kvm-s390.c 85.9 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/random.h>
27
#include <linux/slab.h>
28
#include <linux/timer.h>
29
#include <linux/vmalloc.h>
30
#include <linux/bitmap.h>
31
#include <asm/asm-offsets.h>
32
#include <asm/lowcore.h>
33
#include <asm/etr.h>
34
#include <asm/pgtable.h>
35
#include <asm/gmap.h>
36
#include <asm/nmi.h>
37
#include <asm/switch_to.h>
38
#include <asm/isc.h>
39
#include <asm/sclp.h>
40 41
#include <asm/cpacf.h>
#include <asm/etr.h>
42
#include "kvm-s390.h"
43 44
#include "gaccess.h"

45 46 47 48
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

49 50
#define CREATE_TRACE_POINTS
#include "trace.h"
51
#include "trace-s390.h"
52

53
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 55 56
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57

58 59 60 61
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62
	{ "exit_null", VCPU_STAT(exit_null) },
63 64 65 66
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 68 69
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
70
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
71
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
72
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
73
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
74
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
75
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
76
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
77 78
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
79
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
80
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
81 82 83 84 85 86 87
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
88
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
89 90 91 92 93
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
94
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
95 96
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
97
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
98 99
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
100
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
101
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
102
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
103
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
104
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
105
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
106
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
107 108
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
109
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
110 111
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
112
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
113 114 115
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
116 117 118
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
119
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
120
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
121
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
122 123 124
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
125 126 127
	{ NULL }
};

128 129 130 131 132
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");

133
/* upper facilities limit for kvm */
134 135 136
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
137
};
138

139
unsigned long kvm_s390_fac_list_mask_size(void)
140
{
141 142
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
143 144
}

145 146
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
147 148
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
149

150
static struct gmap_notifier gmap_notifier;
151
static struct gmap_notifier vsie_gmap_notifier;
152
debug_info_t *kvm_s390_dbf;
153

154
/* Section: not file related */
155
int kvm_arch_hardware_enable(void)
156 157
{
	/* every s390 is virtualization enabled ;-) */
158
	return 0;
159 160
}

161 162
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
182 183
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
184 185
			if (vcpu->arch.vsie_block)
				vcpu->arch.vsie_block->epoch -= *delta;
186 187 188 189 190 191 192 193 194
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

195 196
int kvm_arch_hardware_setup(void)
{
197
	gmap_notifier.notifier_call = kvm_gmap_notifier;
198
	gmap_register_pte_notifier(&gmap_notifier);
199 200
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
201 202
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
203 204 205 206 207
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
208
	gmap_unregister_pte_notifier(&gmap_notifier);
209
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
210 211
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
212 213
}

214 215 216 217 218
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

235 236
static void kvm_s390_cpu_feat_init(void)
{
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

265 266
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
267 268 269 270 271
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
272
	    !test_facility(3) || !nested)
273 274
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
275 276
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
277 278
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
279 280
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
281 282
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
283 284
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
285 286
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
287 288
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
307 308
}

309 310
int kvm_arch_init(void *opaque)
{
311 312 313 314 315 316 317 318 319
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

320 321
	kvm_s390_cpu_feat_init();

322 323
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
324 325
}

326 327 328 329 330
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

331 332 333 334 335 336 337 338 339
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

340
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
341
{
342 343
	int r;

344
	switch (ext) {
345
	case KVM_CAP_S390_PSW:
346
	case KVM_CAP_S390_GMAP:
347
	case KVM_CAP_SYNC_MMU:
348 349 350
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
351
	case KVM_CAP_ASYNC_PF:
352
	case KVM_CAP_SYNC_REGS:
353
	case KVM_CAP_ONE_REG:
354
	case KVM_CAP_ENABLE_CAP:
355
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
356
	case KVM_CAP_IOEVENTFD:
357
	case KVM_CAP_DEVICE_CTRL:
358
	case KVM_CAP_ENABLE_CAP_VM:
359
	case KVM_CAP_S390_IRQCHIP:
360
	case KVM_CAP_VM_ATTRIBUTES:
361
	case KVM_CAP_MP_STATE:
362
	case KVM_CAP_S390_INJECT_IRQ:
363
	case KVM_CAP_S390_USER_SIGP:
364
	case KVM_CAP_S390_USER_STSI:
365
	case KVM_CAP_S390_SKEYS:
366
	case KVM_CAP_S390_IRQ_STATE:
367
	case KVM_CAP_S390_USER_INSTR0:
368 369
		r = 1;
		break;
370 371 372
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
373 374
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
375 376 377
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
378
		break;
379 380 381
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
382
	case KVM_CAP_S390_COW:
383
		r = MACHINE_HAS_ESOP;
384
		break;
385 386 387
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
388 389 390
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
391
	default:
392
		r = 0;
393
	}
394
	return r;
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

