spi.c 94.4 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
22 23
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
24
#include <linux/mutex.h>
25
#include <linux/of_device.h>
26
#include <linux/of_irq.h>
27
#include <linux/clk/clk-conf.h>
28
#include <linux/slab.h>
29
#include <linux/mod_devicetable.h>
30
#include <linux/spi/spi.h>
31
#include <linux/of_gpio.h>
M
Mark Brown 已提交
32
#include <linux/pm_runtime.h>
33
#include <linux/pm_domain.h>
34
#include <linux/property.h>
35
#include <linux/export.h>
36
#include <linux/sched/rt.h>
37
#include <uapi/linux/sched/types.h>
38 39
#include <linux/delay.h>
#include <linux/kthread.h>
40 41
#include <linux/ioport.h>
#include <linux/acpi.h>
42
#include <linux/highmem.h>
43
#include <linux/idr.h>
44
#include <linux/platform_data/x86/apple.h>
45

46 47
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>
48 49

static DEFINE_IDR(spi_master_idr);
50

51 52
static void spidev_release(struct device *dev)
{
53
	struct spi_device	*spi = to_spi_device(dev);
54

55 56 57
	/* spi controllers may cleanup for released devices */
	if (spi->controller->cleanup)
		spi->controller->cleanup(spi);
58

59
	spi_controller_put(spi->controller);
60
	kfree(spi);
61 62 63 64 65 66
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
67 68 69 70 71
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
72

73
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
74
}
75
static DEVICE_ATTR_RO(modalias);
76

77
#define SPI_STATISTICS_ATTRS(field, file)				\
78 79 80
static ssize_t spi_controller_##field##_show(struct device *dev,	\
					     struct device_attribute *attr, \
					     char *buf)			\
81
{									\
82 83 84
	struct spi_controller *ctlr = container_of(dev,			\
					 struct spi_controller, dev);	\
	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
85
}									\
86
static struct device_attribute dev_attr_spi_controller_##field = {	\
87
	.attr = { .name = file, .mode = 0444 },				\
88
	.show = spi_controller_##field##_show,				\
89 90 91 92 93
};									\
static ssize_t spi_device_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					char *buf)			\
{									\
G
Geliang Tang 已提交
94
	struct spi_device *spi = to_spi_device(dev);			\
95 96 97
	return spi_statistics_##field##_show(&spi->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_device_##field = {		\
98
	.attr = { .name = file, .mode = 0444 },				\
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
	.show = spi_device_##field##_show,				\
}

#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
					    char *buf)			\
{									\
	unsigned long flags;						\
	ssize_t len;							\
	spin_lock_irqsave(&stat->lock, flags);				\
	len = sprintf(buf, format_string, stat->field);			\
	spin_unlock_irqrestore(&stat->lock, flags);			\
	return len;							\
}									\
SPI_STATISTICS_ATTRS(name, file)

#define SPI_STATISTICS_SHOW(field, format_string)			\
	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
				 field, format_string)

SPI_STATISTICS_SHOW(messages, "%lu");
SPI_STATISTICS_SHOW(transfers, "%lu");
SPI_STATISTICS_SHOW(errors, "%lu");
SPI_STATISTICS_SHOW(timedout, "%lu");

SPI_STATISTICS_SHOW(spi_sync, "%lu");
SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
SPI_STATISTICS_SHOW(spi_async, "%lu");

SPI_STATISTICS_SHOW(bytes, "%llu");
SPI_STATISTICS_SHOW(bytes_rx, "%llu");
SPI_STATISTICS_SHOW(bytes_tx, "%llu");

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
				 "transfer_bytes_histo_" number,	\
				 transfer_bytes_histo[index],  "%lu")
SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");

154 155
SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");

156 157 158
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
159
};
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

static const struct attribute_group spi_dev_group = {
	.attrs  = spi_dev_attrs,
};

static struct attribute *spi_device_statistics_attrs[] = {
	&dev_attr_spi_device_messages.attr,
	&dev_attr_spi_device_transfers.attr,
	&dev_attr_spi_device_errors.attr,
	&dev_attr_spi_device_timedout.attr,
	&dev_attr_spi_device_spi_sync.attr,
	&dev_attr_spi_device_spi_sync_immediate.attr,
	&dev_attr_spi_device_spi_async.attr,
	&dev_attr_spi_device_bytes.attr,
	&dev_attr_spi_device_bytes_rx.attr,
	&dev_attr_spi_device_bytes_tx.attr,
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	&dev_attr_spi_device_transfer_bytes_histo0.attr,
	&dev_attr_spi_device_transfer_bytes_histo1.attr,
	&dev_attr_spi_device_transfer_bytes_histo2.attr,
	&dev_attr_spi_device_transfer_bytes_histo3.attr,
	&dev_attr_spi_device_transfer_bytes_histo4.attr,
	&dev_attr_spi_device_transfer_bytes_histo5.attr,
	&dev_attr_spi_device_transfer_bytes_histo6.attr,
	&dev_attr_spi_device_transfer_bytes_histo7.attr,
	&dev_attr_spi_device_transfer_bytes_histo8.attr,
	&dev_attr_spi_device_transfer_bytes_histo9.attr,
	&dev_attr_spi_device_transfer_bytes_histo10.attr,
	&dev_attr_spi_device_transfer_bytes_histo11.attr,
	&dev_attr_spi_device_transfer_bytes_histo12.attr,
	&dev_attr_spi_device_transfer_bytes_histo13.attr,
	&dev_attr_spi_device_transfer_bytes_histo14.attr,
	&dev_attr_spi_device_transfer_bytes_histo15.attr,
	&dev_attr_spi_device_transfer_bytes_histo16.attr,
193
	&dev_attr_spi_device_transfers_split_maxsize.attr,
194 195 196 197 198 199 200 201 202 203 204 205 206 207
	NULL,
};

static const struct attribute_group spi_device_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_device_statistics_attrs,
};

static const struct attribute_group *spi_dev_groups[] = {
	&spi_dev_group,
	&spi_device_statistics_group,
	NULL,
};

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
static struct attribute *spi_controller_statistics_attrs[] = {
	&dev_attr_spi_controller_messages.attr,
	&dev_attr_spi_controller_transfers.attr,
	&dev_attr_spi_controller_errors.attr,
	&dev_attr_spi_controller_timedout.attr,
	&dev_attr_spi_controller_spi_sync.attr,
	&dev_attr_spi_controller_spi_sync_immediate.attr,
	&dev_attr_spi_controller_spi_async.attr,
	&dev_attr_spi_controller_bytes.attr,
	&dev_attr_spi_controller_bytes_rx.attr,
	&dev_attr_spi_controller_bytes_tx.attr,
	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
	&dev_attr_spi_controller_transfers_split_maxsize.attr,
237 238 239
	NULL,
};

240
static const struct attribute_group spi_controller_statistics_group = {
241
	.name  = "statistics",
242
	.attrs  = spi_controller_statistics_attrs,
243 244 245
};

static const struct attribute_group *spi_master_groups[] = {
246
	&spi_controller_statistics_group,
247 248 249 250 251
	NULL,
};

void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
				       struct spi_transfer *xfer,
252
				       struct spi_controller *ctlr)
253 254
{
	unsigned long flags;
255 256 257 258
	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;

	if (l2len < 0)
		l2len = 0;
259 260 261 262

	spin_lock_irqsave(&stats->lock, flags);

	stats->transfers++;
263
	stats->transfer_bytes_histo[l2len]++;
264 265 266

	stats->bytes += xfer->len;
	if ((xfer->tx_buf) &&
267
	    (xfer->tx_buf != ctlr->dummy_tx))
268 269
		stats->bytes_tx += xfer->len;
	if ((xfer->rx_buf) &&
270
	    (xfer->rx_buf != ctlr->dummy_rx))
271 272 273 274 275
		stats->bytes_rx += xfer->len;

	spin_unlock_irqrestore(&stats->lock, flags);
}
EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
276 277 278 279 280

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

300 301 302
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
303 304
	const struct spi_driver	*sdrv = to_spi_driver(drv);

305 306 307 308
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

309 310 311 312
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

313 314
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
315

316
	return strcmp(spi->modalias, drv->name) == 0;
317 318
}

319
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
320 321
{
	const struct spi_device		*spi = to_spi_device(dev);
322 323 324 325 326
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
327

328
	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
329 330 331 332
}

struct bus_type spi_bus_type = {
	.name		= "spi",
333
	.dev_groups	= spi_dev_groups,
334 335 336 337 338
	.match		= spi_match_device,
	.uevent		= spi_uevent,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

339 340 341 342

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
343
	struct spi_device		*spi = to_spi_device(dev);
344 345
	int ret;

346 347 348 349
	ret = of_clk_set_defaults(dev->of_node, false);
	if (ret)
		return ret;

350 351 352 353 354 355 356 357
	if (dev->of_node) {
		spi->irq = of_irq_get(dev->of_node, 0);
		if (spi->irq == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		if (spi->irq < 0)
			spi->irq = 0;
	}

358 359
	ret = dev_pm_domain_attach(dev, true);
	if (ret != -EPROBE_DEFER) {
360
		ret = sdrv->probe(spi);
361 362 363
		if (ret)
			dev_pm_domain_detach(dev, true);
	}
364

365
	return ret;
366 367 368 369 370
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
371 372
	int ret;

373
	ret = sdrv->remove(to_spi_device(dev));
374
	dev_pm_domain_detach(dev, true);
375

376
	return ret;
377 378 379 380 381 382 383 384 385
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
386
/**
387
 * __spi_register_driver - register a SPI driver
388
 * @owner: owner module of the driver to register
D
David Brownell 已提交
389 390
 * @sdrv: the driver to register
 * Context: can sleep
391 392
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
393
 */
394
int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
395
{
396
	sdrv->driver.owner = owner;
397 398 399 400 401 402 403 404 405
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
406
EXPORT_SYMBOL_GPL(__spi_register_driver);
407

408 409 410
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
411
 * would make them board-specific.  Similarly with SPI controller drivers.
412 413 414 415 416 417
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
418
	struct spi_board_info	board_info;
419 420 421
};

static LIST_HEAD(board_list);
422
static LIST_HEAD(spi_controller_list);
423 424 425

/*
 * Used to protect add/del opertion for board_info list and
426
 * spi_controller list, and their matching process
S
Suniel Mahesh 已提交
427
 * also used to protect object of type struct idr
428
 */
429
static DEFINE_MUTEX(board_lock);
430

431 432
/**
 * spi_alloc_device - Allocate a new SPI device
433
 * @ctlr: Controller to which device is connected
434 435 436 437 438 439 440 441
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
442
 * spi_device structure to add it to the SPI controller.  If the caller
443 444 445
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
446
 * Return: a pointer to the new device, or NULL.
447
 */
448
struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
449 450 451
{
	struct spi_device	*spi;

452
	if (!spi_controller_get(ctlr))
453 454
		return NULL;

