fault.c 22.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Based on arch/arm/mm/fault.c
 *
 * Copyright (C) 1995  Linus Torvalds
 * Copyright (C) 1995-2004 Russell King
 * Copyright (C) 2012 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

21
#include <linux/extable.h>
22 23 24 25 26 27 28
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
29
#include <linux/sched/signal.h>
30
#include <linux/sched/debug.h>
31 32
#include <linux/highmem.h>
#include <linux/perf_event.h>
33
#include <linux/preempt.h>
34
#include <linux/hugetlb.h>
35

36
#include <asm/bug.h>
37
#include <asm/cpufeature.h>
38 39
#include <asm/exception.h>
#include <asm/debug-monitors.h>
40
#include <asm/esr.h>
41
#include <asm/sysreg.h>
42 43 44 45
#include <asm/system_misc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>

46 47
#include <acpi/ghes.h>

48 49 50 51 52 53 54 55 56 57 58 59 60 61
struct fault_info {
	int	(*fn)(unsigned long addr, unsigned int esr,
		      struct pt_regs *regs);
	int	sig;
	int	code;
	const char *name;
};

static const struct fault_info fault_info[];

static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
{
	return fault_info + (esr & 63);
}
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, esr))
			ret = 1;
		preempt_enable();
	}

	return ret;
}
#else
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	return 0;
}
#endif

85
/*
86
 * Dump out the page tables associated with 'addr' in the currently active mm.
87
 */
88
void show_pte(unsigned long addr)
89
{
90
	struct mm_struct *mm;
91 92
	pgd_t *pgd;

93 94 95 96 97 98 99 100 101 102
	if (addr < TASK_SIZE) {
		/* TTBR0 */
		mm = current->active_mm;
		if (mm == &init_mm) {
			pr_alert("[%016lx] user address but active_mm is swapper\n",
				 addr);
			return;
		}
	} else if (addr >= VA_START) {
		/* TTBR1 */
103
		mm = &init_mm;
104 105 106 107 108
	} else {
		pr_alert("[%016lx] address between user and kernel address ranges\n",
			 addr);
		return;
	}
109

110 111 112
	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
		 VA_BITS, mm->pgd);
113
	pgd = pgd_offset(mm, addr);
114
	pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
115 116 117 118 119 120

	do {
		pud_t *pud;
		pmd_t *pmd;
		pte_t *pte;

121
		if (pgd_none(*pgd) || pgd_bad(*pgd))
122 123 124
			break;

		pud = pud_offset(pgd, addr);
125
		pr_cont(", *pud=%016llx", pud_val(*pud));
126
		if (pud_none(*pud) || pud_bad(*pud))
127 128 129
			break;

		pmd = pmd_offset(pud, addr);
130
		pr_cont(", *pmd=%016llx", pmd_val(*pmd));
131
		if (pmd_none(*pmd) || pmd_bad(*pmd))
132 133 134
			break;

		pte = pte_offset_map(pmd, addr);
135
		pr_cont(", *pte=%016llx", pte_val(*pte));
136 137 138
		pte_unmap(pte);
	} while(0);

139
	pr_cont("\n");
140 141
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
#ifdef CONFIG_ARM64_HW_AFDBM
/*
 * This function sets the access flags (dirty, accessed), as well as write
 * permission, and only to a more permissive setting.
 *
 * It needs to cope with hardware update of the accessed/dirty state by other
 * agents in the system and can safely skip the __sync_icache_dcache() call as,
 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
 *
 * Returns whether or not the PTE actually changed.
 */
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
	pteval_t old_pteval;
	unsigned int tmp;

	if (pte_same(*ptep, entry))
		return 0;

	/* only preserve the access flags and write permission */
	pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;

	/*
	 * PTE_RDONLY is cleared by default in the asm below, so set it in
	 * back if necessary (read-only or clean PTE).
	 */
170
	if (!pte_write(entry) || !pte_sw_dirty(entry))
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
		pte_val(entry) |= PTE_RDONLY;

