sunxi_nand.c 50.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
 *
 * Derived from:
 *	https://github.com/yuq/sunxi-nfc-mtd
 *	Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
 *
 *	https://github.com/hno/Allwinner-Info
 *	Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
 *
 *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
 *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
41
#include <linux/iopoll.h>
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

#define NFC_REG_CTL		0x0000
#define NFC_REG_ST		0x0004
#define NFC_REG_INT		0x0008
#define NFC_REG_TIMING_CTL	0x000C
#define NFC_REG_TIMING_CFG	0x0010
#define NFC_REG_ADDR_LOW	0x0014
#define NFC_REG_ADDR_HIGH	0x0018
#define NFC_REG_SECTOR_NUM	0x001C
#define NFC_REG_CNT		0x0020
#define NFC_REG_CMD		0x0024
#define NFC_REG_RCMD_SET	0x0028
#define NFC_REG_WCMD_SET	0x002C
#define NFC_REG_IO_DATA		0x0030
#define NFC_REG_ECC_CTL		0x0034
#define NFC_REG_ECC_ST		0x0038
#define NFC_REG_DEBUG		0x003C
59 60
#define NFC_REG_ECC_ERR_CNT(x)	((0x0040 + (x)) & ~0x3)
#define NFC_REG_USER_DATA(x)	(0x0050 + ((x) * 4))
61
#define NFC_REG_SPARE_AREA	0x00A0
62
#define NFC_REG_PAT_ID		0x00A4
63 64 65 66 67 68
#define NFC_RAM0_BASE		0x0400
#define NFC_RAM1_BASE		0x0800

/* define bit use in NFC_CTL */
#define NFC_EN			BIT(0)
#define NFC_RESET		BIT(1)
69 70 71 72 73 74 75
#define NFC_BUS_WIDTH_MSK	BIT(2)
#define NFC_BUS_WIDTH_8		(0 << 2)
#define NFC_BUS_WIDTH_16	(1 << 2)
#define NFC_RB_SEL_MSK		BIT(3)
#define NFC_RB_SEL(x)		((x) << 3)
#define NFC_CE_SEL_MSK		GENMASK(26, 24)
#define NFC_CE_SEL(x)		((x) << 24)
76
#define NFC_CE_CTL		BIT(6)
77 78
#define NFC_PAGE_SHIFT_MSK	GENMASK(11, 8)
#define NFC_PAGE_SHIFT(x)	(((x) < 10 ? 0 : (x) - 10) << 8)
79 80 81 82 83 84 85 86 87 88 89
#define NFC_SAM			BIT(12)
#define NFC_RAM_METHOD		BIT(14)
#define NFC_DEBUG_CTL		BIT(31)

/* define bit use in NFC_ST */
#define NFC_RB_B2R		BIT(0)
#define NFC_CMD_INT_FLAG	BIT(1)
#define NFC_DMA_INT_FLAG	BIT(2)
#define NFC_CMD_FIFO_STATUS	BIT(3)
#define NFC_STA			BIT(4)
#define NFC_NATCH_INT_FLAG	BIT(5)
90
#define NFC_RB_STATE(x)		BIT(x + 8)
91 92 93 94 95 96 97 98 99

/* define bit use in NFC_INT */
#define NFC_B2R_INT_ENABLE	BIT(0)
#define NFC_CMD_INT_ENABLE	BIT(1)
#define NFC_DMA_INT_ENABLE	BIT(2)
#define NFC_INT_MASK		(NFC_B2R_INT_ENABLE | \
				 NFC_CMD_INT_ENABLE | \
				 NFC_DMA_INT_ENABLE)

100 101 102
/* define bit use in NFC_TIMING_CTL */
#define NFC_TIMING_CTL_EDO	BIT(8)

103 104 105 106 107 108
/* define NFC_TIMING_CFG register layout */
#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD)		\
	(((tWB) & 0x3) | (((tADL) & 0x3) << 2) |		\
	(((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) |		\
	(((tCAD) & 0x7) << 8))

109
/* define bit use in NFC_CMD */
110 111 112 113 114
#define NFC_CMD_LOW_BYTE_MSK	GENMASK(7, 0)
#define NFC_CMD_HIGH_BYTE_MSK	GENMASK(15, 8)
#define NFC_CMD(x)		(x)
#define NFC_ADR_NUM_MSK		GENMASK(18, 16)
#define NFC_ADR_NUM(x)		(((x) - 1) << 16)
115 116 117 118 119 120 121 122 123 124 125
#define NFC_SEND_ADR		BIT(19)
#define NFC_ACCESS_DIR		BIT(20)
#define NFC_DATA_TRANS		BIT(21)
#define NFC_SEND_CMD1		BIT(22)
#define NFC_WAIT_FLAG		BIT(23)
#define NFC_SEND_CMD2		BIT(24)
#define NFC_SEQ			BIT(25)
#define NFC_DATA_SWAP_METHOD	BIT(26)
#define NFC_ROW_AUTO_INC	BIT(27)
#define NFC_SEND_CMD3		BIT(28)
#define NFC_SEND_CMD4		BIT(29)
126 127 128 129
#define NFC_CMD_TYPE_MSK	GENMASK(31, 30)
#define NFC_NORMAL_OP		(0 << 30)
#define NFC_ECC_OP		(1 << 30)
#define NFC_PAGE_OP		(2 << 30)
130 131

/* define bit use in NFC_RCMD_SET */
132 133 134
#define NFC_READ_CMD_MSK	GENMASK(7, 0)
#define NFC_RND_READ_CMD0_MSK	GENMASK(15, 8)
#define NFC_RND_READ_CMD1_MSK	GENMASK(23, 16)
135 136

/* define bit use in NFC_WCMD_SET */
137 138 139 140
#define NFC_PROGRAM_CMD_MSK	GENMASK(7, 0)
#define NFC_RND_WRITE_CMD_MSK	GENMASK(15, 8)
#define NFC_READ_CMD0_MSK	GENMASK(23, 16)
#define NFC_READ_CMD1_MSK	GENMASK(31, 24)
141 142 143 144 145

/* define bit use in NFC_ECC_CTL */
#define NFC_ECC_EN		BIT(0)
#define NFC_ECC_PIPELINE	BIT(3)
#define NFC_ECC_EXCEPTION	BIT(4)
146
#define NFC_ECC_BLOCK_SIZE_MSK	BIT(5)
147 148
#define NFC_RANDOM_EN		BIT(9)
#define NFC_RANDOM_DIRECTION	BIT(10)
149 150 151 152 153 154 155 156
#define NFC_ECC_MODE_MSK	GENMASK(15, 12)
#define NFC_ECC_MODE(x)		((x) << 12)
#define NFC_RANDOM_SEED_MSK	GENMASK(30, 16)
#define NFC_RANDOM_SEED(x)	((x) << 16)