J
Jingoo Han 已提交
455
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
456
	if (!spi) {
457
		spi_controller_put(ctlr);
458 459 460
		return NULL;
	}

461 462
	spi->master = spi->controller = ctlr;
	spi->dev.parent = &ctlr->dev;
463 464
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
465
	spi->cs_gpio = -ENOENT;
466 467 468

	spin_lock_init(&spi->statistics.lock);

469 470 471 472 473
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

474 475 476 477 478 479 480 481 482
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

483
	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
484 485 486
		     spi->chip_select);
}

487 488 489 490 491
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

492
	if (spi->controller == new_spi->controller &&
493 494 495 496 497
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

498 499 500 501 502 503 504
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
505
 * Return: 0 on success; negative errno on failure
506 507 508
 */
int spi_add_device(struct spi_device *spi)
{
509
	static DEFINE_MUTEX(spi_add_lock);
510 511
	struct spi_controller *ctlr = spi->controller;
	struct device *dev = ctlr->dev.parent;
512 513 514
	int status;

	/* Chipselects are numbered 0..max; validate. */
515 516 517
	if (spi->chip_select >= ctlr->num_chipselect) {
		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
			ctlr->num_chipselect);
518 519 520 521
		return -EINVAL;
	}

	/* Set the bus ID string */
522
	spi_dev_set_name(spi);
523 524 525 526 527 528 529

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

530 531
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
532 533 534 535 536
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

537 538
	if (ctlr->cs_gpios)
		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
539

540 541 542 543
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
544
	status = spi_setup(spi);
545
	if (status < 0) {
546 547
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
548
		goto done;
549 550
	}

551
	/* Device may be bound to an active driver when this returns */
552
	status = device_add(&spi->dev);
553
	if (status < 0)
554 555
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
556
	else
557
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
558

559 560 561
done:
	mutex_unlock(&spi_add_lock);
	return status;
562 563
}
EXPORT_SYMBOL_GPL(spi_add_device);
564

D
David Brownell 已提交
565 566
/**
 * spi_new_device - instantiate one new SPI device
567
 * @ctlr: Controller to which device is connected
D
David Brownell 已提交
568 569 570 571
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
572 573 574 575
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
576
 *
577
 * Return: the new device, or NULL.
578
 */
579
struct spi_device *spi_new_device(struct spi_controller *ctlr,
580
				  struct spi_board_info *chip)
581 582 583 584
{
	struct spi_device	*proxy;
	int			status;

585 586 587 588 589 590 591
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

592
	proxy = spi_alloc_device(ctlr);
593
	if (!proxy)
594 595
		return NULL;

596 597
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

598 599
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
600
	proxy->mode = chip->mode;
601
	proxy->irq = chip->irq;
602
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
603 604 605 606
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

607 608 609
	if (chip->properties) {
		status = device_add_properties(&proxy->dev, chip->properties);
		if (status) {
610
			dev_err(&ctlr->dev,
611 612 613 614
				"failed to add properties to '%s': %d\n",
				chip->modalias, status);
			goto err_dev_put;
		}
615 616
	}

617 618 619 620
	status = spi_add_device(proxy);
	if (status < 0)
		goto err_remove_props;

621
	return proxy;
622 623 624 625 626 627 628

err_remove_props:
	if (chip->properties)
		device_remove_properties(&proxy->dev);
err_dev_put:
	spi_dev_put(proxy);
	return NULL;
629 630 631
}
EXPORT_SYMBOL_GPL(spi_new_device);

632 633 634 635 636
/**
 * spi_unregister_device - unregister a single SPI device
 * @spi: spi_device to unregister
 *
 * Start making the passed SPI device vanish. Normally this would be handled
637
 * by spi_unregister_controller().
638 639 640
 */
void spi_unregister_device(struct spi_device *spi)
{
641 642 643
	if (!spi)
		return;

J
Johan Hovold 已提交
644
	if (spi->dev.of_node) {
645
		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
J
Johan Hovold 已提交
646 647
		of_node_put(spi->dev.of_node);
	}
648 649
	if (ACPI_COMPANION(&spi->dev))
		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
650
	device_unregister(&spi->dev);
651 652 653
}
EXPORT_SYMBOL_GPL(spi_unregister_device);

654 655
static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
					      struct spi_board_info *bi)
656 657 658
{
	struct spi_device *dev;

659
	if (ctlr->bus_num != bi->bus_num)
660 661
		return;

662
	dev = spi_new_device(ctlr, bi);
663
	if (!dev)
664
		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
665 666 667
			bi->modalias);
}

D
David Brownell 已提交
668 669 670 671 672 673
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
674 675 676 677 678 679 680 681 682 683 684 685
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
686
 * Device properties are deep-copied though.
687 688
 *
 * Return: zero on success, else a negative error code.
689
 */
690
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
691
{
692 693
	struct boardinfo *bi;
	int i;
694

695
	if (!n)
696
		return 0;
697

698
	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
699 700 701
	if (!bi)
		return -ENOMEM;

702
	for (i = 0; i < n; i++, bi++, info++) {
703
		struct spi_controller *ctlr;
704

705
		memcpy(&bi->board_info, info, sizeof(*info));
706 707 708 709 710 711 712
		if (info->properties) {
			bi->board_info.properties =
					property_entries_dup(info->properties);
			if (IS_ERR(bi->board_info.properties))
				return PTR_ERR(bi->board_info.properties);
		}

713 714
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
715 716 717
		list_for_each_entry(ctlr, &spi_controller_list, list)
			spi_match_controller_to_boardinfo(ctlr,
							  &bi->board_info);
718
		mutex_unlock(&board_lock);
719
	}
720 721

	return 0;
722 723 724 725
}

/*-------------------------------------------------------------------------*/

726 727 728 729 730
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

731
	if (gpio_is_valid(spi->cs_gpio)) {
732
		gpio_set_value(spi->cs_gpio, !enable);
733
		/* Some SPI masters need both GPIO CS & slave_select */
734 735 736 737 738
		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
		    spi->controller->set_cs)
			spi->controller->set_cs(spi, !enable);
	} else if (spi->controller->set_cs) {
		spi->controller->set_cs(spi, !enable);
739
	}
740 741
}

742
#ifdef CONFIG_HAS_DMA
743
static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
744 745 746 747
		       struct sg_table *sgt, void *buf, size_t len,
		       enum dma_data_direction dir)
{
	const bool vmalloced_buf = is_vmalloc_addr(buf);
748
	unsigned int max_seg_size = dma_get_max_seg_size(dev);
749 750 751 752 753 754 755
#ifdef CONFIG_HIGHMEM
	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
				(unsigned long)buf < (PKMAP_BASE +
					(LAST_PKMAP * PAGE_SIZE)));
#else
	const bool kmap_buf = false;
#endif
756 757
	int desc_len;
	int sgs;
758
	struct page *vm_page;
759
	struct scatterlist *sg;
760 761 762 763
	void *sg_buf;
	size_t min;
	int i, ret;

764
	if (vmalloced_buf || kmap_buf) {
765
		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
766
		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
767
	} else if (virt_addr_valid(buf)) {
768
		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
769
		sgs = DIV_ROUND_UP(len, desc_len);
770 771
	} else {
		return -EINVAL;
772 773
	}

774 775 776 777
	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
	if (ret != 0)
		return ret;

778
	sg = &sgt->sgl[0];
779 780
	for (i = 0; i < sgs; i++) {

781
		if (vmalloced_buf || kmap_buf) {
782 783
			min = min_t(size_t,
				    len, desc_len - offset_in_page(buf));
784 785 786 787
			if (vmalloced_buf)
				vm_page = vmalloc_to_page(buf);
			else
				vm_page = kmap_to_page(buf);
788 789 790 791
			if (!vm_page) {
				sg_free_table(sgt);
				return -ENOMEM;
			}
792
			sg_set_page(sg, vm_page,
793
				    min, offset_in_page(buf));
794
		} else {
795
			min = min_t(size_t, len, desc_len);
796
			sg_buf = buf;
797
			sg_set_buf(sg, sg_buf, min);
798 799 800 801
		}

		buf += min;
		len -= min;
802
		sg = sg_next(sg);
803 804 805
	}

	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
806 807
	if (!ret)
		ret = -ENOMEM;
808 809 810 811 812 813 814 815 816 817
	if (ret < 0) {
		sg_free_table(sgt);
		return ret;
	}

	sgt->nents = ret;

	return 0;
}

818
static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
819 820 821 822 823 824 825 826
			  struct sg_table *sgt, enum dma_data_direction dir)
{
	if (sgt->orig_nents) {
		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
		sg_free_table(sgt);
	}
}

827
static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
828 829 830
{
	struct device *tx_dev, *rx_dev;
	struct spi_transfer *xfer;
831
	int ret;
832

833
	if (!ctlr->can_dma)
834 835
		return 0;

836 837
	if (ctlr->dma_tx)
		tx_dev = ctlr->dma_tx->device->dev;
838
	else
839
		tx_dev = ctlr->dev.parent;
840

841 842
	if (ctlr->dma_rx)
		rx_dev = ctlr->dma_rx->device->dev;
843
	else
844
		rx_dev = ctlr->dev.parent;
845 846

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
847
		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
848 849 850
			continue;

		if (xfer->tx_buf != NULL) {
851
			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
852 853 854 855
					  (void *)xfer->tx_buf, xfer->len,
					  DMA_TO_DEVICE);
			if (ret != 0)
				return ret;
856 857 858
		}

		if (xfer->rx_buf != NULL) {
859
			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
860 861 862
					  xfer->rx_buf, xfer->len,
					  DMA_FROM_DEVICE);
			if (ret != 0) {
863
				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
864 865
					      DMA_TO_DEVICE);
				return ret;
866 867 868 869
			}
		}
	}

870
	ctlr->cur_msg_mapped = true;
871 872 873 874

	return 0;
}

875
static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
876 877 878 879
{
	struct spi_transfer *xfer;
	struct device *tx_dev, *rx_dev;

880
	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
881 882
		return 0;

883 884
	if (ctlr->dma_tx)
		tx_dev = ctlr->dma_tx->device->dev;
885
	else
886
		tx_dev = ctlr->dev.parent;
887

888 889
	if (ctlr->dma_rx)
		rx_dev = ctlr->dma_rx->device->dev;
890
	else
891
		rx_dev = ctlr->dev.parent;
892 893

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
894
		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
895 896
			continue;

897 898
		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
899 900 901 902
	}

	return 0;
}
903
#else /* !CONFIG_HAS_DMA */
904 905
static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
			      struct sg_table *sgt, void *buf, size_t len,
906 907 908 909 910
			      enum dma_data_direction dir)
{
	return -EINVAL;
}

911
static inline void spi_unmap_buf(struct spi_controller *ctlr,
912 913 914 915 916
				 struct device *dev, struct sg_table *sgt,
				 enum dma_data_direction dir)
{
}