	/*
	 * Setting the flags must be done atomically to avoid racing with the
	 * hardware update of the access/dirty state.
	 */
	asm volatile("//	ptep_set_access_flags\n"
	"	prfm	pstl1strm, %2\n"
	"1:	ldxr	%0, %2\n"
	"	and	%0, %0, %3		// clear PTE_RDONLY\n"
	"	orr	%0, %0, %4		// set flags\n"
	"	stxr	%w1, %0, %2\n"
	"	cbnz	%w1, 1b\n"
	: "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
	: "L" (~PTE_RDONLY), "r" (pte_val(entry)));

	flush_tlb_fix_spurious_fault(vma, address);
	return 1;
}
#endif

192 193 194 195 196
static bool is_el1_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
				       unsigned long addr)
{
	unsigned int ec       = ESR_ELx_EC(esr);
	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;

	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
		return false;

	if (fsc_type == ESR_ELx_FSC_PERM)
		return true;

	if (addr < USER_DS && system_uses_ttbr0_pan())
		return fsc_type == ESR_ELx_FSC_FAULT &&
			(regs->pstate & PSR_PAN_BIT);

	return false;
}

216 217 218
/*
 * The kernel tried to access some page that wasn't present.
 */
219 220
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
221
{
222 223
	const char *msg;

224 225
	/*
	 * Are we prepared to handle this kernel fault?
226
	 * We are almost certainly not prepared to handle instruction faults.
227
	 */
228
	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
229 230 231 232 233 234
		return;

	/*
	 * No handler, we'll have to terminate things with extreme prejudice.
	 */
	bust_spinlocks(1);
235 236 237 238 239 240 241 242 243 244 245 246 247 248

	if (is_permission_fault(esr, regs, addr)) {
		if (esr & ESR_ELx_WNR)
			msg = "write to read-only memory";
		else
			msg = "read from unreadable memory";
	} else if (addr < PAGE_SIZE) {
		msg = "NULL pointer dereference";
	} else {
		msg = "paging request";
	}

	pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
		 addr);
249

250
	show_pte(addr);
251 252 253 254 255 256 257 258 259 260 261
	die("Oops", regs, esr);
	bust_spinlocks(0);
	do_exit(SIGKILL);
}

/*
 * Something tried to access memory that isn't in our memory map. User mode
 * accesses just cause a SIGSEGV
 */
static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
			    unsigned int esr, unsigned int sig, int code,
262
			    struct pt_regs *regs, int fault)
263 264
{
	struct siginfo si;
265
	const struct fault_info *inf;
266
	unsigned int lsb = 0;
267

268
	if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
269
		inf = esr_to_fault_info(esr);
270
		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
271
			tsk->comm, task_pid_nr(tsk), inf->name, sig,
272
			addr, esr);
273 274
		print_vma_addr(KERN_CONT ", in ", regs->pc);
		pr_cont("\n");
K
Kefeng Wang 已提交
275
		__show_regs(regs);
276 277 278
	}

	tsk->thread.fault_address = addr;
279
	tsk->thread.fault_code = esr;
280 281 282 283
	si.si_signo = sig;
	si.si_errno = 0;
	si.si_code = code;
	si.si_addr = (void __user *)addr;
284 285 286 287 288 289 290 291 292 293 294
	/*
	 * Either small page or large page may be poisoned.
	 * In other words, VM_FAULT_HWPOISON_LARGE and
	 * VM_FAULT_HWPOISON are mutually exclusive.
	 */
	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
	else if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
	si.si_addr_lsb = lsb;

295 296 297
	force_sig_info(sig, &si, tsk);
}

298
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
299 300
{
	struct task_struct *tsk = current;
301
	const struct fault_info *inf;
302 303 304 305 306

	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
307 308
	if (user_mode(regs)) {
		inf = esr_to_fault_info(esr);
309
		__do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
310
	} else
311
		__do_kernel_fault(addr, esr, regs);
312 313 314 315 316 317
}

#define VM_FAULT_BADMAP		0x010000
#define VM_FAULT_BADACCESS	0x020000

static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
318
			   unsigned int mm_flags, unsigned long vm_flags,
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
			   struct task_struct *tsk)
{
	struct vm_area_struct *vma;
	int fault;

	vma = find_vma(mm, addr);
	fault = VM_FAULT_BADMAP;
	if (unlikely(!vma))
		goto out;
	if (unlikely(vma->vm_start > addr))
		goto check_stack;

