rc80211_minstrel_ht.c 37.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3 4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/debugfs.h>
#include <linux/random.h>
13
#include <linux/moduleparam.h>
14 15 16 17 18 19
#include <linux/ieee80211.h>
#include <net/mac80211.h>
#include "rate.h"
#include "rc80211_minstrel.h"
#include "rc80211_minstrel_ht.h"

20
#define AVG_AMPDU_SIZE	16
21 22 23
#define AVG_PKT_SIZE	1200

/* Number of bits for an average sized packet */
24
#define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
25 26

/* Number of symbols for a packet with (bps) bits per symbol */
27
#define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
28

29
/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
30 31
#define MCS_SYMBOL_TIME(sgi, syms)					\
	(sgi ?								\
32 33
	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
	  ((syms) * 1000) << 2		/* syms * 4 us */		\
34 35 36
	)

/* Transmit duration for the raw data part of an average sized packet */
37 38
#define MCS_DURATION(streams, sgi, bps) \
	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
39

40 41
#define BW_20			0
#define BW_40			1
42
#define BW_80			2
43

44 45 46 47
/*
 * Define group sort order: HT40 -> SGI -> #streams
 */
#define GROUP_IDX(_streams, _sgi, _ht40)	\
48
	MINSTREL_HT_GROUP_0 +			\
49
	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
50
	MINSTREL_MAX_STREAMS * _sgi +	\
51 52
	_streams - 1

53
/* MCS rate information for an MCS group */
54 55
#define MCS_GROUP(_streams, _sgi, _ht40)				\
	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
56 57
	.streams = _streams,						\
	.flags =							\
58
		IEEE80211_TX_RC_MCS |					\
59 60 61 62 63 64 65 66 67 68 69 70 71 72
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
	.duration = {							\
		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
	}								\
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
#define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
	(MINSTREL_VHT_GROUP_0 +						\
	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
	 MINSTREL_MAX_STREAMS * (_sgi) +				\
	 (_streams) - 1)

#define BW2VBPS(_bw, r3, r2, r1)					\
	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)

#define VHT_GROUP(_streams, _sgi, _bw)					\
	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
	.streams = _streams,						\
	.flags =							\
		IEEE80211_TX_RC_VHT_MCS |				\
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
	.duration = {							\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  117,  54,  26)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  234, 108,  52)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  351, 162,  78)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  468, 216, 104)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  702, 324, 156)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw,  936, 432, 208)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1053, 486, 234)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1170, 540, 260)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1404, 648, 312)),		\
		MCS_DURATION(_streams, _sgi,				\
			     BW2VBPS(_bw, 1560, 720, 346))		\
	}								\
}

114
#define CCK_DURATION(_bitrate, _short, _len)		\
115
	(1000 * (10 /* SIFS */ +			\
W
Weilong Chen 已提交
116
	 (_short ? 72 + 24 : 144 + 48) +		\
117
	 (8 * (_len + 4) * 10) / (_bitrate)))
118 119 120 121 122 123 124 125 126 127 128

#define CCK_ACK_DURATION(_bitrate, _short)			\
	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))

#define CCK_DURATION_LIST(_short)			\
	CCK_ACK_DURATION(10, _short),			\
	CCK_ACK_DURATION(20, _short),			\
	CCK_ACK_DURATION(55, _short),			\
	CCK_ACK_DURATION(110, _short)

129 130 131
#define CCK_GROUP					\
	[MINSTREL_CCK_GROUP] = {			\
		.streams = 0,				\
132
		.flags = 0,				\
133 134 135 136
		.duration = {				\
			CCK_DURATION_LIST(false),	\
			CCK_DURATION_LIST(true)		\
		}					\
137 138
	}

139 140 141 142 143 144 145
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
static bool minstrel_vht_only = true;
module_param(minstrel_vht_only, bool, 0644);
MODULE_PARM_DESC(minstrel_vht_only,
		 "Use only VHT rates when VHT is supported by sta.");
#endif

146 147 148 149
/*
 * To enable sufficiently targeted rate sampling, MCS rates are divided into
 * groups, based on the number of streams and flags (HT40, SGI) that they
 * use.
150 151
 *
 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
152
 * BW -> SGI -> #streams
153 154
 */
const struct mcs_group minstrel_mcs_groups[] = {
155 156
	MCS_GROUP(1, 0, BW_20),
	MCS_GROUP(2, 0, BW_20),
157
#if MINSTREL_MAX_STREAMS >= 3
158
	MCS_GROUP(3, 0, BW_20),
159 160
#endif

