rc80211_minstrel_ht.c 36.2 KB
Newer Older
1
/*
2
 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3 4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/debugfs.h>
#include <linux/random.h>
13
#include <linux/moduleparam.h>
14 15 16 17 18 19
#include <linux/ieee80211.h>
#include <net/mac80211.h>
#include "rate.h"
#include "rc80211_minstrel.h"
#include "rc80211_minstrel_ht.h"

20
#define AVG_AMPDU_SIZE	16
21 22 23
#define AVG_PKT_SIZE	1200

/* Number of bits for an average sized packet */
24
#define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
25 26

/* Number of symbols for a packet with (bps) bits per symbol */
27
#define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
28

29
/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
30 31
#define MCS_SYMBOL_TIME(sgi, syms)					\
	(sgi ?								\
32 33
	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
	  ((syms) * 1000) << 2		/* syms * 4 us */		\
34 35 36
	)

/* Transmit duration for the raw data part of an average sized packet */
37 38
#define MCS_DURATION(streams, sgi, bps) \
	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
39

40 41
#define BW_20			0
#define BW_40			1
42
#define BW_80			2
43

44 45 46 47
/*
 * Define group sort order: HT40 -> SGI -> #streams
 */
#define GROUP_IDX(_streams, _sgi, _ht40)	\
48
	MINSTREL_HT_GROUP_0 +			\
49
	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
50
	MINSTREL_MAX_STREAMS * _sgi +	\
51 52
	_streams - 1

53
/* MCS rate information for an MCS group */
54 55
#define MCS_GROUP(_streams, _sgi, _ht40)				\
	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
56 57
	.streams = _streams,						\
	.flags =							\
58
		IEEE80211_TX_RC_MCS |					\
59 60 61 62 63 64 65 66 67 68 69 70 71 72
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
	.duration = {							\
		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
	}								\
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
#define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
	(MINSTREL_VHT_GROUP_0 +						\
	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
	 MINSTREL_MAX_STREAMS * (_sgi) +				\
	 (_streams) - 1)

#define BW2VBPS(_bw, r3, r2, r1)					\
	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)

#define VHT_GROUP(_streams, _sgi, _bw)					\
	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
	.streams = _streams,						\
	.flags =							\
		IEEE80211_TX_RC_VHT_MCS |				\
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
	.duration = {							\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  117,  54,  26)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  234, 108,  52)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  351, 162,  78)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  468, 216, 104)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  702, 324, 156)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  936, 432, 208)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1053, 486, 234)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1170, 540, 260)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1404, 648, 312)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1560, 720, 346))		\
	}								\
}

114
#define CCK_DURATION(_bitrate, _short, _len)		\
115
	(1000 * (10 /* SIFS */ +			\
W
Weilong Chen 已提交
116
	 (_short ? 72 + 24 : 144 + 48) +		\
117
	 (8 * (_len + 4) * 10) / (_bitrate)))
118 119 120 121 122 123 124 125 126 127 128

#define CCK_ACK_DURATION(_bitrate, _short)			\
	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))

#define CCK_DURATION_LIST(_short)			\
	CCK_ACK_DURATION(10, _short),			\
	CCK_ACK_DURATION(20, _short),			\
	CCK_ACK_DURATION(55, _short),			\
	CCK_ACK_DURATION(110, _short)

129 130 131
#define CCK_GROUP					\
	[MINSTREL_CCK_GROUP] = {			\
		.streams = 0,				\
132
		.flags = 0,				\
133 134 135 136
		.duration = {				\
			CCK_DURATION_LIST(false),	\
			CCK_DURATION_LIST(true)		\
		}					\
137 138
	}

139 140 141 142 143 144 145
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
static bool minstrel_vht_only = true;
module_param(minstrel_vht_only, bool, 0644);
MODULE_PARM_DESC(minstrel_vht_only,
		 "Use only VHT rates when VHT is supported by sta.");
#endif

146 147 148 149
/*
 * To enable sufficiently targeted rate sampling, MCS rates are divided into
 * groups, based on the number of streams and flags (HT40, SGI) that they
 * use.
150 151
 *
 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
152
 * BW -> SGI -> #streams
153 154
 */
const struct mcs_group minstrel_mcs_groups[] = {
155 156
	MCS_GROUP(1, 0, BW_20),
	MCS_GROUP(2, 0, BW_20),
157
#if MINSTREL_MAX_STREAMS >= 3
158
	MCS_GROUP(3, 0, BW_20),
159 160
#endif

