rc80211_minstrel_ht.c 27.2 KB
Newer Older
1
/*
2
 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/debugfs.h>
#include <linux/random.h>
#include <linux/ieee80211.h>
#include <net/mac80211.h>
#include "rate.h"
#include "rc80211_minstrel.h"
#include "rc80211_minstrel_ht.h"

#define AVG_PKT_SIZE	1200

/* Number of bits for an average sized packet */
#define MCS_NBITS (AVG_PKT_SIZE << 3)

/* Number of symbols for a packet with (bps) bits per symbol */
#define MCS_NSYMS(bps) ((MCS_NBITS + (bps) - 1) / (bps))

27
/* Transmission time (nanoseconds) for a packet containing (syms) symbols */
28 29
#define MCS_SYMBOL_TIME(sgi, syms)					\
	(sgi ?								\
30 31
	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
	  ((syms) * 1000) << 2		/* syms * 4 us */		\
32 33 34 35 36
	)

/* Transmit duration for the raw data part of an average sized packet */
#define MCS_DURATION(streams, sgi, bps) MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps)))

37 38 39 40 41 42 43 44
/*
 * Define group sort order: HT40 -> SGI -> #streams
 */
#define GROUP_IDX(_streams, _sgi, _ht40)	\
	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
	MINSTREL_MAX_STREAMS * _sgi +		\
	_streams - 1

45
/* MCS rate information for an MCS group */
46 47
#define MCS_GROUP(_streams, _sgi, _ht40)				\
	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	.streams = _streams,						\
	.flags =							\
		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
	.duration = {							\
		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
	}								\
}

64
#define CCK_DURATION(_bitrate, _short, _len)		\
65
	(1000 * (10 /* SIFS */ +			\
66
	 (_short ? 72 + 24 : 144 + 48 ) +		\
67
	 (8 * (_len + 4) * 10) / (_bitrate)))
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define CCK_ACK_DURATION(_bitrate, _short)			\
	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))

#define CCK_DURATION_LIST(_short)			\
	CCK_ACK_DURATION(10, _short),			\
	CCK_ACK_DURATION(20, _short),			\
	CCK_ACK_DURATION(55, _short),			\
	CCK_ACK_DURATION(110, _short)

#define CCK_GROUP						\
	[MINSTREL_MAX_STREAMS * MINSTREL_STREAM_GROUPS] = {	\
		.streams = 0,					\
		.duration = {					\
			CCK_DURATION_LIST(false),		\
			CCK_DURATION_LIST(true)			\
		}						\
	}

88 89 90 91
/*
 * To enable sufficiently targeted rate sampling, MCS rates are divided into
 * groups, based on the number of streams and flags (HT40, SGI) that they
 * use.
92 93 94
 *
 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
 * HT40 -> SGI -> #streams
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
 */
const struct mcs_group minstrel_mcs_groups[] = {
	MCS_GROUP(1, 0, 0),
	MCS_GROUP(2, 0, 0),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 0, 0),
#endif

	MCS_GROUP(1, 1, 0),
	MCS_GROUP(2, 1, 0),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 1, 0),
#endif

	MCS_GROUP(1, 0, 1),
	MCS_GROUP(2, 0, 1),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 0, 1),
#endif

	MCS_GROUP(1, 1, 1),
	MCS_GROUP(2, 1, 1),
#if MINSTREL_MAX_STREAMS >= 3
	MCS_GROUP(3, 1, 1),
#endif
120 121 122

	/* must be last */
	CCK_GROUP
123 124
};

125 126
#define MINSTREL_CCK_GROUP	(ARRAY_SIZE(minstrel_mcs_groups) - 1)

127 128
static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES];

129 130 131
static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);

132 133 134 135 136 137
/*
 * Look up an MCS group index based on mac80211 rate information
 */
static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
{
138 139 140
	return GROUP_IDX((rate->idx / MCS_GROUP_RATES) + 1,
			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
141 142
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		      struct ieee80211_tx_rate *rate)
{
	int group, idx;

	if (rate->flags & IEEE80211_TX_RC_MCS) {
		group = minstrel_ht_get_group_idx(rate);
		idx = rate->idx % MCS_GROUP_RATES;
	} else {
		group = MINSTREL_CCK_GROUP;

		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
			if (rate->idx == mp->cck_rates[idx])
				break;

