 5088
			dev_dbg(&h->pdev->dev,
				"Abort Tag:0x%016llx request Tag:0x%016llx",
5089
				a->Header.tag, c->Header.tag);
5090
			c->Request.CDBLen = 16;
5091 5092 5093
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
5094 5095 5096 5097 5098 5099
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
D
Don Brace 已提交
5100 5101
			memcpy(&c->Request.CDB[4], &a->Header.tag,
				sizeof(a->Header.tag));
5102 5103 5104 5105
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

5117
	switch (GET_DIR(c->Request.type_attr_dir)) {
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
5130 5131 5132
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
5133 5134 5135 5136 5137 5138 5139 5140 5141
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
5142 5143
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
5144 5145 5146 5147

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

5148
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5149
{
5150
	return h->access.command_completed(h, q);
5151 5152
}

5153
static inline bool interrupt_pending(struct ctlr_info *h)
5154 5155 5156 5157 5158 5159
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
5160 5161
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
5162 5163
}

5164 5165
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
5166 5167 5168 5169 5170 5171 5172 5173
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

5174
static inline void finish_cmd(struct CommandList *c)
5175
{
5176
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5177 5178
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
5179
		complete_scsi_command(c);
5180 5181
	else if (c->cmd_type == CMD_IOCTL_PEND)
		complete(c->waiting);
5182 5183
}

5184 5185

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5186
{
5187 5188
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
5189
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5190 5191
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
5192 5193
}

5194
/* process completion of an indexed ("direct lookup") command */
5195
static inline void process_indexed_cmd(struct ctlr_info *h,
5196 5197 5198 5199 5200
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

5201
	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
5202 5203 5204 5205
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
5206 5207
}

5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

5227 5228 5229 5230 5231 5232
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
5233
{
5234 5235 5236 5237 5238 5239 5240
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
5241 5242 5243 5244 5245 5246 5247
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5248
	h->last_intr_timestamp = get_jiffies_64();
5249
	while (interrupt_pending(h)) {
5250
		raw_tag = get_next_completion(h, q);
5251
		while (raw_tag != FIFO_EMPTY)
5252
			raw_tag = next_command(h, q);
5253 5254 5255 5256
	}
	return IRQ_HANDLED;
}

5257
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5258
{
5259
	struct ctlr_info *h = queue_to_hba(queue);
5260
	u32 raw_tag;
5261
	u8 q = *(u8 *) queue;
5262 5263 5264 5265

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

5266
	h->last_intr_timestamp = get_jiffies_64();
5267
	raw_tag = get_next_completion(h, q);
5268
	while (raw_tag != FIFO_EMPTY)
5269
		raw_tag = next_command(h, q);
5270 5271 5272
	return IRQ_HANDLED;
}

5273
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5274
{
5275
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5276
	u32 raw_tag;
5277
	u8 q = *(u8 *) queue;
5278 5279 5280

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5281
	h->last_intr_timestamp = get_jiffies_64();
5282
	while (interrupt_pending(h)) {
5283
		raw_tag = get_next_completion(h, q);
5284
		while (raw_tag != FIFO_EMPTY) {
5285
			process_indexed_cmd(h, raw_tag);
5286
			raw_tag = next_command(h, q);
5287 5288 5289 5290 5291
		}
	}
	return IRQ_HANDLED;
}

5292
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5293
{
5294
	struct ctlr_info *h = queue_to_hba(queue);
5295
	u32 raw_tag;
5296
	u8 q = *(u8 *) queue;
5297

5298
	h->last_intr_timestamp = get_jiffies_64();
5299
	raw_tag = get_next_completion(h, q);
5300
	while (raw_tag != FIFO_EMPTY) {
5301
		process_indexed_cmd(h, raw_tag);
5302
		raw_tag = next_command(h, q);
5303 5304 5305 5306
	}
	return IRQ_HANDLED;
}

5307 5308 5309 5310
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
5311 5312
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
D
Don Brace 已提交
5323 5324
	__le32 paddr32;
	u32 tag;
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
5339
		return err;
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
D
Don Brace 已提交
5352
	paddr32 = cpu_to_le32(paddr64);
5353 5354 5355

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
5356
	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
D
Don Brace 已提交
5357
	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5358 5359 5360
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
5361 5362
	cmd->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5363 5364 5365 5366
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5367
	cmd->ErrorDescriptor.Addr =
D
Don Brace 已提交
5368
			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5369
	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5370

D
Don Brace 已提交
5371
	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5372 5373 5374

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
D
Don Brace 已提交
5375
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

5406
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
D
Don Brace 已提交
5407
	void __iomem *vaddr, u32 use_doorbell)
5408 5409 5410 5411 5412 5413 5414 5415
{