409
		if (test_and_clear_guest_dirty(gmap->mm, address))
410
			mark_page_dirty(kvm, cur_gfn);
411 412
		if (fatal_signal_pending(current))
			return;
413
		cond_resched();
414 415 416
	}
}

417
/* Section: vm related */
418 419
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

420 421 422 423 424 425
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
426 427
	int r;
	unsigned long n;
428
	struct kvm_memslots *slots;
429 430 431 432 433 434 435 436 437
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

438 439
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
458 459
}

460 461 462 463 464 465 466 467 468 469
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
	}
}

470 471 472 473 474 475 476 477
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
478
	case KVM_CAP_S390_IRQCHIP:
479
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
480 481 482
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
483
	case KVM_CAP_S390_USER_SIGP:
484
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
485 486 487
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
488
	case KVM_CAP_S390_VECTOR_REGISTERS:
489
		mutex_lock(&kvm->lock);
490
		if (kvm->created_vcpus) {
491 492
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
493 494
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
495 496 497
			r = 0;
		} else
			r = -EINVAL;
498
		mutex_unlock(&kvm->lock);
499 500
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
501
		break;
502 503 504
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
505
		if (kvm->created_vcpus) {
506 507
			r = -EBUSY;
		} else if (test_facility(64)) {
508 509
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
510 511 512 513 514 515
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
516
	case KVM_CAP_S390_USER_STSI:
517
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
518 519 520
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
521 522 523 524 525 526
	case KVM_CAP_S390_USER_INSTR0:
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
		kvm->arch.user_instr0 = 1;
		icpt_operexc_on_all_vcpus(kvm);
		r = 0;
		break;
527 528 529 530 531 532 533
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

534 535 536 537 538 539 540
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
541
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
542 543
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
544 545 546 547 548 549 550 551 552 553
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
554 555 556 557 558
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
559
		ret = -ENXIO;
560
		if (!sclp.has_cmma)
561 562
			break;

563
		ret = -EBUSY;
564
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
565
		mutex_lock(&kvm->lock);
566
		if (!kvm->created_vcpus) {
567 568 569 570 571 572
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
573 574 575
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
576 577 578 579
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

580
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
581 582
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
583
		s390_reset_cmma(kvm->arch.gmap->mm);
584 585 586 587
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
588 589 590 591 592 593 594 595 596
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

597 598
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
599 600
			return -E2BIG;

601 602 603
		if (!new_limit)
			return -EINVAL;

604
		/* gmap_create takes last usable address */
605 606 607
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

608 609
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
610
		if (!kvm->created_vcpus) {
611 612
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
613 614 615 616

			if (!new) {
				ret = -ENOMEM;
			} else {
617
				gmap_remove(kvm->arch.gmap);
618 619 620 621 622 623
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
624 625 626
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
627 628
		break;
	}
629 630 631 632 633 634 635
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

636 637 638 639 640 641 642
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

643
	if (!test_kvm_facility(kvm, 76))
644 645 646 647 648 649 650 651 652
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
653
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
654 655 656 657 658 659
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
660
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
661 662 663 664 665
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
666
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
667 668 669 670 671
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
672
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
673 674 675 676 677 678 679 680 681 682 683 684 685 686
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

687 688 689 690 691 692 693 694 695 696
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
697
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
698 699 700 701 702 703

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
704
	u64 gtod;
705 706 707 708

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

709
	kvm_s390_set_tod_clock(kvm, gtod);
710
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
742
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
743 744 745 746 747 748

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
749
	u64 gtod;
750

751
	gtod = kvm_s390_get_tod_clock_fast(kvm);
752 753
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
754
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

780 781 782
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
783
	u16 lowest_ibc, unblocked_ibc;
784 785 786
	int ret = 0;

	mutex_lock(&kvm->lock);
787
	if (kvm->created_vcpus) {
788 789 790 791 792 793 794 795 796 797
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
798
		kvm->arch.model.cpuid = proc->cpuid;
799 800 801 802 803 804 805 806 807 808
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
809
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
810 811 812 813 814 815 816 817 818
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

