fault.c 25.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9
/*
 * Based on arch/arm/mm/fault.c
 *
 * Copyright (C) 1995  Linus Torvalds
 * Copyright (C) 1995-2004 Russell King
 * Copyright (C) 2012 ARM Ltd.
 */

10
#include <linux/acpi.h>
11
#include <linux/bitfield.h>
12
#include <linux/extable.h>
13 14 15 16 17 18 19
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
20
#include <linux/sched/signal.h>
21
#include <linux/sched/debug.h>
22 23
#include <linux/highmem.h>
#include <linux/perf_event.h>
24
#include <linux/preempt.h>
25
#include <linux/hugetlb.h>
26

27
#include <asm/acpi.h>
28
#include <asm/bug.h>
29
#include <asm/cmpxchg.h>
30
#include <asm/cpufeature.h>
31
#include <asm/exception.h>
32
#include <asm/daifflags.h>
33
#include <asm/debug-monitors.h>
34
#include <asm/esr.h>
35
#include <asm/kprobes.h>
36
#include <asm/processor.h>
37
#include <asm/sysreg.h>
38 39
#include <asm/system_misc.h>
#include <asm/tlbflush.h>
40
#include <asm/traps.h>
41

42 43 44 45 46 47 48 49 50
struct fault_info {
	int	(*fn)(unsigned long addr, unsigned int esr,
		      struct pt_regs *regs);
	int	sig;
	int	code;
	const char *name;
};

static const struct fault_info fault_info[];
51
static struct fault_info debug_fault_info[];
52 53 54

static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
{
55
	return fault_info + (esr & ESR_ELx_FSC);
56
}
57

58 59 60 61 62
static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
{
	return debug_fault_info + DBG_ESR_EVT(esr);
}

63 64 65 66 67 68 69 70 71 72 73 74 75 76
static void data_abort_decode(unsigned int esr)
{
	pr_alert("Data abort info:\n");

	if (esr & ESR_ELx_ISV) {
		pr_alert("  Access size = %u byte(s)\n",
			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
		pr_alert("  SSE = %lu, SRT = %lu\n",
			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
		pr_alert("  SF = %lu, AR = %lu\n",
			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
	} else {
77
		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
78 79 80 81 82 83 84 85 86 87 88
	}

	pr_alert("  CM = %lu, WnR = %lu\n",
		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
}

static void mem_abort_decode(unsigned int esr)
{
	pr_alert("Mem abort info:\n");

89
	pr_alert("  ESR = 0x%08x\n", esr);
90 91
	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
		 ESR_ELx_EC(esr), esr_get_class_string(esr),
92 93 94 95 96 97 98 99 100 101 102 103
		 (esr & ESR_ELx_IL) ? 32 : 16);
	pr_alert("  SET = %lu, FnV = %lu\n",
		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
	pr_alert("  EA = %lu, S1PTW = %lu\n",
		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);

	if (esr_is_data_abort(esr))
		data_abort_decode(esr);
}

104 105 106 107 108 109 110 111 112
static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
{
	/* Either init_pg_dir or swapper_pg_dir */
	if (mm == &init_mm)
		return __pa_symbol(mm->pgd);

	return (unsigned long)virt_to_phys(mm->pgd);
}

113
/*
114
 * Dump out the page tables associated with 'addr' in the currently active mm.
115
 */
116
static void show_pte(unsigned long addr)
117
{
118
	struct mm_struct *mm;
119 120
	pgd_t *pgdp;
	pgd_t pgd;
121

122
	if (is_ttbr0_addr(addr)) {
123 124 125 126 127 128 129
		/* TTBR0 */
		mm = current->active_mm;
		if (mm == &init_mm) {
			pr_alert("[%016lx] user address but active_mm is swapper\n",
				 addr);
			return;
		}
130
	} else if (is_ttbr1_addr(addr)) {
131
		/* TTBR1 */
132
		mm = &init_mm;
133 134 135 136 137
	} else {
		pr_alert("[%016lx] address between user and kernel address ranges\n",
			 addr);
		return;
	}
138