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5416
		writel(use_doorbell, vaddr + SA5_DOORBELL);
5417

5418
		/* PMC hardware guys tell us we need a 10 second delay after
5419 5420 5421 5422
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
5423
		msleep(10000);
5424 5425 5426 5427 5428 5429 5430 5431 5432
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */
5433 5434 5435

		int rc = 0;

5436
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5437

5438
		/* enter the D3hot power management state */
5439 5440 5441
		rc = pci_set_power_state(pdev, PCI_D3hot);
		if (rc)
			return rc;
5442 5443 5444 5445

		msleep(500);

		/* enter the D0 power management state */
5446 5447 5448
		rc = pci_set_power_state(pdev, PCI_D0);
		if (rc)
			return rc;
5449 5450 5451 5452 5453 5454 5455

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
5456 5457 5458 5459
	}
	return 0;
}

5460
static void init_driver_version(char *driver_version, int len)
5461 5462
{
	memset(driver_version, 0, len);
5463
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5464 5465
}

5466
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

5482 5483
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
5484 5485 5486 5487 5488 5489 5490
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

5491
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
5511
/* This does a hard reset of the controller using PCI power management
5512
 * states or the using the doorbell register.
5513
 */
5514
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5515
{
5516 5517 5518 5519 5520
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
5521
	u32 misc_fw_support;
5522
	int rc;
5523
	struct CfgTable __iomem *cfgtable;
5524
	u32 use_doorbell;
5525
	u32 board_id;
5526
	u16 command_register;
5527

5528 5529
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
5530 5531 5532 5533 5534 5535
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
5536 5537 5538
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
5539
	 */
5540

5541
	rc = hpsa_lookup_board_id(pdev, &board_id);
5542 5543 5544 5545 5546 5547
	if (rc < 0) {
		dev_warn(&pdev->dev, "Board ID not found\n");
		return rc;
	}
	if (!ctlr_is_resettable(board_id)) {
		dev_warn(&pdev->dev, "Controller not resettable\n");
5548 5549
		return -ENODEV;
	}
5550 5551 5552 5553

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
5554

5555 5556 5557
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	pci_save_state(pdev);
5558

5559 5560 5561 5562 5563 5564 5565
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
5566

5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
5578 5579
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
5580
		goto unmap_cfgtable;
5581

5582 5583 5584
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
5585
	misc_fw_support = readl(&cfgtable->misc_fw_support);
5586 5587 5588 5589 5590 5591
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
5592 5593
			dev_warn(&pdev->dev,
				"Soft reset not supported. Firmware update is required.\n");
5594
			rc = -ENOTSUPP; /* try soft reset */
5595 5596 5597
			goto unmap_cfgtable;
		}
	}
5598

5599 5600 5601
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
5602

5603 5604
	pci_restore_state(pdev);
	pci_write_config_word(pdev, 4, command_register);
5605

5606 5607 5608 5609
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

5610 5611 5612
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
5613
			"Failed waiting for board to become ready after hard reset\n");
5614 5615 5616
		goto unmap_cfgtable;
	}

5617 5618 5619 5620
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
5621 5622 5623
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
5624
	} else {
5625
		dev_info(&pdev->dev, "board ready after hard reset.\n");
5626 5627 5628 5629 5630 5631 5632 5633
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
5634 5635 5636 5637 5638 5639 5640
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
D
Don Brace 已提交
5641
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5642
{
5643
#ifdef HPSA_DEBUG
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
5664
	dev_info(dev, "   Max outstanding commands = %d\n",
5665 5666 5667 5668 5669 5670 5671 5672 5673
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
5674
}
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

/* If MSI/MSI-X is supported by the kernel we will try to enable it on
5712
 * controllers that are capable. If not, we use legacy INTx mode.
5713 5714
 */

5715
static void hpsa_interrupt_mode(struct ctlr_info *h)
5716 5717
{
#ifdef CONFIG_PCI_MSI
5718 5719 5720 5721 5722 5723 5724
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
5725 5726

	/* Some boards advertise MSI but don't really support it */
5727 5728
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
5729
		goto default_int_mode;
5730
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
5731
		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
5732
		h->msix_vector = MAX_REPLY_QUEUES;
5733 5734
		if (h->msix_vector > num_online_cpus())
			h->msix_vector = num_online_cpus();
5735 5736 5737 5738 5739 5740 5741
		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
					    1, h->msix_vector);
		if (err < 0) {
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
			h->msix_vector = 0;
			goto single_msi_mode;
		} else if (err < h->msix_vector) {
5742
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
5743 5744
			       "available\n", err);
		}
5745 5746 5747 5748
		h->msix_vector = err;
		for (i = 0; i < h->msix_vector; i++)
			h->intr[i] = hpsa_msix_entries[i].vector;
		return;
5749
	}
5750
single_msi_mode:
5751
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
5752
		dev_info(&h->pdev->dev, "MSI capable controller\n");
5753
		if (!pci_enable_msi(h->pdev))
5754 5755
			h->msi_vector = 1;
		else
5756
			dev_warn(&h->pdev->dev, "MSI init failed\n");
5757 5758 5759 5760
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
5761
	h->intr[h->intr_mode] = h->pdev->irq;
5762 5763
}

