rc80211_minstrel_ht.c 36.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3 4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/debugfs.h>
#include <linux/random.h>
13
#include <linux/moduleparam.h>
14 15 16 17 18 19 20 21 22 23 24 25
#include <linux/ieee80211.h>
#include <net/mac80211.h>
#include "rate.h"
#include "rc80211_minstrel.h"
#include "rc80211_minstrel_ht.h"

#define AVG_PKT_SIZE	1200

/* Number of bits for an average sized packet */
#define MCS_NBITS (AVG_PKT_SIZE << 3)

/* Number of symbols for a packet with (bps) bits per symbol */
26
#define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
27

28
/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
29 30
#define MCS_SYMBOL_TIME(sgi, syms)					\
	(sgi ?								\
31 32
	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
	  ((syms) * 1000) << 2		/* syms * 4 us */		\
33 34 35 36 37
	)

/* Transmit duration for the raw data part of an average sized packet */
#define MCS_DURATION(streams, sgi, bps) MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps)))

38 39
#define BW_20			0
#define BW_40			1
40
#define BW_80			2
41

42 43 44 45
/*
 * Define group sort order: HT40 -> SGI -> #streams
 */
#define GROUP_IDX(_streams, _sgi, _ht40)	\
46
	MINSTREL_HT_GROUP_0 +			\
47
	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
48
	MINSTREL_MAX_STREAMS * _sgi +	\
49 50
	_streams - 1

51
/* MCS rate information for an MCS group */
52 53
#define MCS_GROUP(_streams, _sgi, _ht40)				\
	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
54 55
	.streams = _streams,						\
	.flags =							\
56
		IEEE80211_TX_RC_MCS |					\
57 58 59 60 61 62 63 64 65 66 67 68 69 70
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
	.duration = {							\
		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
	}								\
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
	(MINSTREL_VHT_GROUP_0 +						\
	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
	 MINSTREL_MAX_STREAMS * (_sgi) +				\
	 (_streams) - 1)

#define BW2VBPS(_bw, r3, r2, r1)					\
	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)

#define VHT_GROUP(_streams, _sgi, _bw)					\
	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
	.streams = _streams,						\
	.flags =							\
		IEEE80211_TX_RC_VHT_MCS |				\
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
	.duration = {							\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  117,  54,  26)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  234, 108,  52)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  351, 162,  78)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  468, 216, 104)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  702, 324, 156)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  936, 432, 208)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1053, 486, 234)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1170, 540, 260)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1404, 648, 312)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1560, 720, 346))		\
	}								\
}

112
#define CCK_DURATION(_bitrate, _short, _len)		\
113
	(1000 * (10 /* SIFS */ +			\
W
Weilong Chen 已提交
114
	 (_short ? 72 + 24 : 144 + 48) +		\
115
	 (8 * (_len + 4) * 10) / (_bitrate)))
116 117 118 119 120 121 122 123 124 125 126

#define CCK_ACK_DURATION(_bitrate, _short)			\
	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))

#define CCK_DURATION_LIST(_short)			\
	CCK_ACK_DURATION(10, _short),			\
	CCK_ACK_DURATION(20, _short),			\
	CCK_ACK_DURATION(55, _short),			\
	CCK_ACK_DURATION(110, _short)

127 128 129
#define CCK_GROUP					\
	[MINSTREL_CCK_GROUP] = {			\
		.streams = 0,				\
130
		.flags = 0,				\
131 132 133 134
		.duration = {				\
			CCK_DURATION_LIST(false),	\
			CCK_DURATION_LIST(true)		\
		}					\
135 136
	}

137 138 139 140 141 142 143
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
static bool minstrel_vht_only = true;
module_param(minstrel_vht_only, bool, 0644);
MODULE_PARM_DESC(minstrel_vht_only,
		 "Use only VHT rates when VHT is supported by sta.");
#endif

144 145 146 147
/*
 * To enable sufficiently targeted rate sampling, MCS rates are divided into
 * groups, based on the number of streams and flags (HT40, SGI) that they
 * use.
148 149
 *
 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
150
 * BW -> SGI -> #streams
151 152
 */
const struct mcs_group minstrel_mcs_groups[] = {
153 154
	MCS_GROUP(1, 0, BW_20),
	MCS_GROUP(2, 0, BW_20),
155
#if MINSTREL_MAX_STREAMS >= 3
156
	MCS_GROUP(3, 0, BW_20),
157 158
#endif

159 160
	MCS_GROUP(1, 1, BW_20),
	MCS_GROUP(2, 1, BW_20),
161
#if MINSTREL_MAX_STREAMS >= 3
162
	MCS_GROUP(3, 1, BW_20),
163 164
#endif