161 162
	MCS_GROUP(1, 1, BW_20),
	MCS_GROUP(2, 1, BW_20),
163
#if MINSTREL_MAX_STREAMS >= 3
164
	MCS_GROUP(3, 1, BW_20),
165 166
#endif

167 168
	MCS_GROUP(1, 0, BW_40),
	MCS_GROUP(2, 0, BW_40),
169
#if MINSTREL_MAX_STREAMS >= 3
170
	MCS_GROUP(3, 0, BW_40),
171 172
#endif

173 174
	MCS_GROUP(1, 1, BW_40),
	MCS_GROUP(2, 1, BW_40),
175
#if MINSTREL_MAX_STREAMS >= 3
176
	MCS_GROUP(3, 1, BW_40),
177
#endif
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192
	CCK_GROUP,

#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
	VHT_GROUP(1, 0, BW_20),
	VHT_GROUP(2, 0, BW_20),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_20),
#endif

	VHT_GROUP(1, 1, BW_20),
	VHT_GROUP(2, 1, BW_20),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_20),
#endif
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	VHT_GROUP(1, 0, BW_40),
	VHT_GROUP(2, 0, BW_40),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_40),
#endif

	VHT_GROUP(1, 1, BW_40),
	VHT_GROUP(2, 1, BW_40),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_40),
#endif

	VHT_GROUP(1, 0, BW_80),
	VHT_GROUP(2, 0, BW_80),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 0, BW_80),
#endif

	VHT_GROUP(1, 1, BW_80),
	VHT_GROUP(2, 1, BW_80),
#if MINSTREL_MAX_STREAMS >= 3
	VHT_GROUP(3, 1, BW_80),
#endif
#endif
};
219

220
static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
221

222 223 224
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/*
 * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
 * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
 *
 * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
 */
static u16
minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
{
	u16 mask = 0;

	if (bw == BW_20) {
		if (nss != 3 && nss != 6)
			mask = BIT(9);
	} else if (bw == BW_80) {
		if (nss == 3 || nss == 7)
			mask = BIT(6);
		else if (nss == 6)
			mask = BIT(9);
	} else {
		WARN_ON(bw != BW_40);
	}

	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
	case IEEE80211_VHT_MCS_SUPPORT_0_7:
		mask |= 0x300;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_8:
		mask |= 0x200;
		break;
	case IEEE80211_VHT_MCS_SUPPORT_0_9:
		break;
	default:
		mask = 0x3ff;
	}

	return 0x3ff & ~mask;
}

264 265 266 267 268 269
/*
 * Look up an MCS group index based on mac80211 rate information
 */
static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
{
270
	return GROUP_IDX((rate->idx / 8) + 1,
271 272
			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
273 274
}

275 276 277 278 279 280 281 282 283
static int
minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
{
	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
}

284 285 286 287 288 289 290 291
static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		      struct ieee80211_tx_rate *rate)
{
	int group, idx;

	if (rate->flags & IEEE80211_TX_RC_MCS) {
		group = minstrel_ht_get_group_idx(rate);
292
		idx = rate->idx % 8;
293 294 295
	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
		group = minstrel_vht_get_group_idx(rate);
		idx = ieee80211_rate_get_vht_mcs(rate);
296 297 298 299 300 301 302 303 304 305 306 307 308 309
	} else {
		group = MINSTREL_CCK_GROUP;

		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
			if (rate->idx == mp->cck_rates[idx])
				break;

		/* short preamble */
		if (!(mi->groups[group].supported & BIT(idx)))
			idx += 4;
	}
	return &mi->groups[group].rates[idx];
}

310 311 312 313 314 315 316
static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
{
	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
}

/*
317 318
 * Return current throughput based on the average A-MPDU length, taking into
 * account the expected number of retransmissions and their expected length
319
 */
320
int
321 322
minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
		       int prob_ewma)
323
{
324
	unsigned int nsecs = 0;
325

326
	/* do not account throughput if sucess prob is below 10% */
327
	if (prob_ewma < MINSTREL_FRAC(10, 100))
328
		return 0;
329

330
	if (group != MINSTREL_CCK_GROUP)
331
		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
332

333 334
	nsecs += minstrel_mcs_groups[group].duration[rate];

335 336 337 338 339 340 341 342 343 344
	/*
	 * For the throughput calculation, limit the probability value to 90% to
	 * account for collision related packet error rate fluctuation
	 * (prob is scaled - see MINSTREL_FRAC above)
	 */
	if (prob_ewma > MINSTREL_FRAC(90, 100))
		return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
								      / nsecs));
	else
		return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs));
345 346
}