		/* short preamble */
		if (!(mi->groups[group].supported & BIT(idx)))
			idx += 4;
	}
	return &mi->groups[group].rates[idx];
}

166 167 168 169 170 171 172 173 174 175 176
static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
{
	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
}


/*
 * Recalculate success probabilities and counters for a rate using EWMA
 */
static void
177
minstrel_calc_rate_ewma(struct minstrel_rate_stats *mr)
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
{
	if (unlikely(mr->attempts > 0)) {
		mr->sample_skipped = 0;
		mr->cur_prob = MINSTREL_FRAC(mr->success, mr->attempts);
		if (!mr->att_hist)
			mr->probability = mr->cur_prob;
		else
			mr->probability = minstrel_ewma(mr->probability,
				mr->cur_prob, EWMA_LEVEL);
		mr->att_hist += mr->attempts;
		mr->succ_hist += mr->success;
	} else {
		mr->sample_skipped++;
	}
	mr->last_success = mr->success;
	mr->last_attempts = mr->attempts;
	mr->success = 0;
	mr->attempts = 0;
}

/*
 * Calculate throughput based on the average A-MPDU length, taking into account
 * the expected number of retransmissions and their expected length
 */
static void
203
minstrel_ht_calc_tp(struct minstrel_ht_sta *mi, int group, int rate)
204 205
{
	struct minstrel_rate_stats *mr;
206 207
	unsigned int nsecs = 0;
	unsigned int tp;
208
	unsigned int prob;
209 210

	mr = &mi->groups[group].rates[rate];
211
	prob = mr->probability;
212

213
	if (prob < MINSTREL_FRAC(1, 10)) {
214 215 216 217
		mr->cur_tp = 0;
		return;
	}

218 219 220 221 222 223 224
	/*
	 * For the throughput calculation, limit the probability value to 90% to
	 * account for collision related packet error rate fluctuation
	 */
	if (prob > MINSTREL_FRAC(9, 10))
		prob = MINSTREL_FRAC(9, 10);

225
	if (group != MINSTREL_CCK_GROUP)
226
		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
227

228 229 230 231
	nsecs += minstrel_mcs_groups[group].duration[rate];
	tp = 1000000 * ((mr->probability * 1000) / nsecs);

	mr->cur_tp = MINSTREL_TRUNC(tp);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
}

/*
 * Update rate statistics and select new primary rates
 *
 * Rules for rate selection:
 *  - max_prob_rate must use only one stream, as a tradeoff between delivery
 *    probability and throughput during strong fluctuations
 *  - as long as the max prob rate has a probability of more than 3/4, pick
 *    higher throughput rates, even if the probablity is a bit lower
 */
static void
minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;
	struct minstrel_rate_stats *mr;
	int cur_prob, cur_prob_tp, cur_tp, cur_tp2;
	int group, i, index;
250
	bool mi_rates_valid = false;
251 252 253 254 255 256 257 258 259 260 261 262

	if (mi->ampdu_packets > 0) {
		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
		mi->ampdu_len = 0;
		mi->ampdu_packets = 0;
	}

	mi->sample_slow = 0;
	mi->sample_count = 0;

	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
263 264
		bool mg_rates_valid = false;

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
		cur_prob = 0;
		cur_prob_tp = 0;
		cur_tp = 0;
		cur_tp2 = 0;

		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mi->sample_count++;

		for (i = 0; i < MCS_GROUP_RATES; i++) {
			if (!(mg->supported & BIT(i)))
				continue;

280 281 282 283 284 285 286 287 288 289 290 291
			/* initialize rates selections starting indexes */
			if (!mg_rates_valid) {
				mg->max_tp_rate = mg->max_tp_rate2 =
					mg->max_prob_rate = i;
				if (!mi_rates_valid) {
					mi->max_tp_rate = mi->max_tp_rate2 =
						mi->max_prob_rate = i;
					mi_rates_valid = true;
				}
				mg_rates_valid = true;
			}

292 293 294
			mr = &mg->rates[i];
			mr->retry_updated = false;
			index = MCS_GROUP_RATES * group + i;
295 296
			minstrel_calc_rate_ewma(mr);
			minstrel_ht_calc_tp(mi, group, i);
297 298 299 300 301 302 303 304

			if (!mr->cur_tp)
				continue;

			if ((mr->cur_tp > cur_prob_tp && mr->probability >
			     MINSTREL_FRAC(3, 4)) || mr->probability > cur_prob) {
				mg->max_prob_rate = index;
				cur_prob = mr->probability;
305
				cur_prob_tp = mr->cur_tp;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
			}

			if (mr->cur_tp > cur_tp) {
				swap(index, mg->max_tp_rate);
				cur_tp = mr->cur_tp;
				mr = minstrel_get_ratestats(mi, index);
			}

			if (index >= mg->max_tp_rate)
				continue;

			if (mr->cur_tp > cur_tp2) {
				mg->max_tp_rate2 = index;
				cur_tp2 = mr->cur_tp;
			}
		}
	}

