hpsa.c 206.0 KB
Newer Older
1 2
/*
 *    Disk Array driver for HP Smart Array SAS controllers
3
 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46 47 48
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
49
#include <linux/atomic.h>
50
#include <linux/kthread.h>
51
#include <linux/jiffies.h>
52
#include <asm/div64.h>
53 54 55 56
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57
#define HPSA_DRIVER_VERSION "3.4.0-1"
58
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59
#define HPSA "hpsa"
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

/* How long to wait (in milliseconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
80 81 82 83
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
84 85 86 87 88 89 90 91

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92 93
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
94
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95 96 97 98 99 100 101
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102 103 104 105 106 107 108
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
109 110 111 112 113 114 115 116 117 118 119 120 121
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
122
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
123
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
139 140
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
141 142 143 144 145 146 147
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
148 149 150 151 152 153 154
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
155 156 157 158 159 160 161 162 163 164 165 166
	{0x21BD103C, "Smart Array", &SA5_access},
	{0x21BE103C, "Smart Array", &SA5_access},
	{0x21BF103C, "Smart Array", &SA5_access},
	{0x21C0103C, "Smart Array", &SA5_access},
	{0x21C1103C, "Smart Array", &SA5_access},
	{0x21C2103C, "Smart Array", &SA5_access},
	{0x21C3103C, "Smart Array", &SA5_access},
	{0x21C4103C, "Smart Array", &SA5_access},
	{0x21C5103C, "Smart Array", &SA5_access},
	{0x21C7103C, "Smart Array", &SA5_access},
	{0x21C8103C, "Smart Array", &SA5_access},
	{0x21C9103C, "Smart Array", &SA5_access},
167 168 169 170 171
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

static int number_of_controllers;

172 173
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
174 175 176 177 178 179 180 181 182 183 184
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
static void start_io(struct ctlr_info *h);

#ifdef CONFIG_COMPAT
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
185
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
186
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
187
	int cmd_type);
188
#define VPD_PAGE (1 << 8)
189

J
Jeff Garzik 已提交
190
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
191 192 193
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
194 195
static int hpsa_change_queue_depth(struct scsi_device *sdev,
	int qdepth, int reason);
196 197

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
198
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
199 200 201 202 203 204 205 206
static int hpsa_slave_alloc(struct scsi_device *sdev);
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
207 208
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
209
	int nsgs, int min_blocks, int *bucket_map);
210
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
211
static inline u32 next_command(struct ctlr_info *h, u8 q);
212 213 214 215 216 217 218 219
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
220
static inline void finish_cmd(struct CommandList *c);
221
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
222 223
#define BOARD_NOT_READY 0
#define BOARD_READY 1
224
static void hpsa_drain_accel_commands(struct ctlr_info *h);
225
static void hpsa_flush_cache(struct ctlr_info *h);
226 227 228
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr);
229 230 231 232 233 234 235

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

236 237 238 239 240 241
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

242 243 244 245 246 247 248 249
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
		return 0;

	switch (c->err_info->SenseInfo[12]) {
	case STATE_CHANGED:
250
		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
251 252 253
			"detected, command retried\n", h->ctlr);
		break;
	case LUN_FAILED:
254
		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
255 256 257
			"detected, action required\n", h->ctlr);
		break;
	case REPORT_LUNS_CHANGED:
258
		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
M
Mike Miller 已提交
259
			"changed, action required\n", h->ctlr);
260
	/*
261 262
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
263 264 265
	 */
		break;
	case POWER_OR_RESET:
266
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
267 268 269
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
270
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
271 272 273
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
274
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
275 276 277 278 279 280
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

281 282 283 284 285 286 287 288 289 290
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

315 316 317 318 319 320
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
321
	h = shost_to_hba(shost);
M
Mike Miller 已提交
322
	hpsa_scan_start(h->scsi_host);
323 324 325
	return count;
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

341 342 343 344 345 346 347 348 349
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
}

350 351 352 353 354 355 356 357
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
358
		h->transMethod & CFGTBL_Trans_Performant ?
359 360 361
			"performant" : "simple");
}

362 363 364 365 366 367 368 369 370 371 372
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

373
/* List of controllers which cannot be hard reset on kexec with reset_devices */
374 375 376 377 378 379 380 381 382 383 384 385 386
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
387
	0x40800E11, /* Smart Array 5i */
388 389
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
390 391 392 393 394 395
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
396 397
};

398 399
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
400
	0x40800E11, /* Smart Array 5i */
401 402 403 404 405 406
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
407 408 409 410 411 412 413 414 415 416 417 418
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

static int ctlr_is_hard_resettable(u32 board_id)
419 420 421 422
{
	int i;

	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
423 424 425 426 427 428 429 430 431 432 433
		if (unresettable_controller[i] == board_id)
			return 0;
	return 1;
}

static int ctlr_is_soft_resettable(u32 board_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
		if (soft_unresettable_controller[i] == board_id)
434 435 436 437
			return 0;
	return 1;
}

438 439 440 441 442 443
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

444 445 446 447 448 449 450
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
451
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
452 453
}

454 455 456 457 458 459
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
460
	"1(ADM)", "UNKNOWN"
461
};
462 463 464 465 466 467 468
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
469 470 471 472 473 474
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
475
	unsigned char rlevel;
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
499
	if (rlevel > RAID_UNKNOWN)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

579 580 581 582
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
583 584
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
585 586 587
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
588 589 590 591 592 593
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
594 595
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
596 597 598 599 600

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
601
	&dev_attr_hp_ssd_smart_path_enabled,
602 603 604 605 606 607 608 609
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
610
	&dev_attr_resettable,
611
	&dev_attr_hp_ssd_smart_path_status,
612 613 614 615 616
	NULL,
};

static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
617 618
	.name			= HPSA,
	.proc_name		= HPSA,
619 620 621 622 623 624
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
	.change_queue_depth	= hpsa_change_queue_depth,
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
625
	.eh_abort_handler	= hpsa_eh_abort_handler,
626 627 628 629 630 631 632 633 634
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
635
	.max_sectors = 8192,
636
	.no_write_same = 1,
637 638 639 640 641 642 643 644 645
};


/* Enqueuing and dequeuing functions for cmdlists. */
static inline void addQ(struct list_head *list, struct CommandList *c)
{
	list_add_tail(&c->list, list);
}

646
static inline u32 next_command(struct ctlr_info *h, u8 q)
647 648
{
	u32 a;
649
	struct reply_pool *rq = &h->reply_queue[q];
650
	unsigned long flags;
651

652 653 654
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

655
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
656
		return h->access.command_completed(h, q);
657

658 659 660
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
661
		spin_lock_irqsave(&h->lock, flags);
662
		h->commands_outstanding--;
663
		spin_unlock_irqrestore(&h->lock, flags);
664 665 666 667
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
668 669 670
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
671 672 673 674
	}
	return a;
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

701 702 703 704 705 706
/* set_performant_mode: Modify the tag for cciss performant
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
{
707
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
708
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
709
		if (likely(h->msix_vector > 0))
710
			c->Header.ReplyQueue =
711
				raw_smp_processor_id() % h->nreply_queues;
712
	}
713 714
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
						struct CommandList *c)
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

static void set_ioaccel2_performant_mode(struct ctlr_info *h,
						struct CommandList *c)
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->reply_queue = smp_processor_id() % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

779 780 781 782 783
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c)
{
	unsigned long flags;

784 785 786 787 788 789 790 791 792 793
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
		set_ioaccel1_performant_mode(h, c);
		break;
	case CMD_IOACCEL2:
		set_ioaccel2_performant_mode(h, c);
		break;
	default:
		set_performant_mode(h, c);
	}
794
	dial_down_lockup_detection_during_fw_flash(h, c);
795 796 797 798
	spin_lock_irqsave(&h->lock, flags);
	addQ(&h->reqQ, c);
	h->Qdepth++;
	spin_unlock_irqrestore(&h->lock, flags);
799
	start_io(h);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

static inline void removeQ(struct CommandList *c)
{
	if (WARN_ON(list_empty(&c->list)))
		return;
	list_del_init(&c->list);
}

static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

823 824 825 826 827 828 829
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
830
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
831

832
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
833 834 835

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
836
			__set_bit(h->dev[i]->target, lun_taken);
837 838
	}

839 840 841 842 843 844
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	}
	return !found;
}

/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

860
	if (n >= HPSA_MAX_DEVICES) {
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
	 * unit no, zero otherise.
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;

	/* initially, (before registering with scsi layer) we don't
	 * know our hostno and we don't want to print anything first
	 * time anyway (the scsi layer's inquiries will show that info)
	 */
	/* if (hostno != -1) */
		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
			scsi_device_type(device->devtype), hostno,
			device->bus, device->target, device->lun);
	return 0;
}

928 929 930 931 932 933 934 935 936
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
937 938 939 940

	/* Raid offload parameters changed. */
	h->dev[entry]->offload_config = new_entry->offload_config;
	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
941 942 943
	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
	h->dev[entry]->raid_map = new_entry->raid_map;
944

945 946 947 948 949
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
		new_entry->target, new_entry->lun);
}

950 951 952 953 954 955 956
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
957
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
958 959
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
960 961 962 963 964 965 966 967 968 969

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

970 971 972 973 974 975 976 977
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
			new_entry->target, new_entry->lun);
}

978 979 980 981 982 983 984 985
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

986
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
		sd->lun);
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1056 1057 1058 1059 1060 1061 1062 1063 1064
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1065 1066 1067 1068
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1069 1070 1071
	return 0;
}

1072 1073 1074
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1075 1076 1077 1078
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1079 1080 1081 1082 1083 1084 1085 1086 1087
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1088
#define DEVICE_UPDATED 3
1089
	for (i = 0; i < haystack_size; i++) {
1090 1091
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1092 1093
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1094 1095 1096
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1097
				return DEVICE_SAME;
1098
			} else {
1099
				return DEVICE_CHANGED;
1100
			}
1101 1102 1103 1104 1105 1106
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1107
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1121 1122
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1136 1137
	 * If minor device attributes change, just update
	 * the existing device structure.
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1152 1153
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1154 1155 1156 1157
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1158 1159
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
	spin_unlock_irqrestore(&h->devlock, flags);

	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
		struct scsi_device *sdev =
			scsi_device_lookup(sh, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		if (sdev != NULL) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
		} else {
			/* We don't expect to get here.
			 * future cmds to this device will get selection
			 * timeout as if the device was gone.
			 */
			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
				" for removal.", hostno, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
			"device not added.\n", hostno, added[i]->bus,
			added[i]->target, added[i]->lun);
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1238
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

/* link sdev->hostdata to our per-device structure. */
static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
	if (sd != NULL)
		sdev->hostdata = sd;
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1274
	/* nothing to do. */
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
	if (!h->cmd_sg_list)
		return -ENOMEM;
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
		if (!h->cmd_sg_list[i])
			goto clean;
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1315
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
	chain_sg->Ext = HPSA_SG_CHAIN;
	chain_sg->Len = sizeof(*chain_sg) *
		(c->Header.SGTotal - h->max_cmd_sg_entries);
	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
				PCI_DMA_TODEVICE);
1328 1329 1330 1331 1332 1333
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		chain_sg->Addr.lower = 0;
		chain_sg->Addr.upper = 0;
		return -1;
	}
1334 1335
	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1336
	return 0;
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;
	union u64bit temp64;

	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	temp64.val32.lower = chain_sg->Addr.lower;
	temp64.val32.upper = chain_sg->Addr.upper;
	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
}

1354 1355 1356 1357 1358 1359

/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1360 1361 1362 1363 1364
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;
1365
	int retry = 0;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
			dev_warn(&h->pdev->dev,
				"%s: task complete with check condition.\n",
				"HP SSD Smart Path");
			if (c2->error_data.data_present !=
					IOACCEL2_SENSE_DATA_PRESENT)
				break;
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
			cmd->result |= SAM_STAT_CHECK_CONDITION;
1389
			retry = 1;
1390 1391 1392 1393 1394
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
			dev_warn(&h->pdev->dev,
				"%s: task complete with BUSY status.\n",
				"HP SSD Smart Path");
1395
			retry = 1;
1396 1397 1398 1399 1400
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
			dev_warn(&h->pdev->dev,
				"%s: task complete with reservation conflict.\n",
				"HP SSD Smart Path");
1401
			retry = 1;
1402 1403 1404 1405 1406 1407 1408 1409 1410
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
			/* Make scsi midlayer do unlimited retries */
			cmd->result = DID_IMM_RETRY << 16;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
			dev_warn(&h->pdev->dev,
				"%s: task complete with aborted status.\n",
				"HP SSD Smart Path");
1411
			retry = 1;
1412 1413 1414 1415 1416
			break;
		default:
			dev_warn(&h->pdev->dev,
				"%s: task complete with unrecognized status: 0x%02x\n",
				"HP SSD Smart Path", c2->error_data.status);
1417
			retry = 1;
1418 1419 1420 1421 1422 1423 1424 1425
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
		/* don't expect to get here. */
		dev_warn(&h->pdev->dev,
			"unexpected delivery or target failure, status = 0x%02x\n",
			c2->error_data.status);
1426
		retry = 1;
1427 1428 1429 1430 1431 1432 1433
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1434
		retry = 1;
1435 1436 1437 1438 1439 1440 1441
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Unrecognized server response: 0x%02x\n",
1442 1443 1444
			"HP SSD Smart Path",
			c2->error_data.serv_response);
		retry = 1;
1445 1446
		break;
	}
1447 1448

	return retry;	/* retry on raid path? */
1449 1450 1451 1452 1453 1454 1455
}

static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1456
	int raid_retry = 0;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
			c2->error_data.status == 0)) {
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}