139
	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
140
		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
141
		 vabits_actual, mm_to_pgd_phys(mm));
142 143 144
	pgdp = pgd_offset(mm, addr);
	pgd = READ_ONCE(*pgdp);
	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
145 146

	do {
147
		p4d_t *p4dp, p4d;
148 149 150
		pud_t *pudp, pud;
		pmd_t *pmdp, pmd;
		pte_t *ptep, pte;
151

152
		if (pgd_none(pgd) || pgd_bad(pgd))
153 154
			break;

155 156 157 158 159 160 161
		p4dp = p4d_offset(pgdp, addr);
		p4d = READ_ONCE(*p4dp);
		pr_cont(", p4d=%016llx", p4d_val(p4d));
		if (p4d_none(p4d) || p4d_bad(p4d))
			break;

		pudp = pud_offset(p4dp, addr);
162 163 164
		pud = READ_ONCE(*pudp);
		pr_cont(", pud=%016llx", pud_val(pud));
		if (pud_none(pud) || pud_bad(pud))
165 166
			break;

167 168 169 170
		pmdp = pmd_offset(pudp, addr);
		pmd = READ_ONCE(*pmdp);
		pr_cont(", pmd=%016llx", pmd_val(pmd));
		if (pmd_none(pmd) || pmd_bad(pmd))
171 172
			break;

173 174 175 176
		ptep = pte_offset_map(pmdp, addr);
		pte = READ_ONCE(*ptep);
		pr_cont(", pte=%016llx", pte_val(pte));
		pte_unmap(ptep);
177 178
	} while(0);

179
	pr_cont("\n");
180 181
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * This function sets the access flags (dirty, accessed), as well as write
 * permission, and only to a more permissive setting.
 *
 * It needs to cope with hardware update of the accessed/dirty state by other
 * agents in the system and can safely skip the __sync_icache_dcache() call as,
 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
 *
 * Returns whether or not the PTE actually changed.
 */
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
196
	pteval_t old_pteval, pteval;
197
	pte_t pte = READ_ONCE(*ptep);
198

199
	if (pte_same(pte, entry))
200 201 202
		return 0;

	/* only preserve the access flags and write permission */
203
	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
204 205 206

	/*
	 * Setting the flags must be done atomically to avoid racing with the
207 208 209
	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
	 * be set to the most permissive (lowest value) of *ptep and entry
	 * (calculated as: a & b == ~(~a | ~b)).
210
	 */
211
	pte_val(entry) ^= PTE_RDONLY;
212
	pteval = pte_val(pte);
213 214 215 216 217 218 219
	do {
		old_pteval = pteval;
		pteval ^= PTE_RDONLY;
		pteval |= pte_val(entry);
		pteval ^= PTE_RDONLY;
		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
	} while (pteval != old_pteval);
220 221 222 223 224

	flush_tlb_fix_spurious_fault(vma, address);
	return 1;
}

225 226 227 228 229
static bool is_el1_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}

230 231
static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
					   struct pt_regs *regs)
232 233 234 235 236 237 238 239 240 241
{
	unsigned int ec       = ESR_ELx_EC(esr);
	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;

	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
		return false;

	if (fsc_type == ESR_ELx_FSC_PERM)
		return true;

242
	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
243 244 245 246 247 248
		return fsc_type == ESR_ELx_FSC_FAULT &&
			(regs->pstate & PSR_PAN_BIT);

	return false;
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
							unsigned int esr,
							struct pt_regs *regs)
{
	unsigned long flags;
	u64 par, dfsc;

	if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
		return false;

	local_irq_save(flags);
	asm volatile("at s1e1r, %0" :: "r" (addr));
	isb();
	par = read_sysreg(par_el1);
	local_irq_restore(flags);

