kvm_host.h 24.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-only */
2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/include/asm/kvm_host.h:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

#ifndef __ARM64_KVM_HOST_H__
#define __ARM64_KVM_HOST_H__

14
#include <linux/arm-smccc.h>
15
#include <linux/bitmap.h>
16
#include <linux/types.h>
17
#include <linux/jump_label.h>
18
#include <linux/kvm_types.h>
19
#include <linux/percpu.h>
20
#include <linux/psci.h>
21
#include <asm/arch_gicv3.h>
22
#include <asm/barrier.h>
23
#include <asm/cpufeature.h>
24
#include <asm/cputype.h>
25
#include <asm/daifflags.h>
26
#include <asm/fpsimd.h>
27
#include <asm/kvm.h>
28
#include <asm/kvm_asm.h>
29

30 31
#define __KVM_HAVE_ARCH_INTC_INITIALIZED

32
#define KVM_HALT_POLL_NS_DEFAULT 500000
33 34 35

#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
36
#include <kvm/arm_pmu.h>
37

38 39
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS

40
#define KVM_VCPU_MAX_FEATURES 7
41

42
#define KVM_REQ_SLEEP \
43
	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44
#define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
45
#define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
46
#define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
47
#define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
48
#define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
49

50 51 52
#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
				     KVM_DIRTY_LOG_INITIALLY_SET)

53 54 55 56 57 58 59
/*
 * Mode of operation configurable with kvm-arm.mode early param.
 * See Documentation/admin-guide/kernel-parameters.txt for more information.
 */
enum kvm_mode {
	KVM_MODE_DEFAULT,
	KVM_MODE_PROTECTED,
60
	KVM_MODE_NONE,
61
};
62
enum kvm_mode kvm_get_mode(void);
63

64 65
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

66
extern unsigned int kvm_sve_max_vl;
67
int kvm_arm_init_sve(void);
68

69
u32 __attribute_const__ kvm_target_cpu(void);
70
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
71
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
72

73
struct kvm_vmid {
74 75 76
	/* The VMID generation used for the virt. memory system */
	u64    vmid_gen;
	u32    vmid;
77 78
};

79
struct kvm_s2_mmu {
80
	struct kvm_vmid vmid;
81

82 83 84 85 86 87 88 89 90 91 92
	/*
	 * stage2 entry level table
	 *
	 * Two kvm_s2_mmu structures in the same VM can point to the same
	 * pgd here.  This happens when running a guest using a
	 * translation regime that isn't affected by its own stage-2
	 * translation, such as a non-VHE hypervisor running at vEL2, or
	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
	 * canonical stage-2 page tables.
	 */
	phys_addr_t	pgd_phys;
93
	struct kvm_pgtable *pgt;
94

95 96 97
	/* The last vcpu id that ran on each physical CPU */
	int __percpu *last_vcpu_ran;

98
	struct kvm_arch *arch;
99 100
};

101 102 103
struct kvm_arch_memory_slot {
};

104 105 106 107 108 109
struct kvm_arch {
	struct kvm_s2_mmu mmu;

	/* VTCR_EL2 value for this VM */
	u64    vtcr;

110 111 112
	/* The maximum number of vCPUs depends on the used GIC model */
	int max_vcpus;

113 114
	/* Interrupt controller */
	struct vgic_dist	vgic;
115 116 117

	/* Mandated version of PSCI */
	u32 psci_version;
118 119 120 121 122 123 124 125

	/*
	 * If we encounter a data abort without valid instruction syndrome
	 * information, report this to user space.  User space can (and
	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
	 * supported.
	 */
	bool return_nisv_io_abort_to_user;
126

127 128 129 130 131
	/*
	 * VM-wide PMU filter, implemented as a bitmap and big enough for
	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
	 */
	unsigned long *pmu_filter;
132
	struct arm_pmu *arm_pmu;
133 134

	u8 pfr0_csv2;
135
	u8 pfr0_csv3;
136 137 138

	/* Memory Tagging Extension enabled for the guest */
	bool mte_enabled;
139
	bool ran_once;
140 141 142 143 144 145
};

struct kvm_vcpu_fault_info {
	u32 esr_el2;		/* Hyp Syndrom Register */
	u64 far_el2;		/* Hyp Fault Address Register */
	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
146
	u64 disr_el1;		/* Deferred [SError] Status Register */
147 148
};