	/* Any RAID offload error results in retry which will use
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
1473 1474 1475 1476 1477 1478
		if (c2->error_data.status ==
			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
			dev_warn(&h->pdev->dev,
				"%s: Path is unavailable, retrying on standard path.\n",
				"HP SSD Smart Path");
		else
1479
			dev_warn(&h->pdev->dev,
1480
				"%s: Error 0x%02x, retrying on standard path.\n",
1481
				"HP SSD Smart Path", c2->error_data.status);
1482

1483
		dev->offload_enabled = 0;
1484
		h->drv_req_rescan = 1;	/* schedule controller for a rescan */
1485 1486 1487 1488 1489
		cmd->result = DID_SOFT_ERROR << 16;
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
	/* If error found, disable Smart Path, schedule a rescan,
	 * and force a retry on the standard path.
	 */
	if (raid_retry) {
		dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
			"HP SSD Smart Path");
		dev->offload_enabled = 0; /* Disable Smart Path */
		h->drv_req_rescan = 1;	  /* schedule controller rescan */
		cmd->result = DID_SOFT_ERROR << 16;
	}
1501 1502 1503 1504
	cmd_free(h, c);
	cmd->scsi_done(cmd);
}

1505
static void complete_scsi_command(struct CommandList *cp)
1506 1507 1508 1509
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
1510
	struct hpsa_scsi_dev_t *dev;
1511 1512 1513 1514

	unsigned char sense_key;
	unsigned char asc;      /* additional sense code */
	unsigned char ascq;     /* additional sense code qualifier */
1515
	unsigned long sense_data_size;
1516 1517 1518 1519

	ei = cp->err_info;
	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
	h = cp->h;
1520
	dev = cmd->device->hostdata;
1521 1522

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1523 1524
	if ((cp->cmd_type == CMD_SCSI) &&
		(cp->Header.SGTotal > h->max_cmd_sg_entries))
1525
		hpsa_unmap_sg_chain_block(h, cp);
1526 1527 1528

	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1529 1530 1531 1532

	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

1533
	cmd->result |= ei->ScsiStatus;
1534 1535

	/* copy the sense data whether we need to or not. */
1536 1537 1538 1539 1540 1541 1542 1543
	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
		sense_data_size = SCSI_SENSE_BUFFERSIZE;
	else
		sense_data_size = sizeof(ei->SenseInfo);
	if (ei->SenseLen < sense_data_size)
		sense_data_size = ei->SenseLen;

	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1544 1545 1546 1547
	scsi_set_resid(cmd, ei->ResidualCnt);

	if (ei->CommandStatus == 0) {
		cmd_free(h, cp);
1548
		cmd->scsi_done(cmd);
1549 1550 1551
		return;
	}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
		cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
		cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
		cp->Header.Tag.lower = c->Tag.lower;
		cp->Header.Tag.upper = c->Tag.upper;
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
			cmd->result = DID_SOFT_ERROR << 16;
			cmd_free(h, cp);
			cmd->scsi_done(cmd);
			return;
		}
1576 1577
	}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
		if (ei->ScsiStatus) {
			/* Get sense key */
			sense_key = 0xf & ei->SenseInfo[2];
			/* Get additional sense code */
			asc = ei->SenseInfo[12];
			/* Get addition sense code qualifier */
			ascq = ei->SenseInfo[13];
		}

		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1592
			if (check_for_unit_attention(h, cp))
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
				break;
			if (sense_key == ILLEGAL_REQUEST) {
				/*
				 * SCSI REPORT_LUNS is commonly unsupported on
				 * Smart Array.  Suppress noisy complaint.
				 */
				if (cp->Request.CDB[0] == REPORT_LUNS)
					break;

				/* If ASC/ASCQ indicate Logical Unit
				 * Not Supported condition,
				 */
				if ((asc == 0x25) && (ascq == 0x0)) {
					dev_warn(&h->pdev->dev, "cp %p "
						"has check condition\n", cp);
					break;
				}
			}

			if (sense_key == NOT_READY) {
				/* If Sense is Not Ready, Logical Unit
				 * Not ready, Manual Intervention
				 * required
				 */
				if ((asc == 0x04) && (ascq == 0x03)) {
					dev_warn(&h->pdev->dev, "cp %p "
						"has check condition: unit "
						"not ready, manual "
						"intervention required\n", cp);
					break;
				}
			}
1625 1626 1627 1628 1629 1630
			if (sense_key == ABORTED_COMMAND) {
				/* Aborted command is retryable */
				dev_warn(&h->pdev->dev, "cp %p "
					"has check condition: aborted command: "
					"ASC: 0x%x, ASCQ: 0x%x\n",
					cp, asc, ascq);
1631
				cmd->result |= DID_SOFT_ERROR << 16;
1632 1633
				break;
			}
1634
			/* Must be some other type of check condition */
1635
			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1636 1637 1638 1639
					"unknown type: "
					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
					"Returning result: 0x%x, "
					"cmd=[%02x %02x %02x %02x %02x "
1640
					"%02x %02x %02x %02x %02x %02x "
1641 1642 1643 1644 1645 1646 1647
					"%02x %02x %02x %02x %02x]\n",
					cp, sense_key, asc, ascq,
					cmd->result,
					cmd->cmnd[0], cmd->cmnd[1],
					cmd->cmnd[2], cmd->cmnd[3],
					cmd->cmnd[4], cmd->cmnd[5],
					cmd->cmnd[6], cmd->cmnd[7],
1648 1649 1650 1651
					cmd->cmnd[8], cmd->cmnd[9],
					cmd->cmnd[10], cmd->cmnd[11],
					cmd->cmnd[12], cmd->cmnd[13],
					cmd->cmnd[14], cmd->cmnd[15]);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
			break;
		}


		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
		dev_warn(&h->pdev->dev, "cp %p has"
			" completed with data overrun "
			"reported\n", cp);
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
1706
		cmd->result = DID_ERROR << 16;
1707
		dev_warn(&h->pdev->dev, "cp %p has "
1708
			"protocol error\n", cp);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
		break;
	case CMD_ABORTED:
		cmd->result = DID_ABORT << 16;
		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
				cp, ei->ScsiStatus);
		break;
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
		break;
	case CMD_UNSOLICITED_ABORT:
1728 1729
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1730 1731 1732 1733 1734 1735
			"abort\n", cp);
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
		break;
1736 1737 1738 1739
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
1740 1741 1742 1743 1744 1745 1746 1747
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
1748 1749 1750 1751 1752 1753
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
	cmd_free(h, cp);
1754
	cmd->scsi_done(cmd);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;
	union u64bit addr64;

	for (i = 0; i < sg_used; i++) {
		addr64.val32.lower = c->SG[i].Addr.lower;
		addr64.val32.upper = c->SG[i].Addr.upper;
		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
			data_direction);
	}
}

1771
static int hpsa_map_one(struct pci_dev *pdev,
1772 1773 1774 1775 1776
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
1777
	u64 addr64;
1778 1779 1780 1781

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
		cp->Header.SGTotal = 0;
1782
		return 0;
1783 1784
	}

1785
	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1786
	if (dma_mapping_error(&pdev->dev, addr64)) {
1787
		/* Prevent subsequent unmap of something never mapped */
1788 1789
		cp->Header.SGList = 0;
		cp->Header.SGTotal = 0;
1790
		return -1;
1791
	}
1792
	cp->SG[0].Addr.lower =
1793
	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1794
	cp->SG[0].Addr.upper =
1795
	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1796
	cp->SG[0].Len = buflen;
1797
	cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */
1798 1799
	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1800
	return 0;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
}

static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c)
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
	enqueue_cmd_and_start_io(h, c);
	wait_for_completion(&wait);
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
	struct CommandList *c)
{
	unsigned long flags;

	/* If controller lockup detected, fake a hardware error. */
	spin_lock_irqsave(&h->lock, flags);
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
	} else {
		spin_unlock_irqrestore(&h->lock, flags);
		hpsa_scsi_do_simple_cmd_core(h, c);
	}
}

1829
#define MAX_DRIVER_CMD_RETRIES 25
1830 1831 1832
static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction)
{
1833
	int backoff_time = 10, retry_count = 0;
1834 1835

	do {
1836
		memset(c->err_info, 0, sizeof(*c->err_info));
1837 1838
		hpsa_scsi_do_simple_cmd_core(h, c);
		retry_count++;
1839 1840 1841 1842 1843
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
1844
	} while ((check_for_unit_attention(h, c) ||
1845 1846
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
1847 1848 1849
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
}

1850 1851
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
1852
{
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		txt, lun[0], lun[1], lun[2], lun[3],
		lun[4], lun[5], lun[6], lun[7],
		cdb[0], cdb[1], cdb[2], cdb[3],
		cdb[4], cdb[5], cdb[6], cdb[7],
		cdb[8], cdb[9], cdb[10], cdb[11],
		cdb[12], cdb[13], cdb[14], cdb[15]);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
1870
	struct device *d = &cp->h->pdev->dev;
1871
	const u8 *sd = ei->SenseInfo;
1872 1873 1874

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
1875 1876 1877 1878 1879 1880
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
				sd[2] & 0x0f, sd[12], sd[13]);
		else
			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
1881 1882 1883 1884 1885 1886 1887 1888 1889
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
1890
		hpsa_print_cmd(h, "overrun condition", cp);
1891 1892 1893 1894 1895
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
1896 1897
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
1898 1899 1900
		}
		break;
	case CMD_PROTOCOL_ERR:
1901
		hpsa_print_cmd(h, "protocol error", cp);
1902 1903
		break;
	case CMD_HARDWARE_ERR:
1904
		hpsa_print_cmd(h, "hardware error", cp);
1905 1906
		break;
	case CMD_CONNECTION_LOST:
1907
		hpsa_print_cmd(h, "connection lost", cp);
1908 1909
		break;
	case CMD_ABORTED:
1910
		hpsa_print_cmd(h, "aborted", cp);
1911 1912
		break;
	case CMD_ABORT_FAILED:
1913
		hpsa_print_cmd(h, "abort failed", cp);
1914 1915
		break;
	case CMD_UNSOLICITED_ABORT:
1916
		hpsa_print_cmd(h, "unsolicited abort", cp);
1917 1918
		break;
	case CMD_TIMEOUT:
1919
		hpsa_print_cmd(h, "timed out", cp);
1920
		break;
1921
	case CMD_UNABORTABLE:
1922
		hpsa_print_cmd(h, "unabortable", cp);
1923
		break;
1924
	default:
1925 1926
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
1927 1928 1929 1930 1931
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1932
			u16 page, unsigned char *buf,
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);

	if (c == NULL) {			/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1943
		return -ENOMEM;
1944 1945
	}

1946 1947 1948 1949 1950
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
1951 1952 1953
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1954
		hpsa_scsi_interpret_error(h, c);
1955 1956
		rc = -1;
	}
1957
out:
1958 1959 1960 1961
	cmd_special_free(h, c);
	return rc;
}

1962 1963
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
	u8 reset_type)
1964 1965 1966 1967 1968 1969 1970 1971 1972
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);

	if (c == NULL) {			/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1973
		return -ENOMEM;
1974 1975
	}