161 162
	MCS_GROUP(1, 1, BW_20),
	MCS_GROUP(2, 1, BW_20),
163
#if MINSTREL_MAX_STREAMS >= 3
164
	MCS_GROUP(3, 1, BW_20),
165 166
#endif

167 168
	MCS_GROUP(1, 0, BW_40),
	MCS_GROUP(2, 0, BW_40),
169
#if MINSTREL_MAX_STREAMS >= 3
170
	MCS_GROUP(3, 0, BW_40),
171 172
#endif

173 174
	MCS_GROUP(1, 1, BW_40),
	MCS_GROUP(2, 1, BW_40),
175
#if MINSTREL_MAX_STREAMS >= 3
176
	MCS_GROUP(3, 1, BW_40),
177
#endif
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192
	CCK_GROUP,

#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
	VHT_GROUP(1, 0, BW_20),
	VHT_GROUP(2, 0, BW_20),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_20),
#endif

	VHT_GROUP(1, 1, BW_20),
	VHT_GROUP(2, 1, BW_20),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_20),
#endif
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	VHT_GROUP(1, 0, BW_40),
	VHT_GROUP(2, 0, BW_40),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_40),
#endif

	VHT_GROUP(1, 1, BW_40),
	VHT_GROUP(2, 1, BW_40),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_40),
#endif

	VHT_GROUP(1, 0, BW_80),
	VHT_GROUP(2, 0, BW_80),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_80),
#endif

	VHT_GROUP(1, 1, BW_80),
	VHT_GROUP(2, 1, BW_80),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_80),
#endif
#endif
};
219

220
static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
221

222 223 224
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/*
 * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
 * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
 *
 * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
 */
static u16
minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
{
	u16 mask = 0;

	if (bw == BW_20) {
		if (nss != 3 && nss != 6)
			mask = BIT(9);
	} else if (bw == BW_80) {
		if (nss == 3 || nss == 7)
			mask = BIT(6);
		else if (nss == 6)
			mask = BIT(9);
	} else {
		WARN_ON(bw != BW_40);
	}

	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
	case IEEE80211_VHT_MCS_SUPPORT_0_7:
		mask |= 0x300;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_8:
		mask |= 0x200;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_9:
		break;
	default:
		mask = 0x3ff;
	}

	return 0x3ff & ~mask;
}

264 265 266 267 268 269
/*
 * Look up an MCS group index based on mac80211 rate information
 */
static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
{
270
	return GROUP_IDX((rate->idx / 8) + 1,
271 272
			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
273 274
}

275 276 277 278 279 280 281 282 283
static int
minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
{
	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
}

284 285 286 287 288 289 290 291
static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		      struct ieee80211_tx_rate *rate)
{
	int group, idx;

	if (rate->flags & IEEE80211_TX_RC_MCS) {
		group = minstrel_ht_get_group_idx(rate);
292
		idx = rate->idx % 8;
293 294 295
	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
		group = minstrel_vht_get_group_idx(rate);
		idx = ieee80211_rate_get_vht_mcs(rate);
296 297 298 299 300 301 302 303 304 305 306 307 308 309
	} else {
		group = MINSTREL_CCK_GROUP;

		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
			if (rate->idx == mp->cck_rates[idx])
				break;

		/* short preamble */
		if (!(mi->groups[group].supported & BIT(idx)))
			idx += 4;
	}
	return &mi->groups[group].rates[idx];
}

310 311 312 313 314 315 316 317 318 319 320
static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
{
	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
}

/*
 * Calculate throughput based on the average A-MPDU length, taking into account
 * the expected number of retransmissions and their expected length
 */
static void
321
minstrel_ht_calc_tp(struct minstrel_ht_sta *mi, int group, int rate)
322 323
{
	struct minstrel_rate_stats *mr;
324 325
	unsigned int nsecs = 0;
	unsigned int tp;
326
	unsigned int prob;
327 328

	mr = &mi->groups[group].rates[rate];
329
	prob = mr->probability;
330

331
	if (prob < MINSTREL_FRAC(1, 10)) {
332 333 334 335
		mr->cur_tp = 0;
		return;
	}

336 337 338 339 340 341 342
	/*
	 * For the throughput calculation, limit the probability value to 90% to
	 * account for collision related packet error rate fluctuation
	 */
	if (prob > MINSTREL_FRAC(9, 10))
		prob = MINSTREL_FRAC(9, 10);

343
	if (group != MINSTREL_CCK_GROUP)
344
		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
345

346 347
	nsecs += minstrel_mcs_groups[group].duration[rate];

