fault.c 24.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9
/*
 * Based on arch/arm/mm/fault.c
 *
 * Copyright (C) 1995  Linus Torvalds
 * Copyright (C) 1995-2004 Russell King
 * Copyright (C) 2012 ARM Ltd.
 */

10
#include <linux/acpi.h>
11
#include <linux/extable.h>
12 13 14 15 16 17 18
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
19
#include <linux/sched/signal.h>
20
#include <linux/sched/debug.h>
21 22
#include <linux/highmem.h>
#include <linux/perf_event.h>
23
#include <linux/preempt.h>
24
#include <linux/hugetlb.h>
25

26
#include <asm/acpi.h>
27
#include <asm/bug.h>
28
#include <asm/cmpxchg.h>
29
#include <asm/cpufeature.h>
30
#include <asm/exception.h>
31
#include <asm/daifflags.h>
32
#include <asm/debug-monitors.h>
33
#include <asm/esr.h>
34
#include <asm/kasan.h>
35
#include <asm/sysreg.h>
36 37 38
#include <asm/system_misc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
39
#include <asm/traps.h>
40

41 42 43 44 45 46 47 48 49
struct fault_info {
	int	(*fn)(unsigned long addr, unsigned int esr,
		      struct pt_regs *regs);
	int	sig;
	int	code;
	const char *name;
};

static const struct fault_info fault_info[];
50
static struct fault_info debug_fault_info[];
51 52 53

static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
{
54
	return fault_info + (esr & ESR_ELx_FSC);
55
}
56

57 58 59 60 61
static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
{
	return debug_fault_info + DBG_ESR_EVT(esr);
}

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, esr))
			ret = 1;
		preempt_enable();
	}

	return ret;
}
#else
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	return 0;
}
#endif

84 85 86 87 88 89 90 91 92 93 94 95 96 97
static void data_abort_decode(unsigned int esr)
{
	pr_alert("Data abort info:\n");

	if (esr & ESR_ELx_ISV) {
		pr_alert("  Access size = %u byte(s)\n",
			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
		pr_alert("  SSE = %lu, SRT = %lu\n",
			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
		pr_alert("  SF = %lu, AR = %lu\n",
			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
	} else {
98
		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
99 100 101 102 103 104 105 106 107 108 109
	}

	pr_alert("  CM = %lu, WnR = %lu\n",
		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
}

static void mem_abort_decode(unsigned int esr)
{
	pr_alert("Mem abort info:\n");

110
	pr_alert("  ESR = 0x%08x\n", esr);
111 112 113 114 115 116 117 118 119 120 121 122 123 124
	pr_alert("  Exception class = %s, IL = %u bits\n",
		 esr_get_class_string(esr),
		 (esr & ESR_ELx_IL) ? 32 : 16);
	pr_alert("  SET = %lu, FnV = %lu\n",
		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
	pr_alert("  EA = %lu, S1PTW = %lu\n",
		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);

	if (esr_is_data_abort(esr))
		data_abort_decode(esr);
}

125 126 127 128 129 130 131 132 133 134 135 136
static inline bool is_ttbr0_addr(unsigned long addr)
{
	/* entry assembly clears tags for TTBR0 addrs */
	return addr < TASK_SIZE;
}

static inline bool is_ttbr1_addr(unsigned long addr)
{
	/* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
	return arch_kasan_reset_tag(addr) >= VA_START;
}

137
/*
138
 * Dump out the page tables associated with 'addr' in the currently active mm.
139
 */
140
static void show_pte(unsigned long addr)
141
{
142
	struct mm_struct *mm;
143 144
	pgd_t *pgdp;
	pgd_t pgd;
145

146
	if (is_ttbr0_addr(addr)) {
147 148 149 150 151 152 153
		/* TTBR0 */
		mm = current->active_mm;
		if (mm == &init_mm) {
			pr_alert("[%016lx] user address but active_mm is swapper\n",
				 addr);
			return;
		}
154
	} else if (is_ttbr1_addr(addr)) {
155
		/* TTBR1 */
156
		mm = &init_mm;
157 158 159 160 161
	} else {
		pr_alert("[%016lx] address between user and kernel address ranges\n",
			 addr);
		return;
	}
162

163
	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp=%016lx\n",
164
		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
165 166
		 mm == &init_mm ? VA_BITS : (int)vabits_user,
		 (unsigned long)virt_to_phys(mm->pgd));
167 168 169
	pgdp = pgd_offset(mm, addr);
	pgd = READ_ONCE(*pgdp);
	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
170 171

	do {
172 173 174
		pud_t *pudp, pud;
		pmd_t *pmdp, pmd;
		pte_t *ptep, pte;
175

176
		if (pgd_none(pgd) || pgd_bad(pgd))
177 178
			break;