842 843 844 845 846 847 848 849 850 851
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

852 853 854 855 856 857 858 859
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
860 861 862
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
863 864 865
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
866 867 868 869 870 871 872 873 874 875 876 877 878 879
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
880
	proc->cpuid = kvm->arch.model.cpuid;
881
	proc->ibc = kvm->arch.model.ibc;
882 883
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
902
	mach->ibc = sclp.ibc;
903
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
904
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
905
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
906
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
907 908 909 910 911 912 913
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
958 959 960 961 962 963 964 965 966 967 968
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
969 970 971 972 973 974
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
975 976 977 978 979 980
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
981 982 983 984
	}
	return ret;
}

985 986 987 988 989
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
990
	case KVM_S390_VM_MEM_CTRL:
991
		ret = kvm_s390_set_mem_control(kvm, attr);
992
		break;
993 994 995
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
996 997 998
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
999 1000 1001
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
1012 1013 1014 1015 1016 1017
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
1018 1019 1020
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
1021 1022 1023
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1024 1025 1026 1027 1028 1029
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1030 1031 1032 1033 1034 1035 1036
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1037 1038 1039 1040
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1041 1042
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1043
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1044 1045 1046 1047 1048 1049 1050
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1062 1063 1064 1065
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1066 1067
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1068
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1069 1070
			ret = 0;
			break;
1071 1072
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1073 1074 1075 1076 1077
		default:
			ret = -ENXIO;
			break;
		}
		break;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1091 1092 1093 1094 1095 1096 1097 1098
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1123
	down_read(&current->mm->mmap_sem);
1124 1125 1126 1127
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1128
			break;
1129 1130
		}

1131 1132
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1133
			break;
1134
	}
1135 1136 1137 1138 1139 1140 1141 1142
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
	}
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1176 1177 1178
	r = s390_enable_skey();
	if (r)
		goto out;
1179

1180
	down_read(&current->mm->mmap_sem);
1181 1182 1183 1184
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1185
			break;
1186 1187 1188 1189 1190
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1191
			break;
1192 1193
		}

1194
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1195
		if (r)
1196
			break;
1197
	}
1198
	up_read(&current->mm->mmap_sem);
1199 1200 1201 1202 1203
out:
	kvfree(keys);
	return r;
}

1204 1205 1206 1207 1208
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1209
	struct kvm_device_attr attr;
1210 1211 1212
	int r;

	switch (ioctl) {
1213 1214 1215 1216 1217 1218 1219 1220 1221
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1222 1223 1224 1225 1226 1227 1228 1229
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1230 1231 1232 1233 1234 1235 1236
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1237
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1238 1239 1240
		}
		break;
	}
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1282
	default:
1283
		r = -ENOTTY;
1284 1285 1286 1287 1288
	}

	return r;
}

1289 1290 1291
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1292
	u32 cc = 0;
1293

1294
	memset(config, 0, 128);
1295 1296 1297 1298
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1299
		"0: ipm %0\n"
1300
		"srl %0,28\n"
1301 1302 1303
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1316
	if (test_facility(12)) {
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1338
static u64 kvm_s390_get_initial_cpuid(void)
1339
{
1340 1341 1342 1343 1344
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1345 1346
}

1347
static void kvm_s390_crypto_init(struct kvm *kvm)
1348
{
1349
	if (!test_kvm_facility(kvm, 76))
1350
		return;
1351

1352
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1353
	kvm_s390_set_crycb_format(kvm);
1354

1355 1356 1357 1358 1359 1360 1361
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1362 1363
}

1364 1365 1366
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1367
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1368 1369 1370 1371 1372
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1373
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1374
{
1375
	gfp_t alloc_flags = GFP_KERNEL;
1376
	int i, rc;
1377
	char debug_name[16];
1378
	static unsigned long sca_offset;
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1391 1392
	rc = s390_enable_sie();
	if (rc)
1393
		goto out_err;
1394

1395 1396
	rc = -ENOMEM;

J
Janosch Frank 已提交
1397 1398
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1399
	kvm->arch.use_esca = 0; /* start with basic SCA */
1400 1401
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1402
	rwlock_init(&kvm->arch.sca_lock);
1403
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1404
	if (!kvm->arch.sca)
1405
		goto out_err;
1406
	spin_lock(&kvm_lock);
1407
	sca_offset += 16;
1408
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1409
		sca_offset = 0;
1410 1411
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1412
	spin_unlock(&kvm_lock);
1413 1414 1415

	sprintf(debug_name, "kvm-%u", current->pid);