/* define bit use in NFC_ECC_ST */
#define NFC_ECC_ERR(x)		BIT(x)
#define NFC_ECC_PAT_FOUND(x)	BIT(x + 16)
157
#define NFC_ECC_ERR_CNT(b, x)	(((x) >> (((b) % 4) * 8)) & 0xff)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

#define NFC_DEFAULT_TIMEOUT_MS	1000

#define NFC_SRAM_SIZE		1024

#define NFC_MAX_CS		7

/*
 * Ready/Busy detection type: describes the Ready/Busy detection modes
 *
 * @RB_NONE:	no external detection available, rely on STATUS command
 *		and software timeouts
 * @RB_NATIVE:	use sunxi NAND controller Ready/Busy support. The Ready/Busy
 *		pin of the NAND flash chip must be connected to one of the
 *		native NAND R/B pins (those which can be muxed to the NAND
 *		Controller)
 * @RB_GPIO:	use a simple GPIO to handle Ready/Busy status. The Ready/Busy
 *		pin of the NAND flash chip must be connected to a GPIO capable
 *		pin.
 */
enum sunxi_nand_rb_type {
	RB_NONE,
	RB_NATIVE,
	RB_GPIO,
};

/*
 * Ready/Busy structure: stores information related to Ready/Busy detection
 *
 * @type:	the Ready/Busy detection mode
 * @info:	information related to the R/B detection mode. Either a gpio
 *		id or a native R/B id (those supported by the NAND controller).
 */
struct sunxi_nand_rb {
	enum sunxi_nand_rb_type type;
	union {
		int gpio;
		int nativeid;
	} info;
};

/*
 * Chip Select structure: stores information related to NAND Chip Select
 *
 * @cs:		the NAND CS id used to communicate with a NAND Chip
 * @rb:		the Ready/Busy description
 */
struct sunxi_nand_chip_sel {
	u8 cs;
	struct sunxi_nand_rb rb;
};

/*
 * sunxi HW ECC infos: stores information related to HW ECC support
 *
 * @mode:	the sunxi ECC mode field deduced from ECC requirements
 * @layout:	the OOB layout depending on the ECC requirements and the
 *		selected ECC mode
 */
struct sunxi_nand_hw_ecc {
	int mode;
	struct nand_ecclayout layout;
};

/*
 * NAND chip structure: stores NAND chip device related information
 *
 * @node:		used to store NAND chips into a list
 * @nand:		base NAND chip structure
 * @mtd:		base MTD structure
 * @clk_rate:		clk_rate required for this NAND chip
229
 * @timing_cfg		TIMING_CFG register value for this NAND chip
230 231 232 233 234 235 236 237
 * @selected:		current active CS
 * @nsels:		number of CS lines required by the NAND chip
 * @sels:		array of CS lines descriptions
 */
struct sunxi_nand_chip {
	struct list_head node;
	struct nand_chip nand;
	unsigned long clk_rate;
238
	u32 timing_cfg;
239
	u32 timing_ctl;
240
	int selected;
241 242 243 244
	int addr_cycles;
	u32 addr[2];
	int cmd_cycles;
	u8 cmd[2];
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	int nsels;
	struct sunxi_nand_chip_sel sels[0];
};

static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
{
	return container_of(nand, struct sunxi_nand_chip, nand);
}

/*
 * NAND Controller structure: stores sunxi NAND controller information
 *
 * @controller:		base controller structure
 * @dev:		parent device (used to print error messages)
 * @regs:		NAND controller registers
 * @ahb_clk:		NAND Controller AHB clock
 * @mod_clk:		NAND Controller mod clock
 * @assigned_cs:	bitmask describing already assigned CS lines
 * @clk_rate:		NAND controller current clock rate
 * @chips:		a list containing all the NAND chips attached to
 *			this NAND controller
 * @complete:		a completion object used to wait for NAND
 *			controller events
 */
struct sunxi_nfc {
	struct nand_hw_control controller;
	struct device *dev;
	void __iomem *regs;
	struct clk *ahb_clk;
	struct clk *mod_clk;
	unsigned long assigned_cs;
	unsigned long clk_rate;
	struct list_head chips;
	struct completion complete;
};

static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
{
	return container_of(ctrl, struct sunxi_nfc, controller);
}

static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
{
	struct sunxi_nfc *nfc = dev_id;
	u32 st = readl(nfc->regs + NFC_REG_ST);
	u32 ien = readl(nfc->regs + NFC_REG_INT);

	if (!(ien & st))
		return IRQ_NONE;

	if ((ien & st) == ien)
		complete(&nfc->complete);

	writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
	writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);

	return IRQ_HANDLED;
}

304 305
static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events,
				 bool use_polling, unsigned int timeout_ms)
306
{
307
	int ret;
308

309 310
	if (events & ~NFC_INT_MASK)
		return -EINVAL;
311 312 313 314

	if (!timeout_ms)
		timeout_ms = NFC_DEFAULT_TIMEOUT_MS;

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	if (!use_polling) {
		init_completion(&nfc->complete);

		writel(events, nfc->regs + NFC_REG_INT);

		ret = wait_for_completion_timeout(&nfc->complete,
						msecs_to_jiffies(timeout_ms));

		writel(0, nfc->regs + NFC_REG_INT);
	} else {
		u32 status;

		ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
					 (status & events) == events, 1,
					 timeout_ms * 1000);
330 331
	}

332 333 334 335 336 337
	writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST);

	if (ret)
		dev_err(nfc->dev, "wait interrupt timedout\n");

	return ret;
338 339 340 341
}

static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
{
342 343
	u32 status;
	int ret;
344

345 346 347 348 349
	ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
				 !(status & NFC_CMD_FIFO_STATUS), 1,
				 NFC_DEFAULT_TIMEOUT_MS * 1000);
	if (ret)
		dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
350

351
	return ret;
352 353 354 355
}

static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
{
356 357
	u32 ctl;
	int ret;
358 359 360 361

	writel(0, nfc->regs + NFC_REG_ECC_CTL);
	writel(NFC_RESET, nfc->regs + NFC_REG_CTL);

362 363 364 365 366
	ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl,
				 !(ctl & NFC_RESET), 1,
				 NFC_DEFAULT_TIMEOUT_MS * 1000);
	if (ret)
		dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
367

