sunxi_nand.c 37.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/*
 * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
 *
 * Derived from:
 *	https://github.com/yuq/sunxi-nfc-mtd
 *	Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
 *
 *	https://github.com/hno/Allwinner-Info
 *	Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
 *
 *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
 *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_mtd.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/io.h>

#define NFC_REG_CTL		0x0000
#define NFC_REG_ST		0x0004
#define NFC_REG_INT		0x0008
#define NFC_REG_TIMING_CTL	0x000C
#define NFC_REG_TIMING_CFG	0x0010
#define NFC_REG_ADDR_LOW	0x0014
#define NFC_REG_ADDR_HIGH	0x0018
#define NFC_REG_SECTOR_NUM	0x001C
#define NFC_REG_CNT		0x0020
#define NFC_REG_CMD		0x0024
#define NFC_REG_RCMD_SET	0x0028
#define NFC_REG_WCMD_SET	0x002C
#define NFC_REG_IO_DATA		0x0030
#define NFC_REG_ECC_CTL		0x0034
#define NFC_REG_ECC_ST		0x0038
#define NFC_REG_DEBUG		0x003C
60 61
#define NFC_REG_ECC_ERR_CNT(x)	((0x0040 + (x)) & ~0x3)
#define NFC_REG_USER_DATA(x)	(0x0050 + ((x) * 4))
62 63 64 65 66 67 68
#define NFC_REG_SPARE_AREA	0x00A0
#define NFC_RAM0_BASE		0x0400
#define NFC_RAM1_BASE		0x0800

/* define bit use in NFC_CTL */
#define NFC_EN			BIT(0)
#define NFC_RESET		BIT(1)
69 70 71 72 73 74 75
#define NFC_BUS_WIDTH_MSK	BIT(2)
#define NFC_BUS_WIDTH_8		(0 << 2)
#define NFC_BUS_WIDTH_16	(1 << 2)
#define NFC_RB_SEL_MSK		BIT(3)
#define NFC_RB_SEL(x)		((x) << 3)
#define NFC_CE_SEL_MSK		GENMASK(26, 24)
#define NFC_CE_SEL(x)		((x) << 24)
76
#define NFC_CE_CTL		BIT(6)
77 78
#define NFC_PAGE_SHIFT_MSK	GENMASK(11, 8)
#define NFC_PAGE_SHIFT(x)	(((x) < 10 ? 0 : (x) - 10) << 8)
79 80 81 82 83 84 85 86 87 88 89
#define NFC_SAM			BIT(12)
#define NFC_RAM_METHOD		BIT(14)
#define NFC_DEBUG_CTL		BIT(31)

/* define bit use in NFC_ST */
#define NFC_RB_B2R		BIT(0)
#define NFC_CMD_INT_FLAG	BIT(1)
#define NFC_DMA_INT_FLAG	BIT(2)
#define NFC_CMD_FIFO_STATUS	BIT(3)
#define NFC_STA			BIT(4)
#define NFC_NATCH_INT_FLAG	BIT(5)
90
#define NFC_RB_STATE(x)		BIT(x + 8)
91 92 93 94 95 96 97 98 99

/* define bit use in NFC_INT */
#define NFC_B2R_INT_ENABLE	BIT(0)
#define NFC_CMD_INT_ENABLE	BIT(1)
#define NFC_DMA_INT_ENABLE	BIT(2)
#define NFC_INT_MASK		(NFC_B2R_INT_ENABLE | \
				 NFC_CMD_INT_ENABLE | \
				 NFC_DMA_INT_ENABLE)

100 101 102
/* define bit use in NFC_TIMING_CTL */
#define NFC_TIMING_CTL_EDO	BIT(8)

103 104 105 106 107 108
/* define NFC_TIMING_CFG register layout */
#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD)		\
	(((tWB) & 0x3) | (((tADL) & 0x3) << 2) |		\
	(((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) |		\
	(((tCAD) & 0x7) << 8))

109
/* define bit use in NFC_CMD */
110 111 112 113 114
#define NFC_CMD_LOW_BYTE_MSK	GENMASK(7, 0)
#define NFC_CMD_HIGH_BYTE_MSK	GENMASK(15, 8)
#define NFC_CMD(x)		(x)
#define NFC_ADR_NUM_MSK		GENMASK(18, 16)
#define NFC_ADR_NUM(x)		(((x) - 1) << 16)
115 116 117 118 119 120 121 122 123 124 125
#define NFC_SEND_ADR		BIT(19)
#define NFC_ACCESS_DIR		BIT(20)
#define NFC_DATA_TRANS		BIT(21)
#define NFC_SEND_CMD1		BIT(22)
#define NFC_WAIT_FLAG		BIT(23)
#define NFC_SEND_CMD2		BIT(24)
#define NFC_SEQ			BIT(25)
#define NFC_DATA_SWAP_METHOD	BIT(26)
#define NFC_ROW_AUTO_INC	BIT(27)
#define NFC_SEND_CMD3		BIT(28)
#define NFC_SEND_CMD4		BIT(29)
126 127 128 129
#define NFC_CMD_TYPE_MSK	GENMASK(31, 30)
#define NFC_NORMAL_OP		(0 << 30)
#define NFC_ECC_OP		(1 << 30)
#define NFC_PAGE_OP		(2 << 30)
130 131