347 348 349 350 351 352 353 354
/*
 * Find & sort topmost throughput rates
 *
 * If multiple rates provide equal throughput the sorting is based on their
 * current success probability. Higher success probability is preferred among
 * MCS groups, CCK rates do not provide aggregation and are therefore at last.
 */
static void
355 356
minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
			       u16 *tp_list)
357
{
358 359
	int cur_group, cur_idx, cur_tp_avg, cur_prob;
	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
360 361 362 363
	int j = MAX_THR_RATES;

	cur_group = index / MCS_GROUP_RATES;
	cur_idx = index  % MCS_GROUP_RATES;
364
	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma;
365
	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
366

367
	do {
368 369
		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
370
		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
371 372
		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
						    tmp_prob);
373 374
		if (cur_tp_avg < tmp_tp_avg ||
		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
375 376 377
			break;
		j--;
	} while (j > 0);
378 379 380 381 382 383 384 385 386 387 388 389 390

	if (j < MAX_THR_RATES - 1) {
		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
		       (MAX_THR_RATES - (j + 1))));
	}
	if (j < MAX_THR_RATES)
		tp_list[j] = index;
}

/*
 * Find and set the topmost probability rate per sta and per group
 */
static void
391
minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
392 393
{
	struct minstrel_mcs_group_data *mg;
394
	struct minstrel_rate_stats *mrs;
395 396
	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
	int max_tp_group, cur_tp_avg, cur_group, cur_idx;
397 398
	int max_gpr_group, max_gpr_idx;
	int max_gpr_tp_avg, max_gpr_prob;
399

400 401
	cur_group = index / MCS_GROUP_RATES;
	cur_idx = index % MCS_GROUP_RATES;
402
	mg = &mi->groups[index / MCS_GROUP_RATES];
403
	mrs = &mg->rates[index % MCS_GROUP_RATES];
404 405 406

	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
407
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
408
	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
409 410 411 412 413 414 415 416

	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
	    (max_tp_group != MINSTREL_CCK_GROUP))
		return;

417 418 419 420
	max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
	max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
	max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma;

421
	if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) {
422 423
		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
						    mrs->prob_ewma);
424
		if (cur_tp_avg > tmp_tp_avg)
425
			mi->max_prob_rate = index;
426

427 428 429 430
		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
							max_gpr_idx,
							max_gpr_prob);
		if (cur_tp_avg > max_gpr_tp_avg)
431 432
			mg->max_group_prob_rate = index;
	} else {
433
		if (mrs->prob_ewma > tmp_prob)
434
			mi->max_prob_rate = index;
435
		if (mrs->prob_ewma > max_gpr_prob)
436 437 438 439 440 441 442 443 444 445 446 447 448
			mg->max_group_prob_rate = index;
	}
}


/*
 * Assign new rate set per sta and use CCK rates only if the fastest
 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
 * rate sets where MCS and CCK rates are mixed, because CCK rates can
 * not use aggregation.
 */
static void
minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
449 450
				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
451
{
452
	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
453 454 455 456
	int i;

	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
457 458
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
459 460 461

	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
462 463
	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

	if (tmp_cck_tp > tmp_mcs_tp) {
		for(i = 0; i < MAX_THR_RATES; i++) {
			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
						       tmp_mcs_tp_rate);
		}
	}

}

/*
 * Try to increase robustness of max_prob rate by decrease number of
 * streams if possible.
 */
static inline void
minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
482
	int tmp_max_streams, group, tmp_idx, tmp_prob;
483 484 485 486 487 488 489 490
	int tmp_tp = 0;

	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
			  MCS_GROUP_RATES].streams;
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported || group == MINSTREL_CCK_GROUP)
			continue;
491 492

		tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
493
		tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma;
494

495
		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
496 497
		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
				mi->max_prob_rate = mg->max_group_prob_rate;
498
				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
499 500
								tmp_idx,
								tmp_prob);
501 502 503 504
		}
	}
}

505 506 507 508 509 510
/*
 * Update rate statistics and select new primary rates
 *
 * Rules for rate selection:
 *  - max_prob_rate must use only one stream, as a tradeoff between delivery
 *    probability and throughput during strong fluctuations
511
 *  - as long as the max prob rate has a probability of more than 75%, pick
512 513 514 515 516 517
 *    higher throughput rates, even if the probablity is a bit lower
 */
static void
minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
518
	struct minstrel_rate_stats *mrs;
519
	int group, i, j, cur_prob;
520 521
	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
522 523 524 525 526 527 528 529 530 531 532

	if (mi->ampdu_packets > 0) {
		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
		mi->ampdu_len = 0;
		mi->ampdu_packets = 0;
	}

	mi->sample_slow = 0;
	mi->sample_count = 0;