5764
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

5778 5779 5780
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
5781 5782 5783 5784 5785 5786 5787
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

5788 5789
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
5790 5791 5792 5793
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
5794
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
5795
			/* addressing mode bits already removed */
5796 5797
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
5798 5799 5800
				*memory_bar);
			return 0;
		}
5801
	dev_warn(&pdev->dev, "no memory BAR found\n");
5802 5803 5804
	return -ENODEV;
}

5805 5806
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
5807
{
5808
	int i, iterations;
5809
	u32 scratchpad;
5810 5811 5812 5813
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
5814

5815 5816 5817 5818 5819 5820 5821 5822 5823
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
5824 5825
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
5826
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
5827 5828 5829
	return -ENODEV;
}

5830 5831 5832
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

5845
static int hpsa_find_cfgtables(struct ctlr_info *h)
5846
{
5847 5848 5849
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
5850
	u32 trans_offset;
5851
	int rc;
5852

5853 5854 5855 5856
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
5857
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
5858
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
5859 5860
	if (!h->cfgtable) {
		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
5861
		return -ENOMEM;
5862
	}
5863 5864 5865
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
5866
	/* Find performant mode table. */
5867
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
5868 5869 5870 5871 5872 5873 5874 5875
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
	if (!h->transtable)
		return -ENOMEM;
	return 0;
}

5876
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
5877 5878
{
	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
5879 5880 5881 5882 5883

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

5884 5885 5886 5887 5888 5889 5890 5891 5892
	if (h->max_commands < 16) {
		dev_warn(&h->pdev->dev, "Controller reports "
			"max supported commands of %d, an obvious lie. "
			"Using 16.  Ensure that firmware is up to date.\n",
			h->max_commands);
		h->max_commands = 16;
	}
}

5893 5894 5895 5896 5897 5898 5899 5900 5901
/* If the controller reports that the total max sg entries is greater than 512,
 * then we know that chained SG blocks work.  (Original smart arrays did not
 * support chained SG blocks and would return zero for max sg entries.)
 */
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
{
	return h->maxsgentries > 512;
}

5902 5903 5904 5905
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
5906
static void hpsa_find_board_params(struct ctlr_info *h)
5907
{
5908
	hpsa_get_max_perf_mode_cmds(h);
5909
	h->nr_cmds = h->max_commands;
5910
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
5911
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
5912 5913
	if (hpsa_supports_chained_sg_blocks(h)) {
		/* Limit in-command s/g elements to 32 save dma'able memory. */
5914
		h->max_cmd_sg_entries = 32;
5915
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
5916 5917
		h->maxsgentries--; /* save one for chain pointer */
	} else {
5918 5919 5920 5921 5922 5923
		/*
		 * Original smart arrays supported at most 31 s/g entries
		 * embedded inline in the command (trying to use more
		 * would lock up the controller)
		 */
		h->max_cmd_sg_entries = 31;
5924
		h->maxsgentries = 31; /* default to traditional values */
5925
		h->chainsize = 0;
5926
	}
5927 5928 5929

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
5930 5931 5932 5933
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
5934 5935
}

5936 5937
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
5938
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
5939
		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
5940 5941 5942 5943 5944
		return false;
	}
	return true;
}

5945
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
5946
{
5947
	u32 driver_support;
5948

5949
	driver_support = readl(&(h->cfgtable->driver_support));
A
Arnd Bergmann 已提交
5950 5951
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
#ifdef CONFIG_X86
5952
	driver_support |= ENABLE_SCSI_PREFETCH;
5953
#endif
5954 5955
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
5956 5957
}

5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
			break;
		/* delay and try again */
		msleep(20);
	}
}

5989
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
5990 5991
{
	int i;
5992 5993
	u32 doorbell_value;
	unsigned long flags;
5994 5995 5996 5997 5998 5999

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6000 6001 6002
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
6003
		if (!(doorbell_value & CFGTBL_ChangeReq))
6004 6005
			break;
		/* delay and try again */
6006
		usleep_range(10000, 20000);
6007
	}
6008 6009
}

6010
static int hpsa_enter_simple_mode(struct ctlr_info *h)
6011 6012 6013 6014 6015 6016 6017 6018
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6019