/* define bit use in NFC_RCMD_SET */
132 133 134
#define NFC_READ_CMD_MSK	GENMASK(7, 0)
#define NFC_RND_READ_CMD0_MSK	GENMASK(15, 8)
#define NFC_RND_READ_CMD1_MSK	GENMASK(23, 16)
135 136

/* define bit use in NFC_WCMD_SET */
137 138 139 140
#define NFC_PROGRAM_CMD_MSK	GENMASK(7, 0)
#define NFC_RND_WRITE_CMD_MSK	GENMASK(15, 8)
#define NFC_READ_CMD0_MSK	GENMASK(23, 16)
#define NFC_READ_CMD1_MSK	GENMASK(31, 24)
141 142 143 144 145

/* define bit use in NFC_ECC_CTL */
#define NFC_ECC_EN		BIT(0)
#define NFC_ECC_PIPELINE	BIT(3)
#define NFC_ECC_EXCEPTION	BIT(4)
146
#define NFC_ECC_BLOCK_SIZE_MSK	BIT(5)
147 148
#define NFC_RANDOM_EN		BIT(9)
#define NFC_RANDOM_DIRECTION	BIT(10)
149 150 151 152 153 154 155 156 157
#define NFC_ECC_MODE_MSK	GENMASK(15, 12)
#define NFC_ECC_MODE(x)		((x) << 12)
#define NFC_RANDOM_SEED_MSK	GENMASK(30, 16)
#define NFC_RANDOM_SEED(x)	((x) << 16)

/* define bit use in NFC_ECC_ST */
#define NFC_ECC_ERR(x)		BIT(x)
#define NFC_ECC_PAT_FOUND(x)	BIT(x + 16)
#define NFC_ECC_ERR_CNT(b, x)	(((x) >> ((b) * 8)) & 0xff)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

#define NFC_DEFAULT_TIMEOUT_MS	1000

#define NFC_SRAM_SIZE		1024

#define NFC_MAX_CS		7

/*
 * Ready/Busy detection type: describes the Ready/Busy detection modes
 *
 * @RB_NONE:	no external detection available, rely on STATUS command
 *		and software timeouts
 * @RB_NATIVE:	use sunxi NAND controller Ready/Busy support. The Ready/Busy
 *		pin of the NAND flash chip must be connected to one of the
 *		native NAND R/B pins (those which can be muxed to the NAND
 *		Controller)
 * @RB_GPIO:	use a simple GPIO to handle Ready/Busy status. The Ready/Busy
 *		pin of the NAND flash chip must be connected to a GPIO capable
 *		pin.
 */
enum sunxi_nand_rb_type {
	RB_NONE,
	RB_NATIVE,
	RB_GPIO,
};

/*
 * Ready/Busy structure: stores information related to Ready/Busy detection
 *
 * @type:	the Ready/Busy detection mode
 * @info:	information related to the R/B detection mode. Either a gpio
 *		id or a native R/B id (those supported by the NAND controller).
 */
struct sunxi_nand_rb {
	enum sunxi_nand_rb_type type;
	union {
		int gpio;
		int nativeid;
	} info;
};

/*
 * Chip Select structure: stores information related to NAND Chip Select
 *
 * @cs:		the NAND CS id used to communicate with a NAND Chip
 * @rb:		the Ready/Busy description
 */
struct sunxi_nand_chip_sel {
	u8 cs;
	struct sunxi_nand_rb rb;
};

/*
 * sunxi HW ECC infos: stores information related to HW ECC support
 *
 * @mode:	the sunxi ECC mode field deduced from ECC requirements
 * @layout:	the OOB layout depending on the ECC requirements and the
 *		selected ECC mode
 */
struct sunxi_nand_hw_ecc {
	int mode;
	struct nand_ecclayout layout;
};

/*
 * NAND chip structure: stores NAND chip device related information
 *
 * @node:		used to store NAND chips into a list
 * @nand:		base NAND chip structure
 * @mtd:		base MTD structure
 * @clk_rate:		clk_rate required for this NAND chip
229
 * @timing_cfg		TIMING_CFG register value for this NAND chip
230 231 232 233 234 235 236 237 238
 * @selected:		current active CS
 * @nsels:		number of CS lines required by the NAND chip
 * @sels:		array of CS lines descriptions
 */
struct sunxi_nand_chip {
	struct list_head node;
	struct nand_chip nand;
	struct mtd_info mtd;
	unsigned long clk_rate;
239
	u32 timing_cfg;
240
	u32 timing_ctl;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	int selected;
	int nsels;
	struct sunxi_nand_chip_sel sels[0];
};

static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
{
	return container_of(nand, struct sunxi_nand_chip, nand);
}

