fault.c 24.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Based on arch/arm/mm/fault.c
 *
 * Copyright (C) 1995  Linus Torvalds
 * Copyright (C) 1995-2004 Russell King
 * Copyright (C) 2012 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

21
#include <linux/acpi.h>
22
#include <linux/extable.h>
23 24 25 26 27 28 29
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
30
#include <linux/sched/signal.h>
31
#include <linux/sched/debug.h>
32 33
#include <linux/highmem.h>
#include <linux/perf_event.h>
34
#include <linux/preempt.h>
35
#include <linux/hugetlb.h>
36

37
#include <asm/acpi.h>
38
#include <asm/bug.h>
39
#include <asm/cmpxchg.h>
40
#include <asm/cpufeature.h>
41
#include <asm/exception.h>
42
#include <asm/daifflags.h>
43
#include <asm/debug-monitors.h>
44
#include <asm/esr.h>
45
#include <asm/kasan.h>
46
#include <asm/sysreg.h>
47 48 49
#include <asm/system_misc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
50
#include <asm/traps.h>
51

52 53 54 55 56 57 58 59 60
struct fault_info {
	int	(*fn)(unsigned long addr, unsigned int esr,
		      struct pt_regs *regs);
	int	sig;
	int	code;
	const char *name;
};

static const struct fault_info fault_info[];
61
static struct fault_info debug_fault_info[];
62 63 64

static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
{
65
	return fault_info + (esr & ESR_ELx_FSC);
66
}
67

68 69 70 71 72
static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
{
	return debug_fault_info + DBG_ESR_EVT(esr);
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, esr))
			ret = 1;
		preempt_enable();
	}

	return ret;
}
#else
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	return 0;
}
#endif

95 96 97 98 99 100 101 102 103 104 105 106 107 108
static void data_abort_decode(unsigned int esr)
{
	pr_alert("Data abort info:\n");

	if (esr & ESR_ELx_ISV) {
		pr_alert("  Access size = %u byte(s)\n",
			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
		pr_alert("  SSE = %lu, SRT = %lu\n",
			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
		pr_alert("  SF = %lu, AR = %lu\n",
			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
	} else {
109
		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
110 111 112 113 114 115 116 117 118 119 120
	}

	pr_alert("  CM = %lu, WnR = %lu\n",
		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
}

static void mem_abort_decode(unsigned int esr)
{
	pr_alert("Mem abort info:\n");

121
	pr_alert("  ESR = 0x%08x\n", esr);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
	pr_alert("  Exception class = %s, IL = %u bits\n",
		 esr_get_class_string(esr),
		 (esr & ESR_ELx_IL) ? 32 : 16);
	pr_alert("  SET = %lu, FnV = %lu\n",
		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
	pr_alert("  EA = %lu, S1PTW = %lu\n",
		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);

	if (esr_is_data_abort(esr))
		data_abort_decode(esr);
}

136 137 138 139 140 141 142 143 144 145 146 147
static inline bool is_ttbr0_addr(unsigned long addr)
{
	/* entry assembly clears tags for TTBR0 addrs */
	return addr < TASK_SIZE;
}

static inline bool is_ttbr1_addr(unsigned long addr)
{
	/* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
	return arch_kasan_reset_tag(addr) >= VA_START;
}

148
/*
149
 * Dump out the page tables associated with 'addr' in the currently active mm.
150
 */
151
static void show_pte(unsigned long addr)
152
{
153
	struct mm_struct *mm;
154 155
	pgd_t *pgdp;
	pgd_t pgd;
156

157
	if (is_ttbr0_addr(addr)) {
158 159 160 161 162 163 164
		/* TTBR0 */
		mm = current->active_mm;
		if (mm == &init_mm) {
			pr_alert("[%016lx] user address but active_mm is swapper\n",
				 addr);
			return;
		}
165
	} else if (is_ttbr1_addr(addr)) {
166
		/* TTBR1 */
167
		mm = &init_mm;
168 169 170 171 172
	} else {
		pr_alert("[%016lx] address between user and kernel address ranges\n",
			 addr);
		return;
	}
173

174
	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp=%016lx\n",
175
		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
176 177
		 mm == &init_mm ? VA_BITS : (int)vabits_user,
		 (unsigned long)virt_to_phys(mm->pgd));
178 179 180
	pgdp = pgd_offset(mm, addr);
	pgd = READ_ONCE(*pgdp);
	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
181 182

	do {
183 184 185
		pud_t *pudp, pud;
		pmd_t *pmdp, pmd;
		pte_t *ptep, pte;
186

187
		if (pgd_none(pgd) || pgd_bad(pgd))
188 189
			break;