	/*
	 * Ok, we have a good vm_area for this memory access, so we can handle
	 * it.
	 */
good_area:
336 337
	/*
	 * Check that the permissions on the VMA allow for the fault which
338
	 * occurred.
339 340
	 */
	if (!(vma->vm_flags & vm_flags)) {
341 342 343 344
		fault = VM_FAULT_BADACCESS;
		goto out;
	}

345
	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
346 347 348 349 350 351 352 353

check_stack:
	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
		goto good_area;
out:
	return fault;
}

M
Mark Rutland 已提交
354 355 356 357 358
static bool is_el0_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}

359 360 361 362 363
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
				   struct pt_regs *regs)
{
	struct task_struct *tsk;
	struct mm_struct *mm;
364
	int fault, sig, code, major = 0;
365
	unsigned long vm_flags = VM_READ | VM_WRITE;
366 367
	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;

368 369 370
	if (notify_page_fault(regs, esr))
		return 0;

371 372 373 374 375 376 377
	tsk = current;
	mm  = tsk->mm;

	/*
	 * If we're in an interrupt or have no user context, we must not take
	 * the fault.
	 */
378
	if (faulthandler_disabled() || !mm)
379 380
		goto no_context;

381 382 383
	if (user_mode(regs))
		mm_flags |= FAULT_FLAG_USER;

M
Mark Rutland 已提交
384
	if (is_el0_instruction_abort(esr)) {
385
		vm_flags = VM_EXEC;
M
Mark Rutland 已提交
386
	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
387 388 389 390
		vm_flags = VM_WRITE;
		mm_flags |= FAULT_FLAG_WRITE;
	}

391
	if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
392 393
		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
		if (regs->orig_addr_limit == KERNEL_DS)
394
			die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
395

396 397 398
		if (is_el1_instruction_abort(esr))
			die("Attempting to execute userspace memory", regs, esr);

399
		if (!search_exception_tables(regs->pc))
400
			die("Accessing user space memory outside uaccess.h routines", regs, esr);
401
	}
402

403 404
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	/*
	 * As per x86, we may deadlock here. However, since the kernel only
	 * validly references user space from well defined areas of the code,
	 * we can bug out early if this is from code which shouldn't.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
retry:
		down_read(&mm->mmap_sem);
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in which
		 * case, we'll have missed the might_sleep() from down_read().
		 */
		might_sleep();
#ifdef CONFIG_DEBUG_VM
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
#endif
	}

427
	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
428
	major |= fault & VM_FAULT_MAJOR;
429

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	if (fault & VM_FAULT_RETRY) {
		/*
		 * If we need to retry but a fatal signal is pending,
		 * handle the signal first. We do not need to release
		 * the mmap_sem because it would already be released
		 * in __lock_page_or_retry in mm/filemap.c.
		 */
		if (fatal_signal_pending(current))
			return 0;

		/*
		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
		 * starvation.
		 */
		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
			mm_flags |= FAULT_FLAG_TRIED;
			goto retry;
		}
	}
	up_read(&mm->mmap_sem);
451 452

	/*
453
	 * Handle the "normal" (no error) case first.
454
	 */
455 456 457 458 459 460 461 462 463
	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
			      VM_FAULT_BADACCESS)))) {
		/*
		 * Major/minor page fault accounting is only done
		 * once. If we go through a retry, it is extremely
		 * likely that the page will be found in page cache at
		 * that point.
		 */
		if (major) {
464 465 466 467 468 469 470 471 472 473
			tsk->maj_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
				      addr);
		} else {
			tsk->min_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
				      addr);
		}

		return 0;
474
	}
475

476 477 478 479 480 481 482
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
	if (!user_mode(regs))
		goto no_context;