533 534 535 536 537
	/* Initialize global rate indexes */
	for(j = 0; j < MAX_THR_RATES; j++){
		tmp_mcs_tp_rate[j] = 0;
		tmp_cck_tp_rate[j] = 0;
	}
538

539 540
	/* Find best rate sets within all MCS groups*/
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
541 542 543 544 545 546 547

		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mi->sample_count++;

548 549 550 551
		/* (re)Initialize group rate indexes */
		for(j = 0; j < MAX_THR_RATES; j++)
			tmp_group_tp_rate[j] = group;

552 553 554 555
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			if (!(mg->supported & BIT(i)))
				continue;

556 557
			index = MCS_GROUP_RATES * group + i;

558 559 560
			mrs = &mg->rates[i];
			mrs->retry_updated = false;
			minstrel_calc_rate_stats(mrs);
561
			cur_prob = mrs->prob_ewma;
562

563
			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
564 565
				continue;

566 567 568 569 570 571 572
			/* Find max throughput rate set */
			if (group != MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_mcs_tp_rate);
			} else if (group == MINSTREL_CCK_GROUP) {
				minstrel_ht_sort_best_tp_rates(mi, index,
							       tmp_cck_tp_rate);
573 574
			}

575 576 577
			/* Find max throughput rate set within a group */
			minstrel_ht_sort_best_tp_rates(mi, index,
						       tmp_group_tp_rate);
578

579 580
			/* Find max probability rate per group and global */
			minstrel_ht_set_best_prob_rate(mi, index);
581 582
		}

583 584
		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
		       sizeof(mg->max_group_tp_rate));
585 586
	}

587 588 589
	/* Assign new rate set per sta */
	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
590

591 592 593 594 595
	/* Try to increase robustness of max_prob_rate*/
	minstrel_ht_prob_rate_reduce_streams(mi);

	/* try to sample all available rates during each interval */
	mi->sample_count *= 8;
596

597 598 599
#ifdef CONFIG_MAC80211_DEBUGFS
	/* use fixed index if set */
	if (mp->fixed_rate_idx != -1) {
600 601
		for (i = 0; i < 4; i++)
			mi->max_tp_rate[i] = mp->fixed_rate_idx;
602 603 604
		mi->max_prob_rate = mp->fixed_rate_idx;
	}
#endif
605

606
	/* Reset update timer */
607
	mi->last_stats_update = jiffies;
608 609 610
}

static bool
611
minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
612
{
613
	if (rate->idx < 0)
614 615
		return false;

616
	if (!rate->count)
617 618
		return false;

619 620
	if (rate->flags & IEEE80211_TX_RC_MCS ||
	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
621 622 623 624 625 626
		return true;

	return rate->idx == mp->cck_rates[0] ||
	       rate->idx == mp->cck_rates[1] ||
	       rate->idx == mp->cck_rates[2] ||
	       rate->idx == mp->cck_rates[3];
627 628 629
}

static void
630
minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
{
	struct minstrel_mcs_group_data *mg;

	for (;;) {
		mi->sample_group++;
		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
		mg = &mi->groups[mi->sample_group];

		if (!mg->supported)
			continue;

		if (++mg->index >= MCS_GROUP_RATES) {
			mg->index = 0;
			if (++mg->column >= ARRAY_SIZE(sample_table))
				mg->column = 0;
		}
		break;
	}
}

static void
652
minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
{
	int group, orig_group;

	orig_group = group = *idx / MCS_GROUP_RATES;
	while (group > 0) {
		group--;

		if (!mi->groups[group].supported)
			continue;

		if (minstrel_mcs_groups[group].streams >
		    minstrel_mcs_groups[orig_group].streams)
			continue;

		if (primary)
668
			*idx = mi->groups[group].max_group_tp_rate[0];
669
		else
670
			*idx = mi->groups[group].max_group_tp_rate[1];
671 672 673 674 675
		break;
	}
}

static void
676
minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
677 678 679 680 681
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
	u16 tid;

682 683 684
	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
		return;

685 686 687
	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
		return;

688
	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
689 690 691
		return;

	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
692
	if (likely(sta->ampdu_mlme.tid_tx[tid]))
693 694
		return;

695
	ieee80211_start_tx_ba_session(pubsta, tid, 0);
696 697 698 699 700
}

static void
minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
                      struct ieee80211_sta *sta, void *priv_sta,
701
                      struct ieee80211_tx_info *info)
702 703 704 705 706 707
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_tx_rate *ar = info->status.rates;
	struct minstrel_rate_stats *rate, *rate2;
	struct minstrel_priv *mp = priv;
708
	bool last, update = false;
709
	int i;
710 711

	if (!msp->is_ht)
712 713
		return mac80211_minstrel.tx_status_noskb(priv, sband, sta,
							 &msp->legacy, info);
714 715 716 717 718 719