6020 6021
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6022
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6023 6024
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	hpsa_wait_for_mode_change_ack(h);
6025
	print_cfg_table(&h->pdev->dev, h->cfgtable);
6026 6027
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
6028
	h->transMethod = CFGTBL_Trans_Simple;
6029
	return 0;
6030
error:
6031
	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6032
	return -ENODEV;
6033 6034
}

6035
static int hpsa_pci_init(struct ctlr_info *h)
6036
{
6037
	int prod_index, err;
6038

6039 6040
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
6041
		return prod_index;
6042 6043
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
6044

M
Matthew Garrett 已提交
6045 6046 6047
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

6048
	err = pci_enable_device(h->pdev);
6049
	if (err) {
6050
		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6051 6052 6053
		return err;
	}

6054
	err = pci_request_regions(h->pdev, HPSA);
6055
	if (err) {
6056 6057
		dev_err(&h->pdev->dev,
			"cannot obtain PCI resources, aborting\n");
6058 6059
		return err;
	}
6060 6061 6062

	pci_set_master(h->pdev);

6063
	hpsa_interrupt_mode(h);
6064
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6065
	if (err)
6066 6067
		goto err_out_free_res;
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6068 6069 6070 6071
	if (!h->vaddr) {
		err = -ENOMEM;
		goto err_out_free_res;
	}
6072
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6073
	if (err)
6074
		goto err_out_free_res;
6075 6076
	err = hpsa_find_cfgtables(h);
	if (err)
6077
		goto err_out_free_res;
6078
	hpsa_find_board_params(h);
6079

6080
	if (!hpsa_CISS_signature_present(h)) {
6081 6082 6083
		err = -ENODEV;
		goto err_out_free_res;
	}
6084
	hpsa_set_driver_support_bits(h);
6085
	hpsa_p600_dma_prefetch_quirk(h);
6086 6087
	err = hpsa_enter_simple_mode(h);
	if (err)
6088 6089 6090 6091
		goto err_out_free_res;
	return 0;

err_out_free_res:
6092 6093 6094 6095 6096 6097
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	if (h->vaddr)
		iounmap(h->vaddr);
6098
	pci_disable_device(h->pdev);
6099
	pci_release_regions(h->pdev);
6100 6101 6102
	return err;
}

6103
static void hpsa_hba_inquiry(struct ctlr_info *h)
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

6119
static int hpsa_init_reset_devices(struct pci_dev *pdev)
6120
{
6121
	int rc, i;
6122
	void __iomem *vaddr;
6123 6124 6125 6126

	if (!reset_devices)
		return 0;

6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
	/* kdump kernel is loading, we don't know in which state is
	 * the pci interface. The dev->enable_cnt is equal zero
	 * so we call enable+disable, wait a while and switch it on.
	 */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}
	pci_disable_device(pdev);
	msleep(260);			/* a randomly chosen number */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		return -ENODEV;
	}
6143

6144
	pci_set_master(pdev);
6145

6146 6147 6148 6149 6150 6151 6152 6153
	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL) {
		rc = -ENOMEM;
		goto out_disable;
	}
	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
	iounmap(vaddr);

6154 6155
	/* Reset the controller with a PCI power-cycle or via doorbell */
	rc = hpsa_kdump_hard_reset_controller(pdev);
6156

6157 6158
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
6159 6160
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
6161
	 */
6162
	if (rc)
6163
		goto out_disable;
6164 6165

	/* Now try to get the controller to respond to a no-op */
6166
	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6167 6168 6169 6170 6171 6172 6173
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
6174 6175 6176 6177 6178

out_disable:

	pci_disable_device(pdev);
	return rc;
6179 6180
}

6181
static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6196
		goto clean_up;
6197 6198
	}
	return 0;
6199 6200 6201
clean_up:
	hpsa_free_cmd_pool(h);
	return -ENOMEM;
6202 6203 6204 6205 6206 6207 6208 6209 6210
}

static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
	if (h->cmd_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct CommandList),
			    h->cmd_pool, h->cmd_pool_dhandle);
6211 6212 6213 6214
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6215 6216 6217 6218 6219
	if (h->errinfo_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct ErrorInfo),
			    h->errinfo_pool,
			    h->errinfo_pool_dhandle);
6220 6221 6222 6223
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(struct io_accel1_cmd),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6224 6225
}

6226 6227
static void hpsa_irq_affinity_hints(struct ctlr_info *h)
{
6228
	int i, cpu;
6229 6230 6231

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < h->msix_vector; i++) {
6232
		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6233 6234 6235 6236
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
}

6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
static void hpsa_free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
		return;
	}

	for (i = 0; i < h->msix_vector; i++) {
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
	}
6254 6255
	for (; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = 0;
6256 6257
}

