rc80211_minstrel_ht.c 38.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3 4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/debugfs.h>
#include <linux/random.h>
13
#include <linux/moduleparam.h>
14 15 16
#include <linux/ieee80211.h>
#include <net/mac80211.h>
#include "rate.h"
17
#include "sta_info.h"
18 19 20
#include "rc80211_minstrel.h"
#include "rc80211_minstrel_ht.h"

21
#define AVG_AMPDU_SIZE	16
22 23 24
#define AVG_PKT_SIZE	1200

/* Number of bits for an average sized packet */
25
#define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
26 27

/* Number of symbols for a packet with (bps) bits per symbol */
28
#define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
29

30
/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
31 32
#define MCS_SYMBOL_TIME(sgi, syms)					\
	(sgi ?								\
33 34
	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
	  ((syms) * 1000) << 2		/* syms * 4 us */		\
35 36 37
	)

/* Transmit duration for the raw data part of an average sized packet */
38 39
#define MCS_DURATION(streams, sgi, bps) \
	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
40

41 42
#define BW_20			0
#define BW_40			1
43
#define BW_80			2
44

45 46 47 48
/*
 * Define group sort order: HT40 -> SGI -> #streams
 */
#define GROUP_IDX(_streams, _sgi, _ht40)	\
49
	MINSTREL_HT_GROUP_0 +			\
50
	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
51
	MINSTREL_MAX_STREAMS * _sgi +	\
52 53
	_streams - 1

54
/* MCS rate information for an MCS group */
55 56
#define MCS_GROUP(_streams, _sgi, _ht40)				\
	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
57 58
	.streams = _streams,						\
	.flags =							\
59
		IEEE80211_TX_RC_MCS |					\
60 61 62 63 64 65 66 67 68 69 70 71 72 73
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
	.duration = {							\
		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
	}								\
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
#define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
	(MINSTREL_VHT_GROUP_0 +						\
	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
	 MINSTREL_MAX_STREAMS * (_sgi) +				\
	 (_streams) - 1)

#define BW2VBPS(_bw, r3, r2, r1)					\
	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)

#define VHT_GROUP(_streams, _sgi, _bw)					\
	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
	.streams = _streams,						\
	.flags =							\
		IEEE80211_TX_RC_VHT_MCS |				\
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
	.duration = {							\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  117,  54,  26)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  234, 108,  52)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  351, 162,  78)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  468, 216, 104)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  702, 324, 156)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  936, 432, 208)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1053, 486, 234)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1170, 540, 260)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1404, 648, 312)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1560, 720, 346))		\
	}								\
}

115
#define CCK_DURATION(_bitrate, _short, _len)		\
116
	(1000 * (10 /* SIFS */ +			\
W
Weilong Chen 已提交
117
	 (_short ? 72 + 24 : 144 + 48) +		\
118
	 (8 * (_len + 4) * 10) / (_bitrate)))
119 120 121 122 123 124 125 126 127 128 129

#define CCK_ACK_DURATION(_bitrate, _short)			\
	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))

#define CCK_DURATION_LIST(_short)			\
	CCK_ACK_DURATION(10, _short),			\
	CCK_ACK_DURATION(20, _short),			\
	CCK_ACK_DURATION(55, _short),			\
	CCK_ACK_DURATION(110, _short)

130 131 132
#define CCK_GROUP					\
	[MINSTREL_CCK_GROUP] = {			\
		.streams = 0,				\
133
		.flags = 0,				\
134 135 136 137
		.duration = {				\
			CCK_DURATION_LIST(false),	\
			CCK_DURATION_LIST(true)		\
		}					\
138 139
	}

140 141 142 143 144 145 146
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
static bool minstrel_vht_only = true;
module_param(minstrel_vht_only, bool, 0644);
MODULE_PARM_DESC(minstrel_vht_only,
		 "Use only VHT rates when VHT is supported by sta.");
#endif

147 148 149 150
/*
 * To enable sufficiently targeted rate sampling, MCS rates are divided into
 * groups, based on the number of streams and flags (HT40, SGI) that they
 * use.
151 152
 *
 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
153
 * BW -> SGI -> #streams
154 155
 */
const struct mcs_group minstrel_mcs_groups[] = {
156 157 158
	MCS_GROUP(1, 0, BW_20),
	MCS_GROUP(2, 0, BW_20),
	MCS_GROUP(3, 0, BW_20),
159

160 161 162
	MCS_GROUP(1, 1, BW_20),
	MCS_GROUP(2, 1, BW_20),
	MCS_GROUP(3, 1, BW_20),
163

164 165 166
	MCS_GROUP(1, 0, BW_40),
	MCS_GROUP(2, 0, BW_40),
	MCS_GROUP(3, 0, BW_40),
167

168 169 170
	MCS_GROUP(1, 1, BW_40),
	MCS_GROUP(2, 1, BW_40),
	MCS_GROUP(3, 1, BW_40),
171

172 173 174 175 176 177 178 179 180 181
	CCK_GROUP,

#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
	VHT_GROUP(1, 0, BW_20),
	VHT_GROUP(2, 0, BW_20),
	VHT_GROUP(3, 0, BW_20),