179 180 181 182
		pudp = pud_offset(pgdp, addr);
		pud = READ_ONCE(*pudp);
		pr_cont(", pud=%016llx", pud_val(pud));
		if (pud_none(pud) || pud_bad(pud))
183 184
			break;

185 186 187 188
		pmdp = pmd_offset(pudp, addr);
		pmd = READ_ONCE(*pmdp);
		pr_cont(", pmd=%016llx", pmd_val(pmd));
		if (pmd_none(pmd) || pmd_bad(pmd))
189 190
			break;

191 192 193 194
		ptep = pte_offset_map(pmdp, addr);
		pte = READ_ONCE(*ptep);
		pr_cont(", pte=%016llx", pte_val(pte));
		pte_unmap(ptep);
195 196
	} while(0);

197
	pr_cont("\n");
198 199
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213
/*
 * This function sets the access flags (dirty, accessed), as well as write
 * permission, and only to a more permissive setting.
 *
 * It needs to cope with hardware update of the accessed/dirty state by other
 * agents in the system and can safely skip the __sync_icache_dcache() call as,
 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
 *
 * Returns whether or not the PTE actually changed.
 */
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
214
	pteval_t old_pteval, pteval;
215
	pte_t pte = READ_ONCE(*ptep);
216

217
	if (pte_same(pte, entry))
218 219 220
		return 0;

	/* only preserve the access flags and write permission */
221
	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
222 223 224

	/*
	 * Setting the flags must be done atomically to avoid racing with the
225 226 227
	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
	 * be set to the most permissive (lowest value) of *ptep and entry
	 * (calculated as: a & b == ~(~a | ~b)).
228
	 */
229
	pte_val(entry) ^= PTE_RDONLY;
230
	pteval = pte_val(pte);
231 232 233 234 235 236 237
	do {
		old_pteval = pteval;
		pteval ^= PTE_RDONLY;
		pteval |= pte_val(entry);
		pteval ^= PTE_RDONLY;
		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
	} while (pteval != old_pteval);
238 239 240 241 242

	flush_tlb_fix_spurious_fault(vma, address);
	return 1;
}

243 244 245 246 247
static bool is_el1_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}

248 249
static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
					   struct pt_regs *regs)
250 251 252 253 254 255 256 257 258 259
{
	unsigned int ec       = ESR_ELx_EC(esr);
	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;

	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
		return false;

	if (fsc_type == ESR_ELx_FSC_PERM)
		return true;

260
	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
261 262 263 264 265 266
		return fsc_type == ESR_ELx_FSC_FAULT &&
			(regs->pstate & PSR_PAN_BIT);

	return false;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static void die_kernel_fault(const char *msg, unsigned long addr,
			     unsigned int esr, struct pt_regs *regs)
{
	bust_spinlocks(1);

	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
		 addr);

	mem_abort_decode(esr);

	show_pte(addr);
	die("Oops", regs, esr);
	bust_spinlocks(0);
	do_exit(SIGKILL);
}

283 284
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
285
{
286 287
	const char *msg;

288 289
	/*
	 * Are we prepared to handle this kernel fault?
290
	 * We are almost certainly not prepared to handle instruction faults.
291
	 */
292
	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
293 294
		return;

295
	if (is_el1_permission_fault(addr, esr, regs)) {
296 297 298 299 300 301 302 303 304 305
		if (esr & ESR_ELx_WNR)
			msg = "write to read-only memory";
		else
			msg = "read from unreadable memory";
	} else if (addr < PAGE_SIZE) {
		msg = "NULL pointer dereference";
	} else {
		msg = "paging request";
	}

306
	die_kernel_fault(msg, addr, esr, regs);
307 308
}

309
static void set_thread_esr(unsigned long address, unsigned int esr)
310
{
311
	current->thread.fault_address = address;
312 313 314 315 316 317 318 319 320 321 322 323 324