/*
 * NAND Controller structure: stores sunxi NAND controller information
 *
 * @controller:		base controller structure
 * @dev:		parent device (used to print error messages)
 * @regs:		NAND controller registers
 * @ahb_clk:		NAND Controller AHB clock
 * @mod_clk:		NAND Controller mod clock
 * @assigned_cs:	bitmask describing already assigned CS lines
 * @clk_rate:		NAND controller current clock rate
 * @chips:		a list containing all the NAND chips attached to
 *			this NAND controller
 * @complete:		a completion object used to wait for NAND
 *			controller events
 */
struct sunxi_nfc {
	struct nand_hw_control controller;
	struct device *dev;
	void __iomem *regs;
	struct clk *ahb_clk;
	struct clk *mod_clk;
	unsigned long assigned_cs;
	unsigned long clk_rate;
	struct list_head chips;
	struct completion complete;
};

static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
{
	return container_of(ctrl, struct sunxi_nfc, controller);
}

static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
{
	struct sunxi_nfc *nfc = dev_id;
	u32 st = readl(nfc->regs + NFC_REG_ST);
	u32 ien = readl(nfc->regs + NFC_REG_INT);

	if (!(ien & st))
		return IRQ_NONE;

	if ((ien & st) == ien)
		complete(&nfc->complete);

	writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
	writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);

	return IRQ_HANDLED;
}

static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
			      unsigned int timeout_ms)
{
	init_completion(&nfc->complete);

	writel(flags, nfc->regs + NFC_REG_INT);

	if (!timeout_ms)
		timeout_ms = NFC_DEFAULT_TIMEOUT_MS;

	if (!wait_for_completion_timeout(&nfc->complete,
					 msecs_to_jiffies(timeout_ms))) {
		dev_err(nfc->dev, "wait interrupt timedout\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
{
	unsigned long timeout = jiffies +
				msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);

	do {
		if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
			return 0;
	} while (time_before(jiffies, timeout));

	dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
	return -ETIMEDOUT;
}

static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
{
	unsigned long timeout = jiffies +
				msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);

	writel(0, nfc->regs + NFC_REG_ECC_CTL);
	writel(NFC_RESET, nfc->regs + NFC_REG_CTL);

	do {
		if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
			return 0;
	} while (time_before(jiffies, timeout));

	dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
	return -ETIMEDOUT;
}

static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_rb *rb;
	unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
	int ret;

	if (sunxi_nand->selected < 0)
		return 0;

	rb = &sunxi_nand->sels[sunxi_nand->selected].rb;

	switch (rb->type) {
	case RB_NATIVE:
		ret = !!(readl(nfc->regs + NFC_REG_ST) &
368
			 NFC_RB_STATE(rb->info.nativeid));
369 370 371 372 373
		if (ret)
			break;

		sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
		ret = !!(readl(nfc->regs + NFC_REG_ST) &
374
			 NFC_RB_STATE(rb->info.nativeid));
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
		break;
	case RB_GPIO:
		ret = gpio_get_value(rb->info.gpio);
		break;
	case RB_NONE:
	default:
		ret = 0;
		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
		break;
	}

	return ret;
}

static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_chip_sel *sel;
	u32 ctl;

	if (chip > 0 && chip >= sunxi_nand->nsels)
		return;

	if (chip == sunxi_nand->selected)
		return;

	ctl = readl(nfc->regs + NFC_REG_CTL) &
404
	      ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
405 406 407 408

	if (chip >= 0) {
		sel = &sunxi_nand->sels[chip];

409 410
		ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
		       NFC_PAGE_SHIFT(nand->page_shift - 10);
411 412 413 414 415
		if (sel->rb.type == RB_NONE) {
			nand->dev_ready = NULL;
		} else {
			nand->dev_ready = sunxi_nfc_dev_ready;
			if (sel->rb.type == RB_NATIVE)
416
				ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
417 418 419 420 421 422 423 424 425 426
		}

		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);

		if (nfc->clk_rate != sunxi_nand->clk_rate) {
			clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
			nfc->clk_rate = sunxi_nand->clk_rate;
		}
	}

427
	writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
428
	writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	writel(ctl, nfc->regs + NFC_REG_CTL);

	sunxi_nand->selected = chip;
}

static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;
	int cnt;
	int offs = 0;
	u32 tmp;

	while (len > offs) {
		cnt = min(len - offs, NFC_SRAM_SIZE);

		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
		if (ret)
			break;

		writel(cnt, nfc->regs + NFC_REG_CNT);
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
		writel(tmp, nfc->regs + NFC_REG_CMD);

		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
		if (ret)
			break;

		if (buf)
			memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
				      cnt);
		offs += cnt;
	}
}

static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
				int len)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;
	int cnt;
	int offs = 0;
	u32 tmp;

	while (len > offs) {
		cnt = min(len - offs, NFC_SRAM_SIZE);

		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
		if (ret)
			break;

		writel(cnt, nfc->regs + NFC_REG_CNT);
		memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
		      NFC_ACCESS_DIR;
		writel(tmp, nfc->regs + NFC_REG_CMD);