	VHT_GROUP(1, 1, BW_20),
	VHT_GROUP(2, 1, BW_20),
	VHT_GROUP(3, 1, BW_20),
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	VHT_GROUP(1, 0, BW_40),
	VHT_GROUP(2, 0, BW_40),
	VHT_GROUP(3, 0, BW_40),

	VHT_GROUP(1, 1, BW_40),
	VHT_GROUP(2, 1, BW_40),
	VHT_GROUP(3, 1, BW_40),

	VHT_GROUP(1, 0, BW_80),
	VHT_GROUP(2, 0, BW_80),
	VHT_GROUP(3, 0, BW_80),

	VHT_GROUP(1, 1, BW_80),
	VHT_GROUP(2, 1, BW_80),
	VHT_GROUP(3, 1, BW_80),
#endif
};
200

201
static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
202

203 204 205
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
 * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
 *
 * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
 */
static u16
minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
{
	u16 mask = 0;

	if (bw == BW_20) {
		if (nss != 3 && nss != 6)
			mask = BIT(9);
	} else if (bw == BW_80) {
		if (nss == 3 || nss == 7)
			mask = BIT(6);
		else if (nss == 6)
			mask = BIT(9);
	} else {
		WARN_ON(bw != BW_40);
	}

	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
	case IEEE80211_VHT_MCS_SUPPORT_0_7:
		mask |= 0x300;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_8:
		mask |= 0x200;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_9:
		break;
	default:
		mask = 0x3ff;
	}

	return 0x3ff & ~mask;
}

245 246 247 248 249 250
/*
 * Look up an MCS group index based on mac80211 rate information
 */
static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
{
251
	return GROUP_IDX((rate->idx / 8) + 1,
252 253
			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
254 255
}

256 257 258 259 260 261 262 263 264
static int
minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
{
	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
}

265 266 267 268 269 270 271 272
static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		      struct ieee80211_tx_rate *rate)
{
	int group, idx;

	if (rate->flags & IEEE80211_TX_RC_MCS) {
		group = minstrel_ht_get_group_idx(rate);
273
		idx = rate->idx % 8;
274 275 276
	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
		group = minstrel_vht_get_group_idx(rate);
		idx = ieee80211_rate_get_vht_mcs(rate);
277 278 279 280 281 282 283 284
	} else {
		group = MINSTREL_CCK_GROUP;

		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
			if (rate->idx == mp->cck_rates[idx])
				break;

		/* short preamble */
285
		if (!(mi->supported[group] & BIT(idx)))
286 287 288 289 290
			idx += 4;
	}
	return &mi->groups[group].rates[idx];
}

291 292 293 294 295 296 297
static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
{
	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
}

/*
298 299
 * Return current throughput based on the average A-MPDU length, taking into
 * account the expected number of retransmissions and their expected length
300
 */
301
int
302 303
minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
		       int prob_ewma)
304
{
305
	unsigned int nsecs = 0;
306

307
	/* do not account throughput if sucess prob is below 10% */
308
	if (prob_ewma < MINSTREL_FRAC(10, 100))
309
		return 0;
310

311
	if (group != MINSTREL_CCK_GROUP)
312
		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
313

314 315
	nsecs += minstrel_mcs_groups[group].duration[rate];

316 317 318 319 320 321 322 323 324 325
	/*
	 * For the throughput calculation, limit the probability value to 90% to
	 * account for collision related packet error rate fluctuation
	 * (prob is scaled - see MINSTREL_FRAC above)
	 */
	if (prob_ewma > MINSTREL_FRAC(90, 100))
		return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
								      / nsecs));
	else
		return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs));
326 327
}

328 329 330 331 332 333 334 335
/*
 * Find & sort topmost throughput rates
 *
 * If multiple rates provide equal throughput the sorting is based on their
 * current success probability. Higher success probability is preferred among
 * MCS groups, CCK rates do not provide aggregation and are therefore at last.
 */
static void
336 337
minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
			       u16 *tp_list)
338
{
339 340
	int cur_group, cur_idx, cur_tp_avg, cur_prob;
	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
341 342 343 344
	int j = MAX_THR_RATES;

	cur_group = index / MCS_GROUP_RATES;
	cur_idx = index  % MCS_GROUP_RATES;
345
	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma;
346
	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
347

348
	do {
349 350
		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
351
		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
352 353
		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
						    tmp_prob);
354 355
		if (cur_tp_avg < tmp_tp_avg ||
		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
356 357 358
			break;
		j--;
	} while (j > 0);
359 360 361 362 363 364 365 366 367 368 369 370 371

	if (j < MAX_THR_RATES - 1) {
		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
		       (MAX_THR_RATES - (j + 1))));
	}
	if (j < MAX_THR_RATES)
		tp_list[j] = index;
}