1976
	/* fill_cmd can't fail here, no data buffer to map. */
1977 1978 1979
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
1980 1981 1982 1983 1984
	hpsa_scsi_do_simple_cmd_core(h, c);
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
1985
		hpsa_scsi_interpret_error(h, c);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
		rc = -1;
	}
	cmd_special_free(h, c);
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2002
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2003 2004 2005 2006 2007 2008 2009 2010
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
2047 2048 2049 2050 2051 2052 2053 2054
	dev_info(&h->pdev->dev, "flags = %u\n",
			le16_to_cpu(map_buff->flags));
	if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
		dev_info(&h->pdev->dev, "encrypytion = ON\n");
	else
		dev_info(&h->pdev->dev, "encrypytion = OFF\n");
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);
	if (c == NULL) {
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -ENOMEM;
	}
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
		cmd_special_free(h, c);
		return -ENOMEM;
	}
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2109
		hpsa_scsi_interpret_error(h, c);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
		cmd_special_free(h, c);
		return -1;
	}
	cmd_special_free(h, c);

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
static int hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return 0;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return 0;
exit_supported:
	kfree(buf);
	return 1;
}

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2181 2182
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
2183
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2184
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
out:
	kfree(buf);
	return;
}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return -1;
2217
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
		struct ReportLUNdata *buf, int bufsize,
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -1;
	}
2238 2239
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
2240 2241 2242 2243 2244
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2245 2246 2247 2248 2249 2250
	if (extended_response)
		c->Request.CDB[1] = extended_response;
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2251
		hpsa_scsi_interpret_error(h, c);
2252
		rc = -1;
2253 2254 2255 2256 2257 2258 2259 2260
	} else {
		if (buf->extended_response_flag != extended_response) {
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
				buf->extended_response_flag);
			rc = -1;
		}
2261
	}
2262
out:
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	cmd_special_free(h, c);
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf,
		int bufsize, int extended_response)
{
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

static int hpsa_update_device_info(struct ctlr_info *h,
2289 2290
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
2291
{
2292 2293 2294 2295 2296 2297

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

2298
	unsigned char *inq_buff;
2299
	unsigned char *obdr_sig;
2300

2301
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
2326
		is_logical_dev_addr_mode(scsi3addr)) {
2327
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2328 2329 2330
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
	} else {
2331
		this_device->raid_level = RAID_UNKNOWN;
2332 2333 2334
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
	}
2335

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}

2346 2347 2348 2349 2350 2351 2352 2353
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

2354
static unsigned char *ext_target_model[] = {
2355 2356 2357 2358
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
2359
	"P2000 G3 SAS",
2360
	"MSA 2040 SAS",
2361 2362 2363
	NULL,
};

2364
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2365 2366 2367
{
	int i;

2368 2369 2370
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
2371 2372 2373 2374 2375
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
2376
 * Puts non-external target logical volumes on bus 0, external target logical
2377 2378 2379 2380 2381 2382
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
2383
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2384
{
2385 2386 2387 2388
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
2389
		if (is_hba_lunid(lunaddrbytes))
2390
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2391
		else
2392 2393 2394 2395 2396
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
2397 2398
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
2399 2400 2401 2402 2403 2404
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
2405
	}
2406
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2407 2408 2409 2410
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
2411
 * For the external targets (arrays), we have to manually detect the enclosure
2412 2413 2414 2415 2416 2417 2418 2419
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
2420
static int add_ext_target_dev(struct ctlr_info *h,
2421
	struct hpsa_scsi_dev_t *tmpdevice,
2422
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2423
	unsigned long lunzerobits[], int *n_ext_target_devs)
2424 2425 2426
{
	unsigned char scsi3addr[8];

2427
	if (test_bit(tmpdevice->target, lunzerobits))
2428 2429 2430 2431 2432
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

2433 2434
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
2435

2436
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2437 2438
		return 0;

2439
	memset(scsi3addr, 0, 8);
2440
	scsi3addr[3] = tmpdevice->target;
2441 2442 2443
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

2444 2445 2446
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

2447
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2448 2449
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
2450 2451 2452 2453
			"configuration.");
		return 0;
	}

2454
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2455
		return 0;
2456
	(*n_ext_target_devs)++;
2457 2458 2459
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
	set_bit(tmpdevice->target, lunzerobits);
2460 2461 2462
	return 1;
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
	struct ReportExtendedLUNdata *physicals = NULL;
	int responsesize = 24;	/* size of physical extended response */
	int extended = 2;	/* flag forces reporting 'other dev info'. */
	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
	u32 nphysicals = 0;	/* number of reported physical devs */
	int found = 0;		/* found match (1) or not (0) */
	u32 find;		/* handle we need to match */
	int i;
	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
	u32 it_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
	u32 scsi_nexus;		/* 4 byte device handle for the ioaccel2 cmd */

	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
		return 0; /* no match */

	/* point to the ioaccel2 device handle */
	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	if (c2a == NULL)
		return 0; /* no match */

	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
	if (scmd == NULL)
		return 0; /* no match */

	d = scmd->device->hostdata;
	if (d == NULL)
		return 0; /* no match */

	it_nexus = cpu_to_le32((u32) d->ioaccel_handle);
	scsi_nexus = cpu_to_le32((u32) c2a->scsi_nexus);
	find = c2a->scsi_nexus;

	/* Get the list of physical devices */
	physicals = kzalloc(reportsize, GFP_KERNEL);
	if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
		reportsize, extended)) {
		dev_err(&h->pdev->dev,
			"Can't lookup %s device handle: report physical LUNs failed.\n",
			"HP SSD Smart Path");
		kfree(physicals);
		return 0;
	}
	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
							responsesize;


	/* find ioaccel2 handle in list of physicals: */
	for (i = 0; i < nphysicals; i++) {
		/* handle is in bytes 28-31 of each lun */
		if (memcmp(&((struct ReportExtendedLUNdata *)
				physicals)->LUN[i][20], &find, 4) != 0) {
			continue; /* didn't match */
		}
		found = 1;
		memcpy(scsi3addr, &((struct ReportExtendedLUNdata *)
					physicals)->LUN[i][0], 8);
		break; /* found it */
	}

	kfree(physicals);
	if (found)
		return 1;
	else
		return 0;

}
2542 2543 2544 2545 2546 2547 2548 2549
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
	int reportlunsize,
2550
	struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2551
	struct ReportLUNdata *logdev, u32 *nlogicals)
2552
{
2553 2554 2555 2556 2557
	int physical_entry_size = 8;

	*physical_mode = 0;

	/* For I/O accelerator mode we need to read physical device handles */
2558 2559
	if (h->transMethod & CFGTBL_Trans_io_accel1 ||
		h->transMethod & CFGTBL_Trans_io_accel2) {
2560 2561 2562
		*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
		physical_entry_size = 24;
	}
2563
	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize,
2564
							*physical_mode)) {
2565 2566 2567
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
2568 2569
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
							physical_entry_size;
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals - HPSA_MAX_PHYS_LUN);
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
2580
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

2599
u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
2600 2601
	int nphysicals, int nlogicals,
	struct ReportExtendedLUNdata *physdev_list,
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
2637
	struct ReportExtendedLUNdata *physdev_list = NULL;
2638
	struct ReportLUNdata *logdev_list = NULL;
2639 2640
	u32 nphysicals = 0;
	u32 nlogicals = 0;
2641
	int physical_mode = 0;
2642
	u32 ndev_allocated = 0;
2643 2644
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
2645
	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24;
2646
	int i, n_ext_target_devs, ndevs_to_allocate;
2647
	int raid_ctlr_position;
2648
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2649

2650
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2651 2652 2653 2654
	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);

2655
	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2656 2657 2658 2659 2660
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

2661 2662
	if (hpsa_gather_lun_info(h, reportlunsize,
			(struct ReportLUNdata *) physdev_list, &nphysicals,
2663
			&physical_mode, logdev_list, &nlogicals))
2664 2665
		goto out;

2666 2667 2668
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
2669
	 */
2670
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2671 2672 2673

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
2674 2675 2676 2677 2678 2679 2680
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

2681 2682 2683 2684 2685 2686 2687 2688 2689
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

2690 2691 2692 2693 2694
	if (unlikely(is_scsi_rev_5(h)))
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

2695
	/* adjust our table of devices */
2696
	n_ext_target_devs = 0;
2697
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2698
		u8 *lunaddrbytes, is_OBDR = 0;
2699 2700

		/* Figure out where the LUN ID info is coming from */
2701 2702
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
2703
		/* skip masked physical devices. */
2704 2705
		if (lunaddrbytes[3] & 0xC0 &&
			i < nphysicals + (raid_ctlr_position == 0))
2706 2707 2708
			continue;

		/* Get device type, vendor, model, device id */
2709 2710
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
2711
			continue; /* skip it if we can't talk to it. */
2712
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2713 2714 2715
		this_device = currentsd[ncurrent];

		/*
2716
		 * For external target devices, we have to insert a LUN 0 which
2717 2718 2719 2720 2721
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
2722
		if (add_ext_target_dev(h, tmpdevice, this_device,
2723
				lunaddrbytes, lunzerobits,
2724
				&n_ext_target_devs)) {
2725 2726 2727 2728 2729 2730 2731
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

		switch (this_device->devtype) {
2732
		case TYPE_ROM:
2733 2734 2735 2736 2737 2738 2739
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
2740 2741
			if (is_OBDR)
				ncurrent++;
2742 2743
			break;
		case TYPE_DISK:
2744 2745
			if (i >= nphysicals) {
				ncurrent++;
2746
				break;
2747 2748 2749 2750 2751 2752 2753
			}
			if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
				memcpy(&this_device->ioaccel_handle,
					&lunaddrbytes[20],
					sizeof(this_device->ioaccel_handle));
				ncurrent++;
			}
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
2772
		if (ncurrent >= HPSA_MAX_DEVICES)
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
}

/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
2789
static int hpsa_scatter_gather(struct ctlr_info *h,
2790 2791 2792 2793 2794
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	unsigned int len;
	struct scatterlist *sg;
2795
	u64 addr64;
2796 2797
	int use_sg, i, sg_index, chained;
	struct SGDescriptor *curr_sg;
2798

2799
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2800 2801 2802 2803 2804 2805 2806 2807

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

2808 2809 2810
	curr_sg = cp->SG;
	chained = 0;
	sg_index = 0;
2811
	scsi_for_each_sg(cmd, sg, use_sg, i) {
2812 2813 2814 2815 2816 2817
		if (i == h->max_cmd_sg_entries - 1 &&
			use_sg > h->max_cmd_sg_entries) {
			chained = 1;
			curr_sg = h->cmd_sg_list[cp->cmdindex];
			sg_index = 0;
		}
2818
		addr64 = (u64) sg_dma_address(sg);
2819
		len  = sg_dma_len(sg);
2820 2821 2822
		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
		curr_sg->Len = len;
2823
		curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST;
2824 2825 2826 2827 2828 2829 2830 2831 2832
		curr_sg++;
	}

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
		cp->Header.SGTotal = (u16) (use_sg + 1);
2833 2834 2835 2836
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
2837
		return 0;
2838 2839 2840 2841
	}

sglist_finished:

2842 2843
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2844 2845 2846
	return 0;
}

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

2895
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
2896 2897
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

2909 2910 2911 2912
	/* TODO: implement chaining support */
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
		return IO_ACCEL_INELIGIBLE;

2913 2914
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

2915 2916 2917
	if (fixup_ioaccel_cdb(cdb, &cdb_len))
		return IO_ACCEL_INELIGIBLE;

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
			curr_sg->Addr.upper =
				(u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
			curr_sg->Len = len;

			if (i == (scsi_sg_count(cmd) - 1))
				curr_sg->Ext = HPSA_SG_LAST;
			else
				curr_sg->Ext = 0;  /* we are not chaining */
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

2967
	c->Header.SGList = use_sg;
2968
	/* Fill out the command structure to submit */
2969
	cp->dev_handle = ioaccel_handle & 0xFFFF;
2970 2971
	cp->transfer_len = total_len;
	cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
2972
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
2973
	cp->control = control;
2974 2975
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
2976
	/* Tag was already set at init time. */
2977
	enqueue_cmd_and_start_io(h, c);
2978 2979
	return 0;
}
2980

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
}

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	BUG_ON(!(dev->offload_config && dev->offload_enabled));