6258 6259
/* returns 0 on success; cleans up and returns -Enn on error */
static int hpsa_request_irqs(struct ctlr_info *h,
6260 6261 6262
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
6263
	int rc, i;
6264

6265 6266 6267 6268 6269 6270 6271
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

6272
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6273
		/* If performant mode and MSI-X, use multiple reply queues */
6274
		for (i = 0; i < h->msix_vector; i++) {
6275 6276 6277
			rc = request_irq(h->intr[i], msixhandler,
					0, h->devname,
					&h->q[i]);
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
			if (rc) {
				int j;

				dev_err(&h->pdev->dev,
					"failed to get irq %d for %s\n",
				       h->intr[i], h->devname);
				for (j = 0; j < i; j++) {
					free_irq(h->intr[j], &h->q[j]);
					h->q[j] = 0;
				}
				for (; j < MAX_REPLY_QUEUES; j++)
					h->q[j] = 0;
				return rc;
			}
		}
6293
		hpsa_irq_affinity_hints(h);
6294 6295
	} else {
		/* Use single reply pool */
6296
		if (h->msix_vector > 0 || h->msi_vector) {
6297 6298 6299 6300 6301 6302 6303 6304 6305
			rc = request_irq(h->intr[h->intr_mode],
				msixhandler, 0, h->devname,
				&h->q[h->intr_mode]);
		} else {
			rc = request_irq(h->intr[h->intr_mode],
				intxhandler, IRQF_SHARED, h->devname,
				&h->q[h->intr_mode]);
		}
	}
6306 6307 6308 6309 6310 6311 6312 6313
	if (rc) {
		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
		       h->intr[h->intr_mode], h->devname);
		return -ENODEV;
	}
	return 0;
}

6314
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
{
	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
		HPSA_RESET_TYPE_CONTROLLER)) {
		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
		return -EIO;
	}

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

6338
static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6339
{
6340
	hpsa_free_irqs(h);
6341
#ifdef CONFIG_PCI_MSI
6342 6343 6344 6345 6346 6347 6348
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
	}
6349
#endif /* CONFIG_PCI_MSI */
6350 6351
}

6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
static void hpsa_free_reply_queues(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nreply_queues; i++) {
		if (!h->reply_queue[i].head)
			continue;
		pci_free_consistent(h->pdev, h->reply_queue_size,
			h->reply_queue[i].head, h->reply_queue[i].busaddr);
		h->reply_queue[i].head = NULL;
		h->reply_queue[i].busaddr = 0;
	}
}

6366 6367 6368
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
	hpsa_free_irqs_and_disable_msix(h);
6369 6370
	hpsa_free_sg_chain_blocks(h);
	hpsa_free_cmd_pool(h);
6371
	kfree(h->ioaccel1_blockFetchTable);
6372
	kfree(h->blockFetchTable);
6373
	hpsa_free_reply_queues(h);
6374 6375 6376 6377 6378 6379
	if (h->vaddr)
		iounmap(h->vaddr);
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
6380
	pci_disable_device(h->pdev);
6381 6382 6383 6384
	pci_release_regions(h->pdev);
	kfree(h);
}

6385
/* Called when controller lockup detected. */
6386
static void fail_all_outstanding_cmds(struct ctlr_info *h)
6387
{
6388
	int i;
6389 6390
	struct CommandList *c = NULL;

6391 6392 6393 6394 6395
	for (i = 0; i < h->nr_cmds; i++) {
		if (!test_bit(i & (BITS_PER_LONG - 1),
				h->cmd_pool_bits + (i / BITS_PER_LONG)))
			continue;
		c = h->cmd_pool + i;
6396
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6397
		finish_cmd(c);
6398 6399 6400
	}
}

6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
{
	int i, cpu;

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < num_online_cpus(); i++) {
		u32 *lockup_detected;
		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
		*lockup_detected = value;
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
	wmb(); /* be sure the per-cpu variables are out to memory */
}

6415 6416 6417
static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;
6418
	u32 lockup_detected;
6419 6420 6421

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
6422 6423 6424 6425 6426 6427 6428 6429
	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	if (!lockup_detected) {
		/* no heartbeat, but controller gave us a zero. */
		dev_warn(&h->pdev->dev,
			"lockup detected but scratchpad register is zero\n");
		lockup_detected = 0xffffffff;
	}
	set_lockup_detected_for_all_cpus(h, lockup_detected);
6430 6431
	spin_unlock_irqrestore(&h->lock, flags);
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6432
			lockup_detected);
6433 6434
	pci_disable_device(h->pdev);
	spin_lock_irqsave(&h->lock, flags);
6435
	fail_all_outstanding_cmds(h);
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
	spin_unlock_irqrestore(&h->lock, flags);
}

static void detect_controller_lockup(struct ctlr_info *h)
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
6448
				(h->heartbeat_sample_interval), now))
6449 6450 6451 6452 6453 6454 6455 6456
		return;