368
	return ret;
369 370 371 372
}

static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
{
373
	struct nand_chip *nand = mtd_to_nand(mtd);
374 375 376 377 378 379 380 381 382 383 384 385 386
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_rb *rb;
	int ret;

	if (sunxi_nand->selected < 0)
		return 0;

	rb = &sunxi_nand->sels[sunxi_nand->selected].rb;

	switch (rb->type) {
	case RB_NATIVE:
		ret = !!(readl(nfc->regs + NFC_REG_ST) &
387
			 NFC_RB_STATE(rb->info.nativeid));
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
		break;
	case RB_GPIO:
		ret = gpio_get_value(rb->info.gpio);
		break;
	case RB_NONE:
	default:
		ret = 0;
		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
		break;
	}

	return ret;
}

static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
{
404
	struct nand_chip *nand = mtd_to_nand(mtd);
405 406 407 408 409 410 411 412 413 414 415 416
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_chip_sel *sel;
	u32 ctl;

	if (chip > 0 && chip >= sunxi_nand->nsels)
		return;

	if (chip == sunxi_nand->selected)
		return;

	ctl = readl(nfc->regs + NFC_REG_CTL) &
417
	      ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
418 419 420 421

	if (chip >= 0) {
		sel = &sunxi_nand->sels[chip];

422
		ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
423
		       NFC_PAGE_SHIFT(nand->page_shift);
424 425 426 427 428
		if (sel->rb.type == RB_NONE) {
			nand->dev_ready = NULL;
		} else {
			nand->dev_ready = sunxi_nfc_dev_ready;
			if (sel->rb.type == RB_NATIVE)
429
				ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
430 431 432 433 434 435 436 437 438 439
		}

		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);

		if (nfc->clk_rate != sunxi_nand->clk_rate) {
			clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
			nfc->clk_rate = sunxi_nand->clk_rate;
		}
	}

440
	writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
441
	writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
442 443 444 445 446 447 448
	writel(ctl, nfc->regs + NFC_REG_CTL);

	sunxi_nand->selected = chip;
}

static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
449
	struct nand_chip *nand = mtd_to_nand(mtd);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;
	int cnt;
	int offs = 0;
	u32 tmp;

	while (len > offs) {
		cnt = min(len - offs, NFC_SRAM_SIZE);

		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
		if (ret)
			break;

		writel(cnt, nfc->regs + NFC_REG_CNT);
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
		writel(tmp, nfc->regs + NFC_REG_CMD);

468
		ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
469 470 471 472 473 474 475 476 477 478 479 480 481
		if (ret)
			break;

		if (buf)
			memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
				      cnt);
		offs += cnt;
	}
}

static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
				int len)
{
482
	struct nand_chip *nand = mtd_to_nand(mtd);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;
	int cnt;
	int offs = 0;
	u32 tmp;

	while (len > offs) {
		cnt = min(len - offs, NFC_SRAM_SIZE);

		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
		if (ret)
			break;

		writel(cnt, nfc->regs + NFC_REG_CNT);
		memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
		      NFC_ACCESS_DIR;
		writel(tmp, nfc->regs + NFC_REG_CMD);

503
		ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
		if (ret)
			break;

		offs += cnt;
	}
}

static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
{
	uint8_t ret;

	sunxi_nfc_read_buf(mtd, &ret, 1);

	return ret;
}

static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
			       unsigned int ctrl)
{
523
	struct nand_chip *nand = mtd_to_nand(mtd);
524 525 526 527 528 529 530 531
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;

	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
	if (ret)
		return;

532 533 534
	if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) &&
	    !(ctrl & (NAND_CLE | NAND_ALE))) {
		u32 cmd = 0;
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
		if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles)
			return;

		if (sunxi_nand->cmd_cycles--)
			cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0];

		if (sunxi_nand->cmd_cycles--) {
			cmd |= NFC_SEND_CMD2;
			writel(sunxi_nand->cmd[1],
			       nfc->regs + NFC_REG_RCMD_SET);
		}

		sunxi_nand->cmd_cycles = 0;

		if (sunxi_nand->addr_cycles) {
			cmd |= NFC_SEND_ADR |
			       NFC_ADR_NUM(sunxi_nand->addr_cycles);
			writel(sunxi_nand->addr[0],
			       nfc->regs + NFC_REG_ADDR_LOW);
		}

		if (sunxi_nand->addr_cycles > 4)
			writel(sunxi_nand->addr[1],
			       nfc->regs + NFC_REG_ADDR_HIGH);

		writel(cmd, nfc->regs + NFC_REG_CMD);
		sunxi_nand->addr[0] = 0;
		sunxi_nand->addr[1] = 0;
		sunxi_nand->addr_cycles = 0;
565
		sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
566 567
	}

568 569 570 571 572 573 574
	if (ctrl & NAND_CLE) {
		sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat;
	} else if (ctrl & NAND_ALE) {
		sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |=
				dat << ((sunxi_nand->addr_cycles % 4) * 8);
		sunxi_nand->addr_cycles++;
	}
575 576
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
/* These seed values have been extracted from Allwinner's BSP */
static const u16 sunxi_nfc_randomizer_page_seeds[] = {
	0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
	0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
	0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
	0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
	0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
	0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
	0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
	0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
	0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
	0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
	0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
	0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
	0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
	0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
	0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
	0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
};

/*
 * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds
 * have been generated using
 * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what
 * the randomizer engine does internally before de/scrambling OOB data.
 *
 * Those tables are statically defined to avoid calculating randomizer state
 * at runtime.
 */
static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = {
	0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64,
	0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409,
	0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617,
	0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d,
	0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91,
	0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d,
	0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab,
	0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8,
	0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8,
	0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b,
	0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5,
	0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a,
	0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891,
	0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36,
	0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd,
	0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0,
};

static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = {
	0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6,
	0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982,
	0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9,
	0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07,
	0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e,
	0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2,
	0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c,
	0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f,
	0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc,
	0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e,
	0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8,
	0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68,
	0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d,
	0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179,
	0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601,
	0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd,
};

static u16 sunxi_nfc_randomizer_step(u16 state, int count)
{
	state &= 0x7fff;

	/*
	 * This loop is just a simple implementation of a Fibonacci LFSR using
	 * the x16 + x15 + 1 polynomial.
	 */
	while (count--)
		state = ((state >> 1) |
			 (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff;

	return state;
}

static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc)
{
	const u16 *seeds = sunxi_nfc_randomizer_page_seeds;
662
	int mod = mtd_div_by_ws(mtd->erasesize, mtd);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

	if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds))
		mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds);

	if (ecc) {
		if (mtd->ecc_step_size == 512)
			seeds = sunxi_nfc_randomizer_ecc512_seeds;
		else
			seeds = sunxi_nfc_randomizer_ecc1024_seeds;
	}

	return seeds[page % mod];
}

static void sunxi_nfc_randomizer_config(struct mtd_info *mtd,
					int page, bool ecc)
{
680
	struct nand_chip *nand = mtd_to_nand(mtd);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
	u16 state;

	if (!(nand->options & NAND_NEED_SCRAMBLING))
		return;