	/* Are we doing encryption on this device */
	if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_6:
	case READ_6:
		if (map->volume_blk_size == 512) {
			cp->tweak_lower =
				(((u32) cmd->cmnd[2]) << 8) |
					cmd->cmnd[3];
			cp->tweak_upper = 0;
		} else {
			first_block =
				(((u64) cmd->cmnd[2]) << 8) |
					cmd->cmnd[3];
			first_block = (first_block * map->volume_blk_size)/512;
			cp->tweak_lower = (u32)first_block;
			cp->tweak_upper = (u32)(first_block >> 32);
		}
		break;
	case WRITE_10:
	case READ_10:
		if (map->volume_blk_size == 512) {
			cp->tweak_lower =
				(((u32) cmd->cmnd[2]) << 24) |
				(((u32) cmd->cmnd[3]) << 16) |
				(((u32) cmd->cmnd[4]) << 8) |
					cmd->cmnd[5];
			cp->tweak_upper = 0;
		} else {
			first_block =
				(((u64) cmd->cmnd[2]) << 24) |
				(((u64) cmd->cmnd[3]) << 16) |
				(((u64) cmd->cmnd[4]) << 8) |
					cmd->cmnd[5];
			first_block = (first_block * map->volume_blk_size)/512;
			cp->tweak_lower = (u32)first_block;
			cp->tweak_upper = (u32)(first_block >> 32);
		}
		break;
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
		if (map->volume_blk_size == 512) {
			cp->tweak_lower =
				(((u32) cmd->cmnd[2]) << 24) |
				(((u32) cmd->cmnd[3]) << 16) |
				(((u32) cmd->cmnd[4]) << 8) |
					cmd->cmnd[5];
			cp->tweak_upper = 0;
		} else {
			first_block =
				(((u64) cmd->cmnd[2]) << 24) |
				(((u64) cmd->cmnd[3]) << 16) |
				(((u64) cmd->cmnd[4]) << 8) |
					cmd->cmnd[5];
			first_block = (first_block * map->volume_blk_size)/512;
			cp->tweak_lower = (u32)first_block;
			cp->tweak_upper = (u32)(first_block >> 32);
		}
		break;
	case WRITE_16:
	case READ_16:
		if (map->volume_blk_size == 512) {
			cp->tweak_lower =
				(((u32) cmd->cmnd[6]) << 24) |
				(((u32) cmd->cmnd[7]) << 16) |
				(((u32) cmd->cmnd[8]) << 8) |
					cmd->cmnd[9];
			cp->tweak_upper =
				(((u32) cmd->cmnd[2]) << 24) |
				(((u32) cmd->cmnd[3]) << 16) |
				(((u32) cmd->cmnd[4]) << 8) |
					cmd->cmnd[5];
		} else {
			first_block =
				(((u64) cmd->cmnd[2]) << 56) |
				(((u64) cmd->cmnd[3]) << 48) |
				(((u64) cmd->cmnd[4]) << 40) |
				(((u64) cmd->cmnd[5]) << 32) |
				(((u64) cmd->cmnd[6]) << 24) |
				(((u64) cmd->cmnd[7]) << 16) |
				(((u64) cmd->cmnd[8]) << 8) |
					cmd->cmnd[9];
			first_block = (first_block * map->volume_blk_size)/512;
			cp->tweak_lower = (u32)first_block;
			cp->tweak_upper = (u32)(first_block >> 32);
		}
		break;
	default:
		dev_err(&h->pdev->dev,
			"ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
			__func__);
		BUG();
		break;
	}
}

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
		return IO_ACCEL_INELIGIBLE;

	if (fixup_ioaccel_cdb(cdb, &cdb_len))
		return IO_ACCEL_INELIGIBLE;
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (use_sg) {
		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
		curr_sg = cp->sg;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
3166 3167
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3168 3169
			break;
		case DMA_FROM_DEVICE:
3170 3171
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
3172 3173
			break;
		case DMA_NONE:
3174 3175
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
3176 3177 3178 3179 3180 3181 3182 3183
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
3184 3185
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
3186
	}
3187 3188 3189 3190

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

3191
	cp->scsi_nexus = ioaccel_handle;
3192
	cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
				DIRECT_LOOKUP_BIT;
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
	memset(cp->cciss_lun, 0, sizeof(cp->cciss_lun));
	cp->cmd_priority_task_attr = 0;

	/* fill in sg elements */
	cp->sg_count = (u8) use_sg;

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
	cp->err_len = cpu_to_le32((u32) sizeof(cp->error_data));

	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
{
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
						cdb, cdb_len, scsi3addr);
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
						cdb, cdb_len, scsi3addr);
}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
		*map_index %= map->data_disks_per_row;
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
		*current_group = *map_index / map->data_disks_per_row;
		if (offload_to_mirror == *current_group)
			continue;
		if (*current_group < (map->layout_map_count - 1)) {
			/* select map index from next group */
			*map_index += map->data_disks_per_row;
			(*current_group)++;
		} else {
			/* select map index from first group */
			*map_index %= map->data_disks_per_row;
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
3268 3269 3270 3271 3272 3273 3274 3275
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
3276 3277 3278 3279 3280 3281 3282 3283 3284
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
3285
	int offload_to_mirror;
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387

	BUG_ON(!(dev->offload_config && dev->offload_enabled));

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	BUG_ON(block_cnt == 0);
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
	if (last_block >= map->volume_blk_cnt || last_block < first_block)
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
	blocks_per_row = map->data_disks_per_row * map->strip_size;
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
	(void) do_div(tmpdiv,  map->strip_size);
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
	(void) do_div(tmpdiv, map->strip_size);
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	first_column = first_row_offset / map->strip_size;
	last_column = last_row_offset / map->strip_size;
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
3388 3389
	total_disks_per_row = map->data_disks_per_row +
				map->metadata_disks_per_row;
3390 3391
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
				map->row_cnt;
3392 3393 3394 3395 3396 3397 3398 3399 3400
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
3401
		 */
3402
		BUG_ON(map->layout_map_count != 2);
3403 3404 3405
		if (dev->offload_to_mirror)
			map_index += map->data_disks_per_row;
		dev->offload_to_mirror = !dev->offload_to_mirror;
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 */
		BUG_ON(map->layout_map_count != 3);

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
			(offload_to_mirror >= map->layout_map_count - 1)
			? 0 : offload_to_mirror + 1;
		/* FIXME: remove after debug/dev */
		BUG_ON(offload_to_mirror >= map->layout_map_count);
		dev_warn(&h->pdev->dev,
			"DEBUG: Using physical disk map index %d from mirror group %d\n",
			map_index, offload_to_mirror);
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
		if (map->layout_map_count <= 1)
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
			map->strip_size * map->data_disks_per_row;
		BUG_ON(r5or6_blocks_per_row == 0);
		stripesize = r5or6_blocks_per_row * map->layout_map_count;
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
		if (first_group != last_group)
#endif
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
			r5or6_first_row_offset / map->strip_size;
		r5or6_last_column =
			r5or6_last_row_offset / map->strip_size;
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
			map->row_cnt;

		map_index = (first_group *
			(map->row_cnt * total_disks_per_row)) +
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
3520
	}
3521

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
	disk_handle = dd[map_index].ioaccel_handle;
	disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
			(first_row_offset - (first_column * map->strip_size));
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
						dev->scsi3addr);
}

J
Jeff Garzik 已提交
3570
static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
3571 3572 3573 3574 3575 3576 3577
	void (*done)(struct scsi_cmnd *))
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	unsigned long flags;
3578
	int rc = 0;
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		done(cmd);
		return 0;
	}
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));

	spin_lock_irqsave(&h->lock, flags);
3591 3592 3593 3594 3595 3596
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
	}
3597
	spin_unlock_irqrestore(&h->lock, flags);
3598
	c = cmd_alloc(h);
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
		return SCSI_MLQUEUE_HOST_BUSY;
	}

	/* Fill in the command list header */

	cmd->scsi_done = done;    /* save this for use by completion code */

	/* save c in case we have to abort it  */
	cmd->host_scribble = (unsigned char *) c;

	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
3613

3614 3615 3616 3617
	/* Call alternate submit routine for I/O accelerated commands.
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
3618 3619
		cmd->request->cmd_type == REQ_TYPE_FS &&
		h->acciopath_status)) {
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
		if (dev->offload_enabled) {
			rc = hpsa_scsi_ioaccel_raid_map(h, c);
			if (rc == 0)
				return 0; /* Sent on ioaccel path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		} else if (dev->ioaccel_handle) {
			rc = hpsa_scsi_ioaccel_direct_map(h, c);
			if (rc == 0)
				return 0; /* Sent on direct map path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		}
	}
3638

3639 3640
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3641 3642
	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	c->Request.Type.Type = TYPE_CMD;
	c->Request.Type.Attribute = ATTR_SIMPLE;
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
		c->Request.Type.Direction = XFER_WRITE;
		break;
	case DMA_FROM_DEVICE:
		c->Request.Type.Direction = XFER_READ;
		break;
	case DMA_NONE:
		c->Request.Type.Direction = XFER_NONE;
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

		c->Request.Type.Direction = XFER_RSVD;
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

3687
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3688 3689 3690 3691 3692 3693 3694 3695
		cmd_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

J
Jeff Garzik 已提交
3696 3697
static DEF_SCSI_QCMD(hpsa_scsi_queue_command)

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
{
	unsigned long flags;

	/*
	 * Don't let rescans be initiated on a controller known
	 * to be locked up.  If the controller locks up *during*
	 * a rescan, that thread is probably hosed, but at least
	 * we can prevent new rescan threads from piling up on a
	 * locked up controller.
	 */
	spin_lock_irqsave(&h->lock, flags);
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		spin_lock_irqsave(&h->scan_lock, flags);
		h->scan_finished = 1;
		wake_up_all(&h->scan_wait_queue);
		spin_unlock_irqrestore(&h->scan_lock, flags);
		return 1;
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return 0;
}

3722 3723 3724 3725 3726
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

3727 3728 3729
	if (do_not_scan_if_controller_locked_up(h))
		return;

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

3746 3747 3748
	if (do_not_scan_if_controller_locked_up(h))
		return;

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1; /* mark scan as finished. */
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
}

static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
static int hpsa_change_queue_depth(struct scsi_device *sdev,
	int qdepth, int reason)
{
	struct ctlr_info *h = sdev_to_hba(sdev);

	if (reason != SCSI_QDEPTH_DEFAULT)
		return -ENOTSUPP;

	if (qdepth < 1)
		qdepth = 1;
	else
		if (qdepth > h->nr_cmds)
			qdepth = h->nr_cmds;
	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
	return sdev->queue_depth;
}

3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
3797 3798
	struct Scsi_Host *sh;
	int error;
3799

3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
	sh->can_queue = h->nr_cmds;
	sh->cmd_per_lun = h->nr_cmds;
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
	error = scsi_add_host(sh, &h->pdev->dev);
	if (error)
		goto fail_host_put;
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	dev_err(&h->pdev->dev, "%s: scsi_add_host"
		" failed for controller %d\n", __func__, h->ctlr);
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
}

static int wait_for_device_to_become_ready(struct ctlr_info *h,
	unsigned char lunaddr[])
{
	int rc = 0;
	int count = 0;
	int waittime = 1; /* seconds */
	struct CommandList *c;

	c = cmd_special_alloc(h);
	if (!c) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"wait_for_device_to_become_ready.\n");
		return IO_ERROR;
	}

	/* Send test unit ready until device ready, or give up. */
	while (count < HPSA_TUR_RETRY_LIMIT) {

		/* Wait for a bit.  do this first, because if we send
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
		count++;

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
			waittime = waittime * 2;

3863 3864 3865
		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
		(void) fill_cmd(c, TEST_UNIT_READY, h,
				NULL, 0, 0, lunaddr, TYPE_CMD);
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
		hpsa_scsi_do_simple_cmd_core(h, c);
		/* no unmap needed here because no data xfer. */

		if (c->err_info->CommandStatus == CMD_SUCCESS)
			break;

		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
			break;

		dev_warn(&h->pdev->dev, "waiting %d secs "
			"for device to become ready.\n", waittime);
		rc = 1; /* device not ready. */
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

	cmd_special_free(h, c);
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
3911 3912
	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
3913
	/* send a reset to the SCSI LUN which the command was sent to */
3914
	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
3915 3916 3917 3918 3919 3920 3921
	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
		return SUCCESS;

	dev_warn(&h->pdev->dev, "resetting device failed.\n");
	return FAILED;
}

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

3937 3938 3939 3940 3941 3942 3943 3944
static void hpsa_get_tag(struct ctlr_info *h,
	struct CommandList *c, u32 *taglower, u32 *tagupper)
{
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
		*tagupper = cm1->Tag.upper;
		*taglower = cm1->Tag.lower;
3945 3946 3947 3948 3949
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
3950 3951 3952
		/* upper tag not used in ioaccel2 mode */
		memset(tagupper, 0, sizeof(*tagupper));
		*taglower = cm2->Tag;
3953
		return;
3954
	}
3955 3956
	*tagupper = c->Header.Tag.upper;
	*taglower = c->Header.Tag.lower;
3957 3958
}

3959

3960
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
3961
	struct CommandList *abort, int swizzle)
3962 3963 3964 3965
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
3966
	u32 tagupper, taglower;
3967 3968 3969 3970 3971 3972 3973

	c = cmd_special_alloc(h);
	if (c == NULL) {	/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -ENOMEM;
	}