324 325
	/* try to sample all available rates during each interval */
	mi->sample_count *= 8;
326 327 328 329 330 331 332 333 334 335 336 337

	cur_prob = 0;
	cur_prob_tp = 0;
	cur_tp = 0;
	cur_tp2 = 0;
	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported)
			continue;

		mr = minstrel_get_ratestats(mi, mg->max_tp_rate);
		if (cur_tp < mr->cur_tp) {
338 339
			mi->max_tp_rate2 = mi->max_tp_rate;
			cur_tp2 = cur_tp;
340 341
			mi->max_tp_rate = mg->max_tp_rate;
			cur_tp = mr->cur_tp;
342
			mi->max_prob_streams = minstrel_mcs_groups[group].streams - 1;
343 344 345 346 347 348 349 350 351
		}

		mr = minstrel_get_ratestats(mi, mg->max_tp_rate2);
		if (cur_tp2 < mr->cur_tp) {
			mi->max_tp_rate2 = mg->max_tp_rate2;
			cur_tp2 = mr->cur_tp;
		}
	}

352 353
	if (mi->max_prob_streams < 1)
		mi->max_prob_streams = 1;
354 355 356 357 358 359 360

	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
		mg = &mi->groups[group];
		if (!mg->supported)
			continue;
		mr = minstrel_get_ratestats(mi, mg->max_prob_rate);
		if (cur_prob_tp < mr->cur_tp &&
361
		    minstrel_mcs_groups[group].streams <= mi->max_prob_streams) {
362 363 364 365 366 367 368
			mi->max_prob_rate = mg->max_prob_rate;
			cur_prob = mr->cur_prob;
			cur_prob_tp = mr->cur_tp;
		}
	}


369 370 371 372
	mi->stats_update = jiffies;
}

static bool
373
minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
374
{
375
	if (rate->idx < 0)
376 377
		return false;

378
	if (!rate->count)
379 380
		return false;

381 382 383 384 385 386 387
	if (rate->flags & IEEE80211_TX_RC_MCS)
		return true;

	return rate->idx == mp->cck_rates[0] ||
	       rate->idx == mp->cck_rates[1] ||
	       rate->idx == mp->cck_rates[2] ||
	       rate->idx == mp->cck_rates[3];
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
}

static void
minstrel_next_sample_idx(struct minstrel_ht_sta *mi)
{
	struct minstrel_mcs_group_data *mg;

	for (;;) {
		mi->sample_group++;
		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
		mg = &mi->groups[mi->sample_group];

		if (!mg->supported)
			continue;

		if (++mg->index >= MCS_GROUP_RATES) {
			mg->index = 0;
			if (++mg->column >= ARRAY_SIZE(sample_table))
				mg->column = 0;
		}
		break;
	}
}

static void
413 414
minstrel_downgrade_rate(struct minstrel_ht_sta *mi, unsigned int *idx,
			bool primary)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
{
	int group, orig_group;

	orig_group = group = *idx / MCS_GROUP_RATES;
	while (group > 0) {
		group--;

		if (!mi->groups[group].supported)
			continue;

		if (minstrel_mcs_groups[group].streams >
		    minstrel_mcs_groups[orig_group].streams)
			continue;

		if (primary)
			*idx = mi->groups[group].max_tp_rate;
		else
			*idx = mi->groups[group].max_tp_rate2;
		break;
	}
}

static void
438
minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
439 440 441 442 443 444 445 446 447 448 449 450
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
	u16 tid;

	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
		return;

	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
		return;

	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
451
	if (likely(sta->ampdu_mlme.tid_tx[tid]))
452 453
		return;

454 455 456
	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
		return;