266 267 268 269
	/*
	 * If we now have a valid translation, treat the translation fault as
	 * spurious.
	 */
270
	if (!(par & SYS_PAR_EL1_F))
271
		return true;
272 273 274 275 276

	/*
	 * If we got a different type of fault from the AT instruction,
	 * treat the translation fault as spurious.
	 */
277
	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
278 279 280
	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static void die_kernel_fault(const char *msg, unsigned long addr,
			     unsigned int esr, struct pt_regs *regs)
{
	bust_spinlocks(1);

	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
		 addr);

	mem_abort_decode(esr);

	show_pte(addr);
	die("Oops", regs, esr);
	bust_spinlocks(0);
	do_exit(SIGKILL);
}

297 298
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
299
{
300 301
	const char *msg;

302 303
	/*
	 * Are we prepared to handle this kernel fault?
304
	 * We are almost certainly not prepared to handle instruction faults.
305
	 */
306
	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
307 308
		return;

309 310 311 312
	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
		return;

313
	if (is_el1_permission_fault(addr, esr, regs)) {
314 315
		if (esr & ESR_ELx_WNR)
			msg = "write to read-only memory";
316 317
		else if (is_el1_instruction_abort(esr))
			msg = "execute from non-executable memory";
318 319 320 321 322 323 324 325
		else
			msg = "read from unreadable memory";
	} else if (addr < PAGE_SIZE) {
		msg = "NULL pointer dereference";
	} else {
		msg = "paging request";
	}

326
	die_kernel_fault(msg, addr, esr, regs);
327 328
}

329
static void set_thread_esr(unsigned long address, unsigned int esr)
330
{
331
	current->thread.fault_address = address;
332 333 334 335 336 337 338 339 340 341 342 343 344

	/*
	 * If the faulting address is in the kernel, we must sanitize the ESR.
	 * From userspace's point of view, kernel-only mappings don't exist
	 * at all, so we report them as level 0 translation faults.
	 * (This is not quite the way that "no mapping there at all" behaves:
	 * an alignment fault not caused by the memory type would take
	 * precedence over translation fault for a real access to empty
	 * space. Unfortunately we can't easily distinguish "alignment fault
	 * not caused by memory type" from "alignment fault caused by memory
	 * type", so we ignore this wrinkle and just return the translation
	 * fault.)
	 */
345
	if (!is_ttbr0_addr(current->thread.fault_address)) {
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
		switch (ESR_ELx_EC(esr)) {
		case ESR_ELx_EC_DABT_LOW:
			/*
			 * These bits provide only information about the
			 * faulting instruction, which userspace knows already.
			 * We explicitly clear bits which are architecturally
			 * RES0 in case they are given meanings in future.
			 * We always report the ESR as if the fault was taken
			 * to EL1 and so ISV and the bits in ISS[23:14] are
			 * clear. (In fact it always will be a fault to EL1.)
			 */
			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
				ESR_ELx_CM | ESR_ELx_WNR;
			esr |= ESR_ELx_FSC_FAULT;
			break;
		case ESR_ELx_EC_IABT_LOW:
			/*
			 * Claim a level 0 translation fault.
			 * All other bits are architecturally RES0 for faults
			 * reported with that DFSC value, so we clear them.
			 */
			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
			esr |= ESR_ELx_FSC_FAULT;
			break;
		default:
			/*
			 * This should never happen (entry.S only brings us
			 * into this code for insn and data aborts from a lower
			 * exception level). Fail safe by not providing an ESR
			 * context record at all.
			 */
			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
			esr = 0;
			break;
		}
	}

383
	current->thread.fault_code = esr;
384 385
}

386
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
387 388 389 390 391
{
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
392
	if (user_mode(regs)) {
393
		const struct fault_info *inf = esr_to_fault_info(esr);
394

395
		set_thread_esr(addr, esr);
396 397
		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
				      inf->name);
398
	} else {
399
		__do_kernel_fault(addr, esr, regs);
400
	}
401 402 403 404 405
}