	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
	state = sunxi_nfc_randomizer_state(mtd, page, ecc);
	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK;
	writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL);
}

static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd)
{
696
	struct nand_chip *nand = mtd_to_nand(mtd);
697 698 699 700 701 702 703 704 705 706 707
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);

	if (!(nand->options & NAND_NEED_SCRAMBLING))
		return;

	writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN,
	       nfc->regs + NFC_REG_ECC_CTL);
}

static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd)
{
708
	struct nand_chip *nand = mtd_to_nand(mtd);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);

	if (!(nand->options & NAND_NEED_SCRAMBLING))
		return;

	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN,
	       nfc->regs + NFC_REG_ECC_CTL);
}

static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm)
{
	u16 state = sunxi_nfc_randomizer_state(mtd, page, true);

	bbm[0] ^= state;
	bbm[1] ^= sunxi_nfc_randomizer_step(state, 8);
}

static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd,
					   const uint8_t *buf, int len,
					   bool ecc, int page)
{
	sunxi_nfc_randomizer_config(mtd, page, ecc);
	sunxi_nfc_randomizer_enable(mtd);
	sunxi_nfc_write_buf(mtd, buf, len);
	sunxi_nfc_randomizer_disable(mtd);
}

static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf,
					  int len, bool ecc, int page)
{
	sunxi_nfc_randomizer_config(mtd, page, ecc);
	sunxi_nfc_randomizer_enable(mtd);
	sunxi_nfc_read_buf(mtd, buf, len);
	sunxi_nfc_randomizer_disable(mtd);
}

745 746
static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
{
747
	struct nand_chip *nand = mtd_to_nand(mtd);
748 749 750 751 752 753 754
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
	u32 ecc_ctl;

	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
	ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
		     NFC_ECC_BLOCK_SIZE_MSK);
755 756
	ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION |
		   NFC_ECC_PIPELINE;
757 758 759 760 761 762

	writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
}

static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
{
763
	struct nand_chip *nand = mtd_to_nand(mtd);
764 765 766 767 768 769
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);

	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
	       nfc->regs + NFC_REG_ECC_CTL);
}

770 771 772 773 774 775 776 777
static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
{
	buf[0] = user_data;
	buf[1] = user_data >> 8;
	buf[2] = user_data >> 16;
	buf[3] = user_data >> 24;
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
{
	return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
}

static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct mtd_info *mtd, u8 *oob,
						int step, bool bbm, int page)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);

	sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)),
				   oob);

	/* De-randomize the Bad Block Marker. */
	if (bbm && (nand->options & NAND_NEED_SCRAMBLING))
		sunxi_nfc_randomize_bbm(mtd, page, oob);
}

static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct mtd_info *mtd,
						const u8 *oob, int step,
						bool bbm, int page)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	u8 user_data[4];

	/* Randomize the Bad Block Marker. */
	if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) {
		memcpy(user_data, oob, sizeof(user_data));
		sunxi_nfc_randomize_bbm(mtd, page, user_data);
		oob = user_data;
	}

	writel(sunxi_nfc_buf_to_user_data(oob),
	       nfc->regs + NFC_REG_USER_DATA(step));
}

static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd,
					  unsigned int *max_bitflips, int ret)
{
	if (ret < 0) {
		mtd->ecc_stats.failed++;
	} else {
		mtd->ecc_stats.corrected += ret;
		*max_bitflips = max_t(unsigned int, *max_bitflips, ret);
	}
}

static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob,
				    int step, bool *erased)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	u32 status, tmp;

	*erased = false;

	status = readl(nfc->regs + NFC_REG_ECC_ST);

	if (status & NFC_ECC_ERR(step))
		return -EBADMSG;

	if (status & NFC_ECC_PAT_FOUND(step)) {
		u8 pattern;

		if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) {
			pattern = 0x0;
		} else {
			pattern = 0xff;
			*erased = true;
		}

		if (data)
			memset(data, pattern, ecc->size);

		if (oob)
			memset(oob, pattern, ecc->bytes + 4);

		return 0;
	}

	tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(step));

	return NFC_ECC_ERR_CNT(step, tmp);
}

866 867 868 869
static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
				       u8 *data, int data_off,
				       u8 *oob, int oob_off,
				       int *cur_off,
870
				       unsigned int *max_bitflips,
871
				       bool bbm, bool oob_required, int page)
872
{
873
	struct nand_chip *nand = mtd_to_nand(mtd);
874 875
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct nand_ecc_ctrl *ecc = &nand->ecc;
876
	int raw_mode = 0;
877
	bool erased;
878 879 880 881 882
	int ret;

	if (*cur_off != data_off)
		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);

883
	sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page);
884

885
	if (data_off + ecc->size != oob_off)
886 887 888 889 890 891
		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);

	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
	if (ret)
		return ret;

892
	sunxi_nfc_randomizer_enable(mtd);
893 894 895
	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
	       nfc->regs + NFC_REG_CMD);

896
	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
897
	sunxi_nfc_randomizer_disable(mtd);
898 899 900
	if (ret)
		return ret;

901 902
	*cur_off = oob_off + ecc->bytes + 4;

903 904
	ret = sunxi_nfc_hw_ecc_correct(mtd, data, oob_required ? oob : NULL, 0,
				       &erased);
905
	if (erased)
906
		return 1;
907

908
	if (ret < 0) {
909 910 911 912 913 914 915
		/*
		 * Re-read the data with the randomizer disabled to identify
		 * bitflips in erased pages.
		 */
		if (nand->options & NAND_NEED_SCRAMBLING) {
			nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
			nand->read_buf(mtd, data, ecc->size);
916 917 918
		} else {
			memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE,
				      ecc->size);
919 920
		}

921 922 923
		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
		nand->read_buf(mtd, oob, ecc->bytes + 4);

924 925 926
		ret = nand_check_erased_ecc_chunk(data,	ecc->size,
						  oob, ecc->bytes + 4,
						  NULL, 0, ecc->strength);
927 928
		if (ret >= 0)
			raw_mode = 1;
929
	} else {
930
		memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
931

932 933 934 935
		if (oob_required) {
			nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
			sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4,
						      true, page);
936

937 938 939
			sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, 0,
							    bbm, page);
		}
940 941
	}

942 943
	sunxi_nfc_hw_ecc_update_stats(mtd, max_bitflips, ret);