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	if (fault & VM_FAULT_OOM) {
		/*
		 * We ran out of memory, call the OOM killer, and return to
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed).
		 */
		pagefault_out_of_memory();
		return 0;
	}

	if (fault & VM_FAULT_SIGBUS) {
		/*
		 * We had some memory, but were unable to successfully fix up
		 * this page fault.
		 */
		sig = SIGBUS;
		code = BUS_ADRERR;
500 501 502
	} else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
		sig = SIGBUS;
		code = BUS_MCEERR_AR;
503 504 505 506 507 508 509 510 511 512
	} else {
		/*
		 * Something tried to access memory that isn't in our memory
		 * map.
		 */
		sig = SIGSEGV;
		code = fault == VM_FAULT_BADACCESS ?
			SEGV_ACCERR : SEGV_MAPERR;
	}

513
	__do_user_fault(tsk, addr, esr, sig, code, regs, fault);
514 515 516
	return 0;

no_context:
517
	__do_kernel_fault(addr, esr, regs);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	return 0;
}

/*
 * First Level Translation Fault Handler
 *
 * We enter here because the first level page table doesn't contain a valid
 * entry for the address.
 *
 * If the address is in kernel space (>= TASK_SIZE), then we are probably
 * faulting in the vmalloc() area.
 *
 * If the init_task's first level page tables contains the relevant entry, we
 * copy the it to this task.  If not, we send the process a signal, fixup the
 * exception, or oops the kernel.
 *
 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
 * or a critical region, and should only copy the information from the master
 * page table, nothing more.
 */
static int __kprobes do_translation_fault(unsigned long addr,
					  unsigned int esr,
					  struct pt_regs *regs)
{
	if (addr < TASK_SIZE)
		return do_page_fault(addr, esr, regs);

	do_bad_area(addr, esr, regs);
	return 0;
}

549 550 551 552 553 554 555
static int do_alignment_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
{
	do_bad_area(addr, esr, regs);
	return 0;
}

556 557 558 559 560 561 562 563
/*
 * This abort handler always returns "fault".
 */
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
	return 1;
}

564 565 566 567 568 569 570 571
/*
 * This abort handler deals with Synchronous External Abort.
 * It calls notifiers, and then returns "fault".
 */
static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
	struct siginfo info;
	const struct fault_info *inf;
572
	int ret = 0;
573 574 575 576 577

	inf = esr_to_fault_info(esr);
	pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
		inf->name, esr, addr);

578 579 580 581 582 583 584 585 586
	/*
	 * Synchronous aborts may interrupt code which had interrupts masked.
	 * Before calling out into the wider kernel tell the interested
	 * subsystems.
	 */
	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
		if (interrupts_enabled(regs))
			nmi_enter();

587
		ret = ghes_notify_sea();
588 589 590 591 592

		if (interrupts_enabled(regs))
			nmi_exit();
	}

593 594 595 596 597 598 599 600 601
	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code  = 0;
	if (esr & ESR_ELx_FnV)
		info.si_addr = NULL;
	else
		info.si_addr  = (void __user *)addr;
	arm64_notify_die("", regs, &info, esr);

602
	return ret;
603 604
}

605
static const struct fault_info fault_info[] = {
606 607 608 609
	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
610
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
611 612 613
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
614
	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
S
Steve Capper 已提交
615 616
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
617
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
618
	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
S
Steve Capper 已提交
619 620
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
621
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
622
	{ do_sea,		SIGBUS,  0,		"synchronous external abort"	},
623
	{ do_bad,		SIGBUS,  0,		"unknown 17"			},
624 625
	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
626 627 628 629 630
	{ do_sea,		SIGBUS,  0,		"level 0 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 1 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 2 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 3 (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"synchronous parity or ECC error" },
631
	{ do_bad,		SIGBUS,  0,		"unknown 25"			},
632 633
	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
634 635 636 637
	{ do_sea,		SIGBUS,  0,		"level 0 synchronous parity error (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 1 synchronous parity error (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 2 synchronous parity error (translation table walk)"	},
	{ do_sea,		SIGBUS,  0,		"level 3 synchronous parity error (translation table walk)"	},
638
	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
639
	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
640
	{ do_bad,		SIGBUS,  0,		"unknown 34"			},
641 642 643 644 645 646 647 648 649 650 651 652 653
	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
654
	{ do_bad,		SIGBUS,  0,		"TLB conflict abort"		},
655 656 657 658
	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
659
	{ do_bad,		SIGBUS,  0,		"implementation fault (unsupported exclusive)" },
660 661 662 663
	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
664
	{ do_bad,		SIGBUS,  0,		"unknown 58" 			},
665 666
	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
667 668
	{ do_bad,		SIGBUS,  0,		"section domain fault"		},
	{ do_bad,		SIGBUS,  0,		"page domain fault"		},
669 670 671
	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
};