/*
 * Find and set the topmost probability rate per sta and per group
 */
static void
372
minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
373 374
{
	struct minstrel_mcs_group_data *mg;
375
	struct minstrel_rate_stats *mrs;
376 377
	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
	int max_tp_group, cur_tp_avg, cur_group, cur_idx;
378 379
	int max_gpr_group, max_gpr_idx;
	int max_gpr_tp_avg, max_gpr_prob;
380

381 382
	cur_group = index / MCS_GROUP_RATES;
	cur_idx = index % MCS_GROUP_RATES;
383
	mg = &mi->groups[index / MCS_GROUP_RATES];
384
	mrs = &mg->rates[index % MCS_GROUP_RATES];
385 386 387

	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
388
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
389
	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
390 391 392 393 394 395 396 397

	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
	    (max_tp_group != MINSTREL_CCK_GROUP))
		return;

398 399 400 401
	max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
	max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
	max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma;

402
	if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) {
403 404
		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
						    mrs->prob_ewma);
405
		if (cur_tp_avg > tmp_tp_avg)
406
			mi->max_prob_rate = index;
407

408 409 410 411
		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
							max_gpr_idx,
							max_gpr_prob);
		if (cur_tp_avg > max_gpr_tp_avg)
412 413
			mg->max_group_prob_rate = index;
	} else {
414
		if (mrs->prob_ewma > tmp_prob)
415
			mi->max_prob_rate = index;
416
		if (mrs->prob_ewma > max_gpr_prob)
417 418 419 420 421 422 423 424 425 426 427 428 429
			mg->max_group_prob_rate = index;
	}
}


/*
 * Assign new rate set per sta and use CCK rates only if the fastest
 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
 * rate sets where MCS and CCK rates are mixed, because CCK rates can
 * not use aggregation.
 */
static void
minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
430 431
				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
432
{
433
	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
434 435 436 437
	int i;

	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
438 439
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
440 441 442

	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
443 444
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

	if (tmp_cck_tp > tmp_mcs_tp) {
		for(i = 0; i < MAX_THR_RATES; i++) {
			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
						       tmp_mcs_tp_rate);
		}
	}

}

/*
 * Try to increase robustness of max_prob rate by decrease number of
 * streams if possible.
 */
static inline void
minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
463
	int tmp_max_streams, group, tmp_idx, tmp_prob;
464 465 466 467 468 469
	int tmp_tp = 0;

	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
			  MCS_GROUP_RATES].streams;
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
470
		if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
471
			continue;
472 473

		tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
474
		tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma;
475

476
		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
477 478
		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
				mi->max_prob_rate = mg->max_group_prob_rate;
479
				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
480 481
								tmp_idx,
								tmp_prob);
482 483 484 485
		}
	}
}

486 487 488 489 490 491
/*
 * Update rate statistics and select new primary rates
 *
 * Rules for rate selection:
 *  - max_prob_rate must use only one stream, as a tradeoff between delivery
 *    probability and throughput during strong fluctuations
492
 *  - as long as the max prob rate has a probability of more than 75%, pick
493 494 495 496 497 498
 *    higher throughput rates, even if the probablity is a bit lower
 */
static void
minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
499
	struct minstrel_rate_stats *mrs;
500
	int group, i, j, cur_prob;
501 502
	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
503 504 505 506 507 508 509 510 511 512 513

	if (mi->ampdu_packets > 0) {
		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
		mi->ampdu_len = 0;
		mi->ampdu_packets = 0;
	}

	mi->sample_slow = 0;
	mi->sample_count = 0;

514 515 516 517 518
	/* Initialize global rate indexes */
	for(j = 0; j < MAX_THR_RATES; j++){
		tmp_mcs_tp_rate[j] = 0;
		tmp_cck_tp_rate[j] = 0;
	}
519

520 521
	/* Find best rate sets within all MCS groups*/
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
522 523

		mg = &mi->groups[group];
524
		if (!mi->supported[group])
525 526 527 528
			continue;

		mi->sample_count++;

529 530 531 532
		/* (re)Initialize group rate indexes */
		for(j = 0; j < MAX_THR_RATES; j++)
			tmp_group_tp_rate[j] = group;

533
		for (i = 0; i < MCS_GROUP_RATES; i++) {
534
			if (!(mi->supported[group] & BIT(i)))
535 536
				continue;

537 538
			index = MCS_GROUP_RATES * group + i;

539 540 541
			mrs = &mg->rates[i];
			mrs->retry_updated = false;
			minstrel_calc_rate_stats(mrs);
542
			cur_prob = mrs->prob_ewma;
543

544
			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
545 546
				continue;