3974 3975 3976
	/* fill_cmd can't fail here, no buffer to map */
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
		0, 0, scsi3addr, TYPE_MSG);
3977 3978
	if (swizzle)
		swizzle_abort_tag(&c->Request.CDB[4]);
3979
	hpsa_scsi_do_simple_cmd_core(h, c);
3980
	hpsa_get_tag(h, abort, &taglower, &tagupper);
3981
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
3982
		__func__, tagupper, taglower);
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
3994
			__func__, tagupper, taglower);
3995
		hpsa_scsi_interpret_error(h, c);
3996 3997 3998 3999
		rc = -1;
		break;
	}
	cmd_special_free(h, c);
4000 4001
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
		__func__, tagupper, taglower);
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
	return rc;
}

/*
 * hpsa_find_cmd_in_queue
 *
 * Used to determine whether a command (find) is still present
 * in queue_head.   Optionally excludes the last element of queue_head.
 *
 * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
 * not yet been submitted, and so can be aborted by the driver without
 * sending an abort to the hardware.
 *
 * Returns pointer to command if found in queue, NULL otherwise.
 */
static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
			struct scsi_cmnd *find, struct list_head *queue_head)
{
	unsigned long flags;
	struct CommandList *c = NULL;	/* ptr into cmpQ */

	if (!find)
		return 0;
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(c, queue_head, list) {
		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
			continue;
		if (c->scsi_cmd == find) {
			spin_unlock_irqrestore(&h->lock, flags);
			return c;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return NULL;
}

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
					u8 *tag, struct list_head *queue_head)
{
	unsigned long flags;
	struct CommandList *c;

	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(c, queue_head, list) {
		if (memcmp(&c->Header.Tag, tag, 8) != 0)
			continue;
		spin_unlock_irqrestore(&h->lock, flags);
		return c;
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return NULL;
}

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
	if (wait_for_device_to_become_ready(h, psa) != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
/* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
 * tell which kind we're dealing with, so we send the abort both ways.  There
 * shouldn't be any collisions between swizzled and unswizzled tags due to the
 * way we construct our tags but we check anyway in case the assumptions which
 * make this true someday become false.
 */
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
	u8 swizzled_tag[8];
	struct CommandList *c;
	int rc = 0, rc2 = 0;

4133 4134 4135 4136 4137 4138 4139 4140
	/* ioccelerator mode 2 commands should be aborted via the
	 * accelerated path, since RAID path is unaware of these commands,
	 * but underlying firmware can't handle abort TMF.
	 * Change abort to physical device reset.
	 */
	if (abort->cmd_type == CMD_IOACCEL2)
		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
	/* we do not expect to find the swizzled tag in our queue, but
	 * check anyway just to be sure the assumptions which make this
	 * the case haven't become wrong.
	 */
	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
	swizzle_abort_tag(swizzled_tag);
	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
	if (c != NULL) {
		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
		return hpsa_send_abort(h, scsi3addr, abort, 0);
	}
	rc = hpsa_send_abort(h, scsi3addr, abort, 0);

	/* if the command is still in our queue, we can't conclude that it was
	 * aborted (it might have just completed normally) but in any case
	 * we don't need to try to abort it another way.
	 */
	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
	if (c)
		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
	return rc && rc2;
}

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

	int i, rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct CommandList *found;
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
4179
	u32 tagupper, taglower;
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211

	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
	if (WARN(h == NULL,
			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
		return FAILED;

	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
		h->scsi_host->host_no, sc->device->channel,
		sc->device->id, sc->device->lun);

	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
		return FAILED;
	}

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
				msg);
		return FAILED;
	}
4212 4213
	hpsa_get_tag(h, abort, &taglower, &tagupper);
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
	as  = (struct scsi_cmnd *) abort->scsi_cmd;
	if (as != NULL)
		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
			as->cmnd[0], as->serial_number);
	dev_dbg(&h->pdev->dev, "%s\n", msg);
	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);

	/* Search reqQ to See if command is queued but not submitted,
	 * if so, complete the command with aborted status and remove
	 * it from the reqQ.
	 */
	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
	if (found) {
		found->err_info->CommandStatus = CMD_ABORTED;
		finish_cmd(found);
		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
				msg);
		return SUCCESS;
	}

	/* not in reqQ, if also not in cmpQ, must have already completed */
	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
	if (!found)  {
4238
		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4239 4240 4241 4242 4243 4244 4245 4246 4247
				msg);
		return SUCCESS;
	}

	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
4248
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
	if (rc != 0) {
		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
			h->scsi_host->host_no,
			dev->bus, dev->target, dev->lun);
		return FAILED;
	}
	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);

	/* If the abort(s) above completed and actually aborted the
	 * command, then the command to be aborted should already be
	 * completed.  If not, wait around a bit more to see if they
	 * manage to complete normally.
	 */
#define ABORT_COMPLETE_WAIT_SECS 30
	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
		if (!found)
			return SUCCESS;
		msleep(100);
	}
	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
		msg, ABORT_COMPLETE_WAIT_SECS);
	return FAILED;
}


4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
 */
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	int i;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;
4288
	unsigned long flags;
4289

4290
	spin_lock_irqsave(&h->lock, flags);
4291 4292
	do {
		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4293 4294
		if (i == h->nr_cmds) {
			spin_unlock_irqrestore(&h->lock, flags);
4295
			return NULL;
4296
		}
4297 4298 4299
	} while (test_and_set_bit
		 (i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
4300 4301
	spin_unlock_irqrestore(&h->lock, flags);

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
	c = h->cmd_pool + i;
	memset(c, 0, sizeof(*c));
	cmd_dma_handle = h->cmd_pool_dhandle
	    + i * sizeof(*c);
	c->err_info = h->errinfo_pool + i;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + i * sizeof(*c->err_info);

	c->cmdindex = i;

4313
	INIT_LIST_HEAD(&c->list);
4314 4315
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
	c->ErrDesc.Addr.lower = temp64.val32.lower;
	c->ErrDesc.Addr.upper = temp64.val32.upper;
	c->ErrDesc.Len = sizeof(*c->err_info);

	c->h = h;
	return c;
}

/* For operations that can wait for kmalloc to possibly sleep,
 * this routine can be called. Lock need not be held to call
 * cmd_special_alloc. cmd_special_free() is the complement.
 */
static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;

	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
	if (c == NULL)
		return NULL;
	memset(c, 0, sizeof(*c));

4339
	c->cmd_type = CMD_SCSI;
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	c->cmdindex = -1;

	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
		    &err_dma_handle);

	if (c->err_info == NULL) {
		pci_free_consistent(h->pdev,
			sizeof(*c), c, cmd_dma_handle);
		return NULL;
	}
	memset(c->err_info, 0, sizeof(*c->err_info));

4352
	INIT_LIST_HEAD(&c->list);
4353 4354
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
	c->ErrDesc.Addr.lower = temp64.val32.lower;
	c->ErrDesc.Addr.upper = temp64.val32.upper;
	c->ErrDesc.Len = sizeof(*c->err_info);

	c->h = h;
	return c;
}

static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
	int i;
4366
	unsigned long flags;
4367 4368

	i = c - h->cmd_pool;
4369
	spin_lock_irqsave(&h->lock, flags);
4370 4371
	clear_bit(i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG));
4372
	spin_unlock_irqrestore(&h->lock, flags);
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
}

static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
{
	union u64bit temp64;

	temp64.val32.lower = c->ErrDesc.Addr.lower;
	temp64.val32.upper = c->ErrDesc.Addr.upper;
	pci_free_consistent(h->pdev, sizeof(*c->err_info),
			    c->err_info, (dma_addr_t) temp64.val);
	pci_free_consistent(h->pdev, sizeof(*c),
4384
			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
}

#ifdef CONFIG_COMPAT

static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

4398
	memset(&arg64, 0, sizeof(arg64));
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

4414
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
	int cmd, void *arg)
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

4435
	memset(&arg64, 0, sizeof(arg64));
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

4452
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
4453 4454 4455 4456 4457 4458 4459 4460
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490

static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
	union u64bit temp64;
4537
	int rc = 0;
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
			return -EFAULT;
4553 4554 4555 4556
		if (iocommand.Request.Type.Direction == XFER_WRITE) {
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
4557 4558
				rc = -EFAULT;
				goto out_kfree;
4559 4560 4561
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
4562
		}
4563
	}
4564 4565
	c = cmd_special_alloc(h);
	if (c == NULL) {
4566 4567
		rc = -ENOMEM;
		goto out_kfree;
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
	}
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
		c->Header.SGTotal = 1;
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
		c->Header.SGTotal = 0;
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
	/* use the kernel address the cmd block for tag */
	c->Header.Tag.lower = c->busaddr;

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
		temp64.val = pci_map_single(h->pdev, buff,
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4592 4593 4594 4595 4596 4597 4598
		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
			c->SG[0].Addr.lower = 0;
			c->SG[0].Addr.upper = 0;
			c->SG[0].Len = 0;
			rc = -ENOMEM;
			goto out;
		}
4599 4600 4601
		c->SG[0].Addr.lower = temp64.val32.lower;
		c->SG[0].Addr.upper = temp64.val32.upper;
		c->SG[0].Len = iocommand.buf_size;
4602
		c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/
4603
	}
4604
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4605 4606
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4607 4608 4609 4610 4611 4612
	check_ioctl_unit_attention(h, c);

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4613 4614
		rc = -EFAULT;
		goto out;
4615
	}
4616 4617
	if (iocommand.Request.Type.Direction == XFER_READ &&
		iocommand.buf_size > 0) {
4618 4619
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4620 4621
			rc = -EFAULT;
			goto out;
4622 4623
		}
	}
4624
out:
4625
	cmd_special_free(h, c);
4626 4627 4628
out_kfree:
	kfree(buff);
	return rc;
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
	union u64bit temp64;
	BYTE sg_used = 0;
	int status = 0;
	int i;
4641 4642
	u32 left;
	u32 sz;
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
4669
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4670 4671 4672
		status = -EINVAL;
		goto cleanup1;
	}
4673
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4674 4675 4676 4677
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
4678
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
		if (ioc->Request.Type.Direction == XFER_WRITE) {
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
				status = -ENOMEM;
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
	c = cmd_special_alloc(h);
	if (c == NULL) {
		status = -ENOMEM;
		goto cleanup1;
	}
	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
4711
	c->Header.SGList = c->Header.SGTotal = sg_used;
4712 4713 4714 4715 4716 4717 4718 4719
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	c->Header.Tag.lower = c->busaddr;
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
			temp64.val = pci_map_single(h->pdev, buff[i],
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
4720 4721 4722 4723 4724 4725 4726
			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
				c->SG[i].Addr.lower = 0;
				c->SG[i].Addr.upper = 0;
				c->SG[i].Len = 0;
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
4727
				goto cleanup0;
4728
			}
4729 4730 4731
			c->SG[i].Addr.lower = temp64.val32.lower;
			c->SG[i].Addr.upper = temp64.val32.upper;
			c->SG[i].Len = buff_size[i];
4732
			c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST;
4733 4734
		}
	}
4735
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4736 4737
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
4738 4739 4740 4741 4742
	check_ioctl_unit_attention(h, c);
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
4743
		goto cleanup0;
4744
	}
4745
	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
4746 4747 4748 4749 4750
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
4751
				goto cleanup0;
4752 4753 4754 4755 4756
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
4757 4758
cleanup0:
	cmd_special_free(h, c);
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
cleanup1:
	if (buff) {
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806

static int increment_passthru_count(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->passthru_count_lock, flags);
	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
		return -1;
	}
	h->passthru_count++;
	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
	return 0;
}

static void decrement_passthru_count(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->passthru_count_lock, flags);
	if (h->passthru_count <= 0) {
		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
		/* not expecting to get here. */
		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
		return;
	}
	h->passthru_count--;
	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
}

4807 4808 4809 4810 4811 4812 4813
/*
 * ioctl
 */
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
4814
	int rc;
4815 4816 4817 4818 4819 4820 4821

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
4822
		hpsa_scan_start(h->scsi_host);
4823 4824 4825 4826 4827 4828
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
4829 4830 4831 4832 4833
		if (increment_passthru_count(h))
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
		decrement_passthru_count(h);
		return rc;
4834
	case CCISS_BIG_PASSTHRU:
4835 4836 4837 4838 4839
		if (increment_passthru_count(h))
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
		decrement_passthru_count(h);
		return rc;
4840 4841 4842 4843 4844
	default:
		return -ENOTTY;
	}
}