165 166
	MCS_GROUP(1, 0, BW_40),
	MCS_GROUP(2, 0, BW_40),
167
#if MINSTREL_MAX_STREAMS >= 3
168
	MCS_GROUP(3, 0, BW_40),
169 170
#endif

171 172
	MCS_GROUP(1, 1, BW_40),
	MCS_GROUP(2, 1, BW_40),
173
#if MINSTREL_MAX_STREAMS >= 3
174
	MCS_GROUP(3, 1, BW_40),
175
#endif
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190
	CCK_GROUP,

#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
	VHT_GROUP(1, 0, BW_20),
	VHT_GROUP(2, 0, BW_20),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_20),
#endif

	VHT_GROUP(1, 1, BW_20),
	VHT_GROUP(2, 1, BW_20),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_20),
#endif
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	VHT_GROUP(1, 0, BW_40),
	VHT_GROUP(2, 0, BW_40),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_40),
#endif

	VHT_GROUP(1, 1, BW_40),
	VHT_GROUP(2, 1, BW_40),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_40),
#endif

	VHT_GROUP(1, 0, BW_80),
	VHT_GROUP(2, 0, BW_80),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_80),
#endif

	VHT_GROUP(1, 1, BW_80),
	VHT_GROUP(2, 1, BW_80),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_80),
#endif
#endif
};
217

218
static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
219

220 221 222
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/*
 * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
 * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
 *
 * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
 */
static u16
minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
{
	u16 mask = 0;

	if (bw == BW_20) {
		if (nss != 3 && nss != 6)
			mask = BIT(9);
	} else if (bw == BW_80) {
		if (nss == 3 || nss == 7)
			mask = BIT(6);
		else if (nss == 6)
			mask = BIT(9);
	} else {
		WARN_ON(bw != BW_40);
	}

	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
	case IEEE80211_VHT_MCS_SUPPORT_0_7:
		mask |= 0x300;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_8:
		mask |= 0x200;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_9:
		break;
	default:
		mask = 0x3ff;
	}

	return 0x3ff & ~mask;
}

262 263 264 265 266 267
/*
 * Look up an MCS group index based on mac80211 rate information
 */
static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
{
268
	return GROUP_IDX((rate->idx / 8) + 1,
269 270
			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
271 272
}

273 274 275 276 277 278 279 280 281
static int
minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
{
	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
}

282 283 284 285 286 287 288 289
static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		      struct ieee80211_tx_rate *rate)
{
	int group, idx;

	if (rate->flags & IEEE80211_TX_RC_MCS) {
		group = minstrel_ht_get_group_idx(rate);
290
		idx = rate->idx % 8;
291 292 293
	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
		group = minstrel_vht_get_group_idx(rate);
		idx = ieee80211_rate_get_vht_mcs(rate);
294 295 296 297 298 299 300 301 302 303 304 305 306 307
	} else {
		group = MINSTREL_CCK_GROUP;

		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
			if (rate->idx == mp->cck_rates[idx])
				break;

		/* short preamble */
		if (!(mi->groups[group].supported & BIT(idx)))
			idx += 4;
	}
	return &mi->groups[group].rates[idx];
}

308 309 310 311 312 313 314 315 316 317 318
static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
{
	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
}


/*
 * Recalculate success probabilities and counters for a rate using EWMA
 */
static void
319
minstrel_calc_rate_ewma(struct minstrel_rate_stats *mr)
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
{
	if (unlikely(mr->attempts > 0)) {
		mr->sample_skipped = 0;
		mr->cur_prob = MINSTREL_FRAC(mr->success, mr->attempts);
		if (!mr->att_hist)
			mr->probability = mr->cur_prob;
		else
			mr->probability = minstrel_ewma(mr->probability,
				mr->cur_prob, EWMA_LEVEL);
		mr->att_hist += mr->attempts;
		mr->succ_hist += mr->success;
	} else {
		mr->sample_skipped++;
	}
	mr->last_success = mr->success;
	mr->last_attempts = mr->attempts;
	mr->success = 0;
	mr->attempts = 0;
}

/*
 * Calculate throughput based on the average A-MPDU length, taking into account
 * the expected number of retransmissions and their expected length
 */
static void
345
minstrel_ht_calc_tp(struct minstrel_ht_sta *mi, int group, int rate)
346 347
{
	struct minstrel_rate_stats *mr;
348 349
	unsigned int nsecs = 0;
	unsigned int tp;
350
	unsigned int prob;
351 352

	mr = &mi->groups[group].rates[rate];
353
	prob = mr->probability;
354

355
	if (prob < MINSTREL_FRAC(1, 10)) {
356 357 358 359
		mr->cur_tp = 0;
		return;
	}