#define VM_FAULT_BADMAP		0x010000
#define VM_FAULT_BADACCESS	0x020000

406
static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
407
			   unsigned int mm_flags, unsigned long vm_flags)
408
{
409
	struct vm_area_struct *vma = find_vma(mm, addr);
410 411

	if (unlikely(!vma))
412
		return VM_FAULT_BADMAP;
413 414 415 416 417

	/*
	 * Ok, we have a good vm_area for this memory access, so we can handle
	 * it.
	 */
418 419 420 421 422 423 424
	if (unlikely(vma->vm_start > addr)) {
		if (!(vma->vm_flags & VM_GROWSDOWN))
			return VM_FAULT_BADMAP;
		if (expand_stack(vma, addr))
			return VM_FAULT_BADMAP;
	}

425 426
	/*
	 * Check that the permissions on the VMA allow for the fault which
427
	 * occurred.
428
	 */
429 430
	if (!(vma->vm_flags & vm_flags))
		return VM_FAULT_BADACCESS;
431
	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, NULL);
432 433
}

M
Mark Rutland 已提交
434 435 436 437 438
static bool is_el0_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}

439 440 441 442 443 444 445 446 447
/*
 * Note: not valid for EL1 DC IVAC, but we never use that such that it
 * should fault. EL0 cannot issue DC IVAC (undef).
 */
static bool is_write_abort(unsigned int esr)
{
	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
}

448 449 450
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
				   struct pt_regs *regs)
{
451
	const struct fault_info *inf;
452
	struct mm_struct *mm = current->mm;
453
	vm_fault_t fault, major = 0;
454
	unsigned long vm_flags = VM_ACCESS_FLAGS;
P
Peter Xu 已提交
455
	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
456

457
	if (kprobe_page_fault(regs, esr))
458 459
		return 0;

460 461 462 463
	/*
	 * If we're in an interrupt or have no user context, we must not take
	 * the fault.
	 */
464
	if (faulthandler_disabled() || !mm)
465 466
		goto no_context;

467 468 469
	if (user_mode(regs))
		mm_flags |= FAULT_FLAG_USER;

M
Mark Rutland 已提交
470
	if (is_el0_instruction_abort(esr)) {
471
		vm_flags = VM_EXEC;
472
		mm_flags |= FAULT_FLAG_INSTRUCTION;
473
	} else if (is_write_abort(esr)) {
474 475 476 477
		vm_flags = VM_WRITE;
		mm_flags |= FAULT_FLAG_WRITE;
	}

478
	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
479 480
		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
		if (regs->orig_addr_limit == KERNEL_DS)
481 482
			die_kernel_fault("access to user memory with fs=KERNEL_DS",
					 addr, esr, regs);
483

484
		if (is_el1_instruction_abort(esr))
485 486
			die_kernel_fault("execution of user memory",
					 addr, esr, regs);
487

488
		if (!search_exception_tables(regs->pc))
489 490
			die_kernel_fault("access to user memory outside uaccess routines",
					 addr, esr, regs);
491
	}
492

493 494
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);

495 496 497 498 499
	/*
	 * As per x86, we may deadlock here. However, since the kernel only
	 * validly references user space from well defined areas of the code,
	 * we can bug out early if this is from code which shouldn't.
	 */
500
	if (!mmap_read_trylock(mm)) {
501 502 503
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
retry:
504
		mmap_read_lock(mm);
505 506 507 508 509 510 511
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in which
		 * case, we'll have missed the might_sleep() from down_read().
		 */
		might_sleep();
#ifdef CONFIG_DEBUG_VM
512
		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
513
			mmap_read_unlock(mm);
514
			goto no_context;
515
		}
516 517 518
#endif
	}

519
	fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
520
	major |= fault & VM_FAULT_MAJOR;
521

522 523 524 525 526 527
	/* Quick path to respond to signals */
	if (fault_signal_pending(fault, regs)) {
		if (!user_mode(regs))
			goto no_context;
		return 0;
	}
528