457
	ieee80211_start_tx_ba_session(pubsta, tid, 5000);
458 459 460 461 462 463 464 465 466 467 468 469 470
}

static void
minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
                      struct ieee80211_sta *sta, void *priv_sta,
                      struct sk_buff *skb)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	struct ieee80211_tx_rate *ar = info->status.rates;
	struct minstrel_rate_stats *rate, *rate2;
	struct minstrel_priv *mp = priv;
471
	bool last, update = false;
472
	int i;
473 474 475 476 477 478 479 480 481

	if (!msp->is_ht)
		return mac80211_minstrel.tx_status(priv, sband, sta, &msp->legacy, skb);

	/* This packet was aggregated but doesn't carry status info */
	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
		return;

B
Björn Smedman 已提交
482 483 484
	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
		info->status.ampdu_ack_len =
			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
485 486 487 488 489 490 491
		info->status.ampdu_len = 1;
	}

	mi->ampdu_packets++;
	mi->ampdu_len += info->status.ampdu_len;

	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
492
		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
493
		mi->sample_tries = 1;
494 495 496
		mi->sample_count--;
	}

497
	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
498 499
		mi->sample_packets += info->status.ampdu_len;

500
	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
501 502
	for (i = 0; !last; i++) {
		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
503
		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
504

505
		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
506

B
Björn Smedman 已提交
507
		if (last)
508 509 510 511 512 513 514 515 516 517 518 519
			rate->success += info->status.ampdu_ack_len;

		rate->attempts += ar[i].count * info->status.ampdu_len;
	}

	/*
	 * check for sudden death of spatial multiplexing,
	 * downgrade to a lower number of streams if necessary.
	 */
	rate = minstrel_get_ratestats(mi, mi->max_tp_rate);
	if (rate->attempts > 30 &&
	    MINSTREL_FRAC(rate->success, rate->attempts) <
520
	    MINSTREL_FRAC(20, 100)) {
521
		minstrel_downgrade_rate(mi, &mi->max_tp_rate, true);
522 523
		update = true;
	}
524 525

	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate2);
526 527
	if (rate2->attempts > 30 &&
	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
528
	    MINSTREL_FRAC(20, 100)) {
529
		minstrel_downgrade_rate(mi, &mi->max_tp_rate2, false);
530 531
		update = true;
	}
532 533

	if (time_after(jiffies, mi->stats_update + (mp->update_interval / 2 * HZ) / 1000)) {
534
		update = true;
535
		minstrel_ht_update_stats(mp, mi);
536 537
		if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
		    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
538
			minstrel_aggr_check(sta, skb);
539
	}
540 541 542

	if (update)
		minstrel_ht_update_rates(mp, mi);
543 544 545 546 547 548 549 550 551 552
}

static void
minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
                         int index)
{
	struct minstrel_rate_stats *mr;
	const struct mcs_group *group;
	unsigned int tx_time, tx_time_rtscts, tx_time_data;
	unsigned int cw = mp->cw_min;
553
	unsigned int ctime = 0;
554 555
	unsigned int t_slot = 9; /* FIXME */
	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
556
	unsigned int overhead = 0, overhead_rtscts = 0;
557 558 559 560 561 562 563 564 565 566 567 568 569

	mr = minstrel_get_ratestats(mi, index);
	if (mr->probability < MINSTREL_FRAC(1, 10)) {
		mr->retry_count = 1;
		mr->retry_count_rtscts = 1;
		return;
	}

	mr->retry_count = 2;
	mr->retry_count_rtscts = 2;
	mr->retry_updated = true;

	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
570
	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
571 572 573 574 575 576 577

	/* Contention time for first 2 tries */
	ctime = (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);
	ctime += (t_slot * cw) >> 1;
	cw = min((cw << 1) | 1, mp->cw_max);

578 579 580 581 582
	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
		overhead = mi->overhead;
		overhead_rtscts = mi->overhead_rtscts;
	}

583
	/* Total TX time for data and Contention after first 2 tries */
584 585
	tx_time = ctime + 2 * (overhead + tx_time_data);
	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
586 587

	/* See how many more tries we can fit inside segment size */
588
	do {
589 590 591 592 593
		/* Contention time for this try */
		ctime = (t_slot * cw) >> 1;
		cw = min((cw << 1) | 1, mp->cw_max);

		/* Total TX time after this try */
594 595
		tx_time += ctime + overhead + tx_time_data;
		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
596