547 548 549 550 551 552 553
			/* Find max throughput rate set */
			if (group != MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_mcs_tp_rate);
			} else if (group == MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_cck_tp_rate);
554 555
			}

556 557 558
			/* Find max throughput rate set within a group */
			minstrel_ht_sort_best_tp_rates(mi, index,
						       tmp_group_tp_rate);
559

560 561
			/* Find max probability rate per group and global */
			minstrel_ht_set_best_prob_rate(mi, index);
562 563
		}

564 565
		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
		       sizeof(mg->max_group_tp_rate));
566 567
	}

568 569 570
	/* Assign new rate set per sta */
	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
571

572 573 574 575 576
	/* Try to increase robustness of max_prob_rate*/
	minstrel_ht_prob_rate_reduce_streams(mi);

	/* try to sample all available rates during each interval */
	mi->sample_count *= 8;
577

578 579 580
#ifdef CONFIG_MAC80211_DEBUGFS
	/* use fixed index if set */
	if (mp->fixed_rate_idx != -1) {
581 582
		for (i = 0; i < 4; i++)
			mi->max_tp_rate[i] = mp->fixed_rate_idx;
583 584 585
		mi->max_prob_rate = mp->fixed_rate_idx;
	}
#endif
586

587
	/* Reset update timer */
588
	mi->last_stats_update = jiffies;
589 590 591
}

static bool
592
minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
593
{
594
	if (rate->idx < 0)
595 596
		return false;

597
	if (!rate->count)
598 599
		return false;

600 601
	if (rate->flags & IEEE80211_TX_RC_MCS ||
	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
602 603 604 605 606 607
		return true;

	return rate->idx == mp->cck_rates[0] ||
	       rate->idx == mp->cck_rates[1] ||
	       rate->idx == mp->cck_rates[2] ||
	       rate->idx == mp->cck_rates[3];
608 609 610
}

static void
611
minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
612 613 614 615 616 617 618 619
{
	struct minstrel_mcs_group_data *mg;

	for (;;) {
		mi->sample_group++;
		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
		mg = &mi->groups[mi->sample_group];

620
		if (!mi->supported[mi->sample_group])
621 622 623 624 625 626 627 628 629 630 631 632
			continue;

		if (++mg->index >= MCS_GROUP_RATES) {
			mg->index = 0;
			if (++mg->column >= ARRAY_SIZE(sample_table))
				mg->column = 0;
		}
		break;
	}
}

static void
633
minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
634 635 636 637 638 639 640
{
	int group, orig_group;

	orig_group = group = *idx / MCS_GROUP_RATES;
	while (group > 0) {
		group--;

641
		if (!mi->supported[group])
642 643 644 645 646 647 648
			continue;

		if (minstrel_mcs_groups[group].streams >
		    minstrel_mcs_groups[orig_group].streams)
			continue;

		if (primary)
649
			*idx = mi->groups[group].max_group_tp_rate[0];
650
		else
651
			*idx = mi->groups[group].max_group_tp_rate[1];
652 653 654 655 656
		break;
	}
}

static void
657
minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
658 659 660 661 662
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
	u16 tid;

663 664 665
	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
		return;

666 667 668
	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
		return;

669
	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
670 671 672
		return;

	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
673
	if (likely(sta->ampdu_mlme.tid_tx[tid]))
674 675
		return;

676
	ieee80211_start_tx_ba_session(pubsta, tid, 0);
677 678 679 680
}

static void
minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
681
                      void *priv_sta, struct ieee80211_tx_status *st)
682
{
683
	struct ieee80211_tx_info *info = st->info;
684 685 686 687 688
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_tx_rate *ar = info->status.rates;
	struct minstrel_rate_stats *rate, *rate2;
	struct minstrel_priv *mp = priv;
689
	bool last, update = false;
690
	int i;
691 692

	if (!msp->is_ht)
693 694
		return mac80211_minstrel.tx_status_ext(priv, sband,
						       &msp->legacy, st);
695 696 697 698 699 700

	/* This packet was aggregated but doesn't carry status info */
	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
		return;

B
Björn Smedman 已提交
701 702 703
	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
		info->status.ampdu_ack_len =
			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
704 705 706 707 708 709 710
		info->status.ampdu_len = 1;
	}

	mi->ampdu_packets++;
	mi->ampdu_len += info->status.ampdu_len;

	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
711
		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
712
		mi->sample_tries = 1;
713 714 715
		mi->sample_count--;
	}

716
	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
717 718
		mi->sample_packets += info->status.ampdu_len;

719
	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
720 721
	for (i = 0; !last; i++) {
		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
722
		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
723