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
6457
				(h->heartbeat_sample_interval), now))
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
		return;

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
		return;
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
}

6474
static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6475 6476 6477 6478 6479
{
	int i;
	char *event_type;

	/* Ask the controller to clear the events we're handling. */
6480 6481
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
6493
		hpsa_drain_accel_commands(h);
6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}
6514
	return;
6515 6516 6517 6518
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
6519 6520
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
6521
 */
6522
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6523 6524
{
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6525
		return 0;
6526 6527

	h->events = readl(&(h->cfgtable->event_notify));
6528 6529
	return h->events & RESCAN_REQUIRED_EVENT_BITS;
}
6530

6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
/*
 * Check if any of the offline devices have become ready
 */
static int hpsa_offline_devices_ready(struct ctlr_info *h)
{
	unsigned long flags;
	struct offline_device_entry *d;
	struct list_head *this, *tmp;

	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_safe(this, tmp, &h->offline_device_list) {
		d = list_entry(this, struct offline_device_entry,
				offline_list);
		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6545 6546 6547 6548
		if (!hpsa_volume_offline(h, d->scsi3addr)) {
			spin_lock_irqsave(&h->offline_device_lock, flags);
			list_del(&d->offline_list);
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
6549
			return 1;
6550
		}
6551 6552 6553 6554
		spin_lock_irqsave(&h->offline_device_lock, flags);
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
	return 0;
6555 6556
}

6557

6558
static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6559 6560
{
	unsigned long flags;
6561 6562 6563
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);
	detect_controller_lockup(h);
6564
	if (lockup_detected(h))
6565
		return;
6566 6567 6568 6569 6570 6571 6572 6573

	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
		scsi_host_get(h->scsi_host);
		hpsa_ack_ctlr_events(h);
		hpsa_scan_start(h->scsi_host);
		scsi_host_put(h->scsi_host);
	}

6574 6575 6576
	spin_lock_irqsave(&h->lock, flags);
	if (h->remove_in_progress) {
		spin_unlock_irqrestore(&h->lock, flags);
6577 6578
		return;
	}
6579 6580 6581
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
6582 6583
}

6584
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6585
{
6586
	int dac, rc;
6587
	struct ctlr_info *h;
6588 6589
	int try_soft_reset = 0;
	unsigned long flags;
6590 6591 6592 6593

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

6594
	rc = hpsa_init_reset_devices(pdev);
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
6608

6609 6610 6611 6612 6613
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6614 6615
	h = kzalloc(sizeof(*h), GFP_KERNEL);
	if (!h)
6616
		return -ENOMEM;
6617

6618
	h->pdev = pdev;
6619
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6620
	INIT_LIST_HEAD(&h->offline_device_list);
6621
	spin_lock_init(&h->lock);
6622
	spin_lock_init(&h->offline_device_lock);
6623
	spin_lock_init(&h->scan_lock);
6624
	spin_lock_init(&h->passthru_count_lock);
6625 6626 6627

	/* Allocate and clear per-cpu variable lockup_detected */
	h->lockup_detected = alloc_percpu(u32);
6628 6629
	if (!h->lockup_detected) {
		rc = -ENOMEM;
6630
		goto clean1;
6631
	}
6632 6633
	set_lockup_detected_for_all_cpus(h, 0);

6634
	rc = hpsa_pci_init(h);
6635
	if (rc != 0)
6636 6637
		goto clean1;

6638
	sprintf(h->devname, HPSA "%d", number_of_controllers);
6639 6640 6641 6642
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
6643 6644
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
6645
		dac = 1;
6646 6647 6648 6649 6650 6651 6652 6653
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
			goto clean1;
		}
6654 6655 6656 6657
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6658

6659
	if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6660
		goto clean2;
6661 6662
	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
	       h->devname, pdev->device,
6663
	       h->intr[h->intr_mode], dac ? "" : " not");
6664 6665 6666
	rc = hpsa_allocate_cmd_pool(h);
	if (rc)
		goto clean2_and_free_irqs;
6667 6668
	if (hpsa_allocate_sg_chain_blocks(h))
		goto clean4;
6669 6670
	init_waitqueue_head(&h->scan_wait_queue);
	h->scan_finished = 1; /* no scan currently in progress */
6671 6672

	pci_set_drvdata(pdev, h);
6673
	h->ndevices = 0;
6674
	h->hba_mode_enabled = 0;
6675 6676
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
	hpsa_put_ctlr_into_performant_mode(h);