360 361 362 363 364 365 366
	/*
	 * For the throughput calculation, limit the probability value to 90% to
	 * account for collision related packet error rate fluctuation
	 */
	if (prob > MINSTREL_FRAC(9, 10))
		prob = MINSTREL_FRAC(9, 10);

367
	if (group != MINSTREL_CCK_GROUP)
368
		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
369

370 371
	nsecs += minstrel_mcs_groups[group].duration[rate];

372 373
	/* prob is scaled - see MINSTREL_FRAC above */
	tp = 1000000 * ((prob * 1000) / nsecs);
374
	mr->cur_tp = MINSTREL_TRUNC(tp);
375 376
}

377 378 379 380 381 382 383 384
/*
 * Find & sort topmost throughput rates
 *
 * If multiple rates provide equal throughput the sorting is based on their
 * current success probability. Higher success probability is preferred among
 * MCS groups, CCK rates do not provide aggregation and are therefore at last.
 */
static void
385 386
minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
			       u16 *tp_list)
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
{
	int cur_group, cur_idx, cur_thr, cur_prob;
	int tmp_group, tmp_idx, tmp_thr, tmp_prob;
	int j = MAX_THR_RATES;

	cur_group = index / MCS_GROUP_RATES;
	cur_idx = index  % MCS_GROUP_RATES;
	cur_thr = mi->groups[cur_group].rates[cur_idx].cur_tp;
	cur_prob = mi->groups[cur_group].rates[cur_idx].probability;

	tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
	tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
	tmp_thr = mi->groups[tmp_group].rates[tmp_idx].cur_tp;
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].probability;

	while (j > 0 && (cur_thr > tmp_thr ||
	      (cur_thr == tmp_thr && cur_prob > tmp_prob))) {
		j--;
		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
		tmp_thr = mi->groups[tmp_group].rates[tmp_idx].cur_tp;
		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].probability;
	}

	if (j < MAX_THR_RATES - 1) {
		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
		       (MAX_THR_RATES - (j + 1))));
	}
	if (j < MAX_THR_RATES)
		tp_list[j] = index;
}

/*
 * Find and set the topmost probability rate per sta and per group
 */
static void
423
minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
	int tmp_group, tmp_idx, tmp_tp, tmp_prob, max_tp_group;

	mg = &mi->groups[index / MCS_GROUP_RATES];
	mr = &mg->rates[index % MCS_GROUP_RATES];

	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
	tmp_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].probability;

	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
	    (max_tp_group != MINSTREL_CCK_GROUP))
		return;

	if (mr->probability > MINSTREL_FRAC(75, 100)) {
		if (mr->cur_tp > tmp_tp)
			mi->max_prob_rate = index;
		if (mr->cur_tp > mg->rates[mg->max_group_prob_rate].cur_tp)
			mg->max_group_prob_rate = index;
	} else {
		if (mr->probability > tmp_prob)
			mi->max_prob_rate = index;
		if (mr->probability > mg->rates[mg->max_group_prob_rate].probability)
			mg->max_group_prob_rate = index;
	}
}


/*
 * Assign new rate set per sta and use CCK rates only if the fastest
 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
 * rate sets where MCS and CCK rates are mixed, because CCK rates can
 * not use aggregation.
 */
static void
minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
466 467
				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
{
	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp;
	int i;

	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
	tmp_cck_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;

	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
	tmp_mcs_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;

	if (tmp_cck_tp > tmp_mcs_tp) {
		for(i = 0; i < MAX_THR_RATES; i++) {
			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
						       tmp_mcs_tp_rate);
		}
	}

}

/*
 * Try to increase robustness of max_prob rate by decrease number of
 * streams if possible.
 */
static inline void
minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
	int tmp_max_streams, group;
	int tmp_tp = 0;

	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
			  MCS_GROUP_RATES].streams;
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported || group == MINSTREL_CCK_GROUP)
			continue;
		mr = minstrel_get_ratestats(mi, mg->max_group_prob_rate);
		if (tmp_tp < mr->cur_tp &&
		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
				mi->max_prob_rate = mg->max_group_prob_rate;
				tmp_tp = mr->cur_tp;
		}
	}
}