		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
		if (ret)
			break;

		offs += cnt;
	}
}

static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
{
	uint8_t ret;

	sunxi_nfc_read_buf(mtd, &ret, 1);

	return ret;
}

static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
			       unsigned int ctrl)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	int ret;
	u32 tmp;

	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
	if (ret)
		return;

	if (ctrl & NAND_CTRL_CHANGE) {
		tmp = readl(nfc->regs + NFC_REG_CTL);
		if (ctrl & NAND_NCE)
			tmp |= NFC_CE_CTL;
		else
			tmp &= ~NFC_CE_CTL;
		writel(tmp, nfc->regs + NFC_REG_CTL);
	}

	if (dat == NAND_CMD_NONE)
		return;

	if (ctrl & NAND_CLE) {
		writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
	} else {
		writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
		writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
	}

	sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
	u32 ecc_ctl;

	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
	ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
		     NFC_ECC_BLOCK_SIZE_MSK);
	ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION;

	writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
}

static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);

	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
	       nfc->regs + NFC_REG_ECC_CTL);
}

566 567 568 569 570 571 572 573
static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
{
	buf[0] = user_data;
	buf[1] = user_data >> 8;
	buf[2] = user_data >> 16;
	buf[3] = user_data >> 24;
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
				       u8 *data, int data_off,
				       u8 *oob, int oob_off,
				       int *cur_off,
				       unsigned int *max_bitflips)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	u32 status;
	int ret;

	if (*cur_off != data_off)
		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);

589
	sunxi_nfc_read_buf(mtd, NULL, ecc->size);
590

591
	if (data_off + ecc->size != oob_off)
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);

	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
	if (ret)
		return ret;

	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
	       nfc->regs + NFC_REG_CMD);

	ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
	if (ret)
		return ret;

	status = readl(nfc->regs + NFC_REG_ECC_ST);
	ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0)));

	memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);

	nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
	sunxi_nfc_read_buf(mtd, oob, ecc->bytes + 4);

613
	if (status & NFC_ECC_ERR(0)) {
614 615 616
		ret = nand_check_erased_ecc_chunk(data,	ecc->size,
						  oob, ecc->bytes + 4,
						  NULL, 0, ecc->strength);
617 618 619 620 621 622 623 624
	} else {
		/*
		 * The engine protects 4 bytes of OOB data per chunk.
		 * Retrieve the corrected OOB bytes.
		 */
		sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(0)),
					   oob);
	}
625 626 627 628 629 630 631 632 633 634 635 636 637

	if (ret < 0) {
		mtd->ecc_stats.failed++;
	} else {
		mtd->ecc_stats.corrected += ret;
		*max_bitflips = max_t(unsigned int, *max_bitflips, ret);
	}

	*cur_off = oob_off + ecc->bytes + 4;

	return 0;
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
					    u8 *oob, int *cur_off)
{
	struct nand_chip *nand = mtd->priv;
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	int offset = ((ecc->bytes + 4) * ecc->steps);
	int len = mtd->oobsize - offset;

	if (len <= 0)
		return;

	if (*cur_off != offset)
		nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
			      offset + mtd->writesize, -1);

	sunxi_nfc_read_buf(mtd, oob + offset, len);

	*cur_off = mtd->oobsize + mtd->writesize;
}

658 659 660 661 662
static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
{
	return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
					const u8 *data, int data_off,
					const u8 *oob, int oob_off,
					int *cur_off)
{
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	int ret;

	if (data_off != *cur_off)
		nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);

	sunxi_nfc_write_buf(mtd, data, ecc->size);

	/* Fill OOB data in */
679 680
	writel(sunxi_nfc_buf_to_user_data(oob),
	       nfc->regs + NFC_REG_USER_DATA(0));
681

682
	if (data_off + ecc->size != oob_off)
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
		nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);

	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
	if (ret)
		return ret;

	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
	       NFC_ACCESS_DIR | NFC_ECC_OP,
	       nfc->regs + NFC_REG_CMD);

	ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
	if (ret)
		return ret;

	*cur_off = oob_off + ecc->bytes + 4;

	return 0;
}

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
					     u8 *oob, int *cur_off)
{
	struct nand_chip *nand = mtd->priv;
	struct nand_ecc_ctrl *ecc = &nand->ecc;
	int offset = ((ecc->bytes + 4) * ecc->steps);
	int len = mtd->oobsize - offset;

	if (len <= 0)
		return;

	if (*cur_off != offset)
		nand->cmdfunc(mtd, NAND_CMD_RNDIN,
			      offset + mtd->writesize, -1);

	sunxi_nfc_write_buf(mtd, oob + offset, len);

	*cur_off = mtd->oobsize + mtd->writesize;
}

722 723 724 725 726 727
static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
				      struct nand_chip *chip, uint8_t *buf,
				      int oob_required, int page)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	unsigned int max_bitflips = 0;
728
	int ret, i, cur_off = 0;
729