917
static inline int __spi_map_msg(struct spi_controller *ctlr,
918 919 920 921 922
				struct spi_message *msg)
{
	return 0;
}

923
static inline int __spi_unmap_msg(struct spi_controller *ctlr,
924
				  struct spi_message *msg)
925 926 927 928 929
{
	return 0;
}
#endif /* !CONFIG_HAS_DMA */

930
static inline int spi_unmap_msg(struct spi_controller *ctlr,
931 932 933 934 935 936 937 938 939
				struct spi_message *msg)
{
	struct spi_transfer *xfer;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		/*
		 * Restore the original value of tx_buf or rx_buf if they are
		 * NULL.
		 */
940
		if (xfer->tx_buf == ctlr->dummy_tx)
941
			xfer->tx_buf = NULL;
942
		if (xfer->rx_buf == ctlr->dummy_rx)
943 944 945
			xfer->rx_buf = NULL;
	}

946
	return __spi_unmap_msg(ctlr, msg);
947 948
}

949
static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
950 951 952 953 954
{
	struct spi_transfer *xfer;
	void *tmp;
	unsigned int max_tx, max_rx;

955
	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
956 957 958 959
		max_tx = 0;
		max_rx = 0;

		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
960
			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
961 962
			    !xfer->tx_buf)
				max_tx = max(xfer->len, max_tx);
963
			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
964 965 966 967 968
			    !xfer->rx_buf)
				max_rx = max(xfer->len, max_rx);
		}

		if (max_tx) {
969
			tmp = krealloc(ctlr->dummy_tx, max_tx,
970 971 972
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
973
			ctlr->dummy_tx = tmp;
974 975 976 977
			memset(tmp, 0, max_tx);
		}

		if (max_rx) {
978
			tmp = krealloc(ctlr->dummy_rx, max_rx,
979 980 981
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
982
			ctlr->dummy_rx = tmp;
983 984 985 986 987 988
		}

		if (max_tx || max_rx) {
			list_for_each_entry(xfer, &msg->transfers,
					    transfer_list) {
				if (!xfer->tx_buf)
989
					xfer->tx_buf = ctlr->dummy_tx;
990
				if (!xfer->rx_buf)
991
					xfer->rx_buf = ctlr->dummy_rx;
992 993 994 995
			}
		}
	}

996
	return __spi_map_msg(ctlr, msg);
997
}
998

999 1000 1001 1002
/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
1003
 * drivers which implement a transfer_one() operation.  It provides
1004 1005
 * standard handling of delays and chip select management.
 */
1006
static int spi_transfer_one_message(struct spi_controller *ctlr,
1007 1008 1009 1010 1011
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool keep_cs = false;
	int ret = 0;
1012
	unsigned long long ms = 1;
1013
	struct spi_statistics *statm = &ctlr->statistics;
1014
	struct spi_statistics *stats = &msg->spi->statistics;
1015 1016 1017

	spi_set_cs(msg->spi, true);

1018 1019 1020
	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);

1021 1022 1023
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

1024 1025
		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1026

1027
		if (xfer->tx_buf || xfer->rx_buf) {
1028
			reinit_completion(&ctlr->xfer_completion);
1029

1030
			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1031
			if (ret < 0) {
1032 1033 1034 1035
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       errors);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       errors);
1036 1037 1038 1039
				dev_err(&msg->spi->dev,
					"SPI transfer failed: %d\n", ret);
				goto out;
			}
1040

1041 1042
			if (ret > 0) {
				ret = 0;
1043 1044
				ms = 8LL * 1000LL * xfer->len;
				do_div(ms, xfer->speed_hz);
H
Hauke Mehrtens 已提交
1045
				ms += ms + 200; /* some tolerance */
1046

1047 1048 1049
				if (ms > UINT_MAX)
					ms = UINT_MAX;

1050
				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1051 1052
								 msecs_to_jiffies(ms));
			}
1053

1054
			if (ms == 0) {
1055 1056 1057 1058
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       timedout);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       timedout);
1059 1060 1061 1062 1063 1064 1065 1066 1067
				dev_err(&msg->spi->dev,
					"SPI transfer timed out\n");
				msg->status = -ETIMEDOUT;
			}
		} else {
			if (xfer->len)
				dev_err(&msg->spi->dev,
					"Bufferless transfer has length %u\n",
					xfer->len);
1068
		}
1069 1070 1071 1072 1073 1074

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

1075 1076 1077 1078 1079 1080 1081 1082
		if (xfer->delay_usecs) {
			u16 us = xfer->delay_usecs;

			if (us <= 10)
				udelay(us);
			else
				usleep_range(us, us + DIV_ROUND_UP(us, 10));
		}
1083 1084 1085 1086 1087 1088

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
1089 1090 1091
				spi_set_cs(msg->spi, false);
				udelay(10);
				spi_set_cs(msg->spi, true);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

1105 1106
	if (msg->status && ctlr->handle_err)
		ctlr->handle_err(ctlr, msg);
1107

1108
	spi_res_release(ctlr, msg);
1109

1110
	spi_finalize_current_message(ctlr);
1111 1112 1113 1114 1115 1116

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
1117
 * @ctlr: the controller reporting completion
1118 1119 1120
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
1121
 * transfer has finished and the next one may be scheduled.
1122
 */
1123
void spi_finalize_current_transfer(struct spi_controller *ctlr)
1124
{
1125
	complete(&ctlr->xfer_completion);
1126 1127 1128
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

1129
/**
1130
 * __spi_pump_messages - function which processes spi message queue
1131
 * @ctlr: controller to process queue for
1132
 * @in_kthread: true if we are in the context of the message pump thread
1133 1134 1135 1136 1137
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
1138 1139 1140
 * Note that it is called both from the kthread itself and also from
 * inside spi_sync(); the queue extraction handling at the top of the
 * function should deal with this safely.
1141
 */
1142
static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1143 1144 1145 1146 1147
{
	unsigned long flags;
	bool was_busy = false;
	int ret;

1148
	/* Lock queue */
1149
	spin_lock_irqsave(&ctlr->queue_lock, flags);
1150 1151

	/* Make sure we are not already running a message */
1152 1153
	if (ctlr->cur_msg) {
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1154 1155 1156
		return;
	}

1157
	/* If another context is idling the device then defer */
1158 1159 1160
	if (ctlr->idling) {
		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1161 1162 1163
		return;
	}

1164
	/* Check if the queue is idle */
1165 1166 1167
	if (list_empty(&ctlr->queue) || !ctlr->running) {
		if (!ctlr->busy) {
			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1168
			return;
1169
		}
1170 1171 1172

		/* Only do teardown in the thread */
		if (!in_kthread) {
1173 1174 1175
			kthread_queue_work(&ctlr->kworker,
					   &ctlr->pump_messages);
			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1176 1177 1178
			return;
		}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
		ctlr->busy = false;
		ctlr->idling = true;
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);

		kfree(ctlr->dummy_rx);
		ctlr->dummy_rx = NULL;
		kfree(ctlr->dummy_tx);
		ctlr->dummy_tx = NULL;
		if (ctlr->unprepare_transfer_hardware &&
		    ctlr->unprepare_transfer_hardware(ctlr))
			dev_err(&ctlr->dev,
1190
				"failed to unprepare transfer hardware\n");
1191 1192 1193
		if (ctlr->auto_runtime_pm) {
			pm_runtime_mark_last_busy(ctlr->dev.parent);
			pm_runtime_put_autosuspend(ctlr->dev.parent);
1194
		}
1195
		trace_spi_controller_idle(ctlr);
1196

1197 1198 1199
		spin_lock_irqsave(&ctlr->queue_lock, flags);
		ctlr->idling = false;
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1200 1201 1202 1203
		return;
	}

	/* Extract head of queue */
1204 1205
	ctlr->cur_msg =
		list_first_entry(&ctlr->queue, struct spi_message, queue);
1206

1207 1208
	list_del_init(&ctlr->cur_msg->queue);
	if (ctlr->busy)
1209 1210
		was_busy = true;
	else
1211 1212
		ctlr->busy = true;
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1213

1214
	mutex_lock(&ctlr->io_mutex);
M
Mark Brown 已提交
1215

1216 1217
	if (!was_busy && ctlr->auto_runtime_pm) {
		ret = pm_runtime_get_sync(ctlr->dev.parent);
1218
		if (ret < 0) {
1219
			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1220
				ret);
1221
			mutex_unlock(&ctlr->io_mutex);
1222 1223 1224 1225
			return;
		}
	}

1226
	if (!was_busy)
1227
		trace_spi_controller_busy(ctlr);
1228

1229 1230
	if (!was_busy && ctlr->prepare_transfer_hardware) {
		ret = ctlr->prepare_transfer_hardware(ctlr);
1231
		if (ret) {
1232
			dev_err(&ctlr->dev,
1233
				"failed to prepare transfer hardware\n");
1234

1235 1236 1237
			if (ctlr->auto_runtime_pm)
				pm_runtime_put(ctlr->dev.parent);
			mutex_unlock(&ctlr->io_mutex);
1238 1239 1240 1241
			return;
		}
	}

1242
	trace_spi_message_start(ctlr->cur_msg);
1243

1244 1245
	if (ctlr->prepare_message) {
		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1246
		if (ret) {
1247 1248 1249 1250
			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
				ret);
			ctlr->cur_msg->status = ret;
			spi_finalize_current_message(ctlr);
1251
			goto out;
1252
		}
1253
		ctlr->cur_msg_prepared = true;
1254 1255
	}

1256
	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1257
	if (ret) {
1258 1259
		ctlr->cur_msg->status = ret;
		spi_finalize_current_message(ctlr);
1260
		goto out;
1261 1262
	}

1263
	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1264
	if (ret) {
1265
		dev_err(&ctlr->dev,
1266
			"failed to transfer one message from queue\n");
1267
		goto out;
1268
	}
1269 1270

out:
1271
	mutex_unlock(&ctlr->io_mutex);
1272 1273

	/* Prod the scheduler in case transfer_one() was busy waiting */
1274 1275
	if (!ret)
		cond_resched();
1276 1277
}

1278 1279
/**
 * spi_pump_messages - kthread work function which processes spi message queue
1280
 * @work: pointer to kthread work struct contained in the controller struct
1281 1282 1283
 */
static void spi_pump_messages(struct kthread_work *work)
{
1284 1285
	struct spi_controller *ctlr =
		container_of(work, struct spi_controller, pump_messages);
1286

1287
	__spi_pump_messages(ctlr, true);
1288 1289
}

1290
static int spi_init_queue(struct spi_controller *ctlr)
1291 1292 1293
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

1294 1295
	ctlr->running = false;
	ctlr->busy = false;
1296

1297 1298 1299 1300 1301 1302
	kthread_init_worker(&ctlr->kworker);
	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
					 "%s", dev_name(&ctlr->dev));
	if (IS_ERR(ctlr->kworker_task)) {
		dev_err(&ctlr->dev, "failed to create message pump task\n");
		return PTR_ERR(ctlr->kworker_task);
1303
	}
1304
	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1305 1306