516 517 518 519 520 521
/*
 * Update rate statistics and select new primary rates
 *
 * Rules for rate selection:
 *  - max_prob_rate must use only one stream, as a tradeoff between delivery
 *    probability and throughput during strong fluctuations
522
 *  - as long as the max prob rate has a probability of more than 75%, pick
523 524 525 526 527 528 529
 *    higher throughput rates, even if the probablity is a bit lower
 */
static void
minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
530
	int group, i, j;
531 532
	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
533 534 535 536 537 538 539 540 541 542 543

	if (mi->ampdu_packets > 0) {
		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
		mi->ampdu_len = 0;
		mi->ampdu_packets = 0;
	}

	mi->sample_slow = 0;
	mi->sample_count = 0;

544 545 546 547 548
	/* Initialize global rate indexes */
	for(j = 0; j < MAX_THR_RATES; j++){
		tmp_mcs_tp_rate[j] = 0;
		tmp_cck_tp_rate[j] = 0;
	}
549

550 551
	/* Find best rate sets within all MCS groups*/
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
552 553 554 555 556 557 558

		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mi->sample_count++;

559 560 561 562
		/* (re)Initialize group rate indexes */
		for(j = 0; j < MAX_THR_RATES; j++)
			tmp_group_tp_rate[j] = group;

563 564 565 566
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			if (!(mg->supported & BIT(i)))
				continue;

567 568
			index = MCS_GROUP_RATES * group + i;

569 570
			mr = &mg->rates[i];
			mr->retry_updated = false;
571 572
			minstrel_calc_rate_ewma(mr);
			minstrel_ht_calc_tp(mi, group, i);
573 574 575 576

			if (!mr->cur_tp)
				continue;

577 578 579 580 581 582 583
			/* Find max throughput rate set */
			if (group != MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_mcs_tp_rate);
			} else if (group == MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_cck_tp_rate);
584 585
			}

586 587 588
			/* Find max throughput rate set within a group */
			minstrel_ht_sort_best_tp_rates(mi, index,
						       tmp_group_tp_rate);
589

590 591
			/* Find max probability rate per group and global */
			minstrel_ht_set_best_prob_rate(mi, index);
592 593
		}

594 595
		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
		       sizeof(mg->max_group_tp_rate));
596 597
	}

598 599 600
	/* Assign new rate set per sta */
	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
601

602 603 604 605 606
	/* Try to increase robustness of max_prob_rate*/
	minstrel_ht_prob_rate_reduce_streams(mi);

	/* try to sample all available rates during each interval */
	mi->sample_count *= 8;
607

608 609 610
#ifdef CONFIG_MAC80211_DEBUGFS
	/* use fixed index if set */
	if (mp->fixed_rate_idx != -1) {
611 612
		for (i = 0; i < 4; i++)
			mi->max_tp_rate[i] = mp->fixed_rate_idx;
613 614 615
		mi->max_prob_rate = mp->fixed_rate_idx;
	}
#endif
616

617
	/* Reset update timer */
618 619 620 621
	mi->stats_update = jiffies;
}

static bool
622
minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
623
{
624
	if (rate->idx < 0)
625 626
		return false;

627
	if (!rate->count)
628 629
		return false;

630 631
	if (rate->flags & IEEE80211_TX_RC_MCS ||
	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
632 633 634 635 636 637
		return true;

	return rate->idx == mp->cck_rates[0] ||
	       rate->idx == mp->cck_rates[1] ||
	       rate->idx == mp->cck_rates[2] ||
	       rate->idx == mp->cck_rates[3];
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
}

static void
minstrel_next_sample_idx(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;

	for (;;) {
		mi->sample_group++;
		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
		mg = &mi->groups[mi->sample_group];

		if (!mg->supported)
			continue;

		if (++mg->index >= MCS_GROUP_RATES) {
			mg->index = 0;
			if (++mg->column >= ARRAY_SIZE(sample_table))
				mg->column = 0;
		}
		break;
	}
}

static void
663
minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
{
	int group, orig_group;

	orig_group = group = *idx / MCS_GROUP_RATES;
	while (group > 0) {
		group--;

		if (!mi->groups[group].supported)
			continue;

		if (minstrel_mcs_groups[group].streams >
		    minstrel_mcs_groups[orig_group].streams)
			continue;

		if (primary)
679
			*idx = mi->groups[group].max_group_tp_rate[0];
680
		else
681
			*idx = mi->groups[group].max_group_tp_rate[1];
682 683 684 685 686
		break;
	}
}

static void
687
minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
688 689 690 691 692
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
	u16 tid;

693 694 695
	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
		return;

696 697 698
	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
		return;

699
	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
700 701 702
		return;

	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
703
	if (likely(sta->ampdu_mlme.tid_tx[tid]))
704 705
		return;