348 349
	/* prob is scaled - see MINSTREL_FRAC above */
	tp = 1000000 * ((prob * 1000) / nsecs);
350
	mr->cur_tp = MINSTREL_TRUNC(tp);
351 352
}

353 354 355 356 357 358 359 360
/*
 * Find & sort topmost throughput rates
 *
 * If multiple rates provide equal throughput the sorting is based on their
 * current success probability. Higher success probability is preferred among
 * MCS groups, CCK rates do not provide aggregation and are therefore at last.
 */
static void
361 362
minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
			       u16 *tp_list)
363 364 365 366 367 368 369 370 371 372
{
	int cur_group, cur_idx, cur_thr, cur_prob;
	int tmp_group, tmp_idx, tmp_thr, tmp_prob;
	int j = MAX_THR_RATES;

	cur_group = index / MCS_GROUP_RATES;
	cur_idx = index  % MCS_GROUP_RATES;
	cur_thr = mi->groups[cur_group].rates[cur_idx].cur_tp;
	cur_prob = mi->groups[cur_group].rates[cur_idx].probability;

373
	do {
374 375 376 377
		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
		tmp_thr = mi->groups[tmp_group].rates[tmp_idx].cur_tp;
		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].probability;
378 379 380 381 382
		if (cur_thr < tmp_thr ||
		    (cur_thr == tmp_thr && cur_prob <= tmp_prob))
			break;
		j--;
	} while (j > 0);
383 384 385 386 387 388 389 390 391 392 393 394 395

	if (j < MAX_THR_RATES - 1) {
		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
		       (MAX_THR_RATES - (j + 1))));
	}
	if (j < MAX_THR_RATES)
		tp_list[j] = index;
}

/*
 * Find and set the topmost probability rate per sta and per group
 */
static void
396
minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
	int tmp_group, tmp_idx, tmp_tp, tmp_prob, max_tp_group;

	mg = &mi->groups[index / MCS_GROUP_RATES];
	mr = &mg->rates[index % MCS_GROUP_RATES];

	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
	tmp_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].probability;

	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
	    (max_tp_group != MINSTREL_CCK_GROUP))
		return;

	if (mr->probability > MINSTREL_FRAC(75, 100)) {
		if (mr->cur_tp > tmp_tp)
			mi->max_prob_rate = index;
		if (mr->cur_tp > mg->rates[mg->max_group_prob_rate].cur_tp)
			mg->max_group_prob_rate = index;
	} else {
		if (mr->probability > tmp_prob)
			mi->max_prob_rate = index;
		if (mr->probability > mg->rates[mg->max_group_prob_rate].probability)
			mg->max_group_prob_rate = index;
	}
}


/*
 * Assign new rate set per sta and use CCK rates only if the fastest
 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
 * rate sets where MCS and CCK rates are mixed, because CCK rates can
 * not use aggregation.
 */
static void
minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
439 440
				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
{
	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp;
	int i;

	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
	tmp_cck_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;

	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
	tmp_mcs_tp = mi->groups[tmp_group].rates[tmp_idx].cur_tp;

	if (tmp_cck_tp > tmp_mcs_tp) {
		for(i = 0; i < MAX_THR_RATES; i++) {
			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
						       tmp_mcs_tp_rate);
		}
	}

}

/*
 * Try to increase robustness of max_prob rate by decrease number of
 * streams if possible.
 */
static inline void
minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
	int tmp_max_streams, group;
	int tmp_tp = 0;

	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
			  MCS_GROUP_RATES].streams;
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported || group == MINSTREL_CCK_GROUP)
			continue;
		mr = minstrel_get_ratestats(mi, mg->max_group_prob_rate);
		if (tmp_tp < mr->cur_tp &&
		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
				mi->max_prob_rate = mg->max_group_prob_rate;
				tmp_tp = mr->cur_tp;
		}
	}
}

489 490 491 492 493 494
/*
 * Update rate statistics and select new primary rates
 *
 * Rules for rate selection:
 *  - max_prob_rate must use only one stream, as a tradeoff between delivery
 *    probability and throughput during strong fluctuations
495
 *  - as long as the max prob rate has a probability of more than 75%, pick
496 497 498 499 500 501 502
 *    higher throughput rates, even if the probablity is a bit lower
 */
static void
minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
503
	int group, i, j;
504 505
	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
506 507 508 509 510 511 512 513 514 515 516

	if (mi->ampdu_packets > 0) {
		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
		mi->ampdu_len = 0;
		mi->ampdu_packets = 0;
	}

	mi->sample_slow = 0;
	mi->sample_count = 0;