	/* At this point, the controller is ready to take commands.
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
6695
		hpsa_free_irqs(h);
6696
		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
6697 6698
					hpsa_intx_discard_completions);
		if (rc) {
6699 6700
			dev_warn(&h->pdev->dev,
				"Failed to request_irq after soft reset.\n");
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
			goto clean4;
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
			goto clean4;

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
			/* don't go to clean4, we already unallocated */
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
6733

6734 6735
		/* Enable Accelerated IO path at driver layer */
		h->acciopath_status = 1;
6736

6737

6738 6739 6740
	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

6741
	hpsa_hba_inquiry(h);
6742
	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
6743 6744 6745 6746 6747 6748

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
6749
	return 0;
6750 6751

clean4:
6752
	hpsa_free_sg_chain_blocks(h);
6753
	hpsa_free_cmd_pool(h);
6754
clean2_and_free_irqs:
6755
	hpsa_free_irqs(h);
6756 6757
clean2:
clean1:
6758 6759
	if (h->lockup_detected)
		free_percpu(h->lockup_detected);
6760
	kfree(h);
6761
	return rc;
6762 6763 6764 6765 6766 6767
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
6768 6769

	/* Don't bother trying to flush the cache if locked up */
6770
	if (unlikely(lockup_detected(h)))
6771
		return;
6772 6773 6774 6775
	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

6776
	c = cmd_alloc(h);
6777
	if (!c) {
6778
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
6779 6780
		goto out_of_memory;
	}
6781 6782 6783 6784
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
6785 6786
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
	if (c->err_info->CommandStatus != 0)
6787
out:
6788 6789
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
6790
	cmd_free(h, c);
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
out_of_memory:
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6806
	hpsa_free_irqs_and_disable_msix(h);
6807 6808
}

6809
static void hpsa_free_device_info(struct ctlr_info *h)
6810 6811 6812 6813 6814 6815 6816
{
	int i;

	for (i = 0; i < h->ndevices; i++)
		kfree(h->dev[i]);
}

6817
static void hpsa_remove_one(struct pci_dev *pdev)
6818 6819
{
	struct ctlr_info *h;
6820
	unsigned long flags;
6821 6822

	if (pci_get_drvdata(pdev) == NULL) {
6823
		dev_err(&pdev->dev, "unable to remove device\n");
6824 6825 6826
		return;
	}
	h = pci_get_drvdata(pdev);
6827 6828 6829 6830 6831 6832 6833

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	cancel_delayed_work(&h->monitor_ctlr_work);
	spin_unlock_irqrestore(&h->lock, flags);

6834 6835 6836
	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
	hpsa_shutdown(pdev);
	iounmap(h->vaddr);
6837 6838
	iounmap(h->transtable);
	iounmap(h->cfgtable);
6839
	hpsa_free_device_info(h);
6840
	hpsa_free_sg_chain_blocks(h);
6841 6842 6843 6844 6845 6846
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct CommandList),
		h->cmd_pool, h->cmd_pool_dhandle);
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct ErrorInfo),
		h->errinfo_pool, h->errinfo_pool_dhandle);
6847
	hpsa_free_reply_queues(h);
6848
	kfree(h->cmd_pool_bits);
6849
	kfree(h->blockFetchTable);
6850
	kfree(h->ioaccel1_blockFetchTable);
6851
	kfree(h->ioaccel2_blockFetchTable);
6852
	kfree(h->hba_inquiry_data);
6853
	pci_disable_device(pdev);
6854
	pci_release_regions(pdev);
6855
	free_percpu(h->lockup_detected);
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
	kfree(h);
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
6871
	.name = HPSA,
6872
	.probe = hpsa_init_one,
6873
	.remove = hpsa_remove_one,
6874 6875 6876 6877 6878 6879
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
D
Don Brace 已提交
6893
	int nsgs, int min_blocks, u32 *bucket_map)
6894 6895 6896 6897 6898 6899
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
6900
		size = i + min_blocks;
6901 6902
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
6903
		for (j = 0; j < num_buckets; j++) {
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

6914
static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
6915
{
6916 6917
	int i;
	unsigned long register_value;
6918 6919
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
6920 6921 6922
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
6923
	struct access_method access = SA5_performant_access;
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
6935
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
6936 6937 6938 6939 6940 6941
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
6942
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
6953
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
6954 6955 6956 6957 6958 6959
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

6960 6961 6962 6963 6964 6965 6966
	/* If the controller supports either ioaccel method then
	 * we can also use the RAID stack submit path that does not
	 * perform the superfluous readl() after each command submission.
	 */
	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
		access = SA5_performant_access_no_read;

6967
	/* Controller spec: zero out this buffer. */
6968 6969
	for (i = 0; i < h->nreply_queues; i++)
		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
6970