	/* This packet was aggregated but doesn't carry status info */
	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
		return;

B
Björn Smedman 已提交
720 721 722
	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
		info->status.ampdu_ack_len =
			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
723 724 725 726 727 728 729
		info->status.ampdu_len = 1;
	}

	mi->ampdu_packets++;
	mi->ampdu_len += info->status.ampdu_len;

	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
730
		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
731
		mi->sample_tries = 1;
732 733 734
		mi->sample_count--;
	}

735
	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
736 737
		mi->sample_packets += info->status.ampdu_len;

738
	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
739 740
	for (i = 0; !last; i++) {
		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
741
		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
742

743
		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
744

B
Björn Smedman 已提交
745
		if (last)
746 747 748 749 750 751 752 753 754
			rate->success += info->status.ampdu_ack_len;

		rate->attempts += ar[i].count * info->status.ampdu_len;
	}

	/*
	 * check for sudden death of spatial multiplexing,
	 * downgrade to a lower number of streams if necessary.
	 */
755
	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
756 757
	if (rate->attempts > 30 &&
	    MINSTREL_FRAC(rate->success, rate->attempts) <
758
	    MINSTREL_FRAC(20, 100)) {
759
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
760 761
		update = true;
	}
762

763
	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
764 765
	if (rate2->attempts > 30 &&
	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
766
	    MINSTREL_FRAC(20, 100)) {
767
		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
768 769
		update = true;
	}
770

771 772
	if (time_after(jiffies, mi->last_stats_update +
				(mp->update_interval / 2 * HZ) / 1000)) {
773
		update = true;
774 775
		minstrel_ht_update_stats(mp, mi);
	}
776 777 778

	if (update)
		minstrel_ht_update_rates(mp, mi);
779 780 781 782 783 784
}

static void
minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
                         int index)
{
785
	struct minstrel_rate_stats *mrs;
786 787 788
	const struct mcs_group *group;
	unsigned int tx_time, tx_time_rtscts, tx_time_data;
	unsigned int cw = mp->cw_min;
789
	unsigned int ctime = 0;
790 791
	unsigned int t_slot = 9; /* FIXME */
	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
792
	unsigned int overhead = 0, overhead_rtscts = 0;
793

794 795 796 797
	mrs = minstrel_get_ratestats(mi, index);
	if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) {
		mrs->retry_count = 1;
		mrs->retry_count_rtscts = 1;
798 799 800
		return;
	}

801 802 803
	mrs->retry_count = 2;
	mrs->retry_count_rtscts = 2;
	mrs->retry_updated = true;
804 805

	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
806
	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
807 808 809 810 811 812 813

	/* Contention time for first 2 tries */
	ctime = (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);
	ctime += (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);

814 815 816 817 818
	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
		overhead = mi->overhead;
		overhead_rtscts = mi->overhead_rtscts;
	}

819
	/* Total TX time for data and Contention after first 2 tries */
820 821
	tx_time = ctime + 2 * (overhead + tx_time_data);
	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
822 823

	/* See how many more tries we can fit inside segment size */
824
	do {
825 826 827 828 829
		/* Contention time for this try */
		ctime = (t_slot * cw) >> 1;
		cw = min((cw << 1) | 1, mp->cw_max);

		/* Total TX time after this try */
830 831
		tx_time += ctime + overhead + tx_time_data;
		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
832

833
		if (tx_time_rtscts < mp->segment_size)
834
			mrs->retry_count_rtscts++;
835
	} while ((tx_time < mp->segment_size) &&
836
	         (++mrs->retry_count < mp->max_retry));
837 838 839 840 841
}


static void
minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
842
                     struct ieee80211_sta_rates *ratetbl, int offset, int index)
843 844
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
845
	struct minstrel_rate_stats *mrs;
846
	u8 idx;
847
	u16 flags = group->flags;
848

849 850
	mrs = minstrel_get_ratestats(mi, index);
	if (!mrs->retry_updated)
851 852
		minstrel_calc_retransmit(mp, mi, index);

853
	if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
854 855 856 857
		ratetbl->rate[offset].count = 2;
		ratetbl->rate[offset].count_rts = 2;
		ratetbl->rate[offset].count_cts = 2;
	} else {
858 859 860
		ratetbl->rate[offset].count = mrs->retry_count;
		ratetbl->rate[offset].count_cts = mrs->retry_count;
		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
861
	}
862