190 191 192 193
		pudp = pud_offset(pgdp, addr);
		pud = READ_ONCE(*pudp);
		pr_cont(", pud=%016llx", pud_val(pud));
		if (pud_none(pud) || pud_bad(pud))
194 195
			break;

196 197 198 199
		pmdp = pmd_offset(pudp, addr);
		pmd = READ_ONCE(*pmdp);
		pr_cont(", pmd=%016llx", pmd_val(pmd));
		if (pmd_none(pmd) || pmd_bad(pmd))
200 201
			break;

202 203 204 205
		ptep = pte_offset_map(pmdp, addr);
		pte = READ_ONCE(*ptep);
		pr_cont(", pte=%016llx", pte_val(pte));
		pte_unmap(ptep);
206 207
	} while(0);

208
	pr_cont("\n");
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224
/*
 * This function sets the access flags (dirty, accessed), as well as write
 * permission, and only to a more permissive setting.
 *
 * It needs to cope with hardware update of the accessed/dirty state by other
 * agents in the system and can safely skip the __sync_icache_dcache() call as,
 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
 *
 * Returns whether or not the PTE actually changed.
 */
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
225
	pteval_t old_pteval, pteval;
226
	pte_t pte = READ_ONCE(*ptep);
227

228
	if (pte_same(pte, entry))
229 230 231
		return 0;

	/* only preserve the access flags and write permission */
232
	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
233 234 235

	/*
	 * Setting the flags must be done atomically to avoid racing with the
236 237 238
	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
	 * be set to the most permissive (lowest value) of *ptep and entry
	 * (calculated as: a & b == ~(~a | ~b)).
239
	 */
240
	pte_val(entry) ^= PTE_RDONLY;
241
	pteval = pte_val(pte);
242 243 244 245 246 247 248
	do {
		old_pteval = pteval;
		pteval ^= PTE_RDONLY;
		pteval |= pte_val(entry);
		pteval ^= PTE_RDONLY;
		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
	} while (pteval != old_pteval);
249 250 251 252 253

	flush_tlb_fix_spurious_fault(vma, address);
	return 1;
}

254 255 256 257 258
static bool is_el1_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}

259 260
static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
					   struct pt_regs *regs)
261 262 263 264 265 266 267 268 269 270
{
	unsigned int ec       = ESR_ELx_EC(esr);
	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;

	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
		return false;

	if (fsc_type == ESR_ELx_FSC_PERM)
		return true;

271
	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
272 273 274 275 276 277
		return fsc_type == ESR_ELx_FSC_FAULT &&
			(regs->pstate & PSR_PAN_BIT);

	return false;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static void die_kernel_fault(const char *msg, unsigned long addr,
			     unsigned int esr, struct pt_regs *regs)
{
	bust_spinlocks(1);

	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
		 addr);

	mem_abort_decode(esr);

	show_pte(addr);
	die("Oops", regs, esr);
	bust_spinlocks(0);
	do_exit(SIGKILL);
}

294 295
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
296
{
297 298
	const char *msg;

299 300
	/*
	 * Are we prepared to handle this kernel fault?
301
	 * We are almost certainly not prepared to handle instruction faults.
302
	 */
303
	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
304 305
		return;

306
	if (is_el1_permission_fault(addr, esr, regs)) {
307 308 309 310 311 312 313 314 315 316
		if (esr & ESR_ELx_WNR)
			msg = "write to read-only memory";
		else
			msg = "read from unreadable memory";
	} else if (addr < PAGE_SIZE) {
		msg = "NULL pointer dereference";
	} else {
		msg = "paging request";
	}

317
	die_kernel_fault(msg, addr, esr, regs);
318 319
}

320
static void set_thread_esr(unsigned long address, unsigned int esr)
321
{
322
	current->thread.fault_address = address;
323 324 325 326 327 328 329 330 331 332 333 334 335