1416
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1417
	if (!kvm->arch.dbf)
1418
		goto out_err;
1419

1420 1421 1422
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1423
		goto out_err;
1424

1425
	/* Populate the facility mask initially. */
1426
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1427
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1428 1429
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1430
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1431
		else
1432
			kvm->arch.model.fac_mask[i] = 0UL;
1433 1434
	}

1435
	/* Populate the facility list initially. */
1436 1437
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1438 1439
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1440 1441 1442
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1443
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1444
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1445

1446
	kvm_s390_crypto_init(kvm);
1447

1448
	spin_lock_init(&kvm->arch.float_int.lock);
1449 1450
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1451
	init_waitqueue_head(&kvm->arch.ipte_wq);
1452
	mutex_init(&kvm->arch.ipte_mutex);
1453

1454
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1455
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1456

1457 1458
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1459
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1460
	} else {
1461 1462 1463 1464 1465
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1466
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1467
		if (!kvm->arch.gmap)
1468
			goto out_err;
1469
		kvm->arch.gmap->private = kvm;
1470
		kvm->arch.gmap->pfault_enabled = 0;
1471
	}
1472 1473

	kvm->arch.css_support = 0;
1474
	kvm->arch.use_irqchip = 0;
1475
	kvm->arch.epoch = 0;
1476

1477
	spin_lock_init(&kvm->arch.start_stop_lock);
1478
	kvm_s390_vsie_init(kvm);
1479
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1480

1481
	return 0;
1482
out_err:
1483
	free_page((unsigned long)kvm->arch.sie_page2);
1484
	debug_unregister(kvm->arch.dbf);
1485
	sca_dispose(kvm);
1486
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1487
	return rc;
1488 1489
}

1490 1491 1492
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1493
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1494
	kvm_s390_clear_local_irqs(vcpu);
1495
	kvm_clear_async_pf_completion_queue(vcpu);
1496
	if (!kvm_is_ucontrol(vcpu->kvm))
1497
		sca_del_vcpu(vcpu);
1498 1499

	if (kvm_is_ucontrol(vcpu->kvm))
1500
		gmap_remove(vcpu->arch.gmap);
1501

1502
	if (vcpu->kvm->arch.use_cmma)
1503
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1504
	free_page((unsigned long)(vcpu->arch.sie_block));
1505

1506
	kvm_vcpu_uninit(vcpu);
1507
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1508 1509 1510 1511 1512
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1513
	struct kvm_vcpu *vcpu;
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1524 1525
}

1526 1527
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1528
	kvm_free_vcpus(kvm);
1529
	sca_dispose(kvm);
1530
	debug_unregister(kvm->arch.dbf);
1531
	free_page((unsigned long)kvm->arch.sie_page2);
1532
	if (!kvm_is_ucontrol(kvm))
1533
		gmap_remove(kvm->arch.gmap);
1534
	kvm_s390_destroy_adapters(kvm);
1535
	kvm_s390_clear_float_irqs(kvm);
1536
	kvm_s390_vsie_destroy(kvm);
1537
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1538 1539 1540
}

/* Section: vcpu related */
1541 1542
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1543
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1544 1545 1546 1547 1548 1549 1550
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1551 1552
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1553
	read_lock(&vcpu->kvm->arch.sca_lock);
1554 1555
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1556

1557
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1558
		sca->cpu[vcpu->vcpu_id].sda = 0;
1559 1560 1561 1562
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1563
		sca->cpu[vcpu->vcpu_id].sda = 0;
1564
	}
1565
	read_unlock(&vcpu->kvm->arch.sca_lock);
1566 1567
}

1568
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1569
{
1570 1571 1572
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1573

1574
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1575 1576
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1577
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1578
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1579
	} else {
1580
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1581

1582
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1583 1584
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1585
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1586
	}
1587
	read_unlock(&vcpu->kvm->arch.sca_lock);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1641 1642
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1643
	return 0;
1644 1645 1646 1647
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1648 1649 1650 1651
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1652
	if (!sclp.has_esca || !sclp.has_64bscao)
1653 1654 1655 1656 1657 1658 1659
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1660 1661
}

1662 1663
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1664 1665
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1666 1667
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1668
				    KVM_SYNC_ACRS |
1669 1670 1671
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1672 1673
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1674 1675 1676 1677
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1678
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1679 1680
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1681 1682 1683 1684