944
	return raw_mode;
945 946
}

947
static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
948 949
					    u8 *oob, int *cur_off,
					    bool randomize, int page)
950
{
951
	struct nand_chip *nand = mtd_to_nand(mtd);
952 953 954 955 956 957 958 959 960 961 962
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	int offset = ((ecc->bytes + 4) * ecc->steps);
	int len = mtd->oobsize - offset;

	if (len <= 0)
		return;

	if (*cur_off != offset)
		nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
			      offset + mtd->writesize, -1);

963 964 965 966 967
	if (!randomize)
		sunxi_nfc_read_buf(mtd, oob + offset, len);
	else
		sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len,
					      false, page);
968 969 970 971

	*cur_off = mtd->oobsize + mtd->writesize;
}

972 973 974
static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
					const u8 *data, int data_off,
					const u8 *oob, int oob_off,
975 976
					int *cur_off, bool bbm,
					int page)
977
{
978
	struct nand_chip *nand = mtd_to_nand(mtd);
979 980 981 982 983 984 985
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	int ret;

	if (data_off != *cur_off)
		nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);

986
	sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page);
987

988
	if (data_off + ecc->size != oob_off)
989 990 991 992 993 994
		nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);

	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
	if (ret)
		return ret;

995
	sunxi_nfc_randomizer_enable(mtd);
996 997
	sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, 0, bbm, page);

998 999 1000 1001
	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
	       NFC_ACCESS_DIR | NFC_ECC_OP,
	       nfc->regs + NFC_REG_CMD);

1002
	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
1003
	sunxi_nfc_randomizer_disable(mtd);
1004 1005 1006 1007 1008 1009 1010 1011
	if (ret)
		return ret;

	*cur_off = oob_off + ecc->bytes + 4;

	return 0;
}

1012
static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
1013 1014
					     u8 *oob, int *cur_off,
					     int page)
1015
{
1016
	struct nand_chip *nand = mtd_to_nand(mtd);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	int offset = ((ecc->bytes + 4) * ecc->steps);
	int len = mtd->oobsize - offset;

	if (len <= 0)
		return;

	if (*cur_off != offset)
		nand->cmdfunc(mtd, NAND_CMD_RNDIN,
			      offset + mtd->writesize, -1);

1028
	sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page);
1029 1030 1031 1032

	*cur_off = mtd->oobsize + mtd->writesize;
}

1033 1034 1035 1036 1037 1038
static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
				      struct nand_chip *chip, uint8_t *buf,
				      int oob_required, int page)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	unsigned int max_bitflips = 0;
1039
	int ret, i, cur_off = 0;
1040
	bool raw_mode = false;
1041

1042
	sunxi_nfc_hw_ecc_enable(mtd);
1043 1044

	for (i = 0; i < ecc->steps; i++) {
1045 1046 1047 1048 1049 1050 1051
		int data_off = i * ecc->size;
		int oob_off = i * (ecc->bytes + 4);
		u8 *data = buf + data_off;
		u8 *oob = chip->oob_poi + oob_off;

		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
						  oob_off + mtd->writesize,
1052
						  &cur_off, &max_bitflips,
1053
						  !i, oob_required, page);
1054
		if (ret < 0)
1055
			return ret;
1056 1057
		else if (ret)
			raw_mode = true;
1058 1059
	}

1060
	if (oob_required)
1061 1062
		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
						!raw_mode, page);
1063

1064
	sunxi_nfc_hw_ecc_disable(mtd);
1065 1066 1067 1068

	return max_bitflips;
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
					 struct nand_chip *chip,
					 u32 data_offs, u32 readlen,
					 u8 *bufpoi, int page)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int ret, i, cur_off = 0;
	unsigned int max_bitflips = 0;

	sunxi_nfc_hw_ecc_enable(mtd);

	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
	for (i = data_offs / ecc->size;
	     i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
		int data_off = i * ecc->size;
		int oob_off = i * (ecc->bytes + 4);
		u8 *data = bufpoi + data_off;
		u8 *oob = chip->oob_poi + oob_off;

		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off,
						  oob,
						  oob_off + mtd->writesize,
1091 1092
						  &cur_off, &max_bitflips, !i,
						  false, page);
1093 1094 1095 1096 1097 1098 1099 1100 1101
		if (ret < 0)
			return ret;
	}

	sunxi_nfc_hw_ecc_disable(mtd);

	return max_bitflips;
}

1102 1103
static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
				       struct nand_chip *chip,
1104 1105
				       const uint8_t *buf, int oob_required,
				       int page)
1106 1107
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
1108
	int ret, i, cur_off = 0;
1109

1110
	sunxi_nfc_hw_ecc_enable(mtd);
1111 1112

	for (i = 0; i < ecc->steps; i++) {
1113 1114 1115 1116 1117 1118 1119
		int data_off = i * ecc->size;
		int oob_off = i * (ecc->bytes + 4);
		const u8 *data = buf + data_off;
		const u8 *oob = chip->oob_poi + oob_off;

		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
						   oob_off + mtd->writesize,
1120
						   &cur_off, !i, page);
1121 1122 1123 1124
		if (ret)
			return ret;
	}

1125 1126 1127
	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
						 &cur_off, page);
1128

1129
	sunxi_nfc_hw_ecc_disable(mtd);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

	return 0;
}

static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
					       struct nand_chip *chip,
					       uint8_t *buf, int oob_required,
					       int page)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	unsigned int max_bitflips = 0;
1141
	int ret, i, cur_off = 0;
1142
	bool raw_mode = false;
1143

1144
	sunxi_nfc_hw_ecc_enable(mtd);
1145 1146

	for (i = 0; i < ecc->steps; i++) {
1147 1148 1149 1150 1151 1152 1153
		int data_off = i * (ecc->size + ecc->bytes + 4);
		int oob_off = data_off + ecc->size;
		u8 *data = buf + (i * ecc->size);
		u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));

		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
						  oob_off, &cur_off,
1154 1155 1156
						  &max_bitflips, !i,
						  oob_required,
						  page);
1157
		if (ret < 0)
1158
			return ret;
1159 1160
		else if (ret)
			raw_mode = true;
1161 1162
	}

1163
	if (oob_required)
1164 1165
		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
						!raw_mode, page);
1166

1167
	sunxi_nfc_hw_ecc_disable(mtd);
1168 1169 1170 1171 1172 1173 1174

	return max_bitflips;
}

static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
						struct nand_chip *chip,
						const uint8_t *buf,
1175
						int oob_required, int page)
1176 1177
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
1178
	int ret, i, cur_off = 0;
1179

1180
	sunxi_nfc_hw_ecc_enable(mtd);
1181 1182

	for (i = 0; i < ecc->steps; i++) {
1183 1184 1185 1186
		int data_off = i * (ecc->size + ecc->bytes + 4);
		int oob_off = data_off + ecc->size;
		const u8 *data = buf + (i * ecc->size);
		const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
1187