149
enum vcpu_sysreg {
150
	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
151 152 153 154 155
	MPIDR_EL1,	/* MultiProcessor Affinity Register */
	CSSELR_EL1,	/* Cache Size Selection Register */
	SCTLR_EL1,	/* System Control Register */
	ACTLR_EL1,	/* Auxiliary Control Register */
	CPACR_EL1,	/* Coprocessor Access Control */
156
	ZCR_EL1,	/* SVE Control */
157 158 159 160
	TTBR0_EL1,	/* Translation Table Base Register 0 */
	TTBR1_EL1,	/* Translation Table Base Register 1 */
	TCR_EL1,	/* Translation Control Register */
	ESR_EL1,	/* Exception Syndrome Register */
161 162
	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
163 164 165 166 167 168 169 170 171 172 173 174
	FAR_EL1,	/* Fault Address Register */
	MAIR_EL1,	/* Memory Attribute Indirection Register */
	VBAR_EL1,	/* Vector Base Address Register */
	CONTEXTIDR_EL1,	/* Context ID Register */
	TPIDR_EL0,	/* Thread ID, User R/W */
	TPIDRRO_EL0,	/* Thread ID, User R/O */
	TPIDR_EL1,	/* Thread ID, Privileged */
	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
	PAR_EL1,	/* Physical Address Register */
	MDSCR_EL1,	/* Monitor Debug System Control Register */
	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
175
	DISR_EL1,	/* Deferred Interrupt Status Register */
176

177 178
	/* Performance Monitors Registers */
	PMCR_EL0,	/* Control Register */
179
	PMSELR_EL0,	/* Event Counter Selection Register */
180 181 182
	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
	PMCCNTR_EL0,	/* Cycle Counter Register */
183 184 185
	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
186
	PMCNTENSET_EL0,	/* Count Enable Set Register */
187
	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
188
	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
189
	PMUSERENR_EL0,	/* User Enable Register */
190

191 192 193 194 195 196 197 198 199 200 201 202
	/* Pointer Authentication Registers in a strict increasing order. */
	APIAKEYLO_EL1,
	APIAKEYHI_EL1,
	APIBKEYLO_EL1,
	APIBKEYHI_EL1,
	APDAKEYLO_EL1,
	APDAKEYHI_EL1,
	APDBKEYLO_EL1,
	APDBKEYHI_EL1,
	APGAKEYLO_EL1,
	APGAKEYHI_EL1,

203
	ELR_EL1,
204
	SP_EL1,
205
	SPSR_EL1,
206

207 208 209 210 211 212
	CNTVOFF_EL2,
	CNTV_CVAL_EL0,
	CNTV_CTL_EL0,
	CNTP_CVAL_EL0,
	CNTP_CTL_EL0,

213 214 215 216 217 218
	/* Memory Tagging Extension registers */
	RGSR_EL1,	/* Random Allocation Tag Seed Register */
	GCR_EL1,	/* Tag Control Register */
	TFSR_EL1,	/* Tag Fault Status Register (EL1) */
	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */

219 220 221 222 223 224 225 226 227
	/* 32bit specific registers. Keep them at the end of the range */
	DACR32_EL2,	/* Domain Access Control Register */
	IFSR32_EL2,	/* Instruction Fault Status Register */
	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
	DBGVCR32_EL2,	/* Debug Vector Catch Register */

	NR_SYS_REGS	/* Nothing after this line! */
};

228
struct kvm_cpu_context {
229 230
	struct user_pt_regs regs;	/* sp = sp_el0 */

231 232 233 234
	u64	spsr_abt;
	u64	spsr_und;
	u64	spsr_irq;
	u64	spsr_fiq;
235 236 237

	struct user_fpsimd_state fp_regs;

238
	u64 sys_regs[NR_SYS_REGS];
239 240

	struct kvm_vcpu *__hyp_running_vcpu;
241 242
};

243 244 245 246 247
struct kvm_pmu_events {
	u32 events_host;
	u32 events_guest;
};

248 249
struct kvm_host_data {
	struct kvm_cpu_context host_ctxt;
250
	struct kvm_pmu_events pmu_events;
251 252
};

253 254 255 256 257 258 259
struct kvm_host_psci_config {
	/* PSCI version used by host. */
	u32 version;

	/* Function IDs used by host if version is v0.1. */
	struct psci_0_1_function_ids function_ids_0_1;

260 261 262 263
	bool psci_0_1_cpu_suspend_implemented;
	bool psci_0_1_cpu_on_implemented;
	bool psci_0_1_cpu_off_implemented;
	bool psci_0_1_migrate_implemented;
264 265 266 267 268
};

extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
#define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)