	/*
	 * If the faulting address is in the kernel, we must sanitize the ESR.
	 * From userspace's point of view, kernel-only mappings don't exist
	 * at all, so we report them as level 0 translation faults.
	 * (This is not quite the way that "no mapping there at all" behaves:
	 * an alignment fault not caused by the memory type would take
	 * precedence over translation fault for a real access to empty
	 * space. Unfortunately we can't easily distinguish "alignment fault
	 * not caused by memory type" from "alignment fault caused by memory
	 * type", so we ignore this wrinkle and just return the translation
	 * fault.)
	 */
336
	if (!is_ttbr0_addr(current->thread.fault_address)) {
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
		switch (ESR_ELx_EC(esr)) {
		case ESR_ELx_EC_DABT_LOW:
			/*
			 * These bits provide only information about the
			 * faulting instruction, which userspace knows already.
			 * We explicitly clear bits which are architecturally
			 * RES0 in case they are given meanings in future.
			 * We always report the ESR as if the fault was taken
			 * to EL1 and so ISV and the bits in ISS[23:14] are
			 * clear. (In fact it always will be a fault to EL1.)
			 */
			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
				ESR_ELx_CM | ESR_ELx_WNR;
			esr |= ESR_ELx_FSC_FAULT;
			break;
		case ESR_ELx_EC_IABT_LOW:
			/*
			 * Claim a level 0 translation fault.
			 * All other bits are architecturally RES0 for faults
			 * reported with that DFSC value, so we clear them.
			 */
			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
			esr |= ESR_ELx_FSC_FAULT;
			break;
		default:
			/*
			 * This should never happen (entry.S only brings us
			 * into this code for insn and data aborts from a lower
			 * exception level). Fail safe by not providing an ESR
			 * context record at all.
			 */
			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
			esr = 0;
			break;
		}
	}

374
	current->thread.fault_code = esr;
375 376
}

377
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
378 379 380 381 382
{
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
383
	if (user_mode(regs)) {
384
		const struct fault_info *inf = esr_to_fault_info(esr);
385

386
		set_thread_esr(addr, esr);
387 388
		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
				      inf->name);
389
	} else {
390
		__do_kernel_fault(addr, esr, regs);
391
	}
392 393 394 395 396
}

#define VM_FAULT_BADMAP		0x010000
#define VM_FAULT_BADACCESS	0x020000

397
static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
398
			   unsigned int mm_flags, unsigned long vm_flags,
399 400 401
			   struct task_struct *tsk)
{
	struct vm_area_struct *vma;
402
	vm_fault_t fault;
403 404 405 406 407 408 409 410 411 412 413 414 415

	vma = find_vma(mm, addr);
	fault = VM_FAULT_BADMAP;
	if (unlikely(!vma))
		goto out;
	if (unlikely(vma->vm_start > addr))
		goto check_stack;

	/*
	 * Ok, we have a good vm_area for this memory access, so we can handle
	 * it.
	 */
good_area:
416 417
	/*
	 * Check that the permissions on the VMA allow for the fault which
418
	 * occurred.
419 420
	 */
	if (!(vma->vm_flags & vm_flags)) {
421 422 423 424
		fault = VM_FAULT_BADACCESS;
		goto out;
	}

425
	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
426 427 428 429 430 431 432 433

check_stack:
	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
		goto good_area;
out:
	return fault;
}

M
Mark Rutland 已提交
434 435 436 437 438
static bool is_el0_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}

439 440 441
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
				   struct pt_regs *regs)
{
442
	const struct fault_info *inf;
443 444
	struct task_struct *tsk;
	struct mm_struct *mm;
445
	vm_fault_t fault, major = 0;
446
	unsigned long vm_flags = VM_READ | VM_WRITE;
447 448
	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;

449 450 451
	if (notify_page_fault(regs, esr))
		return 0;

452 453 454 455 456 457 458
	tsk = current;
	mm  = tsk->mm;

	/*
	 * If we're in an interrupt or have no user context, we must not take
	 * the fault.
	 */
459
	if (faulthandler_disabled() || !mm)
460 461
		goto no_context;

462 463 464
	if (user_mode(regs))
		mm_flags |= FAULT_FLAG_USER;

M
Mark Rutland 已提交
465
	if (is_el0_instruction_abort(esr)) {
466
		vm_flags = VM_EXEC;
M
Mark Rutland 已提交
467
	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
468 469 470 471
		vm_flags = VM_WRITE;
		mm_flags |= FAULT_FLAG_WRITE;
	}

472
	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
473 474
		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
		if (regs->orig_addr_limit == KERNEL_DS)
475 476
			die_kernel_fault("access to user memory with fs=KERNEL_DS",
					 addr, esr, regs);
477