517 518 519 520 521
	/* Initialize global rate indexes */
	for(j = 0; j < MAX_THR_RATES; j++){
		tmp_mcs_tp_rate[j] = 0;
		tmp_cck_tp_rate[j] = 0;
	}
522

523 524
	/* Find best rate sets within all MCS groups*/
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
525 526 527 528 529 530 531

		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mi->sample_count++;

532 533 534 535
		/* (re)Initialize group rate indexes */
		for(j = 0; j < MAX_THR_RATES; j++)
			tmp_group_tp_rate[j] = group;

536 537 538 539
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			if (!(mg->supported & BIT(i)))
				continue;

540 541
			index = MCS_GROUP_RATES * group + i;

542 543
			mr = &mg->rates[i];
			mr->retry_updated = false;
544
			minstrel_calc_rate_stats(mr);
545
			minstrel_ht_calc_tp(mi, group, i);
546 547 548 549

			if (!mr->cur_tp)
				continue;

550 551 552 553 554 555 556
			/* Find max throughput rate set */
			if (group != MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_mcs_tp_rate);
			} else if (group == MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_cck_tp_rate);
557 558
			}

559 560 561
			/* Find max throughput rate set within a group */
			minstrel_ht_sort_best_tp_rates(mi, index,
						       tmp_group_tp_rate);
562

563 564
			/* Find max probability rate per group and global */
			minstrel_ht_set_best_prob_rate(mi, index);
565 566
		}

567 568
		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
		       sizeof(mg->max_group_tp_rate));
569 570
	}

571 572 573
	/* Assign new rate set per sta */
	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
574

575 576 577 578 579
	/* Try to increase robustness of max_prob_rate*/
	minstrel_ht_prob_rate_reduce_streams(mi);

	/* try to sample all available rates during each interval */
	mi->sample_count *= 8;
580

581 582 583
#ifdef CONFIG_MAC80211_DEBUGFS
	/* use fixed index if set */
	if (mp->fixed_rate_idx != -1) {
584 585
		for (i = 0; i < 4; i++)
			mi->max_tp_rate[i] = mp->fixed_rate_idx;
586 587 588
		mi->max_prob_rate = mp->fixed_rate_idx;
	}
#endif
589

590
	/* Reset update timer */
591 592 593 594
	mi->stats_update = jiffies;
}

static bool
595
minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
596
{
597
	if (rate->idx < 0)
598 599
		return false;

600
	if (!rate->count)
601 602
		return false;

603 604
	if (rate->flags & IEEE80211_TX_RC_MCS ||
	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
605 606 607 608 609 610
		return true;

	return rate->idx == mp->cck_rates[0] ||
	       rate->idx == mp->cck_rates[1] ||
	       rate->idx == mp->cck_rates[2] ||
	       rate->idx == mp->cck_rates[3];
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
}

static void
minstrel_next_sample_idx(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;

	for (;;) {
		mi->sample_group++;
		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
		mg = &mi->groups[mi->sample_group];

		if (!mg->supported)
			continue;

		if (++mg->index >= MCS_GROUP_RATES) {
			mg->index = 0;
			if (++mg->column >= ARRAY_SIZE(sample_table))
				mg->column = 0;
		}
		break;
	}
}

static void
636
minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
{
	int group, orig_group;

	orig_group = group = *idx / MCS_GROUP_RATES;
	while (group > 0) {
		group--;

		if (!mi->groups[group].supported)
			continue;

		if (minstrel_mcs_groups[group].streams >
		    minstrel_mcs_groups[orig_group].streams)
			continue;

		if (primary)
652
			*idx = mi->groups[group].max_group_tp_rate[0];
653
		else
654
			*idx = mi->groups[group].max_group_tp_rate[1];
655 656 657 658 659
		break;
	}
}

static void
660
minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
661 662 663 664 665
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
	u16 tid;

666 667 668
	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
		return;

669 670 671
	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
		return;

672
	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
673 674 675
		return;

	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
676
	if (likely(sta->ampdu_mlme.tid_tx[tid]))
677 678
		return;

679
	ieee80211_start_tx_ba_session(pubsta, tid, 5000);
680 681 682 683 684
}

static void
minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
                      struct ieee80211_sta *sta, void *priv_sta,
685
                      struct ieee80211_tx_info *info)
686 687 688 689 690 691
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_tx_rate *ar = info->status.rates;
	struct minstrel_rate_stats *rate, *rate2;
	struct minstrel_priv *mp = priv;
692
	bool last, update = false;
693
	int i;
694 695

	if (!msp->is_ht)
696 697
		return mac80211_minstrel.tx_status_noskb(priv, sband, sta,
							 &msp->legacy, info);
698 699 700 701 702 703

