fault.c 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Based on arch/arm/mm/fault.c
 *
 * Copyright (C) 1995  Linus Torvalds
 * Copyright (C) 1995-2004 Russell King
 * Copyright (C) 2012 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

21
#include <linux/extable.h>
22 23 24 25 26 27 28
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
29
#include <linux/sched/signal.h>
30
#include <linux/sched/debug.h>
31 32
#include <linux/highmem.h>
#include <linux/perf_event.h>
33
#include <linux/preempt.h>
34
#include <linux/hugetlb.h>
35

36
#include <asm/bug.h>
37
#include <asm/cmpxchg.h>
38
#include <asm/cpufeature.h>
39 40
#include <asm/exception.h>
#include <asm/debug-monitors.h>
41
#include <asm/esr.h>
42
#include <asm/sysreg.h>
43 44 45 46
#include <asm/system_misc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>

47 48
#include <acpi/ghes.h>

49 50 51 52 53 54 55 56 57 58 59 60 61 62
struct fault_info {
	int	(*fn)(unsigned long addr, unsigned int esr,
		      struct pt_regs *regs);
	int	sig;
	int	code;
	const char *name;
};

static const struct fault_info fault_info[];

static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
{
	return fault_info + (esr & 63);
}
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, esr))
			ret = 1;
		preempt_enable();
	}

	return ret;
}
#else
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	return 0;
}
#endif

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static void data_abort_decode(unsigned int esr)
{
	pr_alert("Data abort info:\n");

	if (esr & ESR_ELx_ISV) {
		pr_alert("  Access size = %u byte(s)\n",
			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
		pr_alert("  SSE = %lu, SRT = %lu\n",
			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
		pr_alert("  SF = %lu, AR = %lu\n",
			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
	} else {
		pr_alert("  ISV = 0, ISS = 0x%08lu\n", esr & ESR_ELx_ISS_MASK);
	}

	pr_alert("  CM = %lu, WnR = %lu\n",
		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
}

/*
 * Decode mem abort information
 */
static void mem_abort_decode(unsigned int esr)
{
	pr_alert("Mem abort info:\n");

	pr_alert("  Exception class = %s, IL = %u bits\n",
		 esr_get_class_string(esr),
		 (esr & ESR_ELx_IL) ? 32 : 16);
	pr_alert("  SET = %lu, FnV = %lu\n",
		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
	pr_alert("  EA = %lu, S1PTW = %lu\n",
		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);

	if (esr_is_data_abort(esr))
		data_abort_decode(esr);
}

129
/*
130
 * Dump out the page tables associated with 'addr' in the currently active mm.
131
 */
132
void show_pte(unsigned long addr)
133
{
134
	struct mm_struct *mm;
135 136
	pgd_t *pgd;

137 138 139 140 141 142 143 144 145 146
	if (addr < TASK_SIZE) {
		/* TTBR0 */
		mm = current->active_mm;
		if (mm == &init_mm) {
			pr_alert("[%016lx] user address but active_mm is swapper\n",
				 addr);
			return;
		}
	} else if (addr >= VA_START) {
		/* TTBR1 */
147
		mm = &init_mm;
148 149 150 151 152
	} else {
		pr_alert("[%016lx] address between user and kernel address ranges\n",
			 addr);
		return;
	}
153

154 155 156
	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
		 VA_BITS, mm->pgd);
157
	pgd = pgd_offset(mm, addr);
158
	pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
159 160 161 162 163 164

	do {
		pud_t *pud;
		pmd_t *pmd;
		pte_t *pte;

165
		if (pgd_none(*pgd) || pgd_bad(*pgd))
166 167 168
			break;

		pud = pud_offset(pgd, addr);
169
		pr_cont(", *pud=%016llx", pud_val(*pud));
170
		if (pud_none(*pud) || pud_bad(*pud))
171 172 173
			break;

		pmd = pmd_offset(pud, addr);
174
		pr_cont(", *pmd=%016llx", pmd_val(*pmd));
175
		if (pmd_none(*pmd) || pmd_bad(*pmd))
176 177 178
			break;

		pte = pte_offset_map(pmd, addr);
179
		pr_cont(", *pte=%016llx", pte_val(*pte));
180 181 182
		pte_unmap(pte);
	} while(0);