730
	sunxi_nfc_hw_ecc_enable(mtd);
731 732

	for (i = 0; i < ecc->steps; i++) {
733 734 735 736 737 738 739 740
		int data_off = i * ecc->size;
		int oob_off = i * (ecc->bytes + 4);
		u8 *data = buf + data_off;
		u8 *oob = chip->oob_poi + oob_off;

		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
						  oob_off + mtd->writesize,
						  &cur_off, &max_bitflips);
741 742 743 744
		if (ret)
			return ret;
	}

745 746
	if (oob_required)
		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
747

748
	sunxi_nfc_hw_ecc_disable(mtd);
749 750 751 752 753 754

	return max_bitflips;
}

static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
				       struct nand_chip *chip,
755 756
				       const uint8_t *buf, int oob_required,
				       int page)
757 758
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
759
	int ret, i, cur_off = 0;
760

761
	sunxi_nfc_hw_ecc_enable(mtd);
762 763

	for (i = 0; i < ecc->steps; i++) {
764 765 766 767 768 769 770 771
		int data_off = i * ecc->size;
		int oob_off = i * (ecc->bytes + 4);
		const u8 *data = buf + data_off;
		const u8 *oob = chip->oob_poi + oob_off;

		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
						   oob_off + mtd->writesize,
						   &cur_off);
772 773 774 775
		if (ret)
			return ret;
	}

776 777
	if (oob_required)
		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
778

779
	sunxi_nfc_hw_ecc_disable(mtd);
780 781 782 783 784 785 786 787 788 789 790

	return 0;
}

static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
					       struct nand_chip *chip,
					       uint8_t *buf, int oob_required,
					       int page)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	unsigned int max_bitflips = 0;
791
	int ret, i, cur_off = 0;
792

793
	sunxi_nfc_hw_ecc_enable(mtd);
794 795

	for (i = 0; i < ecc->steps; i++) {
796 797 798 799 800 801 802 803
		int data_off = i * (ecc->size + ecc->bytes + 4);
		int oob_off = data_off + ecc->size;
		u8 *data = buf + (i * ecc->size);
		u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));

		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
						  oob_off, &cur_off,
						  &max_bitflips);
804 805 806 807
		if (ret)
			return ret;
	}

808 809
	if (oob_required)
		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
810

811
	sunxi_nfc_hw_ecc_disable(mtd);
812 813 814 815 816 817 818

	return max_bitflips;
}

static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
						struct nand_chip *chip,
						const uint8_t *buf,
819
						int oob_required, int page)
820 821
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;
822
	int ret, i, cur_off = 0;
823

824
	sunxi_nfc_hw_ecc_enable(mtd);
825 826

	for (i = 0; i < ecc->steps; i++) {
827 828 829 830
		int data_off = i * (ecc->size + ecc->bytes + 4);
		int oob_off = data_off + ecc->size;
		const u8 *data = buf + (i * ecc->size);
		const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
831

832 833
		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
						   oob, oob_off, &cur_off);
834 835 836 837
		if (ret)
			return ret;
	}

838 839
	if (oob_required)
		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
840

841
	sunxi_nfc_hw_ecc_disable(mtd);
842 843 844 845

	return 0;
}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
static const s32 tWB_lut[] = {6, 12, 16, 20};
static const s32 tRHW_lut[] = {4, 8, 12, 20};

static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
		u32 clk_period)
{
	u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
	int i;

	for (i = 0; i < lut_size; i++) {
		if (clk_cycles <= lut[i])
			return i;
	}

	/* Doesn't fit */
	return -EINVAL;
}

#define sunxi_nand_lookup_timing(l, p, c) \
			_sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)

867 868 869
static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
				       const struct nand_sdr_timings *timings)
{
870
	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
871
	u32 min_clk_period = 0;
872
	s32 tWB, tADL, tWHR, tRHW, tCAD;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

	/* T1 <=> tCLS */
	if (timings->tCLS_min > min_clk_period)
		min_clk_period = timings->tCLS_min;

	/* T2 <=> tCLH */
	if (timings->tCLH_min > min_clk_period)
		min_clk_period = timings->tCLH_min;

	/* T3 <=> tCS */
	if (timings->tCS_min > min_clk_period)
		min_clk_period = timings->tCS_min;

	/* T4 <=> tCH */
	if (timings->tCH_min > min_clk_period)
		min_clk_period = timings->tCH_min;

	/* T5 <=> tWP */
	if (timings->tWP_min > min_clk_period)
		min_clk_period = timings->tWP_min;

	/* T6 <=> tWH */
	if (timings->tWH_min > min_clk_period)
		min_clk_period = timings->tWH_min;

	/* T7 <=> tALS */
	if (timings->tALS_min > min_clk_period)
		min_clk_period = timings->tALS_min;

	/* T8 <=> tDS */
	if (timings->tDS_min > min_clk_period)
		min_clk_period = timings->tDS_min;

	/* T9 <=> tDH */
	if (timings->tDH_min > min_clk_period)
		min_clk_period = timings->tDH_min;

	/* T10 <=> tRR */
	if (timings->tRR_min > (min_clk_period * 3))
		min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);

	/* T11 <=> tALH */
	if (timings->tALH_min > min_clk_period)
		min_clk_period = timings->tALH_min;