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
/*
 * Handle Synchronous External Aborts that occur in a guest kernel.
 *
 * The return value will be zero if the SEA was successfully handled
 * and non-zero if there was an error processing the error or there was
 * no error to process.
 */
int handle_guest_sea(phys_addr_t addr, unsigned int esr)
{
	int ret = -ENOENT;

	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
		ret = ghes_notify_sea();

	return ret;
}

689 690 691 692 693 694
/*
 * Dispatch a data abort to the relevant handler.
 */
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
					 struct pt_regs *regs)
{
695
	const struct fault_info *inf = esr_to_fault_info(esr);
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	struct siginfo info;

	if (!inf->fn(addr, esr, regs))
		return;

	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
		 inf->name, esr, addr);

	info.si_signo = inf->sig;
	info.si_errno = 0;
	info.si_code  = inf->code;
	info.si_addr  = (void __user *)addr;
	arm64_notify_die("", regs, &info, esr);
}

/*
 * Handle stack alignment exceptions.
 */
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
					   unsigned int esr,
					   struct pt_regs *regs)
{
	struct siginfo info;
719 720 721 722 723 724 725
	struct task_struct *tsk = current;

	if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
		pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
				    tsk->comm, task_pid_nr(tsk),
				    esr_get_class_string(esr), (void *)regs->pc,
				    (void *)regs->sp);
726 727 728 729 730

	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code  = BUS_ADRALN;
	info.si_addr  = (void __user *)addr;
731
	arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
732 733
}

734 735 736 737 738 739 740 741 742
int __init early_brk64(unsigned long addr, unsigned int esr,
		       struct pt_regs *regs);

/*
 * __refdata because early_brk64 is __init, but the reference to it is
 * clobbered at arch_initcall time.
 * See traps.c and debug-monitors.c:debug_traps_init().
 */
static struct fault_info __refdata debug_fault_info[] = {
743 744 745 746 747 748
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
749
	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
};

void __init hook_debug_fault_code(int nr,
				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
				  int sig, int code, const char *name)
{
	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));

	debug_fault_info[nr].fn		= fn;
	debug_fault_info[nr].sig	= sig;
	debug_fault_info[nr].code	= code;
	debug_fault_info[nr].name	= name;
}

asmlinkage int __exception do_debug_exception(unsigned long addr,
					      unsigned int esr,
					      struct pt_regs *regs)
{
	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
	struct siginfo info;
771
	int rv;
772

773 774 775 776 777 778
	/*
	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
	 * already disabled to preserve the last enabled/disabled addresses.
	 */
	if (interrupts_enabled(regs))
		trace_hardirqs_off();
779

780 781 782 783 784 785 786 787 788 789 790 791 792
	if (!inf->fn(addr, esr, regs)) {
		rv = 1;
	} else {
		pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
			 inf->name, esr, addr);

		info.si_signo = inf->sig;
		info.si_errno = 0;
		info.si_code  = inf->code;
		info.si_addr  = (void __user *)addr;
		arm64_notify_die("", regs, &info, 0);
		rv = 0;
	}
793

794 795
	if (interrupts_enabled(regs))
		trace_hardirqs_on();
796

797
	return rv;
798
}
799
NOKPROBE_SYMBOL(do_debug_exception);
800 801

#ifdef CONFIG_ARM64_PAN
802
int cpu_enable_pan(void *__unused)
803
{
804 805 806 807 808 809
	/*
	 * We modify PSTATE. This won't work from irq context as the PSTATE
	 * is discarded once we return from the exception.
	 */
	WARN_ON_ONCE(in_interrupt());

810
	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
811
	asm(SET_PSTATE_PAN(1));
812
	return 0;
813 814
}
#endif /* CONFIG_ARM64_PAN */