724
		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
725

B
Björn Smedman 已提交
726
		if (last)
727 728 729 730 731 732 733 734 735
			rate->success += info->status.ampdu_ack_len;

		rate->attempts += ar[i].count * info->status.ampdu_len;
	}

	/*
	 * check for sudden death of spatial multiplexing,
	 * downgrade to a lower number of streams if necessary.
	 */
736
	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
737 738
	if (rate->attempts > 30 &&
	    MINSTREL_FRAC(rate->success, rate->attempts) <
739
	    MINSTREL_FRAC(20, 100)) {
740
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
741 742
		update = true;
	}
743

744
	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
745 746
	if (rate2->attempts > 30 &&
	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
747
	    MINSTREL_FRAC(20, 100)) {
748
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
749 750
		update = true;
	}
751

752 753
	if (time_after(jiffies, mi->last_stats_update +
				(mp->update_interval / 2 * HZ) / 1000)) {
754
		update = true;
755 756
		minstrel_ht_update_stats(mp, mi);
	}
757 758 759

	if (update)
		minstrel_ht_update_rates(mp, mi);
760 761 762 763 764 765
}

static void
minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
                         int index)
{
766
	struct minstrel_rate_stats *mrs;
767 768 769
	const struct mcs_group *group;
	unsigned int tx_time, tx_time_rtscts, tx_time_data;
	unsigned int cw = mp->cw_min;
770
	unsigned int ctime = 0;
771 772
	unsigned int t_slot = 9; /* FIXME */
	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
773
	unsigned int overhead = 0, overhead_rtscts = 0;
774

775 776 777 778
	mrs = minstrel_get_ratestats(mi, index);
	if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) {
		mrs->retry_count = 1;
		mrs->retry_count_rtscts = 1;
779 780 781
		return;
	}

782 783 784
	mrs->retry_count = 2;
	mrs->retry_count_rtscts = 2;
	mrs->retry_updated = true;
785 786

	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
787
	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
788 789 790 791 792 793 794

	/* Contention time for first 2 tries */
	ctime = (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);
	ctime += (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);

795 796 797 798 799
	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
		overhead = mi->overhead;
		overhead_rtscts = mi->overhead_rtscts;
	}

800
	/* Total TX time for data and Contention after first 2 tries */
801 802
	tx_time = ctime + 2 * (overhead + tx_time_data);
	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
803 804

	/* See how many more tries we can fit inside segment size */
805
	do {
806 807 808 809 810
		/* Contention time for this try */
		ctime = (t_slot * cw) >> 1;
		cw = min((cw << 1) | 1, mp->cw_max);

		/* Total TX time after this try */
811 812
		tx_time += ctime + overhead + tx_time_data;
		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
813

814
		if (tx_time_rtscts < mp->segment_size)
815
			mrs->retry_count_rtscts++;
816
	} while ((tx_time < mp->segment_size) &&
817
	         (++mrs->retry_count < mp->max_retry));
818 819 820 821 822
}


static void
minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
823
                     struct ieee80211_sta_rates *ratetbl, int offset, int index)
824 825
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
826
	struct minstrel_rate_stats *mrs;
827
	u8 idx;
828
	u16 flags = group->flags;
829

830 831
	mrs = minstrel_get_ratestats(mi, index);
	if (!mrs->retry_updated)
832 833
		minstrel_calc_retransmit(mp, mi, index);

834
	if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
835 836 837 838
		ratetbl->rate[offset].count = 2;
		ratetbl->rate[offset].count_rts = 2;
		ratetbl->rate[offset].count_cts = 2;
	} else {
839 840 841
		ratetbl->rate[offset].count = mrs->retry_count;
		ratetbl->rate[offset].count_cts = mrs->retry_count;
		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
842
	}
843

844
	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
845
		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
846 847 848
	else if (flags & IEEE80211_TX_RC_VHT_MCS)
		idx = ((group->streams - 1) << 4) |
		      ((index % MCS_GROUP_RATES) & 0xF);
849
	else
850
		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
851

852 853 854 855
	/* enable RTS/CTS if needed:
	 *  - if station is in dynamic SMPS (and streams > 1)
	 *  - for fallback rates, to increase chances of getting through
	 */
856
	if (offset > 0 ||
857 858
	    (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
	     group->streams > 1)) {
859 860 861 862 863 864 865 866
		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
	}

	ratetbl->rate[offset].idx = idx;
	ratetbl->rate[offset].flags = flags;
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
static inline int
minstrel_ht_get_prob_ewma(struct minstrel_ht_sta *mi, int rate)
{
	int group = rate / MCS_GROUP_RATES;
	rate %= MCS_GROUP_RATES;
	return mi->groups[group].rates[rate].prob_ewma;
}

static int
minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
{
	int group = mi->max_prob_rate / MCS_GROUP_RATES;
	const struct mcs_group *g = &minstrel_mcs_groups[group];
	int rate = mi->max_prob_rate % MCS_GROUP_RATES;

	/* Disable A-MSDU if max_prob_rate is bad */
	if (mi->groups[group].rates[rate].prob_ewma < MINSTREL_FRAC(50, 100))
		return 1;