597 598 599 600 601 602 603 604 605
		if (tx_time_rtscts < mp->segment_size)
			mr->retry_count_rtscts++;
	} while ((tx_time < mp->segment_size) &&
	         (++mr->retry_count < mp->max_retry));
}


static void
minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
606
                     struct ieee80211_sta_rates *ratetbl, int offset, int index)
607 608 609
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	struct minstrel_rate_stats *mr;
610 611
	u8 idx;
	u16 flags;
612 613 614 615 616

	mr = minstrel_get_ratestats(mi, index);
	if (!mr->retry_updated)
		minstrel_calc_retransmit(mp, mi, index);

617 618 619 620 621 622 623 624 625
	if (mr->probability < MINSTREL_FRAC(20, 100) || !mr->retry_count) {
		ratetbl->rate[offset].count = 2;
		ratetbl->rate[offset].count_rts = 2;
		ratetbl->rate[offset].count_cts = 2;
	} else {
		ratetbl->rate[offset].count = mr->retry_count;
		ratetbl->rate[offset].count_cts = mr->retry_count;
		ratetbl->rate[offset].count_rts = mr->retry_count_rtscts;
	}
626 627

	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
		flags = 0;
	} else {
		idx = index % MCS_GROUP_RATES +
		      (group->streams - 1) * MCS_GROUP_RATES;
		flags = IEEE80211_TX_RC_MCS | group->flags;
	}

	if (offset > 0) {
		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
	}

	ratetbl->rate[offset].idx = idx;
	ratetbl->rate[offset].flags = flags;
}

static void
minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct ieee80211_sta_rates *rates;
	int i = 0;

	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
	if (!rates)
653
		return;
654 655 656 657 658 659 660 661 662 663 664 665 666

	/* Start with max_tp_rate */
	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate);

	if (mp->hw->max_rates >= 3) {
		/* At least 3 tx rates supported, use max_tp_rate2 next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate2);
	}

	if (mp->hw->max_rates >= 2) {
		/*
		 * At least 2 tx rates supported, use max_prob_rate next */
		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
667 668
	}

669 670
	rates->rate[i].idx = -1;
	rate_control_set_rates(mp->hw, mi->sta, rates);
671 672 673 674 675 676 677 678 679 680 681 682 683 684
}

static inline int
minstrel_get_duration(int index)
{
	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
	return group->duration[index % MCS_GROUP_RATES];
}

static int
minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
{
	struct minstrel_rate_stats *mr;
	struct minstrel_mcs_group_data *mg;
685
	unsigned int sample_dur, sample_group;
686 687 688 689 690 691 692 693 694 695 696 697 698
	int sample_idx = 0;

	if (mi->sample_wait > 0) {
		mi->sample_wait--;
		return -1;
	}

	if (!mi->sample_tries)
		return -1;

	mg = &mi->groups[mi->sample_group];
	sample_idx = sample_table[mg->column][mg->index];
	mr = &mg->rates[sample_idx];
699 700
	sample_group = mi->sample_group;
	sample_idx += sample_group * MCS_GROUP_RATES;
701
	minstrel_next_sample_idx(mi);
702

703 704 705
	/*
	 * Sampling might add some overhead (RTS, no aggregation)
	 * to the frame. Hence, don't use sampling for the currently
706
	 * used rates.
707
	 */
708 709 710
	if (sample_idx == mi->max_tp_rate ||
	    sample_idx == mi->max_tp_rate2 ||
	    sample_idx == mi->max_prob_rate)
711
		return -1;
712

713
	/*
714 715
	 * Do not sample if the probability is already higher than 95%
	 * to avoid wasting airtime.
716
	 */
717
	if (mr->probability > MINSTREL_FRAC(95, 100))
718
		return -1;
719 720 721 722 723

	/*
	 * Make sure that lower rates get sampled only occasionally,
	 * if the link is working perfectly.
	 */
724 725 726 727 728
	sample_dur = minstrel_get_duration(sample_idx);
	if (sample_dur >= minstrel_get_duration(mi->max_tp_rate2) &&
	    (mi->max_prob_streams <
	     minstrel_mcs_groups[sample_group].streams ||
	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
729
		if (mr->sample_skipped < 20)
730
			return -1;
731 732

		if (mi->sample_slow++ > 2)
733
			return -1;
734
	}
735
	mi->sample_tries--;
736 737 738 739

	return sample_idx;
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
static void
minstrel_ht_check_cck_shortpreamble(struct minstrel_priv *mp,
				    struct minstrel_ht_sta *mi, bool val)
{
	u8 supported = mi->groups[MINSTREL_CCK_GROUP].supported;

	if (!supported || !mi->cck_supported_short)
		return;

	if (supported & (mi->cck_supported_short << (val * 4)))
		return;

	supported ^= mi->cck_supported_short | (mi->cck_supported_short << 4);
	mi->groups[MINSTREL_CCK_GROUP].supported = supported;
}