	/*
1307
	 * Controller config will indicate if this controller should run the
1308 1309 1310 1311 1312
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
1313 1314
	if (ctlr->rt) {
		dev_info(&ctlr->dev,
1315
			"will run message pump with realtime priority\n");
1316
		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1317 1318 1319 1320 1321 1322 1323 1324
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
1325
 * @ctlr: the controller to check for queued messages
1326 1327 1328
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
1329 1330
 *
 * Return: the next message in the queue, else NULL if the queue is empty.
1331
 */
1332
struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1333 1334 1335 1336 1337
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
1338 1339
	spin_lock_irqsave(&ctlr->queue_lock, flags);
	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1340
					queue);
1341
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1342 1343 1344 1345 1346 1347 1348

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
1349
 * @ctlr: the controller to return the message to
1350 1351 1352 1353
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
1354
void spi_finalize_current_message(struct spi_controller *ctlr)
1355 1356 1357
{
	struct spi_message *mesg;
	unsigned long flags;
1358
	int ret;
1359

1360 1361 1362
	spin_lock_irqsave(&ctlr->queue_lock, flags);
	mesg = ctlr->cur_msg;
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1363

1364
	spi_unmap_msg(ctlr, mesg);
1365

1366 1367
	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
		ret = ctlr->unprepare_message(ctlr, mesg);
1368
		if (ret) {
1369 1370
			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
				ret);
1371 1372
		}
	}
1373

1374 1375 1376 1377 1378
	spin_lock_irqsave(&ctlr->queue_lock, flags);
	ctlr->cur_msg = NULL;
	ctlr->cur_msg_prepared = false;
	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1379 1380

	trace_spi_message_done(mesg);
1381

1382 1383 1384 1385 1386 1387
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

1388
static int spi_start_queue(struct spi_controller *ctlr)
1389 1390 1391
{
	unsigned long flags;

1392
	spin_lock_irqsave(&ctlr->queue_lock, flags);
1393

1394 1395
	if (ctlr->running || ctlr->busy) {
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1396 1397 1398
		return -EBUSY;
	}

1399 1400 1401
	ctlr->running = true;
	ctlr->cur_msg = NULL;
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402

1403
	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1404 1405 1406 1407

	return 0;
}

1408
static int spi_stop_queue(struct spi_controller *ctlr)
1409 1410 1411 1412 1413
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

1414
	spin_lock_irqsave(&ctlr->queue_lock, flags);
1415 1416 1417

	/*
	 * This is a bit lame, but is optimized for the common execution path.
1418
	 * A wait_queue on the ctlr->busy could be used, but then the common
1419 1420 1421
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
1422 1423
	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424
		usleep_range(10000, 11000);
1425
		spin_lock_irqsave(&ctlr->queue_lock, flags);
1426 1427
	}

1428
	if (!list_empty(&ctlr->queue) || ctlr->busy)
1429 1430
		ret = -EBUSY;
	else
1431
		ctlr->running = false;
1432

1433
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1434 1435

	if (ret) {
1436
		dev_warn(&ctlr->dev, "could not stop message queue\n");
1437 1438 1439 1440 1441
		return ret;
	}
	return ret;
}

1442
static int spi_destroy_queue(struct spi_controller *ctlr)
1443 1444 1445
{
	int ret;

1446
	ret = spi_stop_queue(ctlr);
1447 1448

	/*
P
Petr Mladek 已提交
1449
	 * kthread_flush_worker will block until all work is done.
1450 1451 1452 1453 1454
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
1455
		dev_err(&ctlr->dev, "problem destroying queue\n");
1456 1457 1458
		return ret;
	}

1459 1460
	kthread_flush_worker(&ctlr->kworker);
	kthread_stop(ctlr->kworker_task);
1461 1462 1463 1464

	return 0;
}

1465 1466 1467
static int __spi_queued_transfer(struct spi_device *spi,
				 struct spi_message *msg,
				 bool need_pump)
1468
{
1469
	struct spi_controller *ctlr = spi->controller;
1470 1471
	unsigned long flags;

1472
	spin_lock_irqsave(&ctlr->queue_lock, flags);
1473

1474 1475
	if (!ctlr->running) {
		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1476 1477 1478 1479 1480
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

1481 1482 1483
	list_add_tail(&msg->queue, &ctlr->queue);
	if (!ctlr->busy && need_pump)
		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1484

1485
	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1486 1487 1488
	return 0;
}

1489 1490 1491 1492
/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
1493 1494
 *
 * Return: zero on success, else a negative error code.
1495 1496 1497 1498 1499 1500
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	return __spi_queued_transfer(spi, msg, true);
}

1501
static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1502 1503 1504
{
	int ret;

1505 1506 1507
	ctlr->transfer = spi_queued_transfer;
	if (!ctlr->transfer_one_message)
		ctlr->transfer_one_message = spi_transfer_one_message;
1508 1509

	/* Initialize and start queue */
1510
	ret = spi_init_queue(ctlr);
1511
	if (ret) {
1512
		dev_err(&ctlr->dev, "problem initializing queue\n");
1513 1514
		goto err_init_queue;
	}
1515 1516
	ctlr->queued = true;
	ret = spi_start_queue(ctlr);
1517
	if (ret) {
1518
		dev_err(&ctlr->dev, "problem starting queue\n");
1519 1520 1521 1522 1523 1524
		goto err_start_queue;
	}

	return 0;

err_start_queue:
1525
	spi_destroy_queue(ctlr);
1526
err_init_queue:
1527 1528 1529 1530 1531
	return ret;
}

/*-------------------------------------------------------------------------*/

1532
#if defined(CONFIG_OF)
1533
static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1534
			   struct device_node *nc)
1535 1536
{
	u32 value;
1537
	int rc;
1538 1539

	/* Mode (clock phase/polarity/etc.) */
1540
	if (of_property_read_bool(nc, "spi-cpha"))
1541
		spi->mode |= SPI_CPHA;
1542
	if (of_property_read_bool(nc, "spi-cpol"))
1543
		spi->mode |= SPI_CPOL;
1544
	if (of_property_read_bool(nc, "spi-cs-high"))
1545
		spi->mode |= SPI_CS_HIGH;
1546
	if (of_property_read_bool(nc, "spi-3wire"))
1547
		spi->mode |= SPI_3WIRE;
1548
	if (of_property_read_bool(nc, "spi-lsb-first"))
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
		spi->mode |= SPI_LSB_FIRST;

	/* Device DUAL/QUAD mode */
	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_TX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_TX_QUAD;
			break;
		default:
1563
			dev_warn(&ctlr->dev,
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
				"spi-tx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_RX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_RX_QUAD;
			break;
		default:
1581
			dev_warn(&ctlr->dev,
1582 1583 1584 1585 1586 1587
				"spi-rx-bus-width %d not supported\n",
				value);
			break;
		}
	}

1588
	if (spi_controller_is_slave(ctlr)) {
1589
		if (strcmp(nc->name, "slave")) {
1590 1591
			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
				nc);
1592 1593 1594 1595 1596 1597 1598 1599
			return -EINVAL;
		}
		return 0;
	}

	/* Device address */
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
1600 1601
		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
			nc, rc);
1602 1603 1604 1605
		return rc;
	}
	spi->chip_select = value;

1606 1607 1608
	/* Device speed */
	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
	if (rc) {
1609
		dev_err(&ctlr->dev,
1610
			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1611
		return rc;
1612 1613 1614
	}
	spi->max_speed_hz = value;

1615 1616 1617 1618
	return 0;
}

static struct spi_device *
1619
of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1620 1621 1622 1623 1624
{
	struct spi_device *spi;
	int rc;

	/* Alloc an spi_device */
1625
	spi = spi_alloc_device(ctlr);
1626
	if (!spi) {
1627
		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1628 1629 1630 1631 1632 1633 1634 1635
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver */
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
1636
		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1637 1638 1639
		goto err_out;
	}

1640
	rc = of_spi_parse_dt(ctlr, spi, nc);
1641 1642 1643
	if (rc)
		goto err_out;

1644 1645 1646 1647 1648 1649 1650
	/* Store a pointer to the node in the device structure */
	of_node_get(nc);
	spi->dev.of_node = nc;

	/* Register the new device */
	rc = spi_add_device(spi);
	if (rc) {
1651
		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
J
Johan Hovold 已提交
1652
		goto err_of_node_put;
1653 1654 1655 1656
	}

	return spi;

J
Johan Hovold 已提交
1657 1658
err_of_node_put:
	of_node_put(nc);
1659 1660 1661 1662 1663
err_out:
	spi_dev_put(spi);
	return ERR_PTR(rc);
}

1664 1665
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
1666
 * @ctlr:	Pointer to spi_controller device
1667
 *
1668 1669
 * Registers an spi_device for each child node of controller node which
 * represents a valid SPI slave.
1670
 */
1671
static void of_register_spi_devices(struct spi_controller *ctlr)
1672 1673 1674 1675
{
	struct spi_device *spi;
	struct device_node *nc;

1676
	if (!ctlr->dev.of_node)
1677 1678
		return;

1679
	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1680 1681
		if (of_node_test_and_set_flag(nc, OF_POPULATED))
			continue;
1682
		spi = of_register_spi_device(ctlr, nc);
1683
		if (IS_ERR(spi)) {
1684
			dev_warn(&ctlr->dev,
1685
				 "Failed to create SPI device for %pOF\n", nc);
1686 1687
			of_node_clear_flag(nc, OF_POPULATED);
		}
1688 1689 1690
	}
}
#else
1691
static void of_register_spi_devices(struct spi_controller *ctlr) { }
1692 1693
#endif

1694
#ifdef CONFIG_ACPI
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static void acpi_spi_parse_apple_properties(struct spi_device *spi)
{
	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
	const union acpi_object *obj;

	if (!x86_apple_machine)
		return;

	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
	    && obj->buffer.length >= 4)
		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;

	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
	    && obj->buffer.length == 8)
		spi->bits_per_word = *(u64 *)obj->buffer.pointer;

	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
		spi->mode |= SPI_LSB_FIRST;

	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
		spi->mode |= SPI_CPOL;

	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
		spi->mode |= SPI_CPHA;
}

1724 1725 1726
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;
1727
	struct spi_controller *ctlr = spi->controller;
1728 1729 1730 1731 1732 1733

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1734 1735 1736 1737 1738 1739 1740
			/*
			 * ACPI DeviceSelection numbering is handled by the
			 * host controller driver in Windows and can vary
			 * from driver to driver. In Linux we always expect
			 * 0 .. max - 1 so we need to ask the driver to
			 * translate between the two schemes.
			 */
1741 1742
			if (ctlr->fw_translate_cs) {
				int cs = ctlr->fw_translate_cs(ctlr,
1743 1744 1745 1746 1747 1748 1749 1750
						sb->device_selection);
				if (cs < 0)
					return cs;
				spi->chip_select = cs;
			} else {
				spi->chip_select = sb->device_selection;
			}