183
	pr_cont("\n");
184 185
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199
/*
 * This function sets the access flags (dirty, accessed), as well as write
 * permission, and only to a more permissive setting.
 *
 * It needs to cope with hardware update of the accessed/dirty state by other
 * agents in the system and can safely skip the __sync_icache_dcache() call as,
 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
 *
 * Returns whether or not the PTE actually changed.
 */
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
200
	pteval_t old_pteval, pteval;
201 202 203 204 205

	if (pte_same(*ptep, entry))
		return 0;

	/* only preserve the access flags and write permission */
206
	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
207 208 209

	/*
	 * Setting the flags must be done atomically to avoid racing with the
210 211 212
	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
	 * be set to the most permissive (lowest value) of *ptep and entry
	 * (calculated as: a & b == ~(~a | ~b)).
213
	 */
214
	pte_val(entry) ^= PTE_RDONLY;
215 216 217 218 219 220 221 222
	pteval = READ_ONCE(pte_val(*ptep));
	do {
		old_pteval = pteval;
		pteval ^= PTE_RDONLY;
		pteval |= pte_val(entry);
		pteval ^= PTE_RDONLY;
		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
	} while (pteval != old_pteval);
223 224 225 226 227

	flush_tlb_fix_spurious_fault(vma, address);
	return 1;
}

228 229 230 231 232
static bool is_el1_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
				       unsigned long addr)
{
	unsigned int ec       = ESR_ELx_EC(esr);
	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;

	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
		return false;

	if (fsc_type == ESR_ELx_FSC_PERM)
		return true;

	if (addr < USER_DS && system_uses_ttbr0_pan())
		return fsc_type == ESR_ELx_FSC_FAULT &&
			(regs->pstate & PSR_PAN_BIT);

	return false;
}

252 253 254
/*
 * The kernel tried to access some page that wasn't present.
 */
255 256
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
257
{
258 259
	const char *msg;

260 261
	/*
	 * Are we prepared to handle this kernel fault?
262
	 * We are almost certainly not prepared to handle instruction faults.
263
	 */
264
	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
265 266 267 268 269 270
		return;

	/*
	 * No handler, we'll have to terminate things with extreme prejudice.
	 */
	bust_spinlocks(1);
271 272 273 274 275 276 277 278 279 280 281 282 283 284

	if (is_permission_fault(esr, regs, addr)) {
		if (esr & ESR_ELx_WNR)
			msg = "write to read-only memory";
		else
			msg = "read from unreadable memory";
	} else if (addr < PAGE_SIZE) {
		msg = "NULL pointer dereference";
	} else {
		msg = "paging request";
	}

	pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
		 addr);
285

286 287
	mem_abort_decode(esr);

288
	show_pte(addr);
289 290 291 292 293 294 295 296 297 298 299
	die("Oops", regs, esr);
	bust_spinlocks(0);
	do_exit(SIGKILL);
}

/*
 * Something tried to access memory that isn't in our memory map. User mode
 * accesses just cause a SIGSEGV
 */
static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
			    unsigned int esr, unsigned int sig, int code,
300
			    struct pt_regs *regs, int fault)
301 302
{
	struct siginfo si;
303
	const struct fault_info *inf;
304
	unsigned int lsb = 0;
305

306
	if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
307
		inf = esr_to_fault_info(esr);
308
		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
309
			tsk->comm, task_pid_nr(tsk), inf->name, sig,
310
			addr, esr);
311 312
		print_vma_addr(KERN_CONT ", in ", regs->pc);
		pr_cont("\n");
K
Kefeng Wang 已提交
313
		__show_regs(regs);
314 315 316
	}

	tsk->thread.fault_address = addr;
317
	tsk->thread.fault_code = esr;
318 319 320 321
	si.si_signo = sig;
	si.si_errno = 0;
	si.si_code = code;
	si.si_addr = (void __user *)addr;
322 323 324 325 326 327 328 329 330 331 332
	/*
	 * Either small page or large page may be poisoned.
	 * In other words, VM_FAULT_HWPOISON_LARGE and
	 * VM_FAULT_HWPOISON are mutually exclusive.
	 */
	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
	else if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
	si.si_addr_lsb = lsb;

333 334 335
	force_sig_info(sig, &si, tsk);
}

336
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
337 338
{
	struct task_struct *tsk = current;
339
	const struct fault_info *inf;
340 341 342 343 344