706
	ieee80211_start_tx_ba_session(pubsta, tid, 5000);
707 708 709 710 711 712 713 714 715 716 717 718 719
}

static void
minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
                      struct ieee80211_sta *sta, void *priv_sta,
                      struct sk_buff *skb)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	struct ieee80211_tx_rate *ar = info->status.rates;
	struct minstrel_rate_stats *rate, *rate2;
	struct minstrel_priv *mp = priv;
720
	bool last, update = false;
721
	int i;
722 723 724 725 726 727 728 729 730

	if (!msp->is_ht)
		return mac80211_minstrel.tx_status(priv, sband, sta, &msp->legacy, skb);

	/* This packet was aggregated but doesn't carry status info */
	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
		return;

B
Björn Smedman 已提交
731 732 733
	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
		info->status.ampdu_ack_len =
			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
734 735 736 737 738 739 740
		info->status.ampdu_len = 1;
	}

	mi->ampdu_packets++;
	mi->ampdu_len += info->status.ampdu_len;

	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
741
		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
742
		mi->sample_tries = 1;
743 744 745
		mi->sample_count--;
	}

746
	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
747 748
		mi->sample_packets += info->status.ampdu_len;

749
	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
750 751
	for (i = 0; !last; i++) {
		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
752
		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
753

754
		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
755

B
Björn Smedman 已提交
756
		if (last)
757 758 759 760 761 762 763 764 765
			rate->success += info->status.ampdu_ack_len;

		rate->attempts += ar[i].count * info->status.ampdu_len;
	}

	/*
	 * check for sudden death of spatial multiplexing,
	 * downgrade to a lower number of streams if necessary.
	 */
766
	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
767 768
	if (rate->attempts > 30 &&
	    MINSTREL_FRAC(rate->success, rate->attempts) <
769
	    MINSTREL_FRAC(20, 100)) {
770
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
771 772
		update = true;
	}
773

774
	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
775 776
	if (rate2->attempts > 30 &&
	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
777
	    MINSTREL_FRAC(20, 100)) {
778
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
779 780
		update = true;
	}
781 782

	if (time_after(jiffies, mi->stats_update + (mp->update_interval / 2 * HZ) / 1000)) {
783
		update = true;
784
		minstrel_ht_update_stats(mp, mi);
785 786
		if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
		    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
787
			minstrel_aggr_check(sta, skb);
788
	}
789 790 791

	if (update)
		minstrel_ht_update_rates(mp, mi);
792 793 794 795 796 797 798 799 800 801
}

static void
minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
                         int index)
{
	struct minstrel_rate_stats *mr;
	const struct mcs_group *group;
	unsigned int tx_time, tx_time_rtscts, tx_time_data;
	unsigned int cw = mp->cw_min;
802
	unsigned int ctime = 0;
803 804
	unsigned int t_slot = 9; /* FIXME */
	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
805
	unsigned int overhead = 0, overhead_rtscts = 0;
806 807 808 809 810 811 812 813 814 815 816 817 818

	mr = minstrel_get_ratestats(mi, index);
	if (mr->probability < MINSTREL_FRAC(1, 10)) {
		mr->retry_count = 1;
		mr->retry_count_rtscts = 1;
		return;
	}

	mr->retry_count = 2;
	mr->retry_count_rtscts = 2;
	mr->retry_updated = true;

	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
819
	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
820 821 822 823 824 825 826

	/* Contention time for first 2 tries */
	ctime = (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);
	ctime += (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);

827 828 829 830 831
	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
		overhead = mi->overhead;
		overhead_rtscts = mi->overhead_rtscts;
	}

832
	/* Total TX time for data and Contention after first 2 tries */
833 834
	tx_time = ctime + 2 * (overhead + tx_time_data);
	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
835 836

	/* See how many more tries we can fit inside segment size */
837
	do {
838 839 840 841 842
		/* Contention time for this try */
		ctime = (t_slot * cw) >> 1;
		cw = min((cw << 1) | 1, mp->cw_max);

		/* Total TX time after this try */
843 844
		tx_time += ctime + overhead + tx_time_data;
		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
845

846 847 848 849 850 851 852 853 854
		if (tx_time_rtscts < mp->segment_size)
			mr->retry_count_rtscts++;
	} while ((tx_time < mp->segment_size) &&
	         (++mr->retry_count < mp->max_retry));
}


static void
minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
855
                     struct ieee80211_sta_rates *ratetbl, int offset, int index)
856 857 858
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	struct minstrel_rate_stats *mr;
859
	u8 idx;
860
	u16 flags = group->flags;
861 862 863 864 865

	mr = minstrel_get_ratestats(mi, index);
	if (!mr->retry_updated)
		minstrel_calc_retransmit(mp, mi, index);