	/* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
	if (g->duration[rate] > MCS_DURATION(1, 0, 52))
		return 500;

	/*
	 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
	 * data packet size
	 */
	if (g->duration[rate] > MCS_DURATION(1, 0, 104))
		return 1600;

	/*
	 * If the rate is slower than single-stream MCS7, or if the max throughput
	 * rate success probability is less than 75%, limit A-MSDU to twice the usual
	 * data packet size
	 */
	if (g->duration[rate] > MCS_DURATION(1, 0, 260) ||
	    (minstrel_ht_get_prob_ewma(mi, mi->max_tp_rate[0]) <
	     MINSTREL_FRAC(75, 100)))
		return 3200;

	/*
	 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
	 * Since aggregation sessions are started/stopped without txq flush, use
	 * the limit here to avoid the complexity of having to de-aggregate
	 * packets in the queue.
	 */
	if (!mi->sta->vht_cap.vht_supported)
		return IEEE80211_MAX_MPDU_LEN_HT_BA;

	/* unlimited */
	return 0;
}

920 921 922 923 924 925 926 927
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct ieee80211_sta_rates *rates;
	int i = 0;

	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
	if (!rates)
928
		return;
929

930 931
	/* Start with max_tp_rate[0] */
	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
932 933

	if (mp->hw->max_rates >= 3) {
934 935
		/* At least 3 tx rates supported, use max_tp_rate[1] next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
936 937 938 939 940 941
	}

	if (mp->hw->max_rates >= 2) {
		/*
		 * At least 2 tx rates supported, use max_prob_rate next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
942 943
	}

944
	mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
945 946
	rates->rate[i].idx = -1;
	rate_control_set_rates(mp->hw, mi->sta, rates);
947 948 949 950 951 952 953 954 955 956 957 958
}

static inline int
minstrel_get_duration(int index)
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	return group->duration[index % MCS_GROUP_RATES];
}

static int
minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
959
	struct minstrel_rate_stats *mrs;
960
	struct minstrel_mcs_group_data *mg;
961
	unsigned int sample_dur, sample_group, cur_max_tp_streams;
962
	int tp_rate1, tp_rate2;
963 964 965 966 967 968 969 970 971 972
	int sample_idx = 0;

	if (mi->sample_wait > 0) {
		mi->sample_wait--;
		return -1;
	}

	if (!mi->sample_tries)
		return -1;

973 974
	sample_group = mi->sample_group;
	mg = &mi->groups[sample_group];
975
	sample_idx = sample_table[mg->column][mg->index];
976
	minstrel_set_next_sample_idx(mi);
977

978
	if (!(mi->supported[sample_group] & BIT(sample_idx)))
979 980
		return -1;

981
	mrs = &mg->rates[sample_idx];
982
	sample_idx += sample_group * MCS_GROUP_RATES;
983

984 985 986 987 988 989 990 991 992 993
	/* Set tp_rate1, tp_rate2 to the highest / second highest max_tp_rate */
	if (minstrel_get_duration(mi->max_tp_rate[0]) >
	    minstrel_get_duration(mi->max_tp_rate[1])) {
		tp_rate1 = mi->max_tp_rate[1];
		tp_rate2 = mi->max_tp_rate[0];
	} else {
		tp_rate1 = mi->max_tp_rate[0];
		tp_rate2 = mi->max_tp_rate[1];
	}

994 995
	/*
	 * Sampling might add some overhead (RTS, no aggregation)
996 997
	 * to the frame. Hence, don't use sampling for the highest currently
	 * used highest throughput or probability rate.
998
	 */
999
	if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate)
1000
		return -1;
1001

1002
	/*
1003 1004
	 * Do not sample if the probability is already higher than 95%
	 * to avoid wasting airtime.
1005
	 */
1006
	if (mrs->prob_ewma > MINSTREL_FRAC(95, 100))
1007
		return -1;
1008 1009 1010 1011 1012

	/*
	 * Make sure that lower rates get sampled only occasionally,
	 * if the link is working perfectly.
	 */
1013

1014
	cur_max_tp_streams = minstrel_mcs_groups[tp_rate1 /
1015
		MCS_GROUP_RATES].streams;
1016
	sample_dur = minstrel_get_duration(sample_idx);
1017
	if (sample_dur >= minstrel_get_duration(tp_rate2) &&
1018
	    (cur_max_tp_streams - 1 <
1019 1020
	     minstrel_mcs_groups[sample_group].streams ||
	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
1021
		if (mrs->sample_skipped < 20)
1022
			return -1;
1023 1024

		if (mi->sample_slow++ > 2)
1025
			return -1;
1026
	}
1027
	mi->sample_tries--;
1028 1029 1030 1031 1032 1033 1034 1035

	return sample_idx;
}

static void
minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
                     struct ieee80211_tx_rate_control *txrc)
{
1036
	const struct mcs_group *sample_group;
1037
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1038
	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct minstrel_priv *mp = priv;
	int sample_idx;

	if (rate_control_send_low(sta, priv_sta, txrc))
		return;

	if (!msp->is_ht)
		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);