4845 4846
static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
				u8 reset_type)
4847 4848 4849 4850 4851 4852
{
	struct CommandList *c;

	c = cmd_alloc(h);
	if (!c)
		return -ENOMEM;
4853 4854
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
	return 0;
}

4866
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
4867
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
4868 4869 4870
	int cmd_type)
{
	int pci_dir = XFER_NONE;
4871
	struct CommandList *a; /* for commands to be aborted */
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889

	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
		c->Header.SGTotal = 1;
	} else {
		c->Header.SGList = 0;
		c->Header.SGTotal = 0;
	}
	c->Header.Tag.lower = c->busaddr;
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	c->Request.Type.Type = cmd_type;
	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
4890
			if (page_code & VPD_PAGE) {
4891
				c->Request.CDB[1] = 0x01;
4892
				c->Request.CDB[2] = (page_code & 0xff);
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
			}
			c->Request.CDBLen = 6;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_WRITE;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
4923 4924
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
4925 4926 4927 4928 4929 4930 4931
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_NONE;
			c->Request.Timeout = 0;
			break;
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
4944 4945 4946
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
4947
			return -1;
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_NONE;
			c->Request.Timeout = 0; /* Don't time out */
4958 4959
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
4960
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
4961 4962 4963 4964 4965 4966
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
			break;
		case  HPSA_ABORT_MSG:
			a = buff;       /* point to command to be aborted */
			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
				a->Header.Tag.upper, a->Header.Tag.lower,
				c->Header.Tag.upper, c->Header.Tag.lower);
			c->Request.CDBLen = 16;
			c->Request.Type.Type = TYPE_MSG;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_WRITE;
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

	switch (c->Request.Type.Direction) {
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
5019 5020 5021
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
5022 5023 5024 5025 5026 5027 5028 5029 5030
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
5031 5032
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

/* Takes cmds off the submission queue and sends them to the hardware,
 * then puts them on the queue of cmds waiting for completion.
 */
static void start_io(struct ctlr_info *h)
{
	struct CommandList *c;
5043
	unsigned long flags;
5044

5045
	spin_lock_irqsave(&h->lock, flags);
5046 5047
	while (!list_empty(&h->reqQ)) {
		c = list_entry(h->reqQ.next, struct CommandList, list);
5048 5049
		/* can't do anything if fifo is full */
		if ((h->access.fifo_full(h))) {
5050
			h->fifo_recently_full = 1;
5051 5052 5053
			dev_warn(&h->pdev->dev, "fifo full\n");
			break;
		}
5054
		h->fifo_recently_full = 0;
5055 5056 5057 5058 5059 5060 5061

		/* Get the first entry from the Request Q */
		removeQ(c);
		h->Qdepth--;

		/* Put job onto the completed Q */
		addQ(&h->cmpQ, c);
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074

		/* Must increment commands_outstanding before unlocking
		 * and submitting to avoid race checking for fifo full
		 * condition.
		 */
		h->commands_outstanding++;
		if (h->commands_outstanding > h->max_outstanding)
			h->max_outstanding = h->commands_outstanding;

		/* Tell the controller execute command */
		spin_unlock_irqrestore(&h->lock, flags);
		h->access.submit_command(h, c);
		spin_lock_irqsave(&h->lock, flags);
5075
	}
5076
	spin_unlock_irqrestore(&h->lock, flags);
5077 5078
}

5079
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5080
{
5081
	return h->access.command_completed(h, q);
5082 5083
}

5084
static inline bool interrupt_pending(struct ctlr_info *h)
5085 5086 5087 5088 5089 5090
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
5091 5092
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
5093 5094
}

5095 5096
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
5097 5098 5099 5100 5101 5102 5103 5104
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

5105
static inline void finish_cmd(struct CommandList *c)
5106
{
5107
	unsigned long flags;
5108 5109
	int io_may_be_stalled = 0;
	struct ctlr_info *h = c->h;
5110

5111
	spin_lock_irqsave(&h->lock, flags);
5112
	removeQ(c);
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135

	/*
	 * Check for possibly stalled i/o.
	 *
	 * If a fifo_full condition is encountered, requests will back up
	 * in h->reqQ.  This queue is only emptied out by start_io which is
	 * only called when a new i/o request comes in.  If no i/o's are
	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
	 * start_io from here if we detect such a danger.
	 *
	 * Normally, we shouldn't hit this case, but pounding on the
	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
	 * commands_outstanding is low.  We want to avoid calling
	 * start_io from in here as much as possible, and esp. don't
	 * want to get in a cycle where we call start_io every time
	 * through here.
	 */
	if (unlikely(h->fifo_recently_full) &&
		h->commands_outstanding < 5)
		io_may_be_stalled = 1;

	spin_unlock_irqrestore(&h->lock, flags);

5136
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5137 5138
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
5139
		complete_scsi_command(c);
5140 5141
	else if (c->cmd_type == CMD_IOCTL_PEND)
		complete(c->waiting);
5142 5143
	if (unlikely(io_may_be_stalled))
		start_io(h);
5144 5145
}

5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
static inline u32 hpsa_tag_contains_index(u32 tag)
{
	return tag & DIRECT_LOOKUP_BIT;
}

static inline u32 hpsa_tag_to_index(u32 tag)
{
	return tag >> DIRECT_LOOKUP_SHIFT;
}

5156 5157

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5158
{
5159 5160
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
5161
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5162 5163
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
5164 5165
}

5166
/* process completion of an indexed ("direct lookup") command */
5167
static inline void process_indexed_cmd(struct ctlr_info *h,
5168 5169 5170 5171 5172 5173
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

	tag_index = hpsa_tag_to_index(raw_tag);
5174 5175 5176 5177
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
5178 5179 5180
}

/* process completion of a non-indexed command */
5181
static inline void process_nonindexed_cmd(struct ctlr_info *h,
5182 5183 5184 5185
	u32 raw_tag)
{
	u32 tag;
	struct CommandList *c = NULL;
5186
	unsigned long flags;
5187

5188
	tag = hpsa_tag_discard_error_bits(h, raw_tag);
5189
	spin_lock_irqsave(&h->lock, flags);
5190
	list_for_each_entry(c, &h->cmpQ, list) {
5191
		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5192
			spin_unlock_irqrestore(&h->lock, flags);
5193
			finish_cmd(c);
5194
			return;
5195 5196
		}
	}
5197
	spin_unlock_irqrestore(&h->lock, flags);
5198 5199 5200
	bad_tag(h, h->nr_cmds + 1, raw_tag);
}

5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

5220 5221 5222 5223 5224 5225
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
5226
{
5227 5228 5229 5230 5231 5232 5233
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
5234 5235 5236 5237 5238 5239 5240
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5241
	h->last_intr_timestamp = get_jiffies_64();
5242
	while (interrupt_pending(h)) {
5243
		raw_tag = get_next_completion(h, q);
5244
		while (raw_tag != FIFO_EMPTY)
5245
			raw_tag = next_command(h, q);
5246 5247 5248 5249
	}
	return IRQ_HANDLED;
}

5250
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5251
{
5252
	struct ctlr_info *h = queue_to_hba(queue);
5253
	u32 raw_tag;
5254
	u8 q = *(u8 *) queue;
5255 5256 5257 5258

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

5259
	h->last_intr_timestamp = get_jiffies_64();
5260
	raw_tag = get_next_completion(h, q);
5261
	while (raw_tag != FIFO_EMPTY)
5262
		raw_tag = next_command(h, q);
5263 5264 5265
	return IRQ_HANDLED;
}

5266
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5267
{
5268
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5269
	u32 raw_tag;
5270
	u8 q = *(u8 *) queue;
5271 5272 5273

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5274
	h->last_intr_timestamp = get_jiffies_64();
5275
	while (interrupt_pending(h)) {
5276
		raw_tag = get_next_completion(h, q);
5277
		while (raw_tag != FIFO_EMPTY) {
5278 5279
			if (likely(hpsa_tag_contains_index(raw_tag)))
				process_indexed_cmd(h, raw_tag);
5280
			else
5281
				process_nonindexed_cmd(h, raw_tag);
5282
			raw_tag = next_command(h, q);
5283 5284 5285 5286 5287
		}
	}
	return IRQ_HANDLED;
}

5288
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5289
{
5290
	struct ctlr_info *h = queue_to_hba(queue);
5291
	u32 raw_tag;
5292
	u8 q = *(u8 *) queue;
5293

5294
	h->last_intr_timestamp = get_jiffies_64();
5295
	raw_tag = get_next_completion(h, q);
5296
	while (raw_tag != FIFO_EMPTY) {
5297 5298
		if (likely(hpsa_tag_contains_index(raw_tag)))
			process_indexed_cmd(h, raw_tag);
5299
		else
5300
			process_nonindexed_cmd(h, raw_tag);
5301
		raw_tag = next_command(h, q);
5302 5303 5304 5305
	}
	return IRQ_HANDLED;
}

5306 5307 5308 5309
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
5310 5311
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
	uint32_t paddr32, tag;
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
	paddr32 = paddr64;

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
	cmd->CommandHeader.SGTotal = 0;
	cmd->CommandHeader.Tag.lower = paddr32;
	cmd->CommandHeader.Tag.upper = 0;
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
	cmd->Request.Type.Type = TYPE_MSG;
	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
	cmd->Request.Type.Direction = XFER_NONE;
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
	cmd->ErrorDescriptor.Addr.upper = 0;
	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);

	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5375
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

5406
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5407
	void * __iomem vaddr, u32 use_doorbell)
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
{
	u16 pmcsr;
	int pos;

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5418
		writel(use_doorbell, vaddr + SA5_DOORBELL);
5419 5420 5421 5422 5423 5424 5425

		/* PMC hardware guys tell us we need a 5 second delay after
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
		msleep(5000);
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */

		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
		if (pos == 0) {
			dev_err(&pdev->dev,
				"hpsa_reset_controller: "
				"PCI PM not supported\n");
			return -ENODEV;
		}
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
		/* enter the D3hot power management state */
		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
		pmcsr |= PCI_D3hot;
		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);

		msleep(500);

		/* enter the D0 power management state */
		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
		pmcsr |= PCI_D0;
		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5456 5457 5458 5459 5460 5461 5462

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
5463 5464 5465 5466
	}
	return 0;
}

5467
static void init_driver_version(char *driver_version, int len)
5468 5469
{
	memset(driver_version, 0, len);
5470
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5471 5472
}

5473
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

5489 5490
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
5491 5492 5493 5494 5495 5496 5497
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

5498
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
5518
/* This does a hard reset of the controller using PCI power management
5519
 * states or the using the doorbell register.
5520
 */
5521
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5522
{
5523 5524 5525 5526 5527
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
5528
	u32 misc_fw_support;
5529
	int rc;
5530
	struct CfgTable __iomem *cfgtable;
5531
	u32 use_doorbell;
5532
	u32 board_id;
5533
	u16 command_register;
5534

5535 5536
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
5537 5538 5539 5540 5541 5542
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
5543 5544 5545
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
5546
	 */
5547

5548
	rc = hpsa_lookup_board_id(pdev, &board_id);
5549
	if (rc < 0 || !ctlr_is_resettable(board_id)) {
5550 5551 5552
		dev_warn(&pdev->dev, "Not resetting device.\n");
		return -ENODEV;
	}
5553 5554 5555 5556

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
5557

5558 5559 5560 5561 5562 5563 5564
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	/* Turn the board off.  This is so that later pci_restore_state()
	 * won't turn the board on before the rest of config space is ready.
	 */
	pci_disable_device(pdev);
	pci_save_state(pdev);
5565

5566 5567 5568 5569 5570 5571 5572
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
5573

5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
5585 5586 5587
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
		goto unmap_vaddr;
5588

5589 5590 5591
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
5592
	misc_fw_support = readl(&cfgtable->misc_fw_support);
5593 5594 5595 5596 5597 5598
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
5599 5600
			dev_warn(&pdev->dev, "Soft reset not supported. "
				"Firmware update is required.\n");
5601
			rc = -ENOTSUPP; /* try soft reset */
5602 5603 5604
			goto unmap_cfgtable;
		}
	}
5605

5606 5607 5608
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
5609

5610 5611 5612 5613 5614
	pci_restore_state(pdev);
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		goto unmap_cfgtable;
5615
	}
5616
	pci_write_config_word(pdev, 4, command_register);
5617

5618 5619 5620 5621
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

5622 5623 5624
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
5625 5626
			"failed waiting for board to become ready "
			"after hard reset\n");
5627 5628 5629
		goto unmap_cfgtable;
	}