	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
345 346
	if (user_mode(regs)) {
		inf = esr_to_fault_info(esr);
347
		__do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
348
	} else
349
		__do_kernel_fault(addr, esr, regs);
350 351 352 353 354 355
}

#define VM_FAULT_BADMAP		0x010000
#define VM_FAULT_BADACCESS	0x020000

static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
356
			   unsigned int mm_flags, unsigned long vm_flags,
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
			   struct task_struct *tsk)
{
	struct vm_area_struct *vma;
	int fault;

	vma = find_vma(mm, addr);
	fault = VM_FAULT_BADMAP;
	if (unlikely(!vma))
		goto out;
	if (unlikely(vma->vm_start > addr))
		goto check_stack;

	/*
	 * Ok, we have a good vm_area for this memory access, so we can handle
	 * it.
	 */
good_area:
374 375
	/*
	 * Check that the permissions on the VMA allow for the fault which
376
	 * occurred.
377 378
	 */
	if (!(vma->vm_flags & vm_flags)) {
379 380 381 382
		fault = VM_FAULT_BADACCESS;
		goto out;
	}

383
	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
384 385 386 387 388 389 390 391

check_stack:
	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
		goto good_area;
out:
	return fault;
}

M
Mark Rutland 已提交
392 393 394 395 396
static bool is_el0_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}

397 398 399 400 401
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
				   struct pt_regs *regs)
{
	struct task_struct *tsk;
	struct mm_struct *mm;
402
	int fault, sig, code, major = 0;
403
	unsigned long vm_flags = VM_READ | VM_WRITE;
404 405
	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;

406 407 408
	if (notify_page_fault(regs, esr))
		return 0;

409 410 411 412 413 414 415
	tsk = current;
	mm  = tsk->mm;

	/*
	 * If we're in an interrupt or have no user context, we must not take
	 * the fault.
	 */
416
	if (faulthandler_disabled() || !mm)
417 418
		goto no_context;

419 420 421
	if (user_mode(regs))
		mm_flags |= FAULT_FLAG_USER;

M
Mark Rutland 已提交
422
	if (is_el0_instruction_abort(esr)) {
423
		vm_flags = VM_EXEC;
M
Mark Rutland 已提交
424
	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
425 426 427 428
		vm_flags = VM_WRITE;
		mm_flags |= FAULT_FLAG_WRITE;
	}

429
	if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
430 431
		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
		if (regs->orig_addr_limit == KERNEL_DS)
432
			die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
433

434 435 436
		if (is_el1_instruction_abort(esr))
			die("Attempting to execute userspace memory", regs, esr);

437
		if (!search_exception_tables(regs->pc))
438
			die("Accessing user space memory outside uaccess.h routines", regs, esr);
439
	}
440

441 442
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	/*
	 * As per x86, we may deadlock here. However, since the kernel only
	 * validly references user space from well defined areas of the code,
	 * we can bug out early if this is from code which shouldn't.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
retry:
		down_read(&mm->mmap_sem);
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in which
		 * case, we'll have missed the might_sleep() from down_read().
		 */
		might_sleep();
#ifdef CONFIG_DEBUG_VM
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
#endif
	}

465
	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
466
	major |= fault & VM_FAULT_MAJOR;
467

468 469 470 471 472 473 474
	if (fault & VM_FAULT_RETRY) {
		/*
		 * If we need to retry but a fatal signal is pending,
		 * handle the signal first. We do not need to release
		 * the mmap_sem because it would already be released
		 * in __lock_page_or_retry in mm/filemap.c.
		 */
475 476 477
		if (fatal_signal_pending(current)) {
			if (!user_mode(regs))
				goto no_context;
478
			return 0;
479
		}
480 481 482 483 484 485 486 487 488 489 490 491

		/*
		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
		 * starvation.
		 */
		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			mm_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}
	up_read(&mm->mmap_sem);
492 493

	/*
494
	 * Handle the "normal" (no error) case first.
495
	 */
496 497 498 499 500 501 502 503 504
	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
			      VM_FAULT_BADACCESS)))) {
		/*
		 * Major/minor page fault accounting is only done
		 * once. If we go through a retry, it is extremely
		 * likely that the page will be found in page cache at
		 * that point.
		 */
		if (major) {
505 506 507 508 509 510 511 512 513 514
			tsk->maj_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
				      addr);
		} else {
			tsk->min_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
				      addr);
		}

		return 0;
515
	}
516

517 518 519 520 521 522 523
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
	if (!user_mode(regs))
		goto no_context;