	/*
	 * If the faulting address is in the kernel, we must sanitize the ESR.
	 * From userspace's point of view, kernel-only mappings don't exist
	 * at all, so we report them as level 0 translation faults.
	 * (This is not quite the way that "no mapping there at all" behaves:
	 * an alignment fault not caused by the memory type would take
	 * precedence over translation fault for a real access to empty
	 * space. Unfortunately we can't easily distinguish "alignment fault
	 * not caused by memory type" from "alignment fault caused by memory
	 * type", so we ignore this wrinkle and just return the translation
	 * fault.)
	 */
325
	if (!is_ttbr0_addr(current->thread.fault_address)) {
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
		switch (ESR_ELx_EC(esr)) {
		case ESR_ELx_EC_DABT_LOW:
			/*
			 * These bits provide only information about the
			 * faulting instruction, which userspace knows already.
			 * We explicitly clear bits which are architecturally
			 * RES0 in case they are given meanings in future.
			 * We always report the ESR as if the fault was taken
			 * to EL1 and so ISV and the bits in ISS[23:14] are
			 * clear. (In fact it always will be a fault to EL1.)
			 */
			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
				ESR_ELx_CM | ESR_ELx_WNR;
			esr |= ESR_ELx_FSC_FAULT;
			break;
		case ESR_ELx_EC_IABT_LOW:
			/*
			 * Claim a level 0 translation fault.
			 * All other bits are architecturally RES0 for faults
			 * reported with that DFSC value, so we clear them.
			 */
			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
			esr |= ESR_ELx_FSC_FAULT;
			break;
		default:
			/*
			 * This should never happen (entry.S only brings us
			 * into this code for insn and data aborts from a lower
			 * exception level). Fail safe by not providing an ESR
			 * context record at all.
			 */
			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
			esr = 0;
			break;
		}
	}

363
	current->thread.fault_code = esr;
364 365
}

366
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
367 368 369 370 371
{
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
372
	if (user_mode(regs)) {
373
		const struct fault_info *inf = esr_to_fault_info(esr);
374

375
		set_thread_esr(addr, esr);
376 377
		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
				      inf->name);
378
	} else {
379
		__do_kernel_fault(addr, esr, regs);
380
	}
381 382 383 384 385
}

#define VM_FAULT_BADMAP		0x010000
#define VM_FAULT_BADACCESS	0x020000

386
static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
387
			   unsigned int mm_flags, unsigned long vm_flags)
388
{
389
	struct vm_area_struct *vma = find_vma(mm, addr);
390 391

	if (unlikely(!vma))
392
		return VM_FAULT_BADMAP;
393 394 395 396 397

	/*
	 * Ok, we have a good vm_area for this memory access, so we can handle
	 * it.
	 */
398 399 400 401 402 403 404
	if (unlikely(vma->vm_start > addr)) {
		if (!(vma->vm_flags & VM_GROWSDOWN))
			return VM_FAULT_BADMAP;
		if (expand_stack(vma, addr))
			return VM_FAULT_BADMAP;
	}

405 406
	/*
	 * Check that the permissions on the VMA allow for the fault which
407
	 * occurred.
408
	 */
409 410
	if (!(vma->vm_flags & vm_flags))
		return VM_FAULT_BADACCESS;
411
	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
412 413
}

M
Mark Rutland 已提交
414 415 416 417 418
static bool is_el0_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}

419 420 421 422 423 424 425 426 427
/*
 * Note: not valid for EL1 DC IVAC, but we never use that such that it
 * should fault. EL0 cannot issue DC IVAC (undef).
 */
static bool is_write_abort(unsigned int esr)
{
	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
}

428 429 430
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
				   struct pt_regs *regs)
{
431
	const struct fault_info *inf;
432
	struct mm_struct *mm = current->mm;
433
	vm_fault_t fault, major = 0;
434
	unsigned long vm_flags = VM_READ | VM_WRITE;
435 436
	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;

437 438 439
	if (notify_page_fault(regs, esr))
		return 0;

440 441 442 443
	/*
	 * If we're in an interrupt or have no user context, we must not take
	 * the fault.
	 */
444
	if (faulthandler_disabled() || !mm)
445 446
		goto no_context;

447 448 449
	if (user_mode(regs))
		mm_flags |= FAULT_FLAG_USER;

M
Mark Rutland 已提交
450
	if (is_el0_instruction_abort(esr)) {
451
		vm_flags = VM_EXEC;
452
		mm_flags |= FAULT_FLAG_INSTRUCTION;
453
	} else if (is_write_abort(esr)) {
454 455 456 457
		vm_flags = VM_WRITE;
		mm_flags |= FAULT_FLAG_WRITE;
	}

458
	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
459 460
		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
		if (regs->orig_addr_limit == KERNEL_DS)
461 462
			die_kernel_fault("access to user memory with fs=KERNEL_DS",
					 addr, esr, regs);
463