5630 5631 5632 5633
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
5634 5635 5636
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
5637
	} else {
5638
		dev_info(&pdev->dev, "board ready after hard reset.\n");
5639 5640 5641 5642 5643 5644 5645 5646
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
5647 5648 5649 5650 5651 5652 5653 5654 5655
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
static void print_cfg_table(struct device *dev, struct CfgTable *tb)
{
5656
#ifdef HPSA_DEBUG
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
	dev_info(dev, "   Max outstanding commands = 0x%d\n",
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
5687
}
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

/* If MSI/MSI-X is supported by the kernel we will try to enable it on
 * controllers that are capable. If not, we use IO-APIC mode.
 */

5728
static void hpsa_interrupt_mode(struct ctlr_info *h)
5729 5730
{
#ifdef CONFIG_PCI_MSI
5731 5732 5733 5734 5735 5736 5737
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
5738 5739

	/* Some boards advertise MSI but don't really support it */
5740 5741
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
5742
		goto default_int_mode;
5743 5744
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
		dev_info(&h->pdev->dev, "MSIX\n");
5745
		h->msix_vector = MAX_REPLY_QUEUES;
5746
		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
5747
				      h->msix_vector);
5748
		if (err > 0) {
5749
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
5750
			       "available\n", err);
5751 5752 5753 5754 5755 5756 5757 5758
			h->msix_vector = err;
			err = pci_enable_msix(h->pdev, hpsa_msix_entries,
					      h->msix_vector);
		}
		if (!err) {
			for (i = 0; i < h->msix_vector; i++)
				h->intr[i] = hpsa_msix_entries[i].vector;
			return;
5759
		} else {
5760
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
5761
			       err);
5762
			h->msix_vector = 0;
5763 5764 5765
			goto default_int_mode;
		}
	}
5766 5767 5768
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
		dev_info(&h->pdev->dev, "MSI\n");
		if (!pci_enable_msi(h->pdev))
5769 5770
			h->msi_vector = 1;
		else
5771
			dev_warn(&h->pdev->dev, "MSI init failed\n");
5772 5773 5774 5775
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
5776
	h->intr[h->intr_mode] = h->pdev->irq;
5777 5778
}

5779
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

5793 5794 5795
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
5796 5797 5798 5799 5800 5801 5802
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

5803 5804
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
5805 5806 5807 5808
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
5809
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
5810
			/* addressing mode bits already removed */
5811 5812
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
5813 5814 5815
				*memory_bar);
			return 0;
		}
5816
	dev_warn(&pdev->dev, "no memory BAR found\n");
5817 5818 5819
	return -ENODEV;
}

5820 5821
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
5822
{
5823
	int i, iterations;
5824
	u32 scratchpad;
5825 5826 5827 5828
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
5829

5830 5831 5832 5833 5834 5835 5836 5837 5838
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
5839 5840
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
5841
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
5842 5843 5844
	return -ENODEV;
}

5845 5846 5847
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

5860
static int hpsa_find_cfgtables(struct ctlr_info *h)
5861
{
5862 5863 5864
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
5865
	u32 trans_offset;
5866
	int rc;
5867

5868 5869 5870 5871
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
5872
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
5873
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
5874 5875
	if (!h->cfgtable)
		return -ENOMEM;
5876 5877 5878
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
5879
	/* Find performant mode table. */
5880
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
5881 5882 5883 5884 5885 5886 5887 5888
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
	if (!h->transtable)
		return -ENOMEM;
	return 0;
}

5889
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
5890 5891
{
	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
5892 5893 5894 5895 5896

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

5897 5898 5899 5900 5901 5902 5903 5904 5905
	if (h->max_commands < 16) {
		dev_warn(&h->pdev->dev, "Controller reports "
			"max supported commands of %d, an obvious lie. "
			"Using 16.  Ensure that firmware is up to date.\n",
			h->max_commands);
		h->max_commands = 16;
	}
}

5906 5907 5908 5909
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
5910
static void hpsa_find_board_params(struct ctlr_info *h)
5911
{
5912
	hpsa_get_max_perf_mode_cmds(h);
5913 5914
	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
5915
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
	/*
	 * Limit in-command s/g elements to 32 save dma'able memory.
	 * Howvever spec says if 0, use 31
	 */
	h->max_cmd_sg_entries = 31;
	if (h->maxsgentries > 512) {
		h->max_cmd_sg_entries = 32;
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
		h->maxsgentries--; /* save one for chain pointer */
	} else {
		h->maxsgentries = 31; /* default to traditional values */
		h->chainsize = 0;
	}
5929 5930 5931

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
5932 5933 5934 5935
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
5936 5937
}

5938 5939
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
5940
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
5941 5942 5943 5944 5945 5946
		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
		return false;
	}
	return true;
}

5947
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
5948
{
5949
	u32 driver_support;
5950

5951 5952
#ifdef CONFIG_X86
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
5953 5954
	driver_support = readl(&(h->cfgtable->driver_support));
	driver_support |= ENABLE_SCSI_PREFETCH;
5955
#endif
5956 5957
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
5958 5959
}

5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
			break;
		/* delay and try again */
		msleep(20);
	}
}

5991
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
5992 5993
{
	int i;
5994 5995
	u32 doorbell_value;
	unsigned long flags;
5996 5997 5998 5999 6000 6001

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6002 6003 6004
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
6005
		if (!(doorbell_value & CFGTBL_ChangeReq))
6006 6007
			break;
		/* delay and try again */
6008
		usleep_range(10000, 20000);
6009
	}
6010 6011
}

6012
static int hpsa_enter_simple_mode(struct ctlr_info *h)
6013 6014 6015 6016 6017 6018 6019 6020
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6021

6022 6023
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6024
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6025 6026
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	hpsa_wait_for_mode_change_ack(h);
6027
	print_cfg_table(&h->pdev->dev, h->cfgtable);
6028 6029
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
6030
	h->transMethod = CFGTBL_Trans_Simple;
6031
	return 0;
6032 6033 6034
error:
	dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
	return -ENODEV;
6035 6036
}

6037
static int hpsa_pci_init(struct ctlr_info *h)
6038
{
6039
	int prod_index, err;
6040

6041 6042 6043 6044 6045
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
		return -ENODEV;
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
6046

M
Matthew Garrett 已提交
6047 6048 6049
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

6050
	err = pci_enable_device(h->pdev);
6051
	if (err) {
6052
		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6053 6054 6055
		return err;
	}

6056 6057 6058
	/* Enable bus mastering (pci_disable_device may disable this) */
	pci_set_master(h->pdev);

6059
	err = pci_request_regions(h->pdev, HPSA);
6060
	if (err) {
6061 6062
		dev_err(&h->pdev->dev,
			"cannot obtain PCI resources, aborting\n");
6063 6064
		return err;
	}
6065
	hpsa_interrupt_mode(h);
6066
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6067
	if (err)
6068 6069
		goto err_out_free_res;
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6070 6071 6072 6073
	if (!h->vaddr) {
		err = -ENOMEM;
		goto err_out_free_res;
	}
6074
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6075
	if (err)
6076
		goto err_out_free_res;
6077 6078
	err = hpsa_find_cfgtables(h);
	if (err)
6079
		goto err_out_free_res;
6080
	hpsa_find_board_params(h);
6081

6082
	if (!hpsa_CISS_signature_present(h)) {
6083 6084 6085
		err = -ENODEV;
		goto err_out_free_res;
	}
6086
	hpsa_set_driver_support_bits(h);
6087
	hpsa_p600_dma_prefetch_quirk(h);
6088 6089
	err = hpsa_enter_simple_mode(h);
	if (err)
6090 6091 6092 6093
		goto err_out_free_res;
	return 0;

err_out_free_res:
6094 6095 6096 6097 6098 6099
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	if (h->vaddr)
		iounmap(h->vaddr);
6100
	pci_disable_device(h->pdev);
6101
	pci_release_regions(h->pdev);
6102 6103 6104
	return err;
}

6105
static void hpsa_hba_inquiry(struct ctlr_info *h)
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

6121
static int hpsa_init_reset_devices(struct pci_dev *pdev)
6122
{
6123
	int rc, i;
6124 6125 6126 6127

	if (!reset_devices)
		return 0;

6128 6129
	/* Reset the controller with a PCI power-cycle or via doorbell */
	rc = hpsa_kdump_hard_reset_controller(pdev);
6130

6131 6132
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
6133 6134
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
6135 6136
	 */
	if (rc == -ENOTSUPP)
6137
		return rc; /* just try to do the kdump anyhow. */
6138 6139
	if (rc)
		return -ENODEV;
6140 6141

	/* Now try to get the controller to respond to a no-op */
6142
	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
	return 0;
}

6153
static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
		return -ENOMEM;
	}
	return 0;
}

static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
	if (h->cmd_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct CommandList),
			    h->cmd_pool, h->cmd_pool_dhandle);
6180 6181 6182 6183
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6184 6185 6186 6187 6188
	if (h->errinfo_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct ErrorInfo),
			    h->errinfo_pool,
			    h->errinfo_pool_dhandle);
6189 6190 6191 6192
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(struct io_accel1_cmd),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6193 6194
}

6195 6196 6197 6198
static int hpsa_request_irq(struct ctlr_info *h,
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
6199
	int rc, i;
6200

6201 6202 6203 6204 6205 6206 6207
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

6208
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6209
		/* If performant mode and MSI-X, use multiple reply queues */
6210
		for (i = 0; i < h->msix_vector; i++)
6211 6212 6213 6214 6215
			rc = request_irq(h->intr[i], msixhandler,
					0, h->devname,
					&h->q[i]);
	} else {
		/* Use single reply pool */
6216
		if (h->msix_vector > 0 || h->msi_vector) {
6217 6218 6219 6220 6221 6222 6223 6224 6225
			rc = request_irq(h->intr[h->intr_mode],
				msixhandler, 0, h->devname,
				&h->q[h->intr_mode]);
		} else {
			rc = request_irq(h->intr[h->intr_mode],
				intxhandler, IRQF_SHARED, h->devname,
				&h->q[h->intr_mode]);
		}
	}
6226 6227 6228 6229 6230 6231 6232 6233
	if (rc) {
		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
		       h->intr[h->intr_mode], h->devname);
		return -ENODEV;
	}
	return 0;
}

6234
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
{
	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
		HPSA_RESET_TYPE_CONTROLLER)) {
		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
		return -EIO;
	}

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
static void free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		free_irq(h->intr[i], &h->q[i]);
		return;
	}

6269
	for (i = 0; i < h->msix_vector; i++)
6270 6271 6272
		free_irq(h->intr[i], &h->q[i]);
}

6273
static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6274
{
6275
	free_irqs(h);
6276
#ifdef CONFIG_PCI_MSI
6277 6278 6279 6280 6281 6282 6283
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
	}
6284
#endif /* CONFIG_PCI_MSI */
6285 6286 6287 6288 6289
}

static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
	hpsa_free_irqs_and_disable_msix(h);
6290 6291
	hpsa_free_sg_chain_blocks(h);
	hpsa_free_cmd_pool(h);
6292
	kfree(h->ioaccel1_blockFetchTable);
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
	kfree(h->blockFetchTable);
	pci_free_consistent(h->pdev, h->reply_pool_size,
		h->reply_pool, h->reply_pool_dhandle);
	if (h->vaddr)
		iounmap(h->vaddr);
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	pci_release_regions(h->pdev);
	kfree(h);
}

6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
/* Called when controller lockup detected. */
static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
{
	struct CommandList *c = NULL;

	assert_spin_locked(&h->lock);
	/* Mark all outstanding commands as failed and complete them. */
	while (!list_empty(list)) {
		c = list_entry(list->next, struct CommandList, list);
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6316
		finish_cmd(c);
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
	}
}

static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	spin_unlock_irqrestore(&h->lock, flags);
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
			h->lockup_detected);
	pci_disable_device(h->pdev);
	spin_lock_irqsave(&h->lock, flags);
	fail_all_cmds_on_list(h, &h->cmpQ);
	fail_all_cmds_on_list(h, &h->reqQ);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void detect_controller_lockup(struct ctlr_info *h)
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
6346
				(h->heartbeat_sample_interval), now))
6347 6348 6349 6350 6351 6352 6353 6354
		return;

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
6355
				(h->heartbeat_sample_interval), now))
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
		return;

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
		return;
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
}

6372 6373 6374 6375 6376
static int hpsa_kickoff_rescan(struct ctlr_info *h)
{
	int i;
	char *event_type;

6377 6378 6379
	/* Clear the driver-requested rescan flag */
	h->drv_req_rescan = 0;

6380
	/* Ask the controller to clear the events we're handling. */
6381 6382
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
6394
		hpsa_drain_accel_commands(h);
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}