269 270 271 272 273 274
extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
#define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)

extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
#define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)

275 276 277 278 279 280 281
struct vcpu_reset_state {
	unsigned long	pc;
	unsigned long	r0;
	bool		be;
	bool		reset;
};

282 283
struct kvm_vcpu_arch {
	struct kvm_cpu_context ctxt;
284 285
	void *sve_state;
	unsigned int sve_max_vl;
286

287 288 289
	/* Stage 2 paging state used by the hardware on next switch */
	struct kvm_s2_mmu *hw_mmu;

290
	/* Values of trap registers for the guest. */
291
	u64 hcr_el2;
292
	u64 mdcr_el2;
293
	u64 cptr_el2;
294

295 296
	/* Values of trap registers for the host before guest entry. */
	u64 mdcr_el2_host;
297 298 299 300

	/* Exception Information */
	struct kvm_vcpu_fault_info fault;

301 302
	/* Miscellaneous vcpu state flags */
	u64 flags;
303

304 305 306 307 308
	/*
	 * We maintain more than a single set of debug registers to support
	 * debugging the guest from the host and to maintain separate host and
	 * guest state during world switches. vcpu_debug_state are the debug
	 * registers of the vcpu as the guest sees them.  host_debug_state are
309 310 311 312
	 * the host registers which are saved and restored during
	 * world switches. external_debug_state contains the debug
	 * values we want to debug the guest. This is set via the
	 * KVM_SET_GUEST_DEBUG ioctl.
313 314 315 316 317 318
	 *
	 * debug_ptr points to the set of debug registers that should be loaded
	 * onto the hardware when running the guest.
	 */
	struct kvm_guest_debug_arch *debug_ptr;
	struct kvm_guest_debug_arch vcpu_debug_state;
319
	struct kvm_guest_debug_arch external_debug_state;
320

321
	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
322
	struct task_struct *parent_task;
323

324 325 326 327 328
	struct {
		/* {Break,watch}point registers */
		struct kvm_guest_debug_arch regs;
		/* Statistical profiling extension */
		u64 pmscr_el1;
329 330
		/* Self-hosted trace */
		u64 trfcr_el1;
331
	} host_debug_state;
332 333 334 335

	/* VGIC state */
	struct vgic_cpu vgic_cpu;
	struct arch_timer_cpu timer_cpu;
336
	struct kvm_pmu pmu;
337 338 339 340 341 342

	/*
	 * Anything that is not used directly from assembly code goes
	 * here.
	 */

343 344 345 346 347 348 349 350 351 352 353
	/*
	 * Guest registers we preserve during guest debugging.
	 *
	 * These shadow registers are updated by the kvm_handle_sys_reg
	 * trap handler if the guest accesses or updates them while we
	 * are using guest debug.
	 */
	struct {
		u32	mdscr_el1;
	} guest_debug_preserved;

354 355
	/* vcpu power-off state */
	bool power_off;
356

357 358 359
	/* Don't run the guest (internal implementation need) */
	bool pause;

360 361 362 363
	/* Cache some mmu pages needed inside spinlock regions */
	struct kvm_mmu_memory_cache mmu_page_cache;

	/* Target CPU and feature flags */
364
	int target;
365 366
	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);

367 368
	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
	u64 vsesr_el2;
369

370 371 372
	/* Additional reset state */
	struct vcpu_reset_state	reset_state;

373
	/* True when deferrable sysregs are loaded on the physical CPU,
374
	 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
375
	bool sysregs_loaded_on_cpu;
376 377 378 379 380 381

	/* Guest PV state */
	struct {
		u64 last_steal;
		gpa_t base;
	} steal;
382 383
};

384
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
385 386
#define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
387

388
#define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
389

390 391 392 393 394 395 396
#define vcpu_sve_state_size(vcpu) ({					\
	size_t __size_ret;						\
	unsigned int __vcpu_vq;						\
									\
	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
		__size_ret = 0;						\
	} else {							\
397
		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
398 399 400 401 402 403
		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
	}								\
									\
	__size_ret;							\
})