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

1771
static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1772
					    struct acpi_device *adev)
1773 1774 1775 1776 1777
{
	struct list_head resource_list;
	struct spi_device *spi;
	int ret;

1778 1779
	if (acpi_bus_get_status(adev) || !adev->status.present ||
	    acpi_device_enumerated(adev))
1780 1781
		return AE_OK;

1782
	spi = spi_alloc_device(ctlr);
1783
	if (!spi) {
1784
		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1785 1786 1787 1788
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1789
	ACPI_COMPANION_SET(&spi->dev, adev);
1790 1791 1792 1793 1794 1795 1796
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

1797 1798
	acpi_spi_parse_apple_properties(spi);

1799 1800 1801 1802 1803
	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1804 1805 1806
	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
			  sizeof(spi->modalias));

1807 1808 1809
	if (spi->irq < 0)
		spi->irq = acpi_dev_gpio_irq_get(adev, 0);

1810 1811
	acpi_device_set_enumerated(adev);

1812
	adev->power.flags.ignore_parent = true;
1813
	if (spi_add_device(spi)) {
1814
		adev->power.flags.ignore_parent = false;
1815
		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1816 1817 1818 1819 1820 1821 1822
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

1823 1824 1825
static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
1826
	struct spi_controller *ctlr = data;
1827 1828 1829 1830 1831
	struct acpi_device *adev;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;

1832
	return acpi_register_spi_device(ctlr, adev);
1833 1834
}

1835
static void acpi_register_spi_devices(struct spi_controller *ctlr)
1836 1837 1838 1839
{
	acpi_status status;
	acpi_handle handle;

1840
	handle = ACPI_HANDLE(ctlr->dev.parent);
1841 1842 1843 1844
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1845
				     acpi_spi_add_device, NULL, ctlr, NULL);
1846
	if (ACPI_FAILURE(status))
1847
		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1848 1849
}
#else
1850
static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1851 1852
#endif /* CONFIG_ACPI */

1853
static void spi_controller_release(struct device *dev)
1854
{
1855
	struct spi_controller *ctlr;
1856

1857 1858
	ctlr = container_of(dev, struct spi_controller, dev);
	kfree(ctlr);
1859 1860 1861 1862 1863
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
1864
	.dev_release	= spi_controller_release,
1865
	.dev_groups	= spi_master_groups,
1866 1867
};

1868 1869 1870 1871 1872 1873 1874 1875
#ifdef CONFIG_SPI_SLAVE
/**
 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
 *		     controller
 * @spi: device used for the current transfer
 */
int spi_slave_abort(struct spi_device *spi)
{
1876
	struct spi_controller *ctlr = spi->controller;
1877

1878 1879
	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
		return ctlr->slave_abort(ctlr);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

	return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(spi_slave_abort);

static int match_true(struct device *dev, void *data)
{
	return 1;
}

static ssize_t spi_slave_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
1893 1894
	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
						   dev);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	struct device *child;

	child = device_find_child(&ctlr->dev, NULL, match_true);
	return sprintf(buf, "%s\n",
		       child ? to_spi_device(child)->modalias : NULL);
}

static ssize_t spi_slave_store(struct device *dev,
			       struct device_attribute *attr, const char *buf,
			       size_t count)
{
1906 1907
	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
						   dev);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	struct spi_device *spi;
	struct device *child;
	char name[32];
	int rc;

	rc = sscanf(buf, "%31s", name);
	if (rc != 1 || !name[0])
		return -EINVAL;

	child = device_find_child(&ctlr->dev, NULL, match_true);
	if (child) {
		/* Remove registered slave */
		device_unregister(child);
		put_device(child);
	}

	if (strcmp(name, "(null)")) {
		/* Register new slave */
		spi = spi_alloc_device(ctlr);
		if (!spi)
			return -ENOMEM;

		strlcpy(spi->modalias, name, sizeof(spi->modalias));

		rc = spi_add_device(spi);
		if (rc) {
			spi_dev_put(spi);
			return rc;
		}
	}

	return count;
}

static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);

static struct attribute *spi_slave_attrs[] = {
	&dev_attr_slave.attr,
	NULL,
};

static const struct attribute_group spi_slave_group = {
	.attrs = spi_slave_attrs,
};

static const struct attribute_group *spi_slave_groups[] = {
1954
	&spi_controller_statistics_group,
1955 1956 1957 1958 1959 1960 1961
	&spi_slave_group,
	NULL,
};

static struct class spi_slave_class = {
	.name		= "spi_slave",
	.owner		= THIS_MODULE,
1962
	.dev_release	= spi_controller_release,
1963 1964 1965 1966 1967
	.dev_groups	= spi_slave_groups,
};
#else
extern struct class spi_slave_class;	/* dummy */
#endif
1968 1969

/**
1970
 * __spi_alloc_controller - allocate an SPI master or slave controller
1971
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1972
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1973
 *	memory is in the driver_data field of the returned device,
1974
 *	accessible with spi_controller_get_devdata().
1975 1976
 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
 *	slave (true) controller
D
David Brownell 已提交
1977
 * Context: can sleep
1978
 *
1979
 * This call is used only by SPI controller drivers, which are the
1980
 * only ones directly touching chip registers.  It's how they allocate
1981
 * an spi_controller structure, prior to calling spi_register_controller().
1982
 *
1983
 * This must be called from context that can sleep.
1984
 *
1985
 * The caller is responsible for assigning the bus number and initializing the
1986 1987 1988
 * controller's methods before calling spi_register_controller(); and (after
 * errors adding the device) calling spi_controller_put() to prevent a memory
 * leak.
1989
 *
1990
 * Return: the SPI controller structure on success, else NULL.
1991
 */
1992 1993
struct spi_controller *__spi_alloc_controller(struct device *dev,
					      unsigned int size, bool slave)
1994
{
1995
	struct spi_controller	*ctlr;
1996

D
David Brownell 已提交
1997 1998 1999
	if (!dev)
		return NULL;

2000 2001
	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
	if (!ctlr)
2002 2003
		return NULL;

2004 2005 2006 2007
	device_initialize(&ctlr->dev);
	ctlr->bus_num = -1;
	ctlr->num_chipselect = 1;
	ctlr->slave = slave;
2008
	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2009
		ctlr->dev.class = &spi_slave_class;
2010
	else
2011 2012 2013 2014
		ctlr->dev.class = &spi_master_class;
	ctlr->dev.parent = dev;
	pm_suspend_ignore_children(&ctlr->dev, true);
	spi_controller_set_devdata(ctlr, &ctlr[1]);
2015

2016
	return ctlr;
2017
}
2018
EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2019

2020
#ifdef CONFIG_OF
2021
static int of_spi_register_master(struct spi_controller *ctlr)
2022
{
2023
	int nb, i, *cs;
2024
	struct device_node *np = ctlr->dev.of_node;
2025 2026 2027 2028 2029

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
2030
	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2031

2032 2033
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
2034
		return 0;
2035 2036
	else if (nb < 0)
		return nb;
2037

2038
	cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2039
			  GFP_KERNEL);
2040
	ctlr->cs_gpios = cs;
2041

2042
	if (!ctlr->cs_gpios)
2043 2044
		return -ENOMEM;

2045
	for (i = 0; i < ctlr->num_chipselect; i++)
2046
		cs[i] = -ENOENT;
2047 2048 2049 2050 2051 2052 2053

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
2054
static int of_spi_register_master(struct spi_controller *ctlr)
2055 2056 2057 2058 2059
{
	return 0;
}
#endif

2060
/**
2061 2062 2063
 * spi_register_controller - register SPI master or slave controller
 * @ctlr: initialized master, originally from spi_alloc_master() or
 *	spi_alloc_slave()
D
David Brownell 已提交
2064
 * Context: can sleep
2065
 *
2066
 * SPI controllers connect to their drivers using some non-SPI bus,
2067
 * such as the platform bus.  The final stage of probe() in that code
2068
 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2069 2070 2071 2072 2073 2074 2075 2076
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
2077
 * success, else a negative error code (dropping the controller's refcount).
D
David Brownell 已提交
2078
 * After a successful return, the caller is responsible for calling
2079
 * spi_unregister_controller().
2080 2081
 *
 * Return: zero on success, else a negative error code.
2082
 */
2083
int spi_register_controller(struct spi_controller *ctlr)
2084
{
2085
	struct device		*dev = ctlr->dev.parent;
2086
	struct boardinfo	*bi;
2087
	int			status = -ENODEV;
2088
	int			id, first_dynamic;
2089

D
David Brownell 已提交
2090 2091 2092
	if (!dev)
		return -ENODEV;

2093 2094
	if (!spi_controller_is_slave(ctlr)) {
		status = of_spi_register_master(ctlr);
2095 2096 2097
		if (status)
			return status;
	}
2098

2099 2100 2101
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
2102
	if (ctlr->num_chipselect == 0)
2103
		return -EINVAL;
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	/* allocate dynamic bus number using Linux idr */
	if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
		id = of_alias_get_id(ctlr->dev.of_node, "spi");
		if (id >= 0) {
			ctlr->bus_num = id;
			mutex_lock(&board_lock);
			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
				       ctlr->bus_num + 1, GFP_KERNEL);
			mutex_unlock(&board_lock);
			if (WARN(id < 0, "couldn't get idr"))
				return id == -ENOSPC ? -EBUSY : id;
		}
	}
2117
	if (ctlr->bus_num < 0) {
2118 2119 2120 2121 2122 2123
		first_dynamic = of_alias_get_highest_id("spi");
		if (first_dynamic < 0)
			first_dynamic = 0;
		else
			first_dynamic++;

S
Suniel Mahesh 已提交
2124
		mutex_lock(&board_lock);
2125 2126
		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
			       0, GFP_KERNEL);
S
Suniel Mahesh 已提交
2127 2128 2129 2130
		mutex_unlock(&board_lock);
		if (WARN(id < 0, "couldn't get idr"))
			return id;
		ctlr->bus_num = id;
2131
	}
2132 2133 2134 2135 2136 2137 2138 2139 2140
	INIT_LIST_HEAD(&ctlr->queue);
	spin_lock_init(&ctlr->queue_lock);
	spin_lock_init(&ctlr->bus_lock_spinlock);
	mutex_init(&ctlr->bus_lock_mutex);
	mutex_init(&ctlr->io_mutex);
	ctlr->bus_lock_flag = 0;
	init_completion(&ctlr->xfer_completion);
	if (!ctlr->max_dma_len)
		ctlr->max_dma_len = INT_MAX;
2141