	/* This packet was aggregated but doesn't carry status info */
	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
		return;

B
Björn Smedman 已提交
704 705 706
	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
		info->status.ampdu_ack_len =
			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
707 708 709 710 711 712 713
		info->status.ampdu_len = 1;
	}

	mi->ampdu_packets++;
	mi->ampdu_len += info->status.ampdu_len;

	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
714
		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
715
		mi->sample_tries = 1;
716 717 718
		mi->sample_count--;
	}

719
	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
720 721
		mi->sample_packets += info->status.ampdu_len;

722
	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
723 724
	for (i = 0; !last; i++) {
		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
725
		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
726

727
		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
728

B
Björn Smedman 已提交
729
		if (last)
730 731 732 733 734 735 736 737 738
			rate->success += info->status.ampdu_ack_len;

		rate->attempts += ar[i].count * info->status.ampdu_len;
	}

	/*
	 * check for sudden death of spatial multiplexing,
	 * downgrade to a lower number of streams if necessary.
	 */
739
	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
740 741
	if (rate->attempts > 30 &&
	    MINSTREL_FRAC(rate->success, rate->attempts) <
742
	    MINSTREL_FRAC(20, 100)) {
743
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
744 745
		update = true;
	}
746

747
	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
748 749
	if (rate2->attempts > 30 &&
	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
750
	    MINSTREL_FRAC(20, 100)) {
751
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
752 753
		update = true;
	}
754 755

	if (time_after(jiffies, mi->stats_update + (mp->update_interval / 2 * HZ) / 1000)) {
756
		update = true;
757 758
		minstrel_ht_update_stats(mp, mi);
	}
759 760 761

	if (update)
		minstrel_ht_update_rates(mp, mi);
762 763 764 765 766 767 768 769 770 771
}

static void
minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
                         int index)
{
	struct minstrel_rate_stats *mr;
	const struct mcs_group *group;
	unsigned int tx_time, tx_time_rtscts, tx_time_data;
	unsigned int cw = mp->cw_min;
772
	unsigned int ctime = 0;
773 774
	unsigned int t_slot = 9; /* FIXME */
	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
775
	unsigned int overhead = 0, overhead_rtscts = 0;
776 777 778 779 780 781 782 783 784 785 786 787 788

	mr = minstrel_get_ratestats(mi, index);
	if (mr->probability < MINSTREL_FRAC(1, 10)) {
		mr->retry_count = 1;
		mr->retry_count_rtscts = 1;
		return;
	}

	mr->retry_count = 2;
	mr->retry_count_rtscts = 2;
	mr->retry_updated = true;

	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
789
	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
790 791 792 793 794 795 796

	/* Contention time for first 2 tries */
	ctime = (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);
	ctime += (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);

797 798 799 800 801
	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
		overhead = mi->overhead;
		overhead_rtscts = mi->overhead_rtscts;
	}

802
	/* Total TX time for data and Contention after first 2 tries */
803 804
	tx_time = ctime + 2 * (overhead + tx_time_data);
	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
805 806

	/* See how many more tries we can fit inside segment size */
807
	do {
808 809 810 811 812
		/* Contention time for this try */
		ctime = (t_slot * cw) >> 1;
		cw = min((cw << 1) | 1, mp->cw_max);

		/* Total TX time after this try */
813 814
		tx_time += ctime + overhead + tx_time_data;
		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
815

816 817 818 819 820 821 822 823 824
		if (tx_time_rtscts < mp->segment_size)
			mr->retry_count_rtscts++;
	} while ((tx_time < mp->segment_size) &&
	         (++mr->retry_count < mp->max_retry));
}


static void
minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
825
                     struct ieee80211_sta_rates *ratetbl, int offset, int index)
826 827 828
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	struct minstrel_rate_stats *mr;
829
	u8 idx;
830
	u16 flags = group->flags;
831 832 833 834 835

	mr = minstrel_get_ratestats(mi, index);
	if (!mr->retry_updated)
		minstrel_calc_retransmit(mp, mi, index);

836 837 838 839 840 841 842 843 844
	if (mr->probability < MINSTREL_FRAC(20, 100) || !mr->retry_count) {
		ratetbl->rate[offset].count = 2;
		ratetbl->rate[offset].count_rts = 2;
		ratetbl->rate[offset].count_cts = 2;
	} else {
		ratetbl->rate[offset].count = mr->retry_count;
		ratetbl->rate[offset].count_cts = mr->retry_count;
		ratetbl->rate[offset].count_rts = mr->retry_count_rtscts;
	}
845