529
	if (fault & VM_FAULT_RETRY) {
530 531 532 533 534
		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
			mm_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}
535
	mmap_read_unlock(mm);
536 537

	/*
538
	 * Handle the "normal" (no error) case first.
539
	 */
540 541 542 543 544 545 546 547 548
	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
			      VM_FAULT_BADACCESS)))) {
		/*
		 * Major/minor page fault accounting is only done
		 * once. If we go through a retry, it is extremely
		 * likely that the page will be found in page cache at
		 * that point.
		 */
		if (major) {
549
			current->maj_flt++;
550 551 552
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
				      addr);
		} else {
553
			current->min_flt++;
554 555 556 557 558
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
				      addr);
		}

		return 0;
559
	}
560

561 562 563 564 565 566 567
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
	if (!user_mode(regs))
		goto no_context;

568 569 570 571 572 573 574 575 576 577
	if (fault & VM_FAULT_OOM) {
		/*
		 * We ran out of memory, call the OOM killer, and return to
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed).
		 */
		pagefault_out_of_memory();
		return 0;
	}

578
	inf = esr_to_fault_info(esr);
579
	set_thread_esr(addr, esr);
580 581 582 583 584
	if (fault & VM_FAULT_SIGBUS) {
		/*
		 * We had some memory, but were unable to successfully fix up
		 * this page fault.
		 */
585 586
		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
				      inf->name);
587 588 589 590 591 592
	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
		unsigned int lsb;

		lsb = PAGE_SHIFT;
		if (fault & VM_FAULT_HWPOISON_LARGE)
			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
593

594 595
		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
				       inf->name);
596 597 598 599 600
	} else {
		/*
		 * Something tried to access memory that isn't in our memory
		 * map.
		 */
601 602 603 604
		arm64_force_sig_fault(SIGSEGV,
				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
				      (void __user *)addr,
				      inf->name);
605 606 607 608 609
	}

	return 0;

no_context:
610
	__do_kernel_fault(addr, esr, regs);
611 612 613 614 615 616 617
	return 0;
}

static int __kprobes do_translation_fault(unsigned long addr,
					  unsigned int esr,
					  struct pt_regs *regs)
{
618
	if (is_ttbr0_addr(addr))
619 620 621 622 623 624
		return do_page_fault(addr, esr, regs);

	do_bad_area(addr, esr, regs);
	return 0;
}

625 626 627 628 629 630 631
static int do_alignment_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
{
	do_bad_area(addr, esr, regs);
	return 0;
}

632 633
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
634
	return 1; /* "fault" */
635 636
}

637 638 639
static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
	const struct fault_info *inf;
640
	void __user *siaddr;
641 642 643

	inf = esr_to_fault_info(esr);

644 645 646 647 648 649 650
	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
		/*
		 * APEI claimed this as a firmware-first notification.
		 * Some processing deferred to task_work before ret_to_user().
		 */
		return 0;
	}
651

652
	if (esr & ESR_ELx_FnV)
653
		siaddr = NULL;
654
	else
655 656
		siaddr  = (void __user *)addr;
	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
657

658
	return 0;
659 660
}

661
static const struct fault_info fault_info[] = {
662 663 664 665
	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
666
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
667 668
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
669
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
670
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
S
Steve Capper 已提交
671 672
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
673
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
674
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
S
Steve Capper 已提交
675 676
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
677
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
695
	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
726 727
};

728
void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
729
{
730
	const struct fault_info *inf = esr_to_fault_info(esr);
731 732 733 734

	if (!inf->fn(addr, esr, regs))
		return;

735 736 737
	if (!user_mode(regs)) {
		pr_alert("Unhandled fault at 0x%016lx\n", addr);
		mem_abort_decode(esr);
738
		show_pte(addr);
739
	}
740

741 742
	arm64_notify_die(inf->name, regs,
			 inf->sig, inf->code, (void __user *)addr, esr);
743
}
744
NOKPROBE_SYMBOL(do_mem_abort);
745