2142 2143 2144
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
2145 2146
	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
	status = device_add(&ctlr->dev);
2147 2148 2149 2150 2151
	if (status < 0) {
		/* free bus id */
		mutex_lock(&board_lock);
		idr_remove(&spi_master_idr, ctlr->bus_num);
		mutex_unlock(&board_lock);
2152
		goto done;
2153 2154
	}
	dev_dbg(dev, "registered %s %s\n",
2155
			spi_controller_is_slave(ctlr) ? "slave" : "master",
2156
			dev_name(&ctlr->dev));
2157

2158
	/* If we're using a queued driver, start the queue */
2159 2160
	if (ctlr->transfer)
		dev_info(dev, "controller is unqueued, this is deprecated\n");
2161
	else {
2162
		status = spi_controller_initialize_queue(ctlr);
2163
		if (status) {
2164
			device_del(&ctlr->dev);
2165 2166 2167 2168
			/* free bus id */
			mutex_lock(&board_lock);
			idr_remove(&spi_master_idr, ctlr->bus_num);
			mutex_unlock(&board_lock);
2169 2170 2171
			goto done;
		}
	}
2172
	/* add statistics */
2173
	spin_lock_init(&ctlr->statistics.lock);
2174

2175
	mutex_lock(&board_lock);
2176
	list_add_tail(&ctlr->list, &spi_controller_list);
2177
	list_for_each_entry(bi, &board_list, list)
2178
		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2179 2180
	mutex_unlock(&board_lock);

2181
	/* Register devices from the device tree and ACPI */
2182 2183
	of_register_spi_devices(ctlr);
	acpi_register_spi_devices(ctlr);
2184 2185 2186
done:
	return status;
}
2187
EXPORT_SYMBOL_GPL(spi_register_controller);
2188

2189 2190
static void devm_spi_unregister(struct device *dev, void *res)
{
2191
	spi_unregister_controller(*(struct spi_controller **)res);
2192 2193 2194
}

/**
2195 2196 2197 2198 2199
 * devm_spi_register_controller - register managed SPI master or slave
 *	controller
 * @dev:    device managing SPI controller
 * @ctlr: initialized controller, originally from spi_alloc_master() or
 *	spi_alloc_slave()
2200 2201
 * Context: can sleep
 *
2202
 * Register a SPI device as with spi_register_controller() which will
2203
 * automatically be unregister
2204 2205
 *
 * Return: zero on success, else a negative error code.
2206
 */
2207 2208
int devm_spi_register_controller(struct device *dev,
				 struct spi_controller *ctlr)
2209
{
2210
	struct spi_controller **ptr;
2211 2212 2213 2214 2215 2216
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

2217
	ret = spi_register_controller(ctlr);
2218
	if (!ret) {
2219
		*ptr = ctlr;
2220 2221 2222 2223 2224 2225 2226
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
2227
EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2228

2229
static int __unregister(struct device *dev, void *null)
2230
{
2231
	spi_unregister_device(to_spi_device(dev));
2232 2233 2234 2235
	return 0;
}

/**
2236 2237
 * spi_unregister_controller - unregister SPI master or slave controller
 * @ctlr: the controller being unregistered
D
David Brownell 已提交
2238
 * Context: can sleep
2239
 *
2240
 * This call is used only by SPI controller drivers, which are the
2241 2242 2243 2244
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
2245
void spi_unregister_controller(struct spi_controller *ctlr)
2246
{
2247
	struct spi_controller *found;
2248 2249
	int dummy;

2250 2251 2252 2253
	/* First make sure that this controller was ever added */
	mutex_lock(&board_lock);
	found = idr_find(&spi_master_idr, ctlr->bus_num);
	mutex_unlock(&board_lock);
S
Suniel Mahesh 已提交
2254 2255
	if (found != ctlr) {
		dev_dbg(&ctlr->dev,
2256 2257
			"attempting to delete unregistered controller [%s]\n",
			dev_name(&ctlr->dev));
S
Suniel Mahesh 已提交
2258 2259
		return;
	}
2260 2261 2262
	if (ctlr->queued) {
		if (spi_destroy_queue(ctlr))
			dev_err(&ctlr->dev, "queue remove failed\n");
2263
	}
2264
	mutex_lock(&board_lock);
2265
	list_del(&ctlr->list);
2266 2267
	mutex_unlock(&board_lock);

2268 2269
	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
	device_unregister(&ctlr->dev);
2270 2271 2272 2273
	/* free bus id */
	mutex_lock(&board_lock);
	idr_remove(&spi_master_idr, ctlr->bus_num);
	mutex_unlock(&board_lock);
2274
}
2275
EXPORT_SYMBOL_GPL(spi_unregister_controller);
2276

2277
int spi_controller_suspend(struct spi_controller *ctlr)
2278 2279 2280
{
	int ret;

2281 2282
	/* Basically no-ops for non-queued controllers */
	if (!ctlr->queued)
2283 2284
		return 0;

2285
	ret = spi_stop_queue(ctlr);
2286
	if (ret)
2287
		dev_err(&ctlr->dev, "queue stop failed\n");
2288 2289 2290

	return ret;
}
2291
EXPORT_SYMBOL_GPL(spi_controller_suspend);
2292

2293
int spi_controller_resume(struct spi_controller *ctlr)
2294 2295 2296
{
	int ret;

2297
	if (!ctlr->queued)
2298 2299
		return 0;

2300
	ret = spi_start_queue(ctlr);
2301
	if (ret)
2302
		dev_err(&ctlr->dev, "queue restart failed\n");
2303 2304 2305

	return ret;
}
2306
EXPORT_SYMBOL_GPL(spi_controller_resume);
2307

2308
static int __spi_controller_match(struct device *dev, const void *data)
D
Dave Young 已提交
2309
{
2310
	struct spi_controller *ctlr;
2311
	const u16 *bus_num = data;
D
Dave Young 已提交
2312

2313 2314
	ctlr = container_of(dev, struct spi_controller, dev);
	return ctlr->bus_num == *bus_num;
D
Dave Young 已提交
2315 2316
}

2317 2318 2319
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
2320
 * Context: can sleep
2321 2322 2323
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
2324
 * spi_controller (which the caller must release), or NULL if there is
2325
 * no such master registered.
2326 2327
 *
 * Return: the SPI master structure on success, else NULL.
2328
 */
2329
struct spi_controller *spi_busnum_to_master(u16 bus_num)
2330
{
T
Tony Jones 已提交
2331
	struct device		*dev;
2332
	struct spi_controller	*ctlr = NULL;
D
Dave Young 已提交
2333

2334
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2335
				__spi_controller_match);
D
Dave Young 已提交
2336
	if (dev)
2337
		ctlr = container_of(dev, struct spi_controller, dev);
D
Dave Young 已提交
2338
	/* reference got in class_find_device */
2339
	return ctlr;
2340 2341 2342
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/*-------------------------------------------------------------------------*/

/* Core methods for SPI resource management */

/**
 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 *                 during the processing of a spi_message while using
 *                 spi_transfer_one
 * @spi:     the spi device for which we allocate memory
 * @release: the release code to execute for this resource
 * @size:    size to alloc and return
 * @gfp:     GFP allocation flags
 *
 * Return: the pointer to the allocated data
 *
 * This may get enhanced in the future to allocate from a memory pool
2359
 * of the @spi_device or @spi_controller to avoid repeated allocations.
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
 */
void *spi_res_alloc(struct spi_device *spi,
		    spi_res_release_t release,
		    size_t size, gfp_t gfp)
{
	struct spi_res *sres;

	sres = kzalloc(sizeof(*sres) + size, gfp);
	if (!sres)
		return NULL;

	INIT_LIST_HEAD(&sres->entry);
	sres->release = release;

	return sres->data;
}
EXPORT_SYMBOL_GPL(spi_res_alloc);

/**
 * spi_res_free - free an spi resource
 * @res: pointer to the custom data of a resource
 *
 */
void spi_res_free(void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	if (!res)
		return;

	WARN_ON(!list_empty(&sres->entry));
	kfree(sres);
}
EXPORT_SYMBOL_GPL(spi_res_free);

/**
 * spi_res_add - add a spi_res to the spi_message
 * @message: the spi message
 * @res:     the spi_resource
 */
void spi_res_add(struct spi_message *message, void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	WARN_ON(!list_empty(&sres->entry));
	list_add_tail(&sres->entry, &message->resources);
}
EXPORT_SYMBOL_GPL(spi_res_add);

/**
 * spi_res_release - release all spi resources for this message
2411
 * @ctlr:  the @spi_controller
2412 2413
 * @message: the @spi_message
 */
2414
void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2415 2416 2417 2418 2419 2420 2421 2422
{
	struct spi_res *res;

	while (!list_empty(&message->resources)) {
		res = list_last_entry(&message->resources,
				      struct spi_res, entry);

		if (res->release)
2423
			res->release(ctlr, message, res->data);
2424 2425 2426 2427 2428 2429 2430

		list_del(&res->entry);

		kfree(res);
	}
}
EXPORT_SYMBOL_GPL(spi_res_release);
2431 2432 2433

/*-------------------------------------------------------------------------*/

2434 2435
/* Core methods for spi_message alterations */

2436
static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2437 2438 2439 2440 2441 2442 2443 2444
					    struct spi_message *msg,
					    void *res)
{
	struct spi_replaced_transfers *rxfer = res;
	size_t i;

	/* call extra callback if requested */
	if (rxfer->release)
2445
		rxfer->release(ctlr, msg, res);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464

	/* insert replaced transfers back into the message */
	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);

	/* remove the formerly inserted entries */
	for (i = 0; i < rxfer->inserted; i++)
		list_del(&rxfer->inserted_transfers[i].transfer_list);
}

/**
 * spi_replace_transfers - replace transfers with several transfers
 *                         and register change with spi_message.resources
 * @msg:           the spi_message we work upon
 * @xfer_first:    the first spi_transfer we want to replace
 * @remove:        number of transfers to remove
 * @insert:        the number of transfers we want to insert instead
 * @release:       extra release code necessary in some circumstances
 * @extradatasize: extra data to allocate (with alignment guarantees
 *                 of struct @spi_transfer)
2465
 * @gfp:           gfp flags
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
 *
 * Returns: pointer to @spi_replaced_transfers,
 *          PTR_ERR(...) in case of errors.
 */
struct spi_replaced_transfers *spi_replace_transfers(
	struct spi_message *msg,
	struct spi_transfer *xfer_first,
	size_t remove,
	size_t insert,
	spi_replaced_release_t release,
	size_t extradatasize,
	gfp_t gfp)
{
	struct spi_replaced_transfers *rxfer;
	struct spi_transfer *xfer;
	size_t i;

	/* allocate the structure using spi_res */
	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
			      insert * sizeof(struct spi_transfer)
			      + sizeof(struct spi_replaced_transfers)
			      + extradatasize,
			      gfp);
	if (!rxfer)
		return ERR_PTR(-ENOMEM);

	/* the release code to invoke before running the generic release */
	rxfer->release = release;

	/* assign extradata */
	if (extradatasize)
		rxfer->extradata =
			&rxfer->inserted_transfers[insert];