846
	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
847
		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
848 849 850
	else if (flags & IEEE80211_TX_RC_VHT_MCS)
		idx = ((group->streams - 1) << 4) |
		      ((index % MCS_GROUP_RATES) & 0xF);
851
	else
852
		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

	if (offset > 0) {
		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
	}

	ratetbl->rate[offset].idx = idx;
	ratetbl->rate[offset].flags = flags;
}

static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct ieee80211_sta_rates *rates;
	int i = 0;

	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
	if (!rates)
871
		return;
872

873 874
	/* Start with max_tp_rate[0] */
	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
875 876

	if (mp->hw->max_rates >= 3) {
877 878
		/* At least 3 tx rates supported, use max_tp_rate[1] next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
879 880 881 882 883 884
	}

	if (mp->hw->max_rates >= 2) {
		/*
		 * At least 2 tx rates supported, use max_prob_rate next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
885 886
	}

887 888
	rates->rate[i].idx = -1;
	rate_control_set_rates(mp->hw, mi->sta, rates);
889 890 891 892 893 894 895 896 897 898 899 900 901 902
}

static inline int
minstrel_get_duration(int index)
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	return group->duration[index % MCS_GROUP_RATES];
}

static int
minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_rate_stats *mr;
	struct minstrel_mcs_group_data *mg;
903
	unsigned int sample_dur, sample_group, cur_max_tp_streams;
904 905 906 907 908 909 910 911 912 913
	int sample_idx = 0;

	if (mi->sample_wait > 0) {
		mi->sample_wait--;
		return -1;
	}

	if (!mi->sample_tries)
		return -1;

914 915
	sample_group = mi->sample_group;
	mg = &mi->groups[sample_group];
916
	sample_idx = sample_table[mg->column][mg->index];
917 918 919 920 921
	minstrel_next_sample_idx(mi);

	if (!(mg->supported & BIT(sample_idx)))
		return -1;

922
	mr = &mg->rates[sample_idx];
923
	sample_idx += sample_group * MCS_GROUP_RATES;
924

925 926 927
	/*
	 * Sampling might add some overhead (RTS, no aggregation)
	 * to the frame. Hence, don't use sampling for the currently
928
	 * used rates.
929
	 */
930 931
	if (sample_idx == mi->max_tp_rate[0] ||
	    sample_idx == mi->max_tp_rate[1] ||
932
	    sample_idx == mi->max_prob_rate)
933
		return -1;
934

935
	/*
936 937
	 * Do not sample if the probability is already higher than 95%
	 * to avoid wasting airtime.
938
	 */
939
	if (mr->probability > MINSTREL_FRAC(95, 100))
940
		return -1;
941 942 943 944 945

	/*
	 * Make sure that lower rates get sampled only occasionally,
	 * if the link is working perfectly.
	 */
946 947 948

	cur_max_tp_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
		MCS_GROUP_RATES].streams;
949
	sample_dur = minstrel_get_duration(sample_idx);
950 951
	if (sample_dur >= minstrel_get_duration(mi->max_tp_rate[1]) &&
	    (cur_max_tp_streams - 1 <
952 953
	     minstrel_mcs_groups[sample_group].streams ||
	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
954
		if (mr->sample_skipped < 20)
955
			return -1;
956 957

		if (mi->sample_slow++ > 2)
958
			return -1;
959
	}
960
	mi->sample_tries--;
961 962 963 964

	return sample_idx;
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static void
minstrel_ht_check_cck_shortpreamble(struct minstrel_priv *mp,
				    struct minstrel_ht_sta *mi, bool val)
{
	u8 supported = mi->groups[MINSTREL_CCK_GROUP].supported;

	if (!supported || !mi->cck_supported_short)
		return;

	if (supported & (mi->cck_supported_short << (val * 4)))
		return;

	supported ^= mi->cck_supported_short | (mi->cck_supported_short << 4);
	mi->groups[MINSTREL_CCK_GROUP].supported = supported;
}

981 982 983 984
static void
minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
                     struct ieee80211_tx_rate_control *txrc)
{
985
	const struct mcs_group *sample_group;
986
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
987
	struct ieee80211_tx_rate *rate = &info->status.rates[0];
988 989 990 991 992 993 994 995 996 997 998
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct minstrel_priv *mp = priv;
	int sample_idx;

	if (rate_control_send_low(sta, priv_sta, txrc))
		return;

	if (!msp->is_ht)
		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);

999 1000 1001 1002
	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
		minstrel_aggr_check(sta, txrc->skb);