746
void do_el0_irq_bp_hardening(void)
747 748 749 750
{
	/* PC has already been checked in entry.S */
	arm64_apply_bp_hardening();
}
751
NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
752

753
void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
754
{
755 756
	arm64_notify_die("SP/PC alignment exception", regs,
			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
757
}
758
NOKPROBE_SYMBOL(do_sp_pc_abort);
759

760 761 762 763 764 765 766 767 768
int __init early_brk64(unsigned long addr, unsigned int esr,
		       struct pt_regs *regs);

/*
 * __refdata because early_brk64 is __init, but the reference to it is
 * clobbered at arch_initcall time.
 * See traps.c and debug-monitors.c:debug_traps_init().
 */
static struct fault_info __refdata debug_fault_info[] = {
769 770 771
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
772
	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
773
	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
774
	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
775
	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
776
	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
777 778 779 780 781 782 783 784 785 786 787 788 789 790
};

void __init hook_debug_fault_code(int nr,
				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
				  int sig, int code, const char *name)
{
	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));

	debug_fault_info[nr].fn		= fn;
	debug_fault_info[nr].sig	= sig;
	debug_fault_info[nr].code	= code;
	debug_fault_info[nr].name	= name;
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/*
 * In debug exception context, we explicitly disable preemption despite
 * having interrupts disabled.
 * This serves two purposes: it makes it much less likely that we would
 * accidentally schedule in exception context and it will force a warning
 * if we somehow manage to schedule by accident.
 */
static void debug_exception_enter(struct pt_regs *regs)
{
	/*
	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
	 * already disabled to preserve the last enabled/disabled addresses.
	 */
	if (interrupts_enabled(regs))
		trace_hardirqs_off();

	if (user_mode(regs)) {
		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
	} else {
		/*
		 * We might have interrupted pretty much anything.  In
		 * fact, if we're a debug exception, we can even interrupt
		 * NMI processing. We don't want this code makes in_nmi()
		 * to return true, but we need to notify RCU.
		 */
		rcu_nmi_enter();
	}

	preempt_disable();

	/* This code is a bit fragile.  Test it. */
	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
}
NOKPROBE_SYMBOL(debug_exception_enter);

static void debug_exception_exit(struct pt_regs *regs)
{
	preempt_enable_no_resched();

	if (!user_mode(regs))
		rcu_nmi_exit();

	if (interrupts_enabled(regs))
		trace_hardirqs_on();
}
NOKPROBE_SYMBOL(debug_exception_exit);

838 839 840
#ifdef CONFIG_ARM64_ERRATUM_1463225
DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);

841
static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
{
	if (user_mode(regs))
		return 0;

	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
		return 0;

	/*
	 * We've taken a dummy step exception from the kernel to ensure
	 * that interrupts are re-enabled on the syscall path. Return back
	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
	 * masked so that we can safely restore the mdscr and get on with
	 * handling the syscall.
	 */
	regs->pstate |= PSR_D_BIT;
	return 1;
}
#else
860
static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
861 862 863 864
{
	return 0;
}
#endif /* CONFIG_ARM64_ERRATUM_1463225 */
865
NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
866

867 868
void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
			struct pt_regs *regs)
869
{
870
	const struct fault_info *inf = esr_to_debug_fault_info(esr);
871
	unsigned long pc = instruction_pointer(regs);
872

873 874 875
	if (cortex_a76_erratum_1463225_debug_handler(regs))
		return;

876
	debug_exception_enter(regs);
877

878
	if (user_mode(regs) && !is_ttbr0_addr(pc))
879 880
		arm64_apply_bp_hardening();

881
	if (inf->fn(addr_if_watchpoint, esr, regs)) {
882
		arm64_notify_die(inf->name, regs,
883
				 inf->sig, inf->code, (void __user *)pc, esr);
884
	}
885

886
	debug_exception_exit(regs);
887
}
888
NOKPROBE_SYMBOL(do_debug_exception);