464
		if (is_el1_instruction_abort(esr))
465 466
			die_kernel_fault("execution of user memory",
					 addr, esr, regs);
467

468
		if (!search_exception_tables(regs->pc))
469 470
			die_kernel_fault("access to user memory outside uaccess routines",
					 addr, esr, regs);
471
	}
472

473 474
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	/*
	 * As per x86, we may deadlock here. However, since the kernel only
	 * validly references user space from well defined areas of the code,
	 * we can bug out early if this is from code which shouldn't.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
retry:
		down_read(&mm->mmap_sem);
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in which
		 * case, we'll have missed the might_sleep() from down_read().
		 */
		might_sleep();
#ifdef CONFIG_DEBUG_VM
492 493
		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
			up_read(&mm->mmap_sem);
494
			goto no_context;
495
		}
496 497 498
#endif
	}

499
	fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
500
	major |= fault & VM_FAULT_MAJOR;
501

502 503 504 505 506 507 508
	if (fault & VM_FAULT_RETRY) {
		/*
		 * If we need to retry but a fatal signal is pending,
		 * handle the signal first. We do not need to release
		 * the mmap_sem because it would already be released
		 * in __lock_page_or_retry in mm/filemap.c.
		 */
509 510 511
		if (fatal_signal_pending(current)) {
			if (!user_mode(regs))
				goto no_context;
512
			return 0;
513
		}
514 515 516 517 518 519 520 521 522 523 524 525

		/*
		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
		 * starvation.
		 */
		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			mm_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}
	up_read(&mm->mmap_sem);
526 527

	/*
528
	 * Handle the "normal" (no error) case first.
529
	 */
530 531 532 533 534 535 536 537 538
	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
			      VM_FAULT_BADACCESS)))) {
		/*
		 * Major/minor page fault accounting is only done
		 * once. If we go through a retry, it is extremely
		 * likely that the page will be found in page cache at
		 * that point.
		 */
		if (major) {
539
			current->maj_flt++;
540 541 542
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
				      addr);
		} else {
543
			current->min_flt++;
544 545 546 547 548
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
				      addr);
		}

		return 0;
549
	}
550

551 552 553 554 555 556 557
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
	if (!user_mode(regs))
		goto no_context;

558 559 560 561 562 563 564 565 566 567
	if (fault & VM_FAULT_OOM) {
		/*
		 * We ran out of memory, call the OOM killer, and return to
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed).
		 */
		pagefault_out_of_memory();
		return 0;
	}

568
	inf = esr_to_fault_info(esr);
569
	set_thread_esr(addr, esr);
570 571 572 573 574
	if (fault & VM_FAULT_SIGBUS) {
		/*
		 * We had some memory, but were unable to successfully fix up
		 * this page fault.
		 */
575 576
		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
				      inf->name);
577 578 579 580 581 582
	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
		unsigned int lsb;

		lsb = PAGE_SHIFT;
		if (fault & VM_FAULT_HWPOISON_LARGE)
			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
583

584 585
		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
				       inf->name);
586 587 588 589 590
	} else {
		/*
		 * Something tried to access memory that isn't in our memory
		 * map.
		 */
591 592 593 594
		arm64_force_sig_fault(SIGSEGV,
				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
				      (void __user *)addr,
				      inf->name);
595 596 597 598 599
	}

	return 0;

no_context:
600
	__do_kernel_fault(addr, esr, regs);
601 602 603 604 605 606 607
	return 0;
}

static int __kprobes do_translation_fault(unsigned long addr,
					  unsigned int esr,
					  struct pt_regs *regs)
{
608
	if (is_ttbr0_addr(addr))
609 610 611 612 613 614
		return do_page_fault(addr, esr, regs);

	do_bad_area(addr, esr, regs);
	return 0;
}

615 616 617 618 619 620 621
static int do_alignment_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
{
	do_bad_area(addr, esr, regs);
	return 0;
}

622 623
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
624
	return 1; /* "fault" */
625 626
}

627 628 629
static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
	const struct fault_info *inf;
630
	void __user *siaddr;
631 632 633

	inf = esr_to_fault_info(esr);

634
	/*
635 636
	 * Return value ignored as we rely on signal merging.
	 * Future patches will make this more robust.
637
	 */
638
	apei_claim_sea(regs);
639

640
	if (esr & ESR_ELx_FnV)
641
		siaddr = NULL;
642
	else
643 644
		siaddr  = (void __user *)addr;
	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
645