1003
	info->flags |= mi->tx_flags;
1004
	minstrel_ht_check_cck_shortpreamble(mp, mi, txrc->short_preamble);
1005

1006 1007 1008 1009 1010
#ifdef CONFIG_MAC80211_DEBUGFS
	if (mp->fixed_rate_idx != -1)
		return;
#endif

1011 1012
	/* Don't use EAPOL frames for sampling on non-mrr hw */
	if (mp->hw->max_rates == 1 &&
1013
	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1014 1015 1016
		sample_idx = -1;
	else
		sample_idx = minstrel_get_sample_rate(mp, mi);
1017

1018 1019 1020 1021 1022 1023 1024
	mi->total_packets++;

	/* wraparound */
	if (mi->total_packets == ~0) {
		mi->total_packets = 0;
		mi->sample_packets = 0;
	}
1025 1026 1027 1028 1029 1030

	if (sample_idx < 0)
		return;

	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1031 1032 1033 1034 1035
	rate->count = 1;

	if (sample_idx / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
		rate->idx = mp->cck_rates[idx];
1036 1037 1038
	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
				       sample_group->streams);
1039 1040 1041
	} else {
		rate->idx = sample_idx % MCS_GROUP_RATES +
			    (sample_group->streams - 1) * 8;
1042 1043
	}

1044
	rate->flags = sample_group->flags;
1045 1046
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static void
minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		       struct ieee80211_supported_band *sband,
		       struct ieee80211_sta *sta)
{
	int i;

	if (sband->band != IEEE80211_BAND_2GHZ)
		return;

1057 1058 1059
	if (!(mp->hw->flags & IEEE80211_HW_SUPPORTS_HT_CCK_RATES))
		return;

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	mi->cck_supported = 0;
	mi->cck_supported_short = 0;
	for (i = 0; i < 4; i++) {
		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
			continue;

		mi->cck_supported |= BIT(i);
		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
			mi->cck_supported_short |= BIT(i);
	}

	mi->groups[MINSTREL_CCK_GROUP].supported = mi->cck_supported;
}

1074 1075
static void
minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1076
			struct cfg80211_chan_def *chandef,
1077
                        struct ieee80211_sta *sta, void *priv_sta)
1078 1079 1080 1081 1082 1083
{
	struct minstrel_priv *mp = priv;
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
	u16 sta_cap = sta->ht_cap.cap;
1084 1085
	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
	int use_vht;
1086
	int n_supported = 0;
1087 1088 1089 1090 1091
	int ack_dur;
	int stbc;
	int i;

	/* fall back to the old minstrel for legacy stations */
1092 1093
	if (!sta->ht_cap.ht_supported)
		goto use_legacy;
1094

1095
	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1096

1097 1098 1099 1100 1101 1102 1103
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
	if (vht_cap->vht_supported)
		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
	else
#endif
	use_vht = 0;

1104 1105
	msp->is_ht = true;
	memset(mi, 0, sizeof(*mi));
1106 1107

	mi->sta = sta;
1108 1109
	mi->stats_update = jiffies;

1110 1111 1112
	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
	mi->overhead += ack_dur;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;

	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);

	/* When using MRR, sample more on the first attempt, without delay */
	if (mp->has_mrr) {
		mi->sample_count = 16;
		mi->sample_wait = 0;
	} else {
		mi->sample_count = 8;
		mi->sample_wait = 8;
	}
	mi->sample_tries = 4;

1127 1128 1129 1130 1131
	/* TODO tx_flags for vht - ATM the RC API is not fine-grained enough */
	if (!use_vht) {
		stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
			IEEE80211_HT_CAP_RX_STBC_SHIFT;
		mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1132

1133 1134 1135
		if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
			mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
	}
1136 1137

	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1138
		u32 gflags = minstrel_mcs_groups[i].flags;
1139
		int bw, nss;
1140

1141
		mi->groups[i].supported = 0;
1142 1143 1144 1145 1146
		if (i == MINSTREL_CCK_GROUP) {
			minstrel_ht_update_cck(mp, mi, sband, sta);
			continue;
		}

1147 1148
		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1149 1150 1151 1152 1153 1154
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
					continue;
			} else {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
					continue;
			}
1155 1156
		}

1157
		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1158
		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1159 1160
			continue;

1161 1162
		nss = minstrel_mcs_groups[i].streams;

1163
		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1164 1165 1166 1167 1168 1169
		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
			continue;