1188
		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
1189 1190
						   oob, oob_off, &cur_off,
						   false, page);
1191 1192 1193 1194
		if (ret)
			return ret;
	}

1195 1196 1197
	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
						 &cur_off, page);
1198

1199
	sunxi_nfc_hw_ecc_disable(mtd);
1200 1201 1202 1203

	return 0;
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static int sunxi_nfc_hw_common_ecc_read_oob(struct mtd_info *mtd,
					    struct nand_chip *chip,
					    int page)
{
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	chip->pagebuf = -1;

	return chip->ecc.read_page(mtd, chip, chip->buffers->databuf, 1, page);
}

static int sunxi_nfc_hw_common_ecc_write_oob(struct mtd_info *mtd,
					     struct nand_chip *chip,
					     int page)
{
	int ret, status;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page);

	chip->pagebuf = -1;

	memset(chip->buffers->databuf, 0xff, mtd->writesize);
	ret = chip->ecc.write_page(mtd, chip, chip->buffers->databuf, 1, page);
	if (ret)
		return ret;

	/* Send command to program the OOB data */
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static const s32 tWB_lut[] = {6, 12, 16, 20};
static const s32 tRHW_lut[] = {4, 8, 12, 20};

static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
		u32 clk_period)
{
	u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
	int i;

	for (i = 0; i < lut_size; i++) {
		if (clk_cycles <= lut[i])
			return i;
	}

	/* Doesn't fit */
	return -EINVAL;
}

#define sunxi_nand_lookup_timing(l, p, c) \
			_sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)

1259 1260 1261
static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
				       const struct nand_sdr_timings *timings)
{
1262
	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
1263
	u32 min_clk_period = 0;
1264
	s32 tWB, tADL, tWHR, tRHW, tCAD;
1265
	long real_clk_rate;
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

	/* T1 <=> tCLS */
	if (timings->tCLS_min > min_clk_period)
		min_clk_period = timings->tCLS_min;

	/* T2 <=> tCLH */
	if (timings->tCLH_min > min_clk_period)
		min_clk_period = timings->tCLH_min;

	/* T3 <=> tCS */
	if (timings->tCS_min > min_clk_period)
		min_clk_period = timings->tCS_min;

	/* T4 <=> tCH */
	if (timings->tCH_min > min_clk_period)
		min_clk_period = timings->tCH_min;

	/* T5 <=> tWP */
	if (timings->tWP_min > min_clk_period)
		min_clk_period = timings->tWP_min;

	/* T6 <=> tWH */
	if (timings->tWH_min > min_clk_period)
		min_clk_period = timings->tWH_min;

	/* T7 <=> tALS */
	if (timings->tALS_min > min_clk_period)
		min_clk_period = timings->tALS_min;

	/* T8 <=> tDS */
	if (timings->tDS_min > min_clk_period)
		min_clk_period = timings->tDS_min;

	/* T9 <=> tDH */
	if (timings->tDH_min > min_clk_period)
		min_clk_period = timings->tDH_min;

	/* T10 <=> tRR */
	if (timings->tRR_min > (min_clk_period * 3))
		min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);

	/* T11 <=> tALH */
	if (timings->tALH_min > min_clk_period)
		min_clk_period = timings->tALH_min;

	/* T12 <=> tRP */
	if (timings->tRP_min > min_clk_period)
		min_clk_period = timings->tRP_min;

	/* T13 <=> tREH */
	if (timings->tREH_min > min_clk_period)
		min_clk_period = timings->tREH_min;

	/* T14 <=> tRC */
	if (timings->tRC_min > (min_clk_period * 2))
		min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);

	/* T15 <=> tWC */
	if (timings->tWC_min > (min_clk_period * 2))
		min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);

1327
	/* T16 - T19 + tCAD */
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	if (timings->tWB_max > (min_clk_period * 20))
		min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20);

	if (timings->tADL_min > (min_clk_period * 32))
		min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32);

	if (timings->tWHR_min > (min_clk_period * 32))
		min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32);

	if (timings->tRHW_min > (min_clk_period * 20))
		min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20);

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
					min_clk_period);
	if (tWB < 0) {
		dev_err(nfc->dev, "unsupported tWB\n");
		return tWB;
	}

	tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
	if (tADL > 3) {
		dev_err(nfc->dev, "unsupported tADL\n");
		return -EINVAL;
	}

	tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
	if (tWHR > 3) {
		dev_err(nfc->dev, "unsupported tWHR\n");
		return -EINVAL;
	}

	tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
					min_clk_period);
	if (tRHW < 0) {
		dev_err(nfc->dev, "unsupported tRHW\n");
		return tRHW;
	}

	/*
	 * TODO: according to ONFI specs this value only applies for DDR NAND,
	 * but Allwinner seems to set this to 0x7. Mimic them for now.
	 */
	tCAD = 0x7;

	/* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
	chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
1374 1375 1376 1377 1378

	/* Convert min_clk_period from picoseconds to nanoseconds */
	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);

	/*
1379 1380 1381 1382
	 * Unlike what is stated in Allwinner datasheet, the clk_rate should
	 * be set to (1 / min_clk_period), and not (2 / min_clk_period).
	 * This new formula was verified with a scope and validated by
	 * Allwinner engineers.
1383
	 */
1384
	chip->clk_rate = NSEC_PER_SEC / min_clk_period;
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	real_clk_rate = clk_round_rate(nfc->mod_clk, chip->clk_rate);

	/*
	 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
	 * output cycle timings shall be used if the host drives tRC less than
	 * 30 ns.
	 */
	min_clk_period = NSEC_PER_SEC / real_clk_rate;
	chip->timing_ctl = ((min_clk_period * 2) < 30) ?
			   NFC_TIMING_CTL_EDO : 0;
1395 1396 1397 1398 1399 1400 1401

	return 0;
}

static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
					struct device_node *np)
{
1402
	struct mtd_info *mtd = nand_to_mtd(&chip->nand);
1403 1404 1405 1406 1407 1408 1409 1410 1411
	const struct nand_sdr_timings *timings;
	int ret;
	int mode;

	mode = onfi_get_async_timing_mode(&chip->nand);
	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
		mode = chip->nand.onfi_timing_mode_default;
	} else {
		uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
1412
		int i;
1413 1414 1415 1416 1417 1418

		mode = fls(mode) - 1;
		if (mode < 0)
			mode = 0;

		feature[0] = mode;
1419
		for (i = 0; i < chip->nsels; i++) {
1420 1421
			chip->nand.select_chip(mtd, i);
			ret = chip->nand.onfi_set_features(mtd,	&chip->nand,
1422 1423
						ONFI_FEATURE_ADDR_TIMING_MODE,
						feature);
1424
			chip->nand.select_chip(mtd, -1);
1425 1426 1427
			if (ret)
				return ret;
		}
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	}

	timings = onfi_async_timing_mode_to_sdr_timings(mode);
	if (IS_ERR(timings))
		return PTR_ERR(timings);

	return sunxi_nand_chip_set_timings(chip, timings);
}

static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
					      struct nand_ecc_ctrl *ecc,
					      struct device_node *np)
{
	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
1442
	struct nand_chip *nand = mtd_to_nand(mtd);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_hw_ecc *data;
	struct nand_ecclayout *layout;
	int nsectors;
	int ret;
	int i;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	/* Add ECC info retrieval from DT */
	for (i = 0; i < ARRAY_SIZE(strengths); i++) {
		if (ecc->strength <= strengths[i])
			break;
	}

	if (i >= ARRAY_SIZE(strengths)) {
		dev_err(nfc->dev, "unsupported strength\n");
		ret = -ENOTSUPP;
		goto err;
	}

	data->mode = i;