	/* Something in the device list may have changed to trigger
	 * the event, so do a rescan.
	 */
	hpsa_scan_start(h->scsi_host);
	/* release reference taken on scsi host in check_controller_events */
	scsi_host_put(h->scsi_host);
	return 0;
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
6427 6428 6429
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
 * If either flag or controller event indicate rescan, add the controller
6430 6431 6432 6433 6434 6435 6436 6437 6438
 * to the list of controllers needing to be rescanned, and gets a
 * reference to the associated scsi_host.
 */
static void hpsa_ctlr_needs_rescan(struct ctlr_info *h)
{
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return;

	h->events = readl(&(h->cfgtable->event_notify));
6439
	if (!(h->events & RESCAN_REQUIRED_EVENT_BITS) && !h->drv_req_rescan)
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
		return;

	/*
	 * Take a reference on scsi host for the duration of the scan
	 * Release in hpsa_kickoff_rescan().  No lock needed for scan_list
	 * as only a single thread accesses this list.
	 */
	scsi_host_get(h->scsi_host);
	hpsa_kickoff_rescan(h);
}

6451
static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6452 6453
{
	unsigned long flags;
6454 6455 6456 6457 6458
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);
	detect_controller_lockup(h);
	if (h->lockup_detected)
		return;
6459
	hpsa_ctlr_needs_rescan(h);
6460 6461 6462
	spin_lock_irqsave(&h->lock, flags);
	if (h->remove_in_progress) {
		spin_unlock_irqrestore(&h->lock, flags);
6463 6464
		return;
	}
6465 6466 6467
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
6468 6469
}

6470
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6471
{
6472
	int dac, rc;
6473
	struct ctlr_info *h;
6474 6475
	int try_soft_reset = 0;
	unsigned long flags;
6476 6477 6478 6479

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

6480
	rc = hpsa_init_reset_devices(pdev);
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
6494

6495 6496 6497 6498
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
6499
#define COMMANDLIST_ALIGNMENT 128
6500
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6501 6502
	h = kzalloc(sizeof(*h), GFP_KERNEL);
	if (!h)
6503
		return -ENOMEM;
6504

6505
	h->pdev = pdev;
6506
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6507 6508
	INIT_LIST_HEAD(&h->cmpQ);
	INIT_LIST_HEAD(&h->reqQ);
6509 6510
	spin_lock_init(&h->lock);
	spin_lock_init(&h->scan_lock);
6511
	spin_lock_init(&h->passthru_count_lock);
6512
	rc = hpsa_pci_init(h);
6513
	if (rc != 0)
6514 6515
		goto clean1;

6516
	sprintf(h->devname, HPSA "%d", number_of_controllers);
6517 6518 6519 6520
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
6521 6522
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
6523
		dac = 1;
6524 6525 6526 6527 6528 6529 6530 6531
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
			goto clean1;
		}
6532 6533 6534 6535
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6536

6537
	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6538
		goto clean2;
6539 6540
	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
	       h->devname, pdev->device,
6541
	       h->intr[h->intr_mode], dac ? "" : " not");
6542
	if (hpsa_allocate_cmd_pool(h))
6543
		goto clean4;
6544 6545
	if (hpsa_allocate_sg_chain_blocks(h))
		goto clean4;
6546 6547
	init_waitqueue_head(&h->scan_wait_queue);
	h->scan_finished = 1; /* no scan currently in progress */
6548 6549

	pci_set_drvdata(pdev, h);
6550 6551 6552
	h->ndevices = 0;
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
	hpsa_put_ctlr_into_performant_mode(h);

	/* At this point, the controller is ready to take commands.
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
6571
		free_irqs(h);
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
					hpsa_intx_discard_completions);
		if (rc) {
			dev_warn(&h->pdev->dev, "Failed to request_irq after "
				"soft reset.\n");
			goto clean4;
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
			goto clean4;

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
			/* don't go to clean4, we already unallocated */
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
6609

6610 6611 6612
	/* Enable Accelerated IO path at driver layer */
	h->acciopath_status = 1;

6613 6614
	h->drv_req_rescan = 0;

6615 6616 6617
	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

6618
	hpsa_hba_inquiry(h);
6619
	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
6620 6621 6622 6623 6624 6625

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
6626
	return 0;
6627 6628

clean4:
6629
	hpsa_free_sg_chain_blocks(h);
6630
	hpsa_free_cmd_pool(h);
6631
	free_irqs(h);
6632 6633 6634
clean2:
clean1:
	kfree(h);
6635
	return rc;
6636 6637 6638 6639 6640 6641
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
6642 6643 6644 6645 6646 6647 6648 6649 6650
	unsigned long flags;

	/* Don't bother trying to flush the cache if locked up */
	spin_lock_irqsave(&h->lock, flags);
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		return;
	}
	spin_unlock_irqrestore(&h->lock, flags);
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660

	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

	c = cmd_special_alloc(h);
	if (!c) {
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		goto out_of_memory;
	}
6661 6662 6663 6664
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
6665 6666
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
	if (c->err_info->CommandStatus != 0)
6667
out:
6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
	cmd_special_free(h, c);
out_of_memory:
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6686
	hpsa_free_irqs_and_disable_msix(h);
6687 6688
}

6689
static void hpsa_free_device_info(struct ctlr_info *h)
6690 6691 6692 6693 6694 6695 6696
{
	int i;

	for (i = 0; i < h->ndevices; i++)
		kfree(h->dev[i]);
}

6697
static void hpsa_remove_one(struct pci_dev *pdev)
6698 6699
{
	struct ctlr_info *h;
6700
	unsigned long flags;
6701 6702

	if (pci_get_drvdata(pdev) == NULL) {
6703
		dev_err(&pdev->dev, "unable to remove device\n");
6704 6705 6706
		return;
	}
	h = pci_get_drvdata(pdev);
6707 6708 6709 6710 6711 6712 6713

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	cancel_delayed_work(&h->monitor_ctlr_work);
	spin_unlock_irqrestore(&h->lock, flags);

6714 6715 6716
	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
	hpsa_shutdown(pdev);
	iounmap(h->vaddr);
6717 6718
	iounmap(h->transtable);
	iounmap(h->cfgtable);
6719
	hpsa_free_device_info(h);
6720
	hpsa_free_sg_chain_blocks(h);
6721 6722 6723 6724 6725 6726
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct CommandList),
		h->cmd_pool, h->cmd_pool_dhandle);
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct ErrorInfo),
		h->errinfo_pool, h->errinfo_pool_dhandle);
6727 6728
	pci_free_consistent(h->pdev, h->reply_pool_size,
		h->reply_pool, h->reply_pool_dhandle);
6729
	kfree(h->cmd_pool_bits);
6730
	kfree(h->blockFetchTable);
6731
	kfree(h->ioaccel1_blockFetchTable);
6732
	kfree(h->ioaccel2_blockFetchTable);
6733
	kfree(h->hba_inquiry_data);
6734
	pci_disable_device(pdev);
6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
	pci_release_regions(pdev);
	kfree(h);
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
6751
	.name = HPSA,
6752
	.probe = hpsa_init_one,
6753
	.remove = hpsa_remove_one,
6754 6755 6756 6757 6758 6759
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
6773
	int nsgs, int min_blocks, int *bucket_map)
6774 6775 6776 6777 6778 6779
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
6780
		size = i + min_blocks;
6781 6782
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
6783
		for (j = 0; j < num_buckets; j++) {
6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

6794
static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
6795
{
6796 6797
	int i;
	unsigned long register_value;
6798 6799
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
6800 6801 6802
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
6803
	struct access_method access = SA5_performant_access;
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
6815
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
6816 6817 6818 6819 6820 6821
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
6822
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
6833
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
6834 6835 6836 6837 6838 6839 6840 6841 6842
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

	/* Controller spec: zero out this buffer. */
	memset(h->reply_pool, 0, h->reply_pool_size);

6843 6844
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
6845
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
6846 6847 6848 6849 6850
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
6851
	writel(h->nreply_queues, &h->transtable->RepQCount);
6852 6853
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
6854 6855 6856 6857 6858 6859 6860 6861

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
		writel(h->reply_pool_dhandle +
			(h->max_commands * sizeof(u64) * i),
			&h->transtable->RepQAddr[i].lower);
	}

6862
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6863 6864 6865 6866 6867 6868 6869 6870
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
6871 6872 6873 6874 6875 6876
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
6877
	}
6878
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6879
	hpsa_wait_for_mode_change_ack(h);
6880 6881 6882 6883 6884 6885
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
		dev_warn(&h->pdev->dev, "unable to get board into"
					" performant mode\n");
		return;
	}
6886
	/* Change the access methods to the performant access methods */
6887 6888 6889
	h->access = access;
	h->transMethod = transMethod;

6890 6891
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
6892 6893
		return;

6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
6904

6905 6906 6907
		/* initialize all reply queue entries to unused */
		memset(h->reply_pool, (u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_pool_size);
6908

6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
			cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
			cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) |
						DIRECT_LOOKUP_BIT;
			cp->Tag.upper = 0;
			cp->host_addr.lower =
				(u32) (h->ioaccel_cmd_pool_dhandle +
					(i * sizeof(struct io_accel1_cmd)));
			cp->host_addr.upper = 0;
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
6953
	}
6954 6955
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	hpsa_wait_for_mode_change_ack(h);
6956 6957 6958 6959
}

static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
{
6960 6961 6962 6963 6964
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
#define IOACCEL1_COMMANDLIST_ALIGNMENT 128
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
6978
		kmalloc(((h->ioaccel_maxsg + 1) *
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
	kfree(h->ioaccel1_blockFetchTable);
	return 1;
6996 6997
}

6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035
static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
{
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

#define IOACCEL2_COMMANDLIST_ALIGNMENT 128
	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
		(h->ioaccel2_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
	kfree(h->ioaccel2_blockFetchTable);
	return 1;
}

7036
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7037 7038
{
	u32 trans_support;
7039 7040
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
7041
	int i;
7042

7043 7044 7045
	if (hpsa_simple_mode)
		return;

7046 7047 7048 7049 7050 7051
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
			goto clean_up;
7052 7053 7054 7055 7056 7057 7058
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
				transMethod |= CFGTBL_Trans_io_accel2 |
				CFGTBL_Trans_enable_directed_msix;
		if (ioaccel2_alloc_cmds_and_bft(h))
			goto clean_up;
		}
7059 7060 7061
	}

	/* TODO, check that this next line h->nreply_queues is correct */
7062 7063 7064 7065
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
		return;

7066
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7067
	hpsa_get_max_perf_mode_cmds(h);
7068
	/* Performant mode ring buffer and supporting data structures */
7069
	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
7070 7071 7072
	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
				&(h->reply_pool_dhandle));

7073 7074 7075 7076 7077 7078 7079
	for (i = 0; i < h->nreply_queues; i++) {
		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

7080
	/* Need a block fetch table for performant mode */
7081
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7082 7083 7084 7085 7086 7087
				sizeof(u32)), GFP_KERNEL);

	if ((h->reply_pool == NULL)
		|| (h->blockFetchTable == NULL))
		goto clean_up;

7088
	hpsa_enter_performant_mode(h, trans_support);
7089 7090 7091 7092 7093 7094 7095 7096 7097
	return;

clean_up:
	if (h->reply_pool)
		pci_free_consistent(h->pdev, h->reply_pool_size,
			h->reply_pool, h->reply_pool_dhandle);
	kfree(h->blockFetchTable);
}

7098
static int is_accelerated_cmd(struct CommandList *c)
7099
{
7100 7101 7102 7103 7104 7105
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
7106
	unsigned long flags;
7107
	int accel_cmds_out;
7108 7109

	do { /* wait for all outstanding commands to drain out */
7110
		accel_cmds_out = 0;
7111
		spin_lock_irqsave(&h->lock, flags);
7112 7113 7114 7115
		list_for_each_entry(c, &h->cmpQ, list)
			accel_cmds_out += is_accelerated_cmd(c);
		list_for_each_entry(c, &h->reqQ, list)
			accel_cmds_out += is_accelerated_cmd(c);
7116
		spin_unlock_irqrestore(&h->lock, flags);
7117
		if (accel_cmds_out <= 0)
7118 7119 7120 7121 7122
			break;
		msleep(100);
	} while (1);
}

7123 7124 7125 7126 7127 7128
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
7129
	return pci_register_driver(&hpsa_pci_driver);
7130 7131 7132 7133 7134 7135 7136
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

7137 7138
static void __attribute__((unused)) verify_offsets(void)
{
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
	VERIFY_OFFSET(Tag, 0x68);
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

7215 7216
module_init(hpsa_init);
module_exit(hpsa_cleanup);