1050 1051 1052 1053
	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
		minstrel_aggr_check(sta, txrc->skb);

1054
	info->flags |= mi->tx_flags;
1055

1056 1057 1058 1059 1060
#ifdef CONFIG_MAC80211_DEBUGFS
	if (mp->fixed_rate_idx != -1)
		return;
#endif

1061 1062
	/* Don't use EAPOL frames for sampling on non-mrr hw */
	if (mp->hw->max_rates == 1 &&
1063
	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1064 1065 1066
		sample_idx = -1;
	else
		sample_idx = minstrel_get_sample_rate(mp, mi);
1067

1068 1069 1070 1071 1072 1073 1074
	mi->total_packets++;

	/* wraparound */
	if (mi->total_packets == ~0) {
		mi->total_packets = 0;
		mi->sample_packets = 0;
	}
1075 1076 1077 1078 1079 1080

	if (sample_idx < 0)
		return;

	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1081 1082 1083 1084 1085
	rate->count = 1;

	if (sample_idx / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
		rate->idx = mp->cck_rates[idx];
1086 1087 1088
	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
				       sample_group->streams);
1089 1090 1091
	} else {
		rate->idx = sample_idx % MCS_GROUP_RATES +
			    (sample_group->streams - 1) * 8;
1092 1093
	}

1094
	rate->flags = sample_group->flags;
1095 1096
}

1097 1098 1099 1100 1101 1102 1103
static void
minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		       struct ieee80211_supported_band *sband,
		       struct ieee80211_sta *sta)
{
	int i;

1104
	if (sband->band != NL80211_BAND_2GHZ)
1105 1106
		return;

1107
	if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1108 1109
		return;

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	mi->cck_supported = 0;
	mi->cck_supported_short = 0;
	for (i = 0; i < 4; i++) {
		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
			continue;

		mi->cck_supported |= BIT(i);
		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
			mi->cck_supported_short |= BIT(i);
	}

1121
	mi->supported[MINSTREL_CCK_GROUP] = mi->cck_supported;
1122 1123
}

1124 1125
static void
minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1126
			struct cfg80211_chan_def *chandef,
1127
                        struct ieee80211_sta *sta, void *priv_sta)
1128 1129 1130 1131 1132 1133
{
	struct minstrel_priv *mp = priv;
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
	u16 sta_cap = sta->ht_cap.cap;
1134
	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1135
	struct sta_info *sinfo = container_of(sta, struct sta_info, sta);
1136
	int use_vht;
1137
	int n_supported = 0;
1138 1139 1140 1141 1142
	int ack_dur;
	int stbc;
	int i;

	/* fall back to the old minstrel for legacy stations */
1143 1144
	if (!sta->ht_cap.ht_supported)
		goto use_legacy;
1145

1146
	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1147

1148 1149 1150 1151 1152 1153 1154
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
	if (vht_cap->vht_supported)
		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
	else
#endif
	use_vht = 0;

1155 1156
	msp->is_ht = true;
	memset(mi, 0, sizeof(*mi));
1157 1158

	mi->sta = sta;
1159
	mi->last_stats_update = jiffies;
1160

1161 1162 1163
	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
	mi->overhead += ack_dur;
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;

	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);

	/* When using MRR, sample more on the first attempt, without delay */
	if (mp->has_mrr) {
		mi->sample_count = 16;
		mi->sample_wait = 0;
	} else {
		mi->sample_count = 8;
		mi->sample_wait = 8;
	}
	mi->sample_tries = 4;

1178 1179 1180 1181 1182
	/* TODO tx_flags for vht - ATM the RC API is not fine-grained enough */
	if (!use_vht) {
		stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
			IEEE80211_HT_CAP_RX_STBC_SHIFT;
		mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1183

1184 1185 1186
		if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
			mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
	}
1187 1188

	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1189
		u32 gflags = minstrel_mcs_groups[i].flags;
1190
		int bw, nss;
1191

1192
		mi->supported[i] = 0;
1193 1194 1195 1196 1197
		if (i == MINSTREL_CCK_GROUP) {
			minstrel_ht_update_cck(mp, mi, sband, sta);
			continue;
		}

1198 1199
		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1200 1201 1202 1203 1204 1205
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
					continue;
			} else {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
					continue;
			}
1206 1207
		}

1208
		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1209
		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1210 1211
			continue;

1212 1213
		nss = minstrel_mcs_groups[i].streams;

1214
		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1215 1216 1217 1218 1219 1220
		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
			continue;