	/* T12 <=> tRP */
	if (timings->tRP_min > min_clk_period)
		min_clk_period = timings->tRP_min;

	/* T13 <=> tREH */
	if (timings->tREH_min > min_clk_period)
		min_clk_period = timings->tREH_min;

	/* T14 <=> tRC */
	if (timings->tRC_min > (min_clk_period * 2))
		min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);

	/* T15 <=> tWC */
	if (timings->tWC_min > (min_clk_period * 2))
		min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	/* T16 - T19 + tCAD */
	tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
					min_clk_period);
	if (tWB < 0) {
		dev_err(nfc->dev, "unsupported tWB\n");
		return tWB;
	}

	tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
	if (tADL > 3) {
		dev_err(nfc->dev, "unsupported tADL\n");
		return -EINVAL;
	}

	tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
	if (tWHR > 3) {
		dev_err(nfc->dev, "unsupported tWHR\n");
		return -EINVAL;
	}

	tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
					min_clk_period);
	if (tRHW < 0) {
		dev_err(nfc->dev, "unsupported tRHW\n");
		return tRHW;
	}

	/*
	 * TODO: according to ONFI specs this value only applies for DDR NAND,
	 * but Allwinner seems to set this to 0x7. Mimic them for now.
	 */
	tCAD = 0x7;

	/* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
	chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
969

970 971 972 973 974 975 976
	/*
	 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
	 * output cycle timings shall be used if the host drives tRC less than
	 * 30 ns.
	 */
	chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0;

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	/* Convert min_clk_period from picoseconds to nanoseconds */
	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);

	/*
	 * Convert min_clk_period into a clk frequency, then get the
	 * appropriate rate for the NAND controller IP given this formula
	 * (specified in the datasheet):
	 * nand clk_rate = 2 * min_clk_rate
	 */
	chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;

	return 0;
}

static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
					struct device_node *np)
{
	const struct nand_sdr_timings *timings;
	int ret;
	int mode;

	mode = onfi_get_async_timing_mode(&chip->nand);
	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
		mode = chip->nand.onfi_timing_mode_default;
	} else {
		uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
1003
		int i;
1004 1005 1006 1007 1008 1009

		mode = fls(mode) - 1;
		if (mode < 0)
			mode = 0;

		feature[0] = mode;
1010 1011 1012 1013
		for (i = 0; i < chip->nsels; i++) {
			chip->nand.select_chip(&chip->mtd, i);
			ret = chip->nand.onfi_set_features(&chip->mtd,
						&chip->nand,
1014 1015
						ONFI_FEATURE_ADDR_TIMING_MODE,
						feature);
1016 1017 1018 1019
			chip->nand.select_chip(&chip->mtd, -1);
			if (ret)
				return ret;
		}
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	}

	timings = onfi_async_timing_mode_to_sdr_timings(mode);
	if (IS_ERR(timings))
		return PTR_ERR(timings);

	return sunxi_nand_chip_set_timings(chip, timings);
}

static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
					      struct nand_ecc_ctrl *ecc,
					      struct device_node *np)
{
	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
	struct nand_chip *nand = mtd->priv;
	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
	struct sunxi_nand_hw_ecc *data;
	struct nand_ecclayout *layout;
	int nsectors;
	int ret;
	int i;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	/* Add ECC info retrieval from DT */
	for (i = 0; i < ARRAY_SIZE(strengths); i++) {
		if (ecc->strength <= strengths[i])
			break;
	}

	if (i >= ARRAY_SIZE(strengths)) {
		dev_err(nfc->dev, "unsupported strength\n");
		ret = -ENOTSUPP;
		goto err;
	}

	data->mode = i;

	/* HW ECC always request ECC bytes for 1024 bytes blocks */
	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);

	/* HW ECC always work with even numbers of ECC bytes */
	ecc->bytes = ALIGN(ecc->bytes, 2);

	layout = &data->layout;
	nsectors = mtd->writesize / ecc->size;

	if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
		ret = -EINVAL;
		goto err;
	}

	layout->eccbytes = (ecc->bytes * nsectors);

	ecc->layout = layout;
	ecc->priv = data;

	return 0;

err:
	kfree(data);

	return ret;
}

static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
{
	kfree(ecc->priv);
}

static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
				       struct nand_ecc_ctrl *ecc,
				       struct device_node *np)
{
	struct nand_ecclayout *layout;
	int nsectors;
	int i, j;
	int ret;