		/* HT rate */
		if (gflags & IEEE80211_TX_RC_MCS) {
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1170
			if (use_vht && minstrel_vht_only)
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
				continue;
#endif
			mi->groups[i].supported = mcs->rx_mask[nss - 1];
			if (mi->groups[i].supported)
				n_supported++;
			continue;
		}

		/* VHT rate */
		if (!vht_cap->vht_supported ||
		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1183 1184
			continue;

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
				continue;
			}
		}

		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
			bw = BW_40;
		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
			bw = BW_80;
		else
			bw = BW_20;

		mi->groups[i].supported = minstrel_get_valid_vht_rates(bw, nss,
				vht_cap->vht_mcs.tx_mcs_map);
1202 1203 1204

		if (mi->groups[i].supported)
			n_supported++;
1205
	}
1206 1207 1208 1209

	if (!n_supported)
		goto use_legacy;

1210
	/* create an initial rate table with the lowest supported rates */
1211
	minstrel_ht_update_stats(mp, mi);
1212
	minstrel_ht_update_rates(mp, mi);
1213

1214 1215 1216 1217 1218 1219 1220
	return;

use_legacy:
	msp->is_ht = false;
	memset(&msp->legacy, 0, sizeof(msp->legacy));
	msp->legacy.r = msp->ratelist;
	msp->legacy.sample_table = msp->sample_table;
1221 1222
	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
					   &msp->legacy);
1223 1224 1225 1226
}

static void
minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1227
		      struct cfg80211_chan_def *chandef,
1228 1229
                      struct ieee80211_sta *sta, void *priv_sta)
{
1230
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1231 1232 1233 1234
}

static void
minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1235
			struct cfg80211_chan_def *chandef,
1236
                        struct ieee80211_sta *sta, void *priv_sta,
1237
                        u32 changed)
1238
{
1239
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
}

static void *
minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
{
	struct ieee80211_supported_band *sband;
	struct minstrel_ht_sta_priv *msp;
	struct minstrel_priv *mp = priv;
	struct ieee80211_hw *hw = mp->hw;
	int max_rates = 0;
	int i;

	for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
		sband = hw->wiphy->bands[i];
		if (sband && sband->n_bitrates > max_rates)
			max_rates = sband->n_bitrates;
	}

1258
	msp = kzalloc(sizeof(*msp), gfp);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	if (!msp)
		return NULL;

	msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp);
	if (!msp->ratelist)
		goto error;

	msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp);
	if (!msp->sample_table)
		goto error1;

	return msp;

error1:
1273
	kfree(msp->ratelist);
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
error:
	kfree(msp);
	return NULL;
}

static void
minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;

	kfree(msp->sample_table);
	kfree(msp->ratelist);
	kfree(msp);
}

static void *
minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
	return mac80211_minstrel.alloc(hw, debugfsdir);
}

static void
minstrel_ht_free(void *priv)
{
	mac80211_minstrel.free(priv);
}

1301 1302 1303 1304 1305 1306 1307 1308 1309
static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	int i, j;

	if (!msp->is_ht)
		return mac80211_minstrel.get_expected_throughput(priv_sta);

1310 1311
	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1312 1313 1314 1315 1316

	/* convert cur_tp from pkt per second in kbps */
	return mi->groups[i].rates[j].cur_tp * AVG_PKT_SIZE * 8 / 1024;
}

1317
static const struct rate_control_ops mac80211_minstrel_ht = {
1318
	.name = "minstrel_ht",
1319
	.tx_status_noskb = minstrel_ht_tx_status,
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	.get_rate = minstrel_ht_get_rate,
	.rate_init = minstrel_ht_rate_init,
	.rate_update = minstrel_ht_rate_update,
	.alloc_sta = minstrel_ht_alloc_sta,
	.free_sta = minstrel_ht_free_sta,
	.alloc = minstrel_ht_alloc,
	.free = minstrel_ht_free,
#ifdef CONFIG_MAC80211_DEBUGFS
	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
#endif
1331
	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1332 1333 1334
};


1335
static void __init init_sample_table(void)
1336 1337 1338 1339 1340 1341
{
	int col, i, new_idx;
	u8 rnd[MCS_GROUP_RATES];

	memset(sample_table, 0xff, sizeof(sample_table));
	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1342
		prandom_bytes(rnd, sizeof(rnd));
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
			while (sample_table[col][new_idx] != 0xff)
				new_idx = (new_idx + 1) % MCS_GROUP_RATES;

			sample_table[col][new_idx] = i;
		}
	}
}

int __init
rc80211_minstrel_ht_init(void)
{
	init_sample_table();
	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
}

void
rc80211_minstrel_ht_exit(void)
{
	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
}