		/* HT rate */
		if (gflags & IEEE80211_TX_RC_MCS) {
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1221
			if (use_vht && minstrel_vht_only)
1222 1223
				continue;
#endif
1224 1225
			mi->supported[i] = mcs->rx_mask[nss - 1];
			if (mi->supported[i])
1226 1227 1228 1229 1230 1231 1232 1233
				n_supported++;
			continue;
		}

		/* VHT rate */
		if (!vht_cap->vht_supported ||
		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1234 1235
			continue;

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
				continue;
			}
		}

		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
			bw = BW_40;
		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
			bw = BW_80;
		else
			bw = BW_20;

1251
		mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1252
				vht_cap->vht_mcs.tx_mcs_map);
1253

1254
		if (mi->supported[i])
1255
			n_supported++;
1256
	}
1257 1258 1259 1260

	if (!n_supported)
		goto use_legacy;

1261 1262 1263
	if (test_sta_flag(sinfo, WLAN_STA_SHORT_PREAMBLE))
		mi->cck_supported_short |= mi->cck_supported_short << 4;

1264
	/* create an initial rate table with the lowest supported rates */
1265
	minstrel_ht_update_stats(mp, mi);
1266
	minstrel_ht_update_rates(mp, mi);
1267

1268 1269 1270 1271 1272 1273 1274
	return;

use_legacy:
	msp->is_ht = false;
	memset(&msp->legacy, 0, sizeof(msp->legacy));
	msp->legacy.r = msp->ratelist;
	msp->legacy.sample_table = msp->sample_table;
1275 1276
	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
					   &msp->legacy);
1277 1278 1279 1280
}

static void
minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1281
		      struct cfg80211_chan_def *chandef,
1282 1283
                      struct ieee80211_sta *sta, void *priv_sta)
{
1284
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1285 1286 1287 1288
}

static void
minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1289
			struct cfg80211_chan_def *chandef,
1290
                        struct ieee80211_sta *sta, void *priv_sta,
1291
                        u32 changed)
1292
{
1293
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
}

static void *
minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
{
	struct ieee80211_supported_band *sband;
	struct minstrel_ht_sta_priv *msp;
	struct minstrel_priv *mp = priv;
	struct ieee80211_hw *hw = mp->hw;
	int max_rates = 0;
	int i;

1306
	for (i = 0; i < NUM_NL80211_BANDS; i++) {
1307 1308 1309 1310 1311
		sband = hw->wiphy->bands[i];
		if (sband && sband->n_bitrates > max_rates)
			max_rates = sband->n_bitrates;
	}

1312
	msp = kzalloc(sizeof(*msp), gfp);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	if (!msp)
		return NULL;

	msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp);
	if (!msp->ratelist)
		goto error;

	msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp);
	if (!msp->sample_table)
		goto error1;

	return msp;

error1:
1327
	kfree(msp->ratelist);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
error:
	kfree(msp);
	return NULL;
}

static void
minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;

	kfree(msp->sample_table);
	kfree(msp->ratelist);
	kfree(msp);
}

static void *
minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
	return mac80211_minstrel.alloc(hw, debugfsdir);
}

static void
minstrel_ht_free(void *priv)
{
	mac80211_minstrel.free(priv);
}

1355 1356 1357 1358
static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
1359
	int i, j, prob, tp_avg;
1360 1361 1362 1363

	if (!msp->is_ht)
		return mac80211_minstrel.get_expected_throughput(priv_sta);

1364 1365
	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1366
	prob = mi->groups[i].rates[j].prob_ewma;
1367

1368
	/* convert tp_avg from pkt per second in kbps */
1369 1370
	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1371 1372

	return tp_avg;
1373 1374
}

1375
static const struct rate_control_ops mac80211_minstrel_ht = {
1376
	.name = "minstrel_ht",
1377
	.tx_status_ext = minstrel_ht_tx_status,
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	.get_rate = minstrel_ht_get_rate,
	.rate_init = minstrel_ht_rate_init,
	.rate_update = minstrel_ht_rate_update,
	.alloc_sta = minstrel_ht_alloc_sta,
	.free_sta = minstrel_ht_free_sta,
	.alloc = minstrel_ht_alloc,
	.free = minstrel_ht_free,
#ifdef CONFIG_MAC80211_DEBUGFS
	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
#endif
1389
	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1390 1391 1392
};


1393
static void __init init_sample_table(void)
1394 1395 1396 1397 1398 1399
{
	int col, i, new_idx;
	u8 rnd[MCS_GROUP_RATES];

	memset(sample_table, 0xff, sizeof(sample_table));
	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1400
		prandom_bytes(rnd, sizeof(rnd));
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
			while (sample_table[col][new_idx] != 0xff)
				new_idx = (new_idx + 1) % MCS_GROUP_RATES;

			sample_table[col][new_idx] = i;
		}
	}
}

int __init
rc80211_minstrel_ht_init(void)
{
	init_sample_table();
	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
}

void
rc80211_minstrel_ht_exit(void)
{
	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
}