	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
	if (ret)
		return ret;

	ecc->read_page = sunxi_nfc_hw_ecc_read_page;
	ecc->write_page = sunxi_nfc_hw_ecc_write_page;
	layout = ecc->layout;
	nsectors = mtd->writesize / ecc->size;

	for (i = 0; i < nsectors; i++) {
		if (i) {
			layout->oobfree[i].offset =
				layout->oobfree[i - 1].offset +
				layout->oobfree[i - 1].length +
				ecc->bytes;
			layout->oobfree[i].length = 4;
		} else {
			/*
			 * The first 2 bytes are used for BB markers, hence we
			 * only have 2 bytes available in the first user data
			 * section.
			 */
			layout->oobfree[i].length = 2;
			layout->oobfree[i].offset = 2;
		}

		for (j = 0; j < ecc->bytes; j++)
			layout->eccpos[(ecc->bytes * i) + j] =
					layout->oobfree[i].offset +
					layout->oobfree[i].length + j;
	}

	if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
		layout->oobfree[nsectors].offset =
				layout->oobfree[nsectors - 1].offset +
				layout->oobfree[nsectors - 1].length +
				ecc->bytes;
		layout->oobfree[nsectors].length = mtd->oobsize -
				((ecc->bytes + 4) * nsectors);
	}

	return 0;
}

static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
						struct nand_ecc_ctrl *ecc,
						struct device_node *np)
{
	struct nand_ecclayout *layout;
	int nsectors;
	int i;
	int ret;

	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
	if (ret)
		return ret;

	ecc->prepad = 4;
	ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
	ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;

	layout = ecc->layout;
	nsectors = mtd->writesize / ecc->size;

	for (i = 0; i < (ecc->bytes * nsectors); i++)
		layout->eccpos[i] = i;

	layout->oobfree[0].length = mtd->oobsize - i;
	layout->oobfree[0].offset = i;

	return 0;
}

static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
{
	switch (ecc->mode) {
	case NAND_ECC_HW:
	case NAND_ECC_HW_SYNDROME:
		sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
		break;
	case NAND_ECC_NONE:
		kfree(ecc->layout);
	default:
		break;
	}
}

static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
			       struct device_node *np)
{
	struct nand_chip *nand = mtd->priv;
	int ret;

1195
	if (!ecc->size) {
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		ecc->size = nand->ecc_step_ds;
		ecc->strength = nand->ecc_strength_ds;
	}

	if (!ecc->size || !ecc->strength)
		return -EINVAL;

	switch (ecc->mode) {
	case NAND_ECC_SOFT_BCH:
		break;
	case NAND_ECC_HW:
		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
		if (ret)
			return ret;
		break;
	case NAND_ECC_HW_SYNDROME:
		ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
		if (ret)
			return ret;
		break;
	case NAND_ECC_NONE:
		ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
		if (!ecc->layout)
			return -ENOMEM;
		ecc->layout->oobfree[0].length = mtd->oobsize;
	case NAND_ECC_SOFT:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
				struct device_node *np)
{
	const struct nand_sdr_timings *timings;
	struct sunxi_nand_chip *chip;
	struct mtd_part_parser_data ppdata;
	struct mtd_info *mtd;
	struct nand_chip *nand;
	int nsels;
	int ret;
	int i;
	u32 tmp;

	if (!of_get_property(np, "reg", &nsels))
		return -EINVAL;

	nsels /= sizeof(u32);
	if (!nsels) {
		dev_err(dev, "invalid reg property size\n");
		return -EINVAL;
	}

	chip = devm_kzalloc(dev,
			    sizeof(*chip) +
			    (nsels * sizeof(struct sunxi_nand_chip_sel)),
			    GFP_KERNEL);
	if (!chip) {
		dev_err(dev, "could not allocate chip\n");
		return -ENOMEM;
	}

	chip->nsels = nsels;
	chip->selected = -1;

	for (i = 0; i < nsels; i++) {
		ret = of_property_read_u32_index(np, "reg", i, &tmp);
		if (ret) {
			dev_err(dev, "could not retrieve reg property: %d\n",
				ret);
			return ret;
		}

		if (tmp > NFC_MAX_CS) {
			dev_err(dev,
				"invalid reg value: %u (max CS = 7)\n",
				tmp);
			return -EINVAL;
		}

		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
			dev_err(dev, "CS %d already assigned\n", tmp);
			return -EINVAL;
		}

		chip->sels[i].cs = tmp;

		if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
		    tmp < 2) {
			chip->sels[i].rb.type = RB_NATIVE;
			chip->sels[i].rb.info.nativeid = tmp;
		} else {
			ret = of_get_named_gpio(np, "rb-gpios", i);
			if (ret >= 0) {
				tmp = ret;
				chip->sels[i].rb.type = RB_GPIO;
				chip->sels[i].rb.info.gpio = tmp;
				ret = devm_gpio_request(dev, tmp, "nand-rb");
				if (ret)
					return ret;

				ret = gpio_direction_input(tmp);
				if (ret)
					return ret;
			} else {
				chip->sels[i].rb.type = RB_NONE;
			}
		}
	}

	timings = onfi_async_timing_mode_to_sdr_timings(0);
	if (IS_ERR(timings)) {
		ret = PTR_ERR(timings);
		dev_err(dev,
			"could not retrieve timings for ONFI mode 0: %d\n",
			ret);
		return ret;
	}

	ret = sunxi_nand_chip_set_timings(chip, timings);
	if (ret) {
		dev_err(dev, "could not configure chip timings: %d\n", ret);
		return ret;
	}