646
	return 0;
647 648
}

649
static const struct fault_info fault_info[] = {
650 651 652 653
	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
654
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
655 656
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
657
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
658
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
S
Steve Capper 已提交
659 660
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
661
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
662
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
S
Steve Capper 已提交
663 664
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
665
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
683
	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
714 715 716 717 718
};

asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
					 struct pt_regs *regs)
{
719
	const struct fault_info *inf = esr_to_fault_info(esr);
720 721 722 723

	if (!inf->fn(addr, esr, regs))
		return;

724 725 726
	if (!user_mode(regs)) {
		pr_alert("Unhandled fault at 0x%016lx\n", addr);
		mem_abort_decode(esr);
727
		show_pte(addr);
728
	}
729

730 731
	arm64_notify_die(inf->name, regs,
			 inf->sig, inf->code, (void __user *)addr, esr);
732 733
}

734 735 736 737 738 739
asmlinkage void __exception do_el0_irq_bp_hardening(void)
{
	/* PC has already been checked in entry.S */
	arm64_apply_bp_hardening();
}

740 741 742 743 744 745 746 747 748
asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
						   unsigned int esr,
						   struct pt_regs *regs)
{
	/*
	 * We've taken an instruction abort from userspace and not yet
	 * re-enabled IRQs. If the address is a kernel address, apply
	 * BP hardening prior to enabling IRQs and pre-emption.
	 */
749
	if (!is_ttbr0_addr(addr))
750 751
		arm64_apply_bp_hardening();

752
	local_daif_restore(DAIF_PROCCTX);
753 754 755 756
	do_mem_abort(addr, esr, regs);
}


757 758 759 760
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
					   unsigned int esr,
					   struct pt_regs *regs)
{
761
	if (user_mode(regs)) {
762
		if (!is_ttbr0_addr(instruction_pointer(regs)))
763
			arm64_apply_bp_hardening();
764
		local_daif_restore(DAIF_PROCCTX);
765 766
	}

767 768
	arm64_notify_die("SP/PC alignment exception", regs,
			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
769 770
}

771 772 773 774 775 776 777 778 779
int __init early_brk64(unsigned long addr, unsigned int esr,
		       struct pt_regs *regs);

/*
 * __refdata because early_brk64 is __init, but the reference to it is
 * clobbered at arch_initcall time.
 * See traps.c and debug-monitors.c:debug_traps_init().
 */
static struct fault_info __refdata debug_fault_info[] = {
780 781 782
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
783
	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
784
	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
785
	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
786
	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
787
	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
788 789 790 791 792 793 794 795 796 797 798 799 800 801
};

void __init hook_debug_fault_code(int nr,
				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
				  int sig, int code, const char *name)
{
	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));

	debug_fault_info[nr].fn		= fn;
	debug_fault_info[nr].sig	= sig;
	debug_fault_info[nr].code	= code;
	debug_fault_info[nr].name	= name;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
#ifdef CONFIG_ARM64_ERRATUM_1463225
DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);

static int __exception
cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
	if (user_mode(regs))
		return 0;

	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
		return 0;

	/*
	 * We've taken a dummy step exception from the kernel to ensure
	 * that interrupts are re-enabled on the syscall path. Return back
	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
	 * masked so that we can safely restore the mdscr and get on with
	 * handling the syscall.
	 */
	regs->pstate |= PSR_D_BIT;
	return 1;
}
#else
static int __exception
cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
	return 0;
}
#endif /* CONFIG_ARM64_ERRATUM_1463225 */

832 833 834
asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
					       unsigned int esr,
					       struct pt_regs *regs)
835
{
836
	const struct fault_info *inf = esr_to_debug_fault_info(esr);
837
	unsigned long pc = instruction_pointer(regs);
838

839 840 841
	if (cortex_a76_erratum_1463225_debug_handler(regs))
		return;

842 843 844 845 846 847
	/*
	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
	 * already disabled to preserve the last enabled/disabled addresses.
	 */
	if (interrupts_enabled(regs))
		trace_hardirqs_off();
848

849
	if (user_mode(regs) && !is_ttbr0_addr(pc))
850 851
		arm64_apply_bp_hardening();

852
	if (inf->fn(addr_if_watchpoint, esr, regs)) {
853
		arm64_notify_die(inf->name, regs,
854
				 inf->sig, inf->code, (void __user *)pc, esr);
855
	}
856

857 858
	if (interrupts_enabled(regs))
		trace_hardirqs_on();
859
}
860
NOKPROBE_SYMBOL(do_debug_exception);