	/* HW ECC always request ECC bytes for 1024 bytes blocks */
	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);

	/* HW ECC always work with even numbers of ECC bytes */
	ecc->bytes = ALIGN(ecc->bytes, 2);

	layout = &data->layout;
	nsectors = mtd->writesize / ecc->size;

	if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
		ret = -EINVAL;
		goto err;
	}

	layout->eccbytes = (ecc->bytes * nsectors);

1485 1486
	ecc->read_oob = sunxi_nfc_hw_common_ecc_read_oob;
	ecc->write_oob = sunxi_nfc_hw_common_ecc_write_oob;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	ecc->layout = layout;
	ecc->priv = data;

	return 0;

err:
	kfree(data);

	return ret;
}

static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
{
	kfree(ecc->priv);
}

static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
				       struct nand_ecc_ctrl *ecc,
				       struct device_node *np)
{
	struct nand_ecclayout *layout;
	int nsectors;
	int i, j;
	int ret;

	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
	if (ret)
		return ret;

	ecc->read_page = sunxi_nfc_hw_ecc_read_page;
	ecc->write_page = sunxi_nfc_hw_ecc_write_page;
1518 1519
	ecc->read_oob_raw = nand_read_oob_std;
	ecc->write_oob_raw = nand_write_oob_std;
1520
	ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	layout = ecc->layout;
	nsectors = mtd->writesize / ecc->size;

	for (i = 0; i < nsectors; i++) {
		if (i) {
			layout->oobfree[i].offset =
				layout->oobfree[i - 1].offset +
				layout->oobfree[i - 1].length +
				ecc->bytes;
			layout->oobfree[i].length = 4;
		} else {
			/*
			 * The first 2 bytes are used for BB markers, hence we
			 * only have 2 bytes available in the first user data
			 * section.
			 */
			layout->oobfree[i].length = 2;
			layout->oobfree[i].offset = 2;
		}

		for (j = 0; j < ecc->bytes; j++)
			layout->eccpos[(ecc->bytes * i) + j] =
					layout->oobfree[i].offset +
					layout->oobfree[i].length + j;
	}

	if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
		layout->oobfree[nsectors].offset =
				layout->oobfree[nsectors - 1].offset +
				layout->oobfree[nsectors - 1].length +
				ecc->bytes;
		layout->oobfree[nsectors].length = mtd->oobsize -
				((ecc->bytes + 4) * nsectors);
	}

	return 0;
}

static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
						struct nand_ecc_ctrl *ecc,
						struct device_node *np)
{
	struct nand_ecclayout *layout;
	int nsectors;
	int i;
	int ret;

	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
	if (ret)
		return ret;

	ecc->prepad = 4;
	ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
	ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1575 1576
	ecc->read_oob_raw = nand_read_oob_syndrome;
	ecc->write_oob_raw = nand_write_oob_syndrome;
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

	layout = ecc->layout;
	nsectors = mtd->writesize / ecc->size;

	for (i = 0; i < (ecc->bytes * nsectors); i++)
		layout->eccpos[i] = i;

	layout->oobfree[0].length = mtd->oobsize - i;
	layout->oobfree[0].offset = i;

	return 0;
}

static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
{
	switch (ecc->mode) {
	case NAND_ECC_HW:
	case NAND_ECC_HW_SYNDROME:
		sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
		break;
	case NAND_ECC_NONE:
		kfree(ecc->layout);
	default:
		break;
	}
}

static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
			       struct device_node *np)
{
1607
	struct nand_chip *nand = mtd_to_nand(mtd);
1608 1609
	int ret;

1610
	if (!ecc->size) {
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
		ecc->size = nand->ecc_step_ds;
		ecc->strength = nand->ecc_strength_ds;
	}

	if (!ecc->size || !ecc->strength)
		return -EINVAL;

	switch (ecc->mode) {
	case NAND_ECC_SOFT_BCH:
		break;
	case NAND_ECC_HW:
		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
		if (ret)
			return ret;
		break;
	case NAND_ECC_HW_SYNDROME:
		ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
		if (ret)
			return ret;
		break;
	case NAND_ECC_NONE:
		ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
		if (!ecc->layout)
			return -ENOMEM;
		ecc->layout->oobfree[0].length = mtd->oobsize;
	case NAND_ECC_SOFT:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
				struct device_node *np)
{
	const struct nand_sdr_timings *timings;
	struct sunxi_nand_chip *chip;
	struct mtd_info *mtd;
	struct nand_chip *nand;
	int nsels;
	int ret;
	int i;
	u32 tmp;

	if (!of_get_property(np, "reg", &nsels))
		return -EINVAL;

	nsels /= sizeof(u32);
	if (!nsels) {
		dev_err(dev, "invalid reg property size\n");
		return -EINVAL;
	}

	chip = devm_kzalloc(dev,
			    sizeof(*chip) +
			    (nsels * sizeof(struct sunxi_nand_chip_sel)),
			    GFP_KERNEL);
	if (!chip) {
		dev_err(dev, "could not allocate chip\n");
		return -ENOMEM;
	}

	chip->nsels = nsels;
	chip->selected = -1;

	for (i = 0; i < nsels; i++) {
		ret = of_property_read_u32_index(np, "reg", i, &tmp);
		if (ret) {
			dev_err(dev, "could not retrieve reg property: %d\n",
				ret);
			return ret;
		}

		if (tmp > NFC_MAX_CS) {
			dev_err(dev,
				"invalid reg value: %u (max CS = 7)\n",
				tmp);
			return -EINVAL;
		}