	/* init the replaced_transfers list */
	INIT_LIST_HEAD(&rxfer->replaced_transfers);

	/* assign the list_entry after which we should reinsert
	 * the @replaced_transfers - it may be spi_message.messages!
	 */
	rxfer->replaced_after = xfer_first->transfer_list.prev;

	/* remove the requested number of transfers */
	for (i = 0; i < remove; i++) {
		/* if the entry after replaced_after it is msg->transfers
		 * then we have been requested to remove more transfers
		 * than are in the list
		 */
		if (rxfer->replaced_after->next == &msg->transfers) {
			dev_err(&msg->spi->dev,
				"requested to remove more spi_transfers than are available\n");
			/* insert replaced transfers back into the message */
			list_splice(&rxfer->replaced_transfers,
				    rxfer->replaced_after);

			/* free the spi_replace_transfer structure */
			spi_res_free(rxfer);

			/* and return with an error */
			return ERR_PTR(-EINVAL);
		}

		/* remove the entry after replaced_after from list of
		 * transfers and add it to list of replaced_transfers
		 */
		list_move_tail(rxfer->replaced_after->next,
			       &rxfer->replaced_transfers);
	}

	/* create copy of the given xfer with identical settings
	 * based on the first transfer to get removed
	 */
	for (i = 0; i < insert; i++) {
		/* we need to run in reverse order */
		xfer = &rxfer->inserted_transfers[insert - 1 - i];

		/* copy all spi_transfer data */
		memcpy(xfer, xfer_first, sizeof(*xfer));

		/* add to list */
		list_add(&xfer->transfer_list, rxfer->replaced_after);

		/* clear cs_change and delay_usecs for all but the last */
		if (i) {
			xfer->cs_change = false;
			xfer->delay_usecs = 0;
		}
	}

	/* set up inserted */
	rxfer->inserted = insert;

	/* and register it with spi_res/spi_message */
	spi_res_add(msg, rxfer);

	return rxfer;
}
EXPORT_SYMBOL_GPL(spi_replace_transfers);

2565
static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2566 2567 2568 2569
					struct spi_message *msg,
					struct spi_transfer **xferp,
					size_t maxsize,
					gfp_t gfp)
2570 2571 2572 2573 2574 2575 2576 2577
{
	struct spi_transfer *xfer = *xferp, *xfers;
	struct spi_replaced_transfers *srt;
	size_t offset;
	size_t count, i;

	/* warn once about this fact that we are splitting a transfer */
	dev_warn_once(&msg->spi->dev,
2578
		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2579 2580 2581 2582 2583 2584 2585
		      xfer->len, maxsize);

	/* calculate how many we have to replace */
	count = DIV_ROUND_UP(xfer->len, maxsize);

	/* create replacement */
	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2586 2587
	if (IS_ERR(srt))
		return PTR_ERR(srt);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	xfers = srt->inserted_transfers;

	/* now handle each of those newly inserted spi_transfers
	 * note that the replacements spi_transfers all are preset
	 * to the same values as *xferp, so tx_buf, rx_buf and len
	 * are all identical (as well as most others)
	 * so we just have to fix up len and the pointers.
	 *
	 * this also includes support for the depreciated
	 * spi_message.is_dma_mapped interface
	 */

	/* the first transfer just needs the length modified, so we
	 * run it outside the loop
	 */
F
Fabio Estevam 已提交
2603
	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

	/* all the others need rx_buf/tx_buf also set */
	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
		/* update rx_buf, tx_buf and dma */
		if (xfers[i].rx_buf)
			xfers[i].rx_buf += offset;
		if (xfers[i].rx_dma)
			xfers[i].rx_dma += offset;
		if (xfers[i].tx_buf)
			xfers[i].tx_buf += offset;
		if (xfers[i].tx_dma)
			xfers[i].tx_dma += offset;

		/* update length */
		xfers[i].len = min(maxsize, xfers[i].len - offset);
	}

	/* we set up xferp to the last entry we have inserted,
	 * so that we skip those already split transfers
	 */
	*xferp = &xfers[count - 1];

	/* increment statistics counters */
2627
	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
				       transfers_split_maxsize);
	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
				       transfers_split_maxsize);

	return 0;
}

/**
 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
 *                              when an individual transfer exceeds a
 *                              certain size
2639
 * @ctlr:    the @spi_controller for this transfer
2640 2641
 * @msg:   the @spi_message to transform
 * @maxsize:  the maximum when to apply this
2642
 * @gfp: GFP allocation flags
2643 2644 2645
 *
 * Return: status of transformation
 */
2646
int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
				struct spi_message *msg,
				size_t maxsize,
				gfp_t gfp)
{
	struct spi_transfer *xfer;
	int ret;

	/* iterate over the transfer_list,
	 * but note that xfer is advanced to the last transfer inserted
	 * to avoid checking sizes again unnecessarily (also xfer does
	 * potentiall belong to a different list by the time the
	 * replacement has happened
	 */
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (xfer->len > maxsize) {
2662 2663
			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
							   maxsize, gfp);
2664 2665 2666 2667 2668 2669 2670 2671
			if (ret)
				return ret;
		}
	}

	return 0;
}
EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2672 2673 2674

/*-------------------------------------------------------------------------*/

2675
/* Core methods for SPI controller protocol drivers.  Some of the
2676 2677 2678
 * other core methods are currently defined as inline functions.
 */

2679 2680
static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
					u8 bits_per_word)
2681
{
2682
	if (ctlr->bits_per_word_mask) {
2683 2684 2685
		/* Only 32 bits fit in the mask */
		if (bits_per_word > 32)
			return -EINVAL;
2686
		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2687 2688 2689 2690 2691 2692
			return -EINVAL;
	}

	return 0;
}

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
2710 2711
 *
 * Return: zero on success, else a negative error code.
2712 2713 2714
 */
int spi_setup(struct spi_device *spi)
{
2715
	unsigned	bad_bits, ugly_bits;
2716
	int		status;
2717

W
wangyuhang 已提交
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
2731
	/* help drivers fail *cleanly* when they need options
2732
	 * that aren't supported with their current controller
2733
	 */
2734
	bad_bits = spi->mode & ~spi->controller->mode_bits;
2735 2736 2737 2738 2739 2740 2741 2742 2743
	ugly_bits = bad_bits &
		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
	if (ugly_bits) {
		dev_warn(&spi->dev,
			 "setup: ignoring unsupported mode bits %x\n",
			 ugly_bits);
		spi->mode &= ~ugly_bits;
		bad_bits &= ~ugly_bits;
	}
2744
	if (bad_bits) {
2745
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2746 2747 2748 2749
			bad_bits);
		return -EINVAL;
	}

2750 2751 2752
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

2753 2754
	status = __spi_validate_bits_per_word(spi->controller,
					      spi->bits_per_word);
2755 2756
	if (status)
		return status;
2757

2758
	if (!spi->max_speed_hz)
2759
		spi->max_speed_hz = spi->controller->max_speed_hz;
2760

2761 2762
	if (spi->controller->setup)
		status = spi->controller->setup(spi);
2763

2764 2765
	spi_set_cs(spi, false);

J
Jingoo Han 已提交
2766
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

2779
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2780
{
2781
	struct spi_controller *ctlr = spi->controller;
2782
	struct spi_transfer *xfer;
2783
	int w_size;
2784

2785 2786 2787
	if (list_empty(&message->transfers))
		return -EINVAL;

2788 2789 2790 2791 2792
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
2793 2794 2795
	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
	    (spi->mode & SPI_3WIRE)) {
		unsigned flags = ctlr->flags;
2796 2797 2798 2799

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
2800
			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2801
				return -EINVAL;
2802
			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2803 2804 2805 2806
				return -EINVAL;
		}
	}

2807
	/**
2808 2809
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
2810 2811
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2812
	 */
2813
	message->frame_length = 0;
2814
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2815
		message->frame_length += xfer->len;
2816 2817
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
2818 2819

		if (!xfer->speed_hz)
2820
			xfer->speed_hz = spi->max_speed_hz;
2821
		if (!xfer->speed_hz)
2822
			xfer->speed_hz = ctlr->max_speed_hz;
2823

2824 2825
		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
			xfer->speed_hz = ctlr->max_speed_hz;
2826

2827
		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2828
			return -EINVAL;
2829

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		/* No partial transfers accepted */
2842
		if (xfer->len % w_size)
2843 2844
			return -EINVAL;

2845 2846
		if (xfer->speed_hz && ctlr->min_speed_hz &&
		    xfer->speed_hz < ctlr->min_speed_hz)
2847
			return -EINVAL;
W
wangyuhang 已提交
2848 2849 2850 2851 2852 2853

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
2854 2855
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
W
wangyuhang 已提交
2856
		 */
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
W
wangyuhang 已提交
2869
		/* check transfer rx_nbits */
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
2882 2883
	}

2884
	message->status = -EINPROGRESS;
2885 2886 2887 2888 2889 2890

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
2891
	struct spi_controller *ctlr = spi->controller;
2892 2893 2894

	message->spi = spi;

2895
	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2896 2897
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);

2898 2899
	trace_spi_message_submit(message);

2900
	return ctlr->transfer(spi, message);
2901 2902
}

D
David Brownell 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2931 2932
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
2933 2934 2935
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
2936
	struct spi_controller *ctlr = spi->controller;
2937 2938
	int ret;
	unsigned long flags;
D
David Brownell 已提交
2939

2940 2941 2942 2943
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2944
	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
D
David Brownell 已提交
2945

2946
	if (ctlr->bus_lock_flag)
2947 2948 2949
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
2950

2951
	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2952 2953

	return ret;
D
David Brownell 已提交
2954 2955 2956
}
EXPORT_SYMBOL_GPL(spi_async);

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2985 2986
 *
 * Return: zero on success, else a negative error code.
2987 2988 2989
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
2990
	struct spi_controller *ctlr = spi->controller;
2991 2992 2993
	int ret;
	unsigned long flags;

2994 2995 2996 2997
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2998
	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2999 3000 3001

	ret = __spi_async(spi, message);

3002
	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3003 3004 3005 3006 3007 3008

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

3009

3010 3011 3012 3013
int spi_flash_read(struct spi_device *spi,
		   struct spi_flash_read_message *msg)

{
3014
	struct spi_controller *master = spi->controller;
3015
	struct device *rx_dev = NULL;
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	int ret;

	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
	     msg->addr_nbits == SPI_NBITS_DUAL) &&
	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
		return -EINVAL;
	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
	     msg->addr_nbits == SPI_NBITS_QUAD) &&
	    !(spi->mode & SPI_TX_QUAD))
		return -EINVAL;
	if (msg->data_nbits == SPI_NBITS_DUAL &&
	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
	if (msg->data_nbits == SPI_NBITS_QUAD &&
	    !(spi->mode &  SPI_RX_QUAD))
		return -EINVAL;

	if (master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return ret;
		}
	}
3041