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	if (fault & VM_FAULT_OOM) {
		/*
		 * We ran out of memory, call the OOM killer, and return to
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed).
		 */
		pagefault_out_of_memory();
		return 0;
	}

	if (fault & VM_FAULT_SIGBUS) {
		/*
		 * We had some memory, but were unable to successfully fix up
		 * this page fault.
		 */
		sig = SIGBUS;
		code = BUS_ADRERR;
541 542 543
	} else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
		sig = SIGBUS;
		code = BUS_MCEERR_AR;
544 545 546 547 548 549 550 551 552 553
	} else {
		/*
		 * Something tried to access memory that isn't in our memory
		 * map.
		 */
		sig = SIGSEGV;
		code = fault == VM_FAULT_BADACCESS ?
			SEGV_ACCERR : SEGV_MAPERR;
	}

554
	__do_user_fault(tsk, addr, esr, sig, code, regs, fault);
555 556 557
	return 0;

no_context:
558
	__do_kernel_fault(addr, esr, regs);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	return 0;
}

/*
 * First Level Translation Fault Handler
 *
 * We enter here because the first level page table doesn't contain a valid
 * entry for the address.
 *
 * If the address is in kernel space (>= TASK_SIZE), then we are probably
 * faulting in the vmalloc() area.
 *
 * If the init_task's first level page tables contains the relevant entry, we
 * copy the it to this task.  If not, we send the process a signal, fixup the
 * exception, or oops the kernel.
 *
 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
 * or a critical region, and should only copy the information from the master
 * page table, nothing more.
 */
static int __kprobes do_translation_fault(unsigned long addr,
					  unsigned int esr,
					  struct pt_regs *regs)
{
	if (addr < TASK_SIZE)
		return do_page_fault(addr, esr, regs);

	do_bad_area(addr, esr, regs);
	return 0;
}

590 591 592 593 594 595 596
static int do_alignment_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
{
	do_bad_area(addr, esr, regs);
	return 0;
}

597 598 599 600 601 602 603 604
/*
 * This abort handler always returns "fault".
 */
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
	return 1;
}

605 606 607 608 609 610 611 612
/*
 * This abort handler deals with Synchronous External Abort.
 * It calls notifiers, and then returns "fault".
 */
static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
	struct siginfo info;
	const struct fault_info *inf;
613
	int ret = 0;
614 615 616 617 618

	inf = esr_to_fault_info(esr);
	pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
		inf->name, esr, addr);

619 620 621 622 623 624 625 626 627
	/*
	 * Synchronous aborts may interrupt code which had interrupts masked.
	 * Before calling out into the wider kernel tell the interested
	 * subsystems.
	 */
	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
		if (interrupts_enabled(regs))
			nmi_enter();

628
		ret = ghes_notify_sea();
629 630 631 632 633

		if (interrupts_enabled(regs))
			nmi_exit();
	}

634 635 636 637 638 639 640 641 642
	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code  = 0;
	if (esr & ESR_ELx_FnV)
		info.si_addr = NULL;
	else
		info.si_addr  = (void __user *)addr;
	arm64_notify_die("", regs, &info, esr);

643
	return ret;
644 645
}

646
static const struct fault_info fault_info[] = {
647 648 649 650
	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
651
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
652 653
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
654
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
655
	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
S
Steve Capper 已提交
656 657
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
658
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
659
	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
S
Steve Capper 已提交
660 661
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
662
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
663
	{ do_sea,		SIGBUS,  0,		"synchronous external abort"	},
664
	{ do_bad,		SIGBUS,  0,		"unknown 17"			},
665 666
	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
667 668 669 670 671
	{ do_sea,		SIGBUS,  0,		"level 0 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 1 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 2 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 3 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"synchronous parity or ECC error" },
672
	{ do_bad,		SIGBUS,  0,		"unknown 25"			},
673 674
	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
675 676 677 678
	{ do_sea,		SIGBUS,  0,		"level 0 synchronous parity error (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 1 synchronous parity error (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 2 synchronous parity error (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 3 synchronous parity error (translation table walk)"	},
679
	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
680
	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
681
	{ do_bad,		SIGBUS,  0,		"unknown 34"			},
682 683 684 685 686 687 688 689 690 691 692 693 694
	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
695
	{ do_bad,		SIGBUS,  0,		"TLB conflict abort"		},
696 697 698 699
	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
700
	{ do_bad,		SIGBUS,  0,		"implementation fault (unsupported exclusive)" },
701 702 703 704
	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
705
	{ do_bad,		SIGBUS,  0,		"unknown 58" 			},
706 707
	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
708 709
	{ do_bad,		SIGBUS,  0,		"section domain fault"		},
	{ do_bad,		SIGBUS,  0,		"page domain fault"		},
710 711 712
	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
};