756 757 758 759
static void
minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
                     struct ieee80211_tx_rate_control *txrc)
{
760
	const struct mcs_group *sample_group;
761
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
762
	struct ieee80211_tx_rate *rate = &info->status.rates[0];
763 764 765 766 767 768 769 770 771 772 773 774
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct minstrel_priv *mp = priv;
	int sample_idx;

	if (rate_control_send_low(sta, priv_sta, txrc))
		return;

	if (!msp->is_ht)
		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);

	info->flags |= mi->tx_flags;
775
	minstrel_ht_check_cck_shortpreamble(mp, mi, txrc->short_preamble);
776 777 778 779 780 781 782

	/* Don't use EAPOL frames for sampling on non-mrr hw */
	if (mp->hw->max_rates == 1 &&
	    txrc->skb->protocol == cpu_to_be16(ETH_P_PAE))
		sample_idx = -1;
	else
		sample_idx = minstrel_get_sample_rate(mp, mi);
783 784 785

#ifdef CONFIG_MAC80211_DEBUGFS
	/* use fixed index if set */
786 787 788 789 790 791
	if (mp->fixed_rate_idx != -1) {
		mi->max_tp_rate = mp->fixed_rate_idx;
		mi->max_tp_rate2 = mp->fixed_rate_idx;
		mi->max_prob_rate = mp->fixed_rate_idx;
		sample_idx = -1;
	}
792 793
#endif

794 795 796 797 798 799 800
	mi->total_packets++;

	/* wraparound */
	if (mi->total_packets == ~0) {
		mi->total_packets = 0;
		mi->sample_packets = 0;
	}
801 802 803 804 805 806 807 808 809 810

	if (sample_idx < 0)
		return;

	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
	rate->idx = sample_idx % MCS_GROUP_RATES +
		    (sample_group->streams - 1) * MCS_GROUP_RATES;
	rate->flags = IEEE80211_TX_RC_MCS | sample_group->flags;
	rate->count = 1;
811 812
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
static void
minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
		       struct ieee80211_supported_band *sband,
		       struct ieee80211_sta *sta)
{
	int i;

	if (sband->band != IEEE80211_BAND_2GHZ)
		return;

	mi->cck_supported = 0;
	mi->cck_supported_short = 0;
	for (i = 0; i < 4; i++) {
		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
			continue;

		mi->cck_supported |= BIT(i);
		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
			mi->cck_supported_short |= BIT(i);
	}

	mi->groups[MINSTREL_CCK_GROUP].supported = mi->cck_supported;
}

837 838
static void
minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
839
                        struct ieee80211_sta *sta, void *priv_sta)
840 841 842 843 844 845
{
	struct minstrel_priv *mp = priv;
	struct minstrel_ht_sta_priv *msp = priv_sta;
	struct minstrel_ht_sta *mi = &msp->ht;
	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
	u16 sta_cap = sta->ht_cap.cap;
846
	int n_supported = 0;
847 848 849 850 851
	int ack_dur;
	int stbc;
	int i;

	/* fall back to the old minstrel for legacy stations */
852 853
	if (!sta->ht_cap.ht_supported)
		goto use_legacy;
854 855

	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) !=
856
		MINSTREL_MAX_STREAMS * MINSTREL_STREAM_GROUPS + 1);
857 858 859

	msp->is_ht = true;
	memset(mi, 0, sizeof(*mi));
860 861

	mi->sta = sta;
862 863
	mi->stats_update = jiffies;

864 865
	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1);
	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1) + ack_dur;
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;

	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);

	/* When using MRR, sample more on the first attempt, without delay */
	if (mp->has_mrr) {
		mi->sample_count = 16;
		mi->sample_wait = 0;
	} else {
		mi->sample_count = 8;
		mi->sample_wait = 8;
	}
	mi->sample_tries = 4;

	stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
		IEEE80211_HT_CAP_RX_STBC_SHIFT;
	mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;

	if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
		mi->tx_flags |= IEEE80211_TX_CTL_LDPC;