478
		if (is_el1_instruction_abort(esr))
479 480
			die_kernel_fault("execution of user memory",
					 addr, esr, regs);
481

482
		if (!search_exception_tables(regs->pc))
483 484
			die_kernel_fault("access to user memory outside uaccess routines",
					 addr, esr, regs);
485
	}
486

487 488
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	/*
	 * As per x86, we may deadlock here. However, since the kernel only
	 * validly references user space from well defined areas of the code,
	 * we can bug out early if this is from code which shouldn't.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
retry:
		down_read(&mm->mmap_sem);
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in which
		 * case, we'll have missed the might_sleep() from down_read().
		 */
		might_sleep();
#ifdef CONFIG_DEBUG_VM
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
#endif
	}

511
	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
512
	major |= fault & VM_FAULT_MAJOR;
513

514 515 516 517 518 519 520
	if (fault & VM_FAULT_RETRY) {
		/*
		 * If we need to retry but a fatal signal is pending,
		 * handle the signal first. We do not need to release
		 * the mmap_sem because it would already be released
		 * in __lock_page_or_retry in mm/filemap.c.
		 */
521 522 523
		if (fatal_signal_pending(current)) {
			if (!user_mode(regs))
				goto no_context;
524
			return 0;
525
		}
526 527 528 529 530 531 532 533 534 535 536 537

		/*
		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
		 * starvation.
		 */
		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			mm_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}
	up_read(&mm->mmap_sem);
538 539

	/*
540
	 * Handle the "normal" (no error) case first.
541
	 */
542 543 544 545 546 547 548 549 550
	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
			      VM_FAULT_BADACCESS)))) {
		/*
		 * Major/minor page fault accounting is only done
		 * once. If we go through a retry, it is extremely
		 * likely that the page will be found in page cache at
		 * that point.
		 */
		if (major) {
551 552 553 554 555 556 557 558 559 560
			tsk->maj_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
				      addr);
		} else {
			tsk->min_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
				      addr);
		}

		return 0;
561
	}
562

563 564 565 566 567 568 569
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
	if (!user_mode(regs))
		goto no_context;

570 571 572 573 574 575 576 577 578 579
	if (fault & VM_FAULT_OOM) {
		/*
		 * We ran out of memory, call the OOM killer, and return to
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed).
		 */
		pagefault_out_of_memory();
		return 0;
	}

580
	inf = esr_to_fault_info(esr);
581
	set_thread_esr(addr, esr);
582 583 584 585 586
	if (fault & VM_FAULT_SIGBUS) {
		/*
		 * We had some memory, but were unable to successfully fix up
		 * this page fault.
		 */
587 588
		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
				      inf->name);
589 590 591 592 593 594
	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
		unsigned int lsb;

		lsb = PAGE_SHIFT;
		if (fault & VM_FAULT_HWPOISON_LARGE)
			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
595

596 597
		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
				       inf->name);
598 599 600 601 602
	} else {
		/*
		 * Something tried to access memory that isn't in our memory
		 * map.
		 */
603 604 605 606
		arm64_force_sig_fault(SIGSEGV,
				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
				      (void __user *)addr,
				      inf->name);
607 608 609 610 611
	}

	return 0;

no_context:
612
	__do_kernel_fault(addr, esr, regs);
613 614 615 616 617 618 619
	return 0;
}

static int __kprobes do_translation_fault(unsigned long addr,
					  unsigned int esr,
					  struct pt_regs *regs)
{
620
	if (is_ttbr0_addr(addr))
621 622 623 624 625 626
		return do_page_fault(addr, esr, regs);

	do_bad_area(addr, esr, regs);
	return 0;
}

627 628 629 630 631 632 633
static int do_alignment_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
{
	do_bad_area(addr, esr, regs);
	return 0;
}

634 635
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
636
	return 1; /* "fault" */
637 638
}

639 640 641
static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
	const struct fault_info *inf;
642
	void __user *siaddr;
643 644 645

	inf = esr_to_fault_info(esr);

646
	/*
647 648
	 * Return value ignored as we rely on signal merging.
	 * Future patches will make this more robust.
649
	 */
650
	apei_claim_sea(regs);
651

652
	if (esr & ESR_ELx_FnV)
653
		siaddr = NULL;
654
	else
655 656
		siaddr  = (void __user *)addr;
	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
657