866 867 868 869 870 871 872 873 874
	if (mr->probability < MINSTREL_FRAC(20, 100) || !mr->retry_count) {
		ratetbl->rate[offset].count = 2;
		ratetbl->rate[offset].count_rts = 2;
		ratetbl->rate[offset].count_cts = 2;
	} else {
		ratetbl->rate[offset].count = mr->retry_count;
		ratetbl->rate[offset].count_cts = mr->retry_count;
		ratetbl->rate[offset].count_rts = mr->retry_count_rtscts;
	}
875

876
	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
877
		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
878 879 880
	else if (flags & IEEE80211_TX_RC_VHT_MCS)
		idx = ((group->streams - 1) << 4) |
		      ((index % MCS_GROUP_RATES) & 0xF);
881
	else
882
		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

	if (offset > 0) {
		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
	}

	ratetbl->rate[offset].idx = idx;
	ratetbl->rate[offset].flags = flags;
}

static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct ieee80211_sta_rates *rates;
	int i = 0;

	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
	if (!rates)
901
		return;
902

903 904
	/* Start with max_tp_rate[0] */
	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
905 906

	if (mp->hw->max_rates >= 3) {
907 908
		/* At least 3 tx rates supported, use max_tp_rate[1] next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
909 910 911 912 913 914
	}

	if (mp->hw->max_rates >= 2) {
		/*
		 * At least 2 tx rates supported, use max_prob_rate next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
915 916
	}

917 918
	rates->rate[i].idx = -1;
	rate_control_set_rates(mp->hw, mi->sta, rates);
919 920 921 922 923 924 925 926 927 928 929 930 931 932
}

static inline int
minstrel_get_duration(int index)
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	return group->duration[index % MCS_GROUP_RATES];
}

static int
minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_rate_stats *mr;
	struct minstrel_mcs_group_data *mg;
933
	unsigned int sample_dur, sample_group, cur_max_tp_streams;
934 935 936 937 938 939 940 941 942 943
	int sample_idx = 0;

	if (mi->sample_wait > 0) {
		mi->sample_wait--;
		return -1;
	}

	if (!mi->sample_tries)
		return -1;

944 945
	sample_group = mi->sample_group;
	mg = &mi->groups[sample_group];
946
	sample_idx = sample_table[mg->column][mg->index];
947 948 949 950 951
	minstrel_next_sample_idx(mi);

	if (!(mg->supported & BIT(sample_idx)))
		return -1;

952
	mr = &mg->rates[sample_idx];
953
	sample_idx += sample_group * MCS_GROUP_RATES;
954

955 956 957
	/*
	 * Sampling might add some overhead (RTS, no aggregation)
	 * to the frame. Hence, don't use sampling for the currently
958
	 * used rates.
959
	 */
960 961
	if (sample_idx == mi->max_tp_rate[0] ||
	    sample_idx == mi->max_tp_rate[1] ||
962
	    sample_idx == mi->max_prob_rate)
963
		return -1;
964

965
	/*
966 967
	 * Do not sample if the probability is already higher than 95%
	 * to avoid wasting airtime.
968
	 */
969
	if (mr->probability > MINSTREL_FRAC(95, 100))
970
		return -1;
971 972 973 974 975

	/*
	 * Make sure that lower rates get sampled only occasionally,
	 * if the link is working perfectly.
	 */
976 977 978

	cur_max_tp_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
		MCS_GROUP_RATES].streams;
979
	sample_dur = minstrel_get_duration(sample_idx);
980 981
	if (sample_dur >= minstrel_get_duration(mi->max_tp_rate[1]) &&
	    (cur_max_tp_streams - 1 <
982 983
	     minstrel_mcs_groups[sample_group].streams ||
	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
984
		if (mr->sample_skipped < 20)
985
			return -1;
986 987

		if (mi->sample_slow++ > 2)
988
			return -1;
989
	}
990
	mi->sample_tries--;
991 992 993 994

	return sample_idx;
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static void
minstrel_ht_check_cck_shortpreamble(struct minstrel_priv *mp,
				    struct minstrel_ht_sta *mi, bool val)
{
	u8 supported = mi->groups[MINSTREL_CCK_GROUP].supported;

	if (!supported || !mi->cck_supported_short)
		return;

	if (supported & (mi->cck_supported_short << (val * 4)))
		return;

	supported ^= mi->cck_supported_short | (mi->cck_supported_short << 4);
	mi->groups[MINSTREL_CCK_GROUP].supported = supported;
}