863
	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
864
		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
865 866 867
	else if (flags & IEEE80211_TX_RC_VHT_MCS)
		idx = ((group->streams - 1) << 4) |
		      ((index % MCS_GROUP_RATES) & 0xF);
868
	else
869
		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
870

871 872 873 874 875 876 877
	/* enable RTS/CTS if needed:
	 *  - if station is in dynamic SMPS (and streams > 1)
	 *  - for fallback rates, to increase chances of getting through
	 */
	if (offset > 0 &&
	    (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
	     group->streams > 1)) {
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
	}

	ratetbl->rate[offset].idx = idx;
	ratetbl->rate[offset].flags = flags;
}

static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct ieee80211_sta_rates *rates;
	int i = 0;

	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
	if (!rates)
894
		return;
895

896 897
	/* Start with max_tp_rate[0] */
	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
898 899

	if (mp->hw->max_rates >= 3) {
900 901
		/* At least 3 tx rates supported, use max_tp_rate[1] next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
902 903 904 905 906 907
	}

	if (mp->hw->max_rates >= 2) {
		/*
		 * At least 2 tx rates supported, use max_prob_rate next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
908 909
	}

910 911
	rates->rate[i].idx = -1;
	rate_control_set_rates(mp->hw, mi->sta, rates);
912 913 914 915 916 917 918 919 920 921 922 923
}

static inline int
minstrel_get_duration(int index)
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	return group->duration[index % MCS_GROUP_RATES];
}

static int
minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
924
	struct minstrel_rate_stats *mrs;
925
	struct minstrel_mcs_group_data *mg;
926
	unsigned int sample_dur, sample_group, cur_max_tp_streams;
927 928 929 930 931 932 933 934 935 936
	int sample_idx = 0;

	if (mi->sample_wait > 0) {
		mi->sample_wait--;
		return -1;
	}

	if (!mi->sample_tries)
		return -1;

937 938
	sample_group = mi->sample_group;
	mg = &mi->groups[sample_group];
939
	sample_idx = sample_table[mg->column][mg->index];
940
	minstrel_set_next_sample_idx(mi);
941 942 943 944

	if (!(mg->supported & BIT(sample_idx)))
		return -1;

945
	mrs = &mg->rates[sample_idx];
946
	sample_idx += sample_group * MCS_GROUP_RATES;
947

948 949 950
	/*
	 * Sampling might add some overhead (RTS, no aggregation)
	 * to the frame. Hence, don't use sampling for the currently
951
	 * used rates.
952
	 */
953 954
	if (sample_idx == mi->max_tp_rate[0] ||
	    sample_idx == mi->max_tp_rate[1] ||
955
	    sample_idx == mi->max_prob_rate)
956
		return -1;
957

958
	/*
959 960
	 * Do not sample if the probability is already higher than 95%
	 * to avoid wasting airtime.
961
	 */
962
	if (mrs->prob_ewma > MINSTREL_FRAC(95, 100))
963
		return -1;
964 965 966 967 968

	/*
	 * Make sure that lower rates get sampled only occasionally,
	 * if the link is working perfectly.
	 */
969 970 971

	cur_max_tp_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
		MCS_GROUP_RATES].streams;
972
	sample_dur = minstrel_get_duration(sample_idx);
973 974
	if (sample_dur >= minstrel_get_duration(mi->max_tp_rate[1]) &&
	    (cur_max_tp_streams - 1 <
975 976
	     minstrel_mcs_groups[sample_group].streams ||
	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
977
		if (mrs->sample_skipped < 20)
978
			return -1;
979 980

		if (mi->sample_slow++ > 2)
981
			return -1;
982
	}
983
	mi->sample_tries--;
984 985 986 987

	return sample_idx;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
static void
minstrel_ht_check_cck_shortpreamble(struct minstrel_priv *mp,
				    struct minstrel_ht_sta *mi, bool val)
{
	u8 supported = mi->groups[MINSTREL_CCK_GROUP].supported;

	if (!supported || !mi->cck_supported_short)
		return;

	if (supported & (mi->cck_supported_short << (val * 4)))
		return;

	supported ^= mi->cck_supported_short | (mi->cck_supported_short << 4);
	mi->groups[MINSTREL_CCK_GROUP].supported = supported;
}

1004 1005 1006 1007
static void
minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
                     struct ieee80211_tx_rate_control *txrc)
{
1008
	const struct mcs_group *sample_group;
1009
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1010
	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct minstrel_priv *mp = priv;
	int sample_idx;

	if (rate_control_send_low(sta, priv_sta, txrc))
		return;

	if (!msp->is_ht)
		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);