404 405
/* vcpu_arch flags field values: */
#define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
406 407
#define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
#define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
408
#define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
409
#define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
410
#define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
411
#define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
412
#define KVM_ARM64_PENDING_EXCEPTION	(1 << 8) /* Exception pending */
413 414 415 416 417
/*
 * Overlaps with KVM_ARM64_EXCEPT_MASK on purpose so that it can't be
 * set together with an exception...
 */
#define KVM_ARM64_INCREMENT_PC		(1 << 9) /* Increment PC */
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
#define KVM_ARM64_EXCEPT_MASK		(7 << 9) /* Target EL/MODE */
/*
 * When KVM_ARM64_PENDING_EXCEPTION is set, KVM_ARM64_EXCEPT_MASK can
 * take the following values:
 *
 * For AArch32 EL1:
 */
#define KVM_ARM64_EXCEPT_AA32_UND	(0 << 9)
#define KVM_ARM64_EXCEPT_AA32_IABT	(1 << 9)
#define KVM_ARM64_EXCEPT_AA32_DABT	(2 << 9)
/* For AArch64: */
#define KVM_ARM64_EXCEPT_AA64_ELx_SYNC	(0 << 9)
#define KVM_ARM64_EXCEPT_AA64_ELx_IRQ	(1 << 9)
#define KVM_ARM64_EXCEPT_AA64_ELx_FIQ	(2 << 9)
#define KVM_ARM64_EXCEPT_AA64_ELx_SERR	(3 << 9)
#define KVM_ARM64_EXCEPT_AA64_EL1	(0 << 11)
#define KVM_ARM64_EXCEPT_AA64_EL2	(1 << 11)

436 437
#define KVM_ARM64_DEBUG_STATE_SAVE_SPE	(1 << 12) /* Save SPE context if active  */
#define KVM_ARM64_DEBUG_STATE_SAVE_TRBE	(1 << 13) /* Save TRBE context if active  */
438
#define KVM_ARM64_FP_FOREIGN_FPSTATE	(1 << 14)
439 440 441 442 443

#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
				 KVM_GUESTDBG_USE_SW_BP | \
				 KVM_GUESTDBG_USE_HW | \
				 KVM_GUESTDBG_SINGLESTEP)
444 445

#define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
446
			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
447

448 449 450 451 452 453 454 455
#ifdef CONFIG_ARM64_PTR_AUTH
#define vcpu_has_ptrauth(vcpu)						\
	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
	 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
#else
#define vcpu_has_ptrauth(vcpu)		false
#endif
456

457
#define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
458 459

/*
460 461 462 463 464
 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
 * memory backed version of a register, and not the one most recently
 * accessed by a running VCPU.  For example, for userspace access or
 * for system registers that are never context switched, but only
 * emulated.
465
 */
466 467 468 469 470
#define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])

#define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))

#define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
471

472
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
473
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
474

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
{
	/*
	 * *** VHE ONLY ***
	 *
	 * System registers listed in the switch are not saved on every
	 * exit from the guest but are only saved on vcpu_put.
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the guest cannot modify its
	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
	 * thread when emulating cross-VCPU communication.
	 */
	if (!has_vhe())
		return false;

	switch (reg) {
	case CSSELR_EL1:	*val = read_sysreg_s(SYS_CSSELR_EL1);	break;
	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
	case PAR_EL1:		*val = read_sysreg_par();		break;
	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
	default:		return false;
	}

	return true;
}

static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
{
	/*
	 * *** VHE ONLY ***
	 *
	 * System registers listed in the switch are not restored on every
	 * entry to the guest but are only restored on vcpu_load.
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the MPIDR should only be set
	 * once, before running the VCPU, and never changed later.
	 */
	if (!has_vhe())
		return false;

	switch (reg) {
	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	break;
	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
	default:		return false;
	}

	return true;
}

566
struct kvm_vm_stat {
567
	struct kvm_vm_stat_generic generic;
568 569 570
};

struct kvm_vcpu_stat {
571
	struct kvm_vcpu_stat_generic generic;
572
	u64 hvc_exit_stat;
573 574 575 576
	u64 wfe_exit_stat;
	u64 wfi_exit_stat;
	u64 mmio_exit_user;
	u64 mmio_exit_kernel;
577
	u64 signal_exits;
578
	u64 exits;
579 580
};

581
void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
582 583 584 585
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
M
Marc Zyngier 已提交
586 587 588 589 590 591

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);

592 593
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
594

595 596
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
597 598 599

#define KVM_ARCH_WANT_MMU_NOTIFIER

600 601
void kvm_arm_halt_guest(struct kvm *kvm);
void kvm_arm_resume_guest(struct kvm *kvm);
602

603 604
#define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)