	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
		mi->groups[i].supported = 0;
889 890 891 892 893
		if (i == MINSTREL_CCK_GROUP) {
			minstrel_ht_update_cck(mp, mi, sband, sta);
			continue;
		}

894
		if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_SHORT_GI) {
895 896 897 898 899 900 901
			if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
					continue;
			} else {
				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
					continue;
			}
902 903
		}

904 905
		if (minstrel_mcs_groups[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
906 907
			continue;

908
		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
909
		if (sta->smps_mode == IEEE80211_SMPS_STATIC &&
910 911 912
		    minstrel_mcs_groups[i].streams > 1)
			continue;

913 914
		mi->groups[i].supported =
			mcs->rx_mask[minstrel_mcs_groups[i].streams - 1];
915 916 917

		if (mi->groups[i].supported)
			n_supported++;
918
	}
919 920 921 922

	if (!n_supported)
		goto use_legacy;

923
	/* create an initial rate table with the lowest supported rates */
924
	minstrel_ht_update_stats(mp, mi);
925
	minstrel_ht_update_rates(mp, mi);
926

927 928 929 930 931 932 933 934
	return;

use_legacy:
	msp->is_ht = false;
	memset(&msp->legacy, 0, sizeof(msp->legacy));
	msp->legacy.r = msp->ratelist;
	msp->legacy.sample_table = msp->sample_table;
	return mac80211_minstrel.rate_init(priv, sband, sta, &msp->legacy);
935 936 937 938 939 940
}

static void
minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
                      struct ieee80211_sta *sta, void *priv_sta)
{
941
	minstrel_ht_update_caps(priv, sband, sta, priv_sta);
942 943 944 945 946
}

static void
minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
                        struct ieee80211_sta *sta, void *priv_sta,
947
                        u32 changed)
948
{
949
	minstrel_ht_update_caps(priv, sband, sta, priv_sta);
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
}

static void *
minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
{
	struct ieee80211_supported_band *sband;
	struct minstrel_ht_sta_priv *msp;
	struct minstrel_priv *mp = priv;
	struct ieee80211_hw *hw = mp->hw;
	int max_rates = 0;
	int i;

	for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
		sband = hw->wiphy->bands[i];
		if (sband && sband->n_bitrates > max_rates)
			max_rates = sband->n_bitrates;
	}

968
	msp = kzalloc(sizeof(*msp), gfp);
969 970 971 972 973 974 975 976 977 978 979 980 981 982
	if (!msp)
		return NULL;

	msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp);
	if (!msp->ratelist)
		goto error;

	msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp);
	if (!msp->sample_table)
		goto error1;

	return msp;

error1:
983
	kfree(msp->ratelist);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
error:
	kfree(msp);
	return NULL;
}

static void
minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
{
	struct minstrel_ht_sta_priv *msp = priv_sta;

	kfree(msp->sample_table);
	kfree(msp->ratelist);
	kfree(msp);
}

static void *
minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
	return mac80211_minstrel.alloc(hw, debugfsdir);
}

static void
minstrel_ht_free(void *priv)
{
	mac80211_minstrel.free(priv);
}

static struct rate_control_ops mac80211_minstrel_ht = {
	.name = "minstrel_ht",
	.tx_status = minstrel_ht_tx_status,
	.get_rate = minstrel_ht_get_rate,
	.rate_init = minstrel_ht_rate_init,
	.rate_update = minstrel_ht_rate_update,
	.alloc_sta = minstrel_ht_alloc_sta,
	.free_sta = minstrel_ht_free_sta,
	.alloc = minstrel_ht_alloc,
	.free = minstrel_ht_free,
#ifdef CONFIG_MAC80211_DEBUGFS
	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
#endif
};


static void
init_sample_table(void)
{
	int col, i, new_idx;
	u8 rnd[MCS_GROUP_RATES];

	memset(sample_table, 0xff, sizeof(sample_table));
	for (col = 0; col < SAMPLE_COLUMNS; col++) {
		for (i = 0; i < MCS_GROUP_RATES; i++) {
			get_random_bytes(rnd, sizeof(rnd));
			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;

			while (sample_table[col][new_idx] != 0xff)
				new_idx = (new_idx + 1) % MCS_GROUP_RATES;

			sample_table[col][new_idx] = i;
		}
	}
}

int __init
rc80211_minstrel_ht_init(void)
{
	init_sample_table();
	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
}

void
rc80211_minstrel_ht_exit(void)
{
	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
}