1011 1012 1013 1014
static void
minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
                     struct ieee80211_tx_rate_control *txrc)
{
1015
	const struct mcs_group *sample_group;
1016
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1017
	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct minstrel_priv *mp = priv;
	int sample_idx;

	if (rate_control_send_low(sta, priv_sta, txrc))
		return;

	if (!msp->is_ht)
		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);

	info->flags |= mi->tx_flags;
1030
	minstrel_ht_check_cck_shortpreamble(mp, mi, txrc->short_preamble);
1031

1032 1033 1034 1035 1036
#ifdef CONFIG_MAC80211_DEBUGFS
	if (mp->fixed_rate_idx != -1)
		return;
#endif

1037 1038
	/* Don't use EAPOL frames for sampling on non-mrr hw */
	if (mp->hw->max_rates == 1 &&
1039
	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1040 1041 1042
		sample_idx = -1;
	else
		sample_idx = minstrel_get_sample_rate(mp, mi);
1043

1044 1045 1046 1047 1048 1049 1050
	mi->total_packets++;

	/* wraparound */
	if (mi->total_packets == ~0) {
		mi->total_packets = 0;
		mi->sample_packets = 0;
	}
1051 1052 1053 1054 1055 1056

	if (sample_idx < 0)
		return;

	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1057 1058 1059 1060 1061
	rate->count = 1;

	if (sample_idx / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
		rate->idx = mp->cck_rates[idx];
1062 1063 1064
	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
				       sample_group->streams);
1065 1066 1067
	} else {
		rate->idx = sample_idx % MCS_GROUP_RATES +
			    (sample_group->streams - 1) * 8;
1068 1069
	}

1070
	rate->flags = sample_group->flags;
1071 1072
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static void
minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		       struct ieee80211_supported_band *sband,
		       struct ieee80211_sta *sta)
{
	int i;

	if (sband->band != IEEE80211_BAND_2GHZ)
		return;

1083 1084 1085
	if (!(mp->hw->flags & IEEE80211_HW_SUPPORTS_HT_CCK_RATES))
		return;

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	mi->cck_supported = 0;
	mi->cck_supported_short = 0;
	for (i = 0; i < 4; i++) {
		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
			continue;

		mi->cck_supported |= BIT(i);
		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
			mi->cck_supported_short |= BIT(i);
	}

	mi->groups[MINSTREL_CCK_GROUP].supported = mi->cck_supported;
}

1100 1101
static void
minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1102
			struct cfg80211_chan_def *chandef,
1103
                        struct ieee80211_sta *sta, void *priv_sta)
1104 1105 1106 1107 1108 1109
{
	struct minstrel_priv *mp = priv;
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
	u16 sta_cap = sta->ht_cap.cap;
1110 1111
	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
	int use_vht;
1112
	int n_supported = 0;
1113 1114 1115 1116 1117
	int ack_dur;
	int stbc;
	int i;

	/* fall back to the old minstrel for legacy stations */
1118 1119
	if (!sta->ht_cap.ht_supported)
		goto use_legacy;
1120

1121
	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1122

1123 1124 1125 1126 1127 1128 1129
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
	if (vht_cap->vht_supported)
		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
	else
#endif
	use_vht = 0;

1130 1131
	msp->is_ht = true;
	memset(mi, 0, sizeof(*mi));
1132 1133

	mi->sta = sta;
1134 1135
	mi->stats_update = jiffies;

1136 1137 1138
	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
	mi->overhead += ack_dur;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;

	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);

	/* When using MRR, sample more on the first attempt, without delay */
	if (mp->has_mrr) {
		mi->sample_count = 16;
		mi->sample_wait = 0;
	} else {
		mi->sample_count = 8;
		mi->sample_wait = 8;
	}
	mi->sample_tries = 4;

1153 1154 1155 1156 1157
	/* TODO tx_flags for vht - ATM the RC API is not fine-grained enough */
	if (!use_vht) {
		stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
			IEEE80211_HT_CAP_RX_STBC_SHIFT;
		mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1158

1159 1160 1161
		if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
			mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
	}
1162 1163

	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1164
		u32 gflags = minstrel_mcs_groups[i].flags;
1165
		int bw, nss;
1166

1167
		mi->groups[i].supported = 0;
1168 1169 1170 1171 1172
		if (i == MINSTREL_CCK_GROUP) {
			minstrel_ht_update_cck(mp, mi, sband, sta);
			continue;
		}

1173 1174
		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1175 1176 1177 1178 1179 1180
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
					continue;
			} else {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
					continue;
			}
1181 1182
		}

1183
		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1184
		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1185 1186
			continue;

1187 1188
		nss = minstrel_mcs_groups[i].streams;

1189
		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1190 1191 1192 1193 1194 1195
		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
			continue;