	nand = &chip->nand;
	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
	nand->chip_delay = 200;
	nand->controller = &nfc->controller;
1328 1329 1330 1331 1332 1333
	/*
	 * Set the ECC mode to the default value in case nothing is specified
	 * in the DT.
	 */
	nand->ecc.mode = NAND_ECC_HW;
	nand->flash_node = np;
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	nand->select_chip = sunxi_nfc_select_chip;
	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
	nand->read_buf = sunxi_nfc_read_buf;
	nand->write_buf = sunxi_nfc_write_buf;
	nand->read_byte = sunxi_nfc_read_byte;

	mtd = &chip->mtd;
	mtd->dev.parent = dev;
	mtd->priv = nand;

	ret = nand_scan_ident(mtd, nsels, NULL);
	if (ret)
		return ret;

1348 1349 1350
	if (nand->bbt_options & NAND_BBT_USE_FLASH)
		nand->bbt_options |= NAND_BBT_NO_OOB;

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	ret = sunxi_nand_chip_init_timings(chip, np);
	if (ret) {
		dev_err(dev, "could not configure chip timings: %d\n", ret);
		return ret;
	}

	ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
	if (ret) {
		dev_err(dev, "ECC init failed: %d\n", ret);
		return ret;
	}

	ret = nand_scan_tail(mtd);
	if (ret) {
		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
		return ret;
	}

	ppdata.of_node = np;
	ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
	if (ret) {
		dev_err(dev, "failed to register mtd device: %d\n", ret);
		nand_release(mtd);
		return ret;
	}

	list_add_tail(&chip->node, &nfc->chips);

	return 0;
}

static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
{
	struct device_node *np = dev->of_node;
	struct device_node *nand_np;
	int nchips = of_get_child_count(np);
	int ret;

	if (nchips > 8) {
		dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
		return -EINVAL;
	}

	for_each_child_of_node(np, nand_np) {
		ret = sunxi_nand_chip_init(dev, nfc, nand_np);
		if (ret)
			return ret;
	}

	return 0;
}

static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
{
	struct sunxi_nand_chip *chip;

	while (!list_empty(&nfc->chips)) {
		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
					node);
		nand_release(&chip->mtd);
		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
1412
		list_del(&chip->node);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	}
}

static int sunxi_nfc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct resource *r;
	struct sunxi_nfc *nfc;
	int irq;
	int ret;

	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nfc->dev = dev;
	spin_lock_init(&nfc->controller.lock);
	init_waitqueue_head(&nfc->controller.wq);
	INIT_LIST_HEAD(&nfc->chips);

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nfc->regs = devm_ioremap_resource(dev, r);
	if (IS_ERR(nfc->regs))
		return PTR_ERR(nfc->regs);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(dev, "failed to retrieve irq\n");
		return irq;
	}

	nfc->ahb_clk = devm_clk_get(dev, "ahb");
	if (IS_ERR(nfc->ahb_clk)) {
		dev_err(dev, "failed to retrieve ahb clk\n");
		return PTR_ERR(nfc->ahb_clk);
	}

	ret = clk_prepare_enable(nfc->ahb_clk);
	if (ret)
		return ret;

	nfc->mod_clk = devm_clk_get(dev, "mod");
	if (IS_ERR(nfc->mod_clk)) {
		dev_err(dev, "failed to retrieve mod clk\n");
		ret = PTR_ERR(nfc->mod_clk);
		goto out_ahb_clk_unprepare;
	}

	ret = clk_prepare_enable(nfc->mod_clk);
	if (ret)
		goto out_ahb_clk_unprepare;

	ret = sunxi_nfc_rst(nfc);
	if (ret)
		goto out_mod_clk_unprepare;

	writel(0, nfc->regs + NFC_REG_INT);
	ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
			       0, "sunxi-nand", nfc);
	if (ret)
		goto out_mod_clk_unprepare;

	platform_set_drvdata(pdev, nfc);

	ret = sunxi_nand_chips_init(dev, nfc);
	if (ret) {
		dev_err(dev, "failed to init nand chips\n");
		goto out_mod_clk_unprepare;
	}

	return 0;

out_mod_clk_unprepare:
	clk_disable_unprepare(nfc->mod_clk);
out_ahb_clk_unprepare:
	clk_disable_unprepare(nfc->ahb_clk);

	return ret;
}

static int sunxi_nfc_remove(struct platform_device *pdev)
{
	struct sunxi_nfc *nfc = platform_get_drvdata(pdev);

	sunxi_nand_chips_cleanup(nfc);

	return 0;
}

static const struct of_device_id sunxi_nfc_ids[] = {
	{ .compatible = "allwinner,sun4i-a10-nand" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);

static struct platform_driver sunxi_nfc_driver = {
	.driver = {
		.name = "sunxi_nand",
		.of_match_table = sunxi_nfc_ids,
	},
	.probe = sunxi_nfc_probe,
	.remove = sunxi_nfc_remove,
};
module_platform_driver(sunxi_nfc_driver);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Boris BREZILLON");
MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
MODULE_ALIAS("platform:sunxi_nand");