3042
	mutex_lock(&master->bus_lock_mutex);
M
Mark Brown 已提交
3043
	mutex_lock(&master->io_mutex);
3044
	if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3045 3046 3047 3048 3049 3050 3051
		rx_dev = master->dma_rx->device->dev;
		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
				  msg->buf, msg->len,
				  DMA_FROM_DEVICE);
		if (!ret)
			msg->cur_msg_mapped = true;
	}
3052
	ret = master->spi_flash_read(spi, msg);
3053 3054 3055
	if (msg->cur_msg_mapped)
		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
			      DMA_FROM_DEVICE);
M
Mark Brown 已提交
3056
	mutex_unlock(&master->io_mutex);
3057
	mutex_unlock(&master->bus_lock_mutex);
3058

3059 3060 3061 3062 3063 3064 3065
	if (master->auto_runtime_pm)
		pm_runtime_put(master->dev.parent);

	return ret;
}
EXPORT_SYMBOL_GPL(spi_flash_read);

3066 3067
/*-------------------------------------------------------------------------*/

3068
/* Utility methods for SPI protocol drivers, layered on
3069 3070 3071 3072
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

3073 3074 3075 3076 3077
static void spi_complete(void *arg)
{
	complete(arg);
}

M
Mark Brown 已提交
3078
static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3079 3080 3081
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
3082
	struct spi_controller *ctlr = spi->controller;
3083 3084 3085 3086 3087
	unsigned long flags;

	status = __spi_validate(spi, message);
	if (status != 0)
		return status;
3088 3089 3090

	message->complete = spi_complete;
	message->context = &done;
3091
	message->spi = spi;
3092

3093
	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3094 3095
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);

3096 3097 3098 3099 3100
	/* If we're not using the legacy transfer method then we will
	 * try to transfer in the calling context so special case.
	 * This code would be less tricky if we could remove the
	 * support for driver implemented message queues.
	 */
3101 3102
	if (ctlr->transfer == spi_queued_transfer) {
		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3103 3104 3105 3106 3107

		trace_spi_message_submit(message);

		status = __spi_queued_transfer(spi, message, false);

3108
		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3109 3110 3111
	} else {
		status = spi_async_locked(spi, message);
	}
3112 3113

	if (status == 0) {
3114 3115 3116
		/* Push out the messages in the calling context if we
		 * can.
		 */
3117 3118
		if (ctlr->transfer == spi_queued_transfer) {
			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3119 3120 3121
						       spi_sync_immediate);
			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
						       spi_sync_immediate);
3122
			__spi_pump_messages(ctlr, false);
3123
		}
3124

3125 3126 3127 3128 3129 3130 3131
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

3132 3133 3134 3135
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
3136
 * Context: can sleep
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
3148 3149 3150
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
3151
 * Return: zero on success, else a negative error code.
3152 3153 3154
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
M
Mark Brown 已提交
3155 3156
	int ret;

3157
	mutex_lock(&spi->controller->bus_lock_mutex);
M
Mark Brown 已提交
3158
	ret = __spi_sync(spi, message);
3159
	mutex_unlock(&spi->controller->bus_lock_mutex);
M
Mark Brown 已提交
3160 3161

	return ret;
3162 3163 3164
}
EXPORT_SYMBOL_GPL(spi_sync);

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
3176
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3177 3178
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
3179
 * Return: zero on success, else a negative error code.
3180 3181 3182
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
M
Mark Brown 已提交
3183
	return __spi_sync(spi, message);
3184 3185 3186 3187 3188
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3189
 * @ctlr: SPI bus master that should be locked for exclusive bus access
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
3200
 * Return: always zero.
3201
 */
3202
int spi_bus_lock(struct spi_controller *ctlr)
3203 3204 3205
{
	unsigned long flags;

3206
	mutex_lock(&ctlr->bus_lock_mutex);
3207

3208 3209 3210
	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
	ctlr->bus_lock_flag = 1;
	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3211 3212 3213 3214 3215 3216 3217 3218 3219

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3220
 * @ctlr: SPI bus master that was locked for exclusive bus access
3221 3222 3223 3224 3225 3226 3227 3228
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
3229
 * Return: always zero.
3230
 */
3231
int spi_bus_unlock(struct spi_controller *ctlr)
3232
{
3233
	ctlr->bus_lock_flag = 0;
3234

3235
	mutex_unlock(&ctlr->bus_lock_mutex);
3236 3237 3238 3239 3240

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

3241
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
3242
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3243 3244 3245 3246 3247 3248 3249 3250

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
3251 3252
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
3253
 * Context: can sleep
3254 3255 3256 3257
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
3258
 * This call may only be used from a context that may sleep.
3259
 *
D
David Brownell 已提交
3260
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
3261 3262
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
3263
 * spi_{async,sync}() calls with dma-safe buffers.
3264 3265
 *
 * Return: zero on success, else a negative error code.
3266 3267
 */
int spi_write_then_read(struct spi_device *spi,
3268 3269
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
3270
{
D
David Brownell 已提交
3271
	static DEFINE_MUTEX(lock);
3272 3273 3274

	int			status;
	struct spi_message	message;
3275
	struct spi_transfer	x[2];
3276 3277
	u8			*local_buf;

3278 3279 3280 3281
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
3282
	 */
3283
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3284 3285
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
3286 3287 3288 3289 3290
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
3291

3292
	spi_message_init(&message);
J
Jingoo Han 已提交
3293
	memset(x, 0, sizeof(x));
3294 3295 3296 3297 3298 3299 3300 3301
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
3302

3303
	memcpy(local_buf, txbuf, n_tx);
3304 3305
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
3306 3307 3308

	/* do the i/o */
	status = spi_sync(spi, &message);
3309
	if (status == 0)
3310
		memcpy(rxbuf, x[1].rx_buf, n_rx);
3311

3312
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
3313
		mutex_unlock(&lock);
3314 3315 3316 3317 3318 3319 3320 3321 3322
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
#if IS_ENABLED(CONFIG_OF_DYNAMIC)
static int __spi_of_device_match(struct device *dev, void *data)
{
	return dev->of_node == data;
}

/* must call put_device() when done with returned spi_device device */
static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
{
	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
						__spi_of_device_match);
	return dev ? to_spi_device(dev) : NULL;
}

3337
static int __spi_of_controller_match(struct device *dev, const void *data)
3338 3339 3340 3341
{
	return dev->of_node == data;
}

3342 3343
/* the spi controllers are not using spi_bus, so we find it with another way */
static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3344 3345 3346 3347
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, node,
3348
				__spi_of_controller_match);
3349 3350
	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
		dev = class_find_device(&spi_slave_class, NULL, node,
3351
					__spi_of_controller_match);
3352 3353 3354 3355
	if (!dev)
		return NULL;

	/* reference got in class_find_device */
3356
	return container_of(dev, struct spi_controller, dev);
3357 3358 3359 3360 3361 3362
}

static int of_spi_notify(struct notifier_block *nb, unsigned long action,
			 void *arg)
{
	struct of_reconfig_data *rd = arg;
3363
	struct spi_controller *ctlr;
3364 3365 3366 3367
	struct spi_device *spi;

	switch (of_reconfig_get_state_change(action, arg)) {
	case OF_RECONFIG_CHANGE_ADD:
3368 3369
		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
		if (ctlr == NULL)
3370 3371
			return NOTIFY_OK;	/* not for us */

3372
		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3373
			put_device(&ctlr->dev);
3374 3375 3376
			return NOTIFY_OK;
		}

3377 3378
		spi = of_register_spi_device(ctlr, rd->dn);
		put_device(&ctlr->dev);
3379 3380

		if (IS_ERR(spi)) {
3381 3382
			pr_err("%s: failed to create for '%pOF'\n",
					__func__, rd->dn);
3383
			of_node_clear_flag(rd->dn, OF_POPULATED);
3384 3385 3386 3387 3388
			return notifier_from_errno(PTR_ERR(spi));
		}
		break;

	case OF_RECONFIG_CHANGE_REMOVE:
3389 3390 3391 3392
		/* already depopulated? */
		if (!of_node_check_flag(rd->dn, OF_POPULATED))
			return NOTIFY_OK;

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
		/* find our device by node */
		spi = of_find_spi_device_by_node(rd->dn);
		if (spi == NULL)
			return NOTIFY_OK;	/* no? not meant for us */

		/* unregister takes one ref away */
		spi_unregister_device(spi);

		/* and put the reference of the find */
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_of_notifier = {
	.notifier_call = of_spi_notify,
};
#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
extern struct notifier_block spi_of_notifier;
#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */

3416
#if IS_ENABLED(CONFIG_ACPI)
3417
static int spi_acpi_controller_match(struct device *dev, const void *data)
3418 3419 3420 3421 3422 3423 3424 3425 3426
{
	return ACPI_COMPANION(dev->parent) == data;
}

static int spi_acpi_device_match(struct device *dev, void *data)
{
	return ACPI_COMPANION(dev) == data;
}

3427
static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3428 3429 3430 3431
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, adev,
3432
				spi_acpi_controller_match);
3433 3434
	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
		dev = class_find_device(&spi_slave_class, NULL, adev,
3435
					spi_acpi_controller_match);
3436 3437 3438
	if (!dev)
		return NULL;

3439
	return container_of(dev, struct spi_controller, dev);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
}

static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
{
	struct device *dev;

	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);

	return dev ? to_spi_device(dev) : NULL;
}

static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
			   void *arg)
{
	struct acpi_device *adev = arg;
3455
	struct spi_controller *ctlr;
3456 3457 3458 3459
	struct spi_device *spi;

	switch (value) {
	case ACPI_RECONFIG_DEVICE_ADD:
3460 3461
		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
		if (!ctlr)
3462 3463
			break;

3464 3465
		acpi_register_spi_device(ctlr, adev);
		put_device(&ctlr->dev);
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
		break;
	case ACPI_RECONFIG_DEVICE_REMOVE:
		if (!acpi_device_enumerated(adev))
			break;

		spi = acpi_spi_find_device_by_adev(adev);
		if (!spi)
			break;

		spi_unregister_device(spi);
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_acpi_notifier = {
	.notifier_call = acpi_spi_notify,
};
#else
extern struct notifier_block spi_acpi_notifier;
#endif

3490 3491
static int __init spi_init(void)
{
3492 3493
	int	status;

3494
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3495 3496 3497 3498 3499 3500 3501 3502
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
3503

3504 3505 3506
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
3507

3508 3509 3510 3511 3512 3513
	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
		status = class_register(&spi_slave_class);
		if (status < 0)
			goto err3;
	}

3514
	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3515
		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3516 3517
	if (IS_ENABLED(CONFIG_ACPI))
		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3518

3519
	return 0;
3520

3521 3522
err3:
	class_unregister(&spi_master_class);
3523 3524 3525 3526 3527 3528 3529
err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
3530
}
3531

3532 3533
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
3534 3535 3536 3537
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
3538
 */
3539
postcore_initcall(spi_init);
3540