6971 6972
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
6973
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
6974 6975 6976 6977 6978
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
6979
	writel(h->nreply_queues, &h->transtable->RepQCount);
6980 6981
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
6982 6983 6984

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
6985
		writel(h->reply_queue[i].busaddr,
6986 6987 6988
			&h->transtable->RepQAddr[i].lower);
	}

6989
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6990 6991 6992 6993 6994 6995 6996 6997
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
6998 6999 7000 7001 7002 7003
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
7004
	}
7005
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7006
	hpsa_wait_for_mode_change_ack(h);
7007 7008
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
7009 7010
		dev_err(&h->pdev->dev,
			"performant mode problem - transport not active\n");
7011 7012
		return;
	}
7013
	/* Change the access methods to the performant access methods */
7014 7015 7016
	h->access = access;
	h->transMethod = transMethod;

7017 7018
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
7019 7020
		return;

7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
7031

7032
		/* initialize all reply queue entries to unused */
7033 7034 7035 7036
		for (i = 0; i < h->nreply_queues; i++)
			memset(h->reply_queue[i].head,
				(u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_queue_size);
7037

7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
D
Don Brace 已提交
7049 7050
			cp->host_context_flags =
				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7051 7052
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
7053
			cp->tag =
7054
				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
7055 7056
			cp->host_addr =
				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080
					(i * sizeof(struct io_accel1_cmd)));
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7081
	}
7082 7083
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	hpsa_wait_for_mode_change_ack(h);
7084 7085 7086 7087
}

static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
{
7088 7089 7090 7091 7092
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
7105
		kmalloc(((h->ioaccel_maxsg + 1) *
7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
	kfree(h->ioaccel1_blockFetchTable);
	return 1;
7123 7124
}

7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161
static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
{
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
		(h->ioaccel2_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
	kfree(h->ioaccel2_blockFetchTable);
	return 1;
}

7162
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7163 7164
{
	u32 trans_support;
7165 7166
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
7167
	int i;
7168

7169 7170 7171
	if (hpsa_simple_mode)
		return;

7172 7173 7174 7175
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
		return;

7176 7177 7178 7179 7180 7181
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
			goto clean_up;
7182 7183 7184 7185 7186 7187 7188
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
				transMethod |= CFGTBL_Trans_io_accel2 |
				CFGTBL_Trans_enable_directed_msix;
		if (ioaccel2_alloc_cmds_and_bft(h))
			goto clean_up;
		}
7189 7190
	}

7191
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7192
	hpsa_get_max_perf_mode_cmds(h);
7193
	/* Performant mode ring buffer and supporting data structures */
7194
	h->reply_queue_size = h->max_commands * sizeof(u64);
7195

7196
	for (i = 0; i < h->nreply_queues; i++) {
7197 7198 7199 7200 7201
		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
						h->reply_queue_size,
						&(h->reply_queue[i].busaddr));
		if (!h->reply_queue[i].head)
			goto clean_up;
7202 7203 7204 7205 7206
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

7207
	/* Need a block fetch table for performant mode */
7208
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7209
				sizeof(u32)), GFP_KERNEL);
7210
	if (!h->blockFetchTable)
7211 7212
		goto clean_up;

7213
	hpsa_enter_performant_mode(h, trans_support);
7214 7215 7216
	return;

clean_up:
7217
	hpsa_free_reply_queues(h);
7218 7219 7220
	kfree(h->blockFetchTable);
}

7221
static int is_accelerated_cmd(struct CommandList *c)
7222
{
7223 7224 7225 7226 7227 7228
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
7229
	int i, accel_cmds_out;
7230

7231
	do { /* wait for all outstanding ioaccel commands to drain out */
7232
		accel_cmds_out = 0;
7233 7234 7235 7236 7237
		for (i = 0; i < h->nr_cmds; i++) {
			if (!test_bit(i & (BITS_PER_LONG - 1),
					h->cmd_pool_bits + (i / BITS_PER_LONG)))
				continue;
			c = h->cmd_pool + i;
7238
			accel_cmds_out += is_accelerated_cmd(c);
7239
		}
7240
		if (accel_cmds_out <= 0)
7241
				break;
7242 7243 7244 7245
		msleep(100);
	} while (1);
}

7246 7247 7248 7249 7250 7251
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
7252
	return pci_register_driver(&hpsa_pci_driver);
7253 7254 7255 7256 7257 7258 7259
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

7260 7261
static void __attribute__((unused)) verify_offsets(void)
{
7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
7331
	VERIFY_OFFSET(tag, 0x68);
7332 7333 7334 7335 7336 7337
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

7338 7339
module_init(hpsa_init);
module_exit(hpsa_cleanup);