		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
			dev_err(dev, "CS %d already assigned\n", tmp);
			return -EINVAL;
		}

		chip->sels[i].cs = tmp;

		if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
		    tmp < 2) {
			chip->sels[i].rb.type = RB_NATIVE;
			chip->sels[i].rb.info.nativeid = tmp;
		} else {
			ret = of_get_named_gpio(np, "rb-gpios", i);
			if (ret >= 0) {
				tmp = ret;
				chip->sels[i].rb.type = RB_GPIO;
				chip->sels[i].rb.info.gpio = tmp;
				ret = devm_gpio_request(dev, tmp, "nand-rb");
				if (ret)
					return ret;

				ret = gpio_direction_input(tmp);
				if (ret)
					return ret;
			} else {
				chip->sels[i].rb.type = RB_NONE;
			}
		}
	}

	nand = &chip->nand;
	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
	nand->chip_delay = 200;
	nand->controller = &nfc->controller;
1727 1728 1729 1730 1731
	/*
	 * Set the ECC mode to the default value in case nothing is specified
	 * in the DT.
	 */
	nand->ecc.mode = NAND_ECC_HW;
1732
	nand_set_flash_node(nand, np);
1733 1734 1735 1736 1737 1738
	nand->select_chip = sunxi_nfc_select_chip;
	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
	nand->read_buf = sunxi_nfc_read_buf;
	nand->write_buf = sunxi_nfc_write_buf;
	nand->read_byte = sunxi_nfc_read_byte;

1739
	mtd = nand_to_mtd(nand);
1740 1741
	mtd->dev.parent = dev;

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	timings = onfi_async_timing_mode_to_sdr_timings(0);
	if (IS_ERR(timings)) {
		ret = PTR_ERR(timings);
		dev_err(dev,
			"could not retrieve timings for ONFI mode 0: %d\n",
			ret);
		return ret;
	}

	ret = sunxi_nand_chip_set_timings(chip, timings);
	if (ret) {
		dev_err(dev, "could not configure chip timings: %d\n", ret);
		return ret;
	}

1757 1758 1759 1760
	ret = nand_scan_ident(mtd, nsels, NULL);
	if (ret)
		return ret;

1761 1762 1763
	if (nand->bbt_options & NAND_BBT_USE_FLASH)
		nand->bbt_options |= NAND_BBT_NO_OOB;

1764 1765 1766
	if (nand->options & NAND_NEED_SCRAMBLING)
		nand->options |= NAND_NO_SUBPAGE_WRITE;

1767 1768
	nand->options |= NAND_SUBPAGE_READ;

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	ret = sunxi_nand_chip_init_timings(chip, np);
	if (ret) {
		dev_err(dev, "could not configure chip timings: %d\n", ret);
		return ret;
	}

	ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
	if (ret) {
		dev_err(dev, "ECC init failed: %d\n", ret);
		return ret;
	}

	ret = nand_scan_tail(mtd);
	if (ret) {
		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
		return ret;
	}

1787
	ret = mtd_device_register(mtd, NULL, 0);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	if (ret) {
		dev_err(dev, "failed to register mtd device: %d\n", ret);
		nand_release(mtd);
		return ret;
	}

	list_add_tail(&chip->node, &nfc->chips);

	return 0;
}

static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
{
	struct device_node *np = dev->of_node;
	struct device_node *nand_np;
	int nchips = of_get_child_count(np);
	int ret;

	if (nchips > 8) {
		dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
		return -EINVAL;
	}

	for_each_child_of_node(np, nand_np) {
		ret = sunxi_nand_chip_init(dev, nfc, nand_np);
1813 1814
		if (ret) {
			of_node_put(nand_np);
1815
			return ret;
1816
		}
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	}

	return 0;
}

static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
{
	struct sunxi_nand_chip *chip;

	while (!list_empty(&nfc->chips)) {
		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
					node);
1829
		nand_release(nand_to_mtd(&chip->nand));
1830
		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
1831
		list_del(&chip->node);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	}
}

static int sunxi_nfc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct resource *r;
	struct sunxi_nfc *nfc;
	int irq;
	int ret;

	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nfc->dev = dev;
	spin_lock_init(&nfc->controller.lock);
	init_waitqueue_head(&nfc->controller.wq);
	INIT_LIST_HEAD(&nfc->chips);

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nfc->regs = devm_ioremap_resource(dev, r);
	if (IS_ERR(nfc->regs))
		return PTR_ERR(nfc->regs);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(dev, "failed to retrieve irq\n");
		return irq;
	}

	nfc->ahb_clk = devm_clk_get(dev, "ahb");
	if (IS_ERR(nfc->ahb_clk)) {
		dev_err(dev, "failed to retrieve ahb clk\n");
		return PTR_ERR(nfc->ahb_clk);
	}

	ret = clk_prepare_enable(nfc->ahb_clk);
	if (ret)
		return ret;

	nfc->mod_clk = devm_clk_get(dev, "mod");
	if (IS_ERR(nfc->mod_clk)) {
		dev_err(dev, "failed to retrieve mod clk\n");
		ret = PTR_ERR(nfc->mod_clk);
		goto out_ahb_clk_unprepare;
	}

	ret = clk_prepare_enable(nfc->mod_clk);
	if (ret)
		goto out_ahb_clk_unprepare;

	ret = sunxi_nfc_rst(nfc);
	if (ret)
		goto out_mod_clk_unprepare;

	writel(0, nfc->regs + NFC_REG_INT);
	ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
			       0, "sunxi-nand", nfc);
	if (ret)
		goto out_mod_clk_unprepare;

	platform_set_drvdata(pdev, nfc);

	ret = sunxi_nand_chips_init(dev, nfc);
	if (ret) {
		dev_err(dev, "failed to init nand chips\n");
		goto out_mod_clk_unprepare;
	}

	return 0;

out_mod_clk_unprepare:
	clk_disable_unprepare(nfc->mod_clk);
out_ahb_clk_unprepare:
	clk_disable_unprepare(nfc->ahb_clk);

	return ret;
}

static int sunxi_nfc_remove(struct platform_device *pdev)
{
	struct sunxi_nfc *nfc = platform_get_drvdata(pdev);

	sunxi_nand_chips_cleanup(nfc);
1917 1918
	clk_disable_unprepare(nfc->mod_clk);
	clk_disable_unprepare(nfc->ahb_clk);
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

	return 0;
}

static const struct of_device_id sunxi_nfc_ids[] = {
	{ .compatible = "allwinner,sun4i-a10-nand" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);

static struct platform_driver sunxi_nfc_driver = {
	.driver = {
		.name = "sunxi_nand",
		.of_match_table = sunxi_nfc_ids,
	},
	.probe = sunxi_nfc_probe,
	.remove = sunxi_nfc_remove,
};
module_platform_driver(sunxi_nfc_driver);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Boris BREZILLON");
MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
MODULE_ALIAS("platform:sunxi_nand");