658
	return 0;
659 660
}

661
static const struct fault_info fault_info[] = {
662 663 664 665
	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
666
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
667 668
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
669
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
670
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
S
Steve Capper 已提交
671 672
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
673
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
674
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
S
Steve Capper 已提交
675 676
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
677
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
695
	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
726 727 728 729 730
};

asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
					 struct pt_regs *regs)
{
731
	const struct fault_info *inf = esr_to_fault_info(esr);
732 733 734 735

	if (!inf->fn(addr, esr, regs))
		return;

736 737 738
	if (!user_mode(regs)) {
		pr_alert("Unhandled fault at 0x%016lx\n", addr);
		mem_abort_decode(esr);
739
		show_pte(addr);
740
	}
741

742 743
	arm64_notify_die(inf->name, regs,
			 inf->sig, inf->code, (void __user *)addr, esr);
744 745
}

746 747 748 749 750 751
asmlinkage void __exception do_el0_irq_bp_hardening(void)
{
	/* PC has already been checked in entry.S */
	arm64_apply_bp_hardening();
}

752 753 754 755 756 757 758 759 760
asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
						   unsigned int esr,
						   struct pt_regs *regs)
{
	/*
	 * We've taken an instruction abort from userspace and not yet
	 * re-enabled IRQs. If the address is a kernel address, apply
	 * BP hardening prior to enabling IRQs and pre-emption.
	 */
761
	if (!is_ttbr0_addr(addr))
762 763
		arm64_apply_bp_hardening();

764
	local_daif_restore(DAIF_PROCCTX);
765 766 767 768
	do_mem_abort(addr, esr, regs);
}


769 770 771 772
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
					   unsigned int esr,
					   struct pt_regs *regs)
{
773
	if (user_mode(regs)) {
774
		if (!is_ttbr0_addr(instruction_pointer(regs)))
775
			arm64_apply_bp_hardening();
776
		local_daif_restore(DAIF_PROCCTX);
777 778
	}

779 780
	arm64_notify_die("SP/PC alignment exception", regs,
			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
781 782
}

783 784 785 786 787 788 789 790 791
int __init early_brk64(unsigned long addr, unsigned int esr,
		       struct pt_regs *regs);

/*
 * __refdata because early_brk64 is __init, but the reference to it is
 * clobbered at arch_initcall time.
 * See traps.c and debug-monitors.c:debug_traps_init().
 */
static struct fault_info __refdata debug_fault_info[] = {
792 793 794
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
795
	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
796
	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
797
	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
798
	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
799
	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
800 801 802 803 804 805 806 807 808 809 810 811 812 813
};

void __init hook_debug_fault_code(int nr,
				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
				  int sig, int code, const char *name)
{
	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));

	debug_fault_info[nr].fn		= fn;
	debug_fault_info[nr].sig	= sig;
	debug_fault_info[nr].code	= code;
	debug_fault_info[nr].name	= name;
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
#ifdef CONFIG_ARM64_ERRATUM_1463225
DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);

static int __exception
cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
	if (user_mode(regs))
		return 0;

	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
		return 0;

	/*
	 * We've taken a dummy step exception from the kernel to ensure
	 * that interrupts are re-enabled on the syscall path. Return back
	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
	 * masked so that we can safely restore the mdscr and get on with
	 * handling the syscall.
	 */
	regs->pstate |= PSR_D_BIT;
	return 1;
}
#else
static int __exception
cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
	return 0;
}
#endif /* CONFIG_ARM64_ERRATUM_1463225 */

844 845 846
asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
					       unsigned int esr,
					       struct pt_regs *regs)
847
{
848
	const struct fault_info *inf = esr_to_debug_fault_info(esr);
849
	unsigned long pc = instruction_pointer(regs);
850

851 852 853
	if (cortex_a76_erratum_1463225_debug_handler(regs))
		return;

854 855 856 857 858 859
	/*
	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
	 * already disabled to preserve the last enabled/disabled addresses.
	 */
	if (interrupts_enabled(regs))
		trace_hardirqs_off();
860

861
	if (user_mode(regs) && !is_ttbr0_addr(pc))
862 863
		arm64_apply_bp_hardening();

864
	if (inf->fn(addr_if_watchpoint, esr, regs)) {
865
		arm64_notify_die(inf->name, regs,
866
				 inf->sig, inf->code, (void __user *)pc, esr);
867
	}
868

869 870
	if (interrupts_enabled(regs))
		trace_hardirqs_on();
871
}
872
NOKPROBE_SYMBOL(do_debug_exception);