1022 1023 1024 1025
	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
		minstrel_aggr_check(sta, txrc->skb);

1026
	info->flags |= mi->tx_flags;
1027
	minstrel_ht_check_cck_shortpreamble(mp, mi, txrc->short_preamble);
1028

1029 1030 1031 1032 1033
#ifdef CONFIG_MAC80211_DEBUGFS
	if (mp->fixed_rate_idx != -1)
		return;
#endif

1034 1035
	/* Don't use EAPOL frames for sampling on non-mrr hw */
	if (mp->hw->max_rates == 1 &&
1036
	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1037 1038 1039
		sample_idx = -1;
	else
		sample_idx = minstrel_get_sample_rate(mp, mi);
1040

1041 1042 1043 1044 1045 1046 1047
	mi->total_packets++;

	/* wraparound */
	if (mi->total_packets == ~0) {
		mi->total_packets = 0;
		mi->sample_packets = 0;
	}
1048 1049 1050 1051 1052 1053

	if (sample_idx < 0)
		return;

	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1054 1055 1056 1057 1058
	rate->count = 1;

	if (sample_idx / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
		rate->idx = mp->cck_rates[idx];
1059 1060 1061
	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
				       sample_group->streams);
1062 1063 1064
	} else {
		rate->idx = sample_idx % MCS_GROUP_RATES +
			    (sample_group->streams - 1) * 8;
1065 1066
	}

1067
	rate->flags = sample_group->flags;
1068 1069
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
static void
minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		       struct ieee80211_supported_band *sband,
		       struct ieee80211_sta *sta)
{
	int i;

	if (sband->band != IEEE80211_BAND_2GHZ)
		return;

1080
	if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1081 1082
		return;

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	mi->cck_supported = 0;
	mi->cck_supported_short = 0;
	for (i = 0; i < 4; i++) {
		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
			continue;

		mi->cck_supported |= BIT(i);
		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
			mi->cck_supported_short |= BIT(i);
	}

	mi->groups[MINSTREL_CCK_GROUP].supported = mi->cck_supported;
}

1097 1098
static void
minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1099
			struct cfg80211_chan_def *chandef,
1100
                        struct ieee80211_sta *sta, void *priv_sta)
1101 1102 1103 1104 1105 1106
{
	struct minstrel_priv *mp = priv;
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
	u16 sta_cap = sta->ht_cap.cap;
1107 1108
	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
	int use_vht;
1109
	int n_supported = 0;
1110 1111 1112 1113 1114
	int ack_dur;
	int stbc;
	int i;

	/* fall back to the old minstrel for legacy stations */
1115 1116
	if (!sta->ht_cap.ht_supported)
		goto use_legacy;
1117

1118
	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1119

1120 1121 1122 1123 1124 1125 1126
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
	if (vht_cap->vht_supported)
		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
	else
#endif
	use_vht = 0;

1127 1128
	msp->is_ht = true;
	memset(mi, 0, sizeof(*mi));
1129 1130

	mi->sta = sta;
1131
	mi->last_stats_update = jiffies;
1132

1133 1134 1135
	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
	mi->overhead += ack_dur;
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;

	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);

	/* When using MRR, sample more on the first attempt, without delay */
	if (mp->has_mrr) {
		mi->sample_count = 16;
		mi->sample_wait = 0;
	} else {
		mi->sample_count = 8;
		mi->sample_wait = 8;
	}
	mi->sample_tries = 4;

1150 1151 1152 1153 1154
	/* TODO tx_flags for vht - ATM the RC API is not fine-grained enough */
	if (!use_vht) {
		stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
			IEEE80211_HT_CAP_RX_STBC_SHIFT;
		mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1155

1156 1157 1158
		if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
			mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
	}
1159 1160

	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1161
		u32 gflags = minstrel_mcs_groups[i].flags;
1162
		int bw, nss;
1163

1164
		mi->groups[i].supported = 0;
1165 1166 1167 1168 1169
		if (i == MINSTREL_CCK_GROUP) {
			minstrel_ht_update_cck(mp, mi, sband, sta);
			continue;
		}

1170 1171
		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1172 1173 1174 1175 1176 1177
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
					continue;
			} else {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
					continue;
			}
1178 1179
		}

1180
		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1181
		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1182 1183
			continue;

1184 1185
		nss = minstrel_mcs_groups[i].streams;

1186
		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1187 1188 1189 1190 1191 1192
		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
			continue;