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
/*
 * Handle Synchronous External Aborts that occur in a guest kernel.
 *
 * The return value will be zero if the SEA was successfully handled
 * and non-zero if there was an error processing the error or there was
 * no error to process.
 */
int handle_guest_sea(phys_addr_t addr, unsigned int esr)
{
	int ret = -ENOENT;

	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
		ret = ghes_notify_sea();

	return ret;
}

730 731 732 733 734 735
/*
 * Dispatch a data abort to the relevant handler.
 */
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
					 struct pt_regs *regs)
{
736
	const struct fault_info *inf = esr_to_fault_info(esr);
737 738 739 740 741 742 743 744
	struct siginfo info;

	if (!inf->fn(addr, esr, regs))
		return;

	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
		 inf->name, esr, addr);

745 746
	mem_abort_decode(esr);

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	info.si_signo = inf->sig;
	info.si_errno = 0;
	info.si_code  = inf->code;
	info.si_addr  = (void __user *)addr;
	arm64_notify_die("", regs, &info, esr);
}

/*
 * Handle stack alignment exceptions.
 */
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
					   unsigned int esr,
					   struct pt_regs *regs)
{
	struct siginfo info;
762 763 764 765 766 767 768
	struct task_struct *tsk = current;

	if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
		pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
				    tsk->comm, task_pid_nr(tsk),
				    esr_get_class_string(esr), (void *)regs->pc,
				    (void *)regs->sp);
769 770 771 772 773

	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code  = BUS_ADRALN;
	info.si_addr  = (void __user *)addr;
774
	arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
775 776
}

777 778 779 780 781 782 783 784 785
int __init early_brk64(unsigned long addr, unsigned int esr,
		       struct pt_regs *regs);

/*
 * __refdata because early_brk64 is __init, but the reference to it is
 * clobbered at arch_initcall time.
 * See traps.c and debug-monitors.c:debug_traps_init().
 */
static struct fault_info __refdata debug_fault_info[] = {
786 787 788 789 790 791
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
792
	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
};

void __init hook_debug_fault_code(int nr,
				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
				  int sig, int code, const char *name)
{
	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));

	debug_fault_info[nr].fn		= fn;
	debug_fault_info[nr].sig	= sig;
	debug_fault_info[nr].code	= code;
	debug_fault_info[nr].name	= name;
}

asmlinkage int __exception do_debug_exception(unsigned long addr,
					      unsigned int esr,
					      struct pt_regs *regs)
{
	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
	struct siginfo info;
814
	int rv;
815

816 817 818 819 820 821
	/*
	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
	 * already disabled to preserve the last enabled/disabled addresses.
	 */
	if (interrupts_enabled(regs))
		trace_hardirqs_off();
822

823 824 825 826 827 828 829 830 831 832 833 834 835
	if (!inf->fn(addr, esr, regs)) {
		rv = 1;
	} else {
		pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
			 inf->name, esr, addr);

		info.si_signo = inf->sig;
		info.si_errno = 0;
		info.si_code  = inf->code;
		info.si_addr  = (void __user *)addr;
		arm64_notify_die("", regs, &info, 0);
		rv = 0;
	}
836

837 838
	if (interrupts_enabled(regs))
		trace_hardirqs_on();
839

840
	return rv;
841
}
842
NOKPROBE_SYMBOL(do_debug_exception);
843 844

#ifdef CONFIG_ARM64_PAN
845
int cpu_enable_pan(void *__unused)
846
{
847 848 849 850 851 852
	/*
	 * We modify PSTATE. This won't work from irq context as the PSTATE
	 * is discarded once we return from the exception.
	 */
	WARN_ON_ONCE(in_interrupt());

853
	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
854
	asm(SET_PSTATE_PAN(1));
855
	return 0;
856 857
}
#endif /* CONFIG_ARM64_PAN */