		/* HT rate */
		if (gflags & IEEE80211_TX_RC_MCS) {
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1196
			if (use_vht && minstrel_vht_only)
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
				continue;
#endif
			mi->groups[i].supported = mcs->rx_mask[nss - 1];
			if (mi->groups[i].supported)
				n_supported++;
			continue;
		}

		/* VHT rate */
		if (!vht_cap->vht_supported ||
		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1209 1210
			continue;

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
				continue;
			}
		}

		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
			bw = BW_40;
		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
			bw = BW_80;
		else
			bw = BW_20;

		mi->groups[i].supported = minstrel_get_valid_vht_rates(bw, nss,
				vht_cap->vht_mcs.tx_mcs_map);
1228 1229 1230

		if (mi->groups[i].supported)
			n_supported++;
1231
	}
1232 1233 1234 1235

	if (!n_supported)
		goto use_legacy;

1236
	/* create an initial rate table with the lowest supported rates */
1237
	minstrel_ht_update_stats(mp, mi);
1238
	minstrel_ht_update_rates(mp, mi);
1239

1240 1241 1242 1243 1244 1245 1246
	return;

use_legacy:
	msp->is_ht = false;
	memset(&msp->legacy, 0, sizeof(msp->legacy));
	msp->legacy.r = msp->ratelist;
	msp->legacy.sample_table = msp->sample_table;
1247 1248
	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
					   &msp->legacy);
1249 1250 1251 1252
}

static void
minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1253
		      struct cfg80211_chan_def *chandef,
1254 1255
                      struct ieee80211_sta *sta, void *priv_sta)
{
1256
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1257 1258 1259 1260
}

static void
minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1261
			struct cfg80211_chan_def *chandef,
1262
                        struct ieee80211_sta *sta, void *priv_sta,
1263
                        u32 changed)
1264
{
1265
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
}

static void *
minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
{
	struct ieee80211_supported_band *sband;
	struct minstrel_ht_sta_priv *msp;
	struct minstrel_priv *mp = priv;
	struct ieee80211_hw *hw = mp->hw;
	int max_rates = 0;
	int i;

	for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
		sband = hw->wiphy->bands[i];
		if (sband && sband->n_bitrates > max_rates)
			max_rates = sband->n_bitrates;
	}

1284
	msp = kzalloc(sizeof(*msp), gfp);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	if (!msp)
		return NULL;

	msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp);
	if (!msp->ratelist)
		goto error;

	msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp);
	if (!msp->sample_table)
		goto error1;

	return msp;

error1:
1299
	kfree(msp->ratelist);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
error:
	kfree(msp);
	return NULL;
}

static void
minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;

	kfree(msp->sample_table);
	kfree(msp->ratelist);
	kfree(msp);
}

static void *
minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
	return mac80211_minstrel.alloc(hw, debugfsdir);
}

static void
minstrel_ht_free(void *priv)
{
	mac80211_minstrel.free(priv);
}

1327 1328 1329 1330 1331 1332 1333 1334 1335
static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	int i, j;

	if (!msp->is_ht)
		return mac80211_minstrel.get_expected_throughput(priv_sta);

1336 1337
	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1338 1339 1340 1341 1342

	/* convert cur_tp from pkt per second in kbps */
	return mi->groups[i].rates[j].cur_tp * AVG_PKT_SIZE * 8 / 1024;
}

1343
static const struct rate_control_ops mac80211_minstrel_ht = {
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	.name = "minstrel_ht",
	.tx_status = minstrel_ht_tx_status,
	.get_rate = minstrel_ht_get_rate,
	.rate_init = minstrel_ht_rate_init,
	.rate_update = minstrel_ht_rate_update,
	.alloc_sta = minstrel_ht_alloc_sta,
	.free_sta = minstrel_ht_free_sta,
	.alloc = minstrel_ht_alloc,
	.free = minstrel_ht_free,
#ifdef CONFIG_MAC80211_DEBUGFS
	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
#endif
1357
	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1358 1359 1360
};


1361
static void __init init_sample_table(void)
1362 1363 1364 1365 1366 1367
{
	int col, i, new_idx;
	u8 rnd[MCS_GROUP_RATES];

	memset(sample_table, 0xff, sizeof(sample_table));
	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1368
		prandom_bytes(rnd, sizeof(rnd));
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
			while (sample_table[col][new_idx] != 0xff)
				new_idx = (new_idx + 1) % MCS_GROUP_RATES;

			sample_table[col][new_idx] = i;
		}
	}
}

int __init
rc80211_minstrel_ht_init(void)
{
	init_sample_table();
	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
}

void
rc80211_minstrel_ht_exit(void)
{
	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
}