		/* HT rate */
		if (gflags & IEEE80211_TX_RC_MCS) {
#ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1193
			if (use_vht && minstrel_vht_only)
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
				continue;
#endif
			mi->groups[i].supported = mcs->rx_mask[nss - 1];
			if (mi->groups[i].supported)
				n_supported++;
			continue;
		}

		/* VHT rate */
		if (!vht_cap->vht_supported ||
		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1206 1207
			continue;

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
				continue;
			}
		}

		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
			bw = BW_40;
		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
			bw = BW_80;
		else
			bw = BW_20;

		mi->groups[i].supported = minstrel_get_valid_vht_rates(bw, nss,
				vht_cap->vht_mcs.tx_mcs_map);
1225 1226 1227

		if (mi->groups[i].supported)
			n_supported++;
1228
	}
1229 1230 1231 1232

	if (!n_supported)
		goto use_legacy;

1233
	/* create an initial rate table with the lowest supported rates */
1234
	minstrel_ht_update_stats(mp, mi);
1235
	minstrel_ht_update_rates(mp, mi);
1236

1237 1238 1239 1240 1241 1242 1243
	return;

use_legacy:
	msp->is_ht = false;
	memset(&msp->legacy, 0, sizeof(msp->legacy));
	msp->legacy.r = msp->ratelist;
	msp->legacy.sample_table = msp->sample_table;
1244 1245
	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
					   &msp->legacy);
1246 1247 1248 1249
}

static void
minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1250
		      struct cfg80211_chan_def *chandef,
1251 1252
                      struct ieee80211_sta *sta, void *priv_sta)
{
1253
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1254 1255 1256 1257
}

static void
minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1258
			struct cfg80211_chan_def *chandef,
1259
                        struct ieee80211_sta *sta, void *priv_sta,
1260
                        u32 changed)
1261
{
1262
	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
}

static void *
minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
{
	struct ieee80211_supported_band *sband;
	struct minstrel_ht_sta_priv *msp;
	struct minstrel_priv *mp = priv;
	struct ieee80211_hw *hw = mp->hw;
	int max_rates = 0;
	int i;

	for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
		sband = hw->wiphy->bands[i];
		if (sband && sband->n_bitrates > max_rates)
			max_rates = sband->n_bitrates;
	}

1281
	msp = kzalloc(sizeof(*msp), gfp);
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	if (!msp)
		return NULL;

	msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp);
	if (!msp->ratelist)
		goto error;

	msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp);
	if (!msp->sample_table)
		goto error1;

	return msp;

error1:
1296
	kfree(msp->ratelist);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
error:
	kfree(msp);
	return NULL;
}

static void
minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;

	kfree(msp->sample_table);
	kfree(msp->ratelist);
	kfree(msp);
}

static void *
minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
	return mac80211_minstrel.alloc(hw, debugfsdir);
}

static void
minstrel_ht_free(void *priv)
{
	mac80211_minstrel.free(priv);
}

1324 1325 1326 1327
static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
1328
	int i, j, prob, tp_avg;
1329 1330 1331 1332

	if (!msp->is_ht)
		return mac80211_minstrel.get_expected_throughput(priv_sta);

1333 1334
	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1335
	prob = mi->groups[i].rates[j].prob_ewma;
1336

1337
	/* convert tp_avg from pkt per second in kbps */
1338 1339
	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1340 1341

	return tp_avg;
1342 1343
}

1344
static const struct rate_control_ops mac80211_minstrel_ht = {
1345
	.name = "minstrel_ht",
1346
	.tx_status_noskb = minstrel_ht_tx_status,
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	.get_rate = minstrel_ht_get_rate,
	.rate_init = minstrel_ht_rate_init,
	.rate_update = minstrel_ht_rate_update,
	.alloc_sta = minstrel_ht_alloc_sta,
	.free_sta = minstrel_ht_free_sta,
	.alloc = minstrel_ht_alloc,
	.free = minstrel_ht_free,
#ifdef CONFIG_MAC80211_DEBUGFS
	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
#endif
1358
	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1359 1360 1361
};


1362
static void __init init_sample_table(void)
1363 1364 1365 1366 1367 1368
{
	int col, i, new_idx;
	u8 rnd[MCS_GROUP_RATES];

	memset(sample_table, 0xff, sizeof(sample_table));
	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1369
		prandom_bytes(rnd, sizeof(rnd));
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
			while (sample_table[col][new_idx] != 0xff)
				new_idx = (new_idx + 1) % MCS_GROUP_RATES;

			sample_table[col][new_idx] = i;
		}
	}
}

int __init
rc80211_minstrel_ht_init(void)
{
	init_sample_table();
	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
}

void
rc80211_minstrel_ht_exit(void)
{
	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
}