605
#ifndef __KVM_NVHE_HYPERVISOR__
606
#define kvm_call_hyp_nvhe(f, ...)						\
607
	({								\
608 609 610 611 612 613 614
		struct arm_smccc_res res;				\
									\
		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
				  ##__VA_ARGS__, &res);			\
		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
									\
		res.a1;							\
615 616
	})

617 618 619 620 621 622 623 624 625 626 627
/*
 * The couple of isb() below are there to guarantee the same behaviour
 * on VHE as on !VHE, where the eret to EL1 acts as a context
 * synchronization event.
 */
#define kvm_call_hyp(f, ...)						\
	do {								\
		if (has_vhe()) {					\
			f(__VA_ARGS__);					\
			isb();						\
		} else {						\
628
			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
629 630 631 632 633 634 635 636 637 638 639
		}							\
	} while(0)

#define kvm_call_hyp_ret(f, ...)					\
	({								\
		typeof(f(__VA_ARGS__)) ret;				\
									\
		if (has_vhe()) {					\
			ret = f(__VA_ARGS__);				\
			isb();						\
		} else {						\
640
			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
641 642 643 644
		}							\
									\
		ret;							\
	})
645 646 647 648 649
#else /* __KVM_NVHE_HYPERVISOR__ */
#define kvm_call_hyp(f, ...) f(__VA_ARGS__)
#define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
#define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
#endif /* __KVM_NVHE_HYPERVISOR__ */
650

651
void force_vm_exit(const cpumask_t *mask);
652

653 654
int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
655

M
Marc Zyngier 已提交
656 657 658 659 660 661 662 663 664 665 666
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);

void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);

void kvm_sys_reg_table_init(void);

667 668 669 670
/* MMIO helpers */
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);

671 672
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
673

674 675 676 677 678 679 680 681 682 683
/*
 * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
 * arrived in guest context.  For arm64, any event that arrives while a vCPU is
 * loaded is considered to be "in guest".
 */
static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
{
	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
}

684
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
685 686 687
gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
void kvm_update_stolen_time(struct kvm_vcpu *vcpu);

688
bool kvm_arm_pvtime_supported(void);
689 690 691 692 693 694 695
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);

696 697 698 699 700 701 702 703 704
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
{
	vcpu_arch->steal.base = GPA_INVALID;
}

static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
{
	return (vcpu_arch->steal.base != GPA_INVALID);
}
705

706 707
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);

708 709
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);

710
DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
711

712
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
713 714
{
	/* The host's MPIDR is immutable, so let's set it up at boot time */
715
	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
716 717
}

718 719
void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);

720 721 722 723
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}

724
void kvm_arm_init_debug(void);
725
void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
726 727
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
728
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
729 730 731 732 733 734
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
735

736 737 738
long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
				struct kvm_arm_copy_mte_tags *copy_tags);

739 740 741
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
742
void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
743 744
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
745
void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
746

747 748
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
{
749
	return (!has_vhe() && attr->exclude_host);
750 751
}

752 753 754 755
/* Flags for host debug state */
void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);

756
#ifdef CONFIG_KVM
757 758
void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
void kvm_clr_pmu_events(u32 clr);
759

760 761
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
762 763 764
#else
static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
static inline void kvm_clr_pmu_events(u32 clr) {}
765
#endif
766

767 768
void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
769

770
int kvm_set_ipa_limit(void);
771

772 773 774
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);

775
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
776

777 778 779 780 781
static inline bool kvm_vm_is_protected(struct kvm *kvm)
{
	return false;
}

782 783
void kvm_init_protected_traps(struct kvm_vcpu *vcpu);

784
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
785 786 787 788
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);

#define kvm_arm_vcpu_sve_finalized(vcpu) \
	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
789

790
#define kvm_has_mte(kvm) (system_supports_mte() && (kvm)->arch.mte_enabled)
791 792 793
#define kvm_vcpu_has_pmu(vcpu)					\
	(test_bit(KVM_ARM_VCPU_PMU_V3, (vcpu)->arch.features))

794
int kvm_trng_call(struct kvm_vcpu *vcpu);
795 796 797 798 799 800 801
#ifdef CONFIG_KVM
extern phys_addr_t hyp_mem_base;
extern phys_addr_t hyp_mem_size;
void __init kvm_hyp_reserve(void);
#else
static inline void kvm_hyp_reserve(void) { }
#endif
802

803
#endif /* __ARM64_KVM_HOST_H__ */