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1685 1686 1687
	return 0;
}

1688 1689 1690 1691
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1692
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1693
	vcpu->arch.cputm_start = get_tod_clock_fast();
1694
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1695 1696 1697 1698 1699 1700
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1701
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1702 1703
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1704
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1737 1738 1739
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1740
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1741
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1742 1743
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1744
	vcpu->arch.sie_block->cputm = cputm;
1745
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1746
	preempt_enable();
1747 1748
}

1749
/* update and get the cpu timer - can also be called from other VCPU threads */
1750 1751
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1752
	unsigned int seq;
1753 1754 1755 1756 1757
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1772
	return value;
1773 1774
}

1775 1776
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1777
	/* Save host register state */
1778
	save_fpu_regs();
1779 1780
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1781

1782 1783 1784 1785
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1786
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1787
	if (test_fp_ctl(current->thread.fpu.fpc))
1788
		/* User space provided an invalid FPC, let's clear it */
1789 1790 1791
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1792
	restore_access_regs(vcpu->run->s.regs.acrs);
1793
	gmap_enable(vcpu->arch.enabled_gmap);
1794
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1795
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1796
		__start_cpu_timer_accounting(vcpu);
1797
	vcpu->cpu = cpu;
1798 1799 1800 1801
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1802
	vcpu->cpu = -1;
1803
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1804
		__stop_cpu_timer_accounting(vcpu);
1805
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1806 1807
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1808

1809
	/* Save guest register state */
1810
	save_fpu_regs();
1811
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1812

1813 1814 1815
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1816 1817

	save_access_regs(vcpu->run->s.regs.acrs);
1818 1819 1820 1821 1822 1823 1824 1825
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1826
	kvm_s390_set_prefix(vcpu, 0);
1827
	kvm_s390_set_cpu_timer(vcpu, 0);
1828 1829 1830 1831 1832
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1833 1834 1835
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1836
	vcpu->arch.sie_block->gbea = 1;
1837
	vcpu->arch.sie_block->pp = 0;
1838 1839
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1840 1841
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1842
	kvm_s390_clear_local_irqs(vcpu);
1843 1844
}

1845
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1846
{
1847
	mutex_lock(&vcpu->kvm->lock);
1848
	preempt_disable();
1849
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1850
	preempt_enable();
1851
	mutex_unlock(&vcpu->kvm->lock);
1852
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1853
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1854
		sca_add_vcpu(vcpu);
1855
	}
1856 1857
	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1858 1859
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1860 1861
}

1862 1863
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1864
	if (!test_kvm_facility(vcpu->kvm, 76))
1865 1866
		return;

1867 1868 1869 1870 1871 1872 1873
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1874 1875 1876
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1894 1895 1896 1897 1898
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1899
	if (test_kvm_facility(vcpu->kvm, 7))
1900
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1901 1902
}

1903 1904
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1905
	int rc = 0;
1906

1907 1908
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1909 1910
						    CPUSTAT_STOPPED);

1911
	if (test_kvm_facility(vcpu->kvm, 78))
1912
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1913
	else if (test_kvm_facility(vcpu->kvm, 8))
1914
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1915

1916 1917
	kvm_s390_vcpu_setup_model(vcpu);

1918 1919 1920
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1921 1922
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1923
	if (test_kvm_facility(vcpu->kvm, 73))
1924 1925
		vcpu->arch.sie_block->ecb |= 0x10;

1926
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1927
		vcpu->arch.sie_block->ecb2 |= 0x08;
1928 1929 1930
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1931 1932
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1933
	if (sclp.has_siif)
1934
		vcpu->arch.sie_block->eca |= 1;
1935
	if (sclp.has_sigpif)
1936
		vcpu->arch.sie_block->eca |= 0x10000000U;
1937 1938
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1939
	if (test_kvm_facility(vcpu->kvm, 129)) {
1940 1941 1942
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1943
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1944
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1945

1946
	if (vcpu->kvm->arch.use_cmma) {
1947 1948 1949
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1950
	}
1951
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1952
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1953

1954 1955
	kvm_s390_vcpu_crypto_setup(vcpu);

1956
	return rc;
1957 1958 1959 1960 1961
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1962
	struct kvm_vcpu *vcpu;
1963
	struct sie_page *sie_page;
1964 1965
	int rc = -EINVAL;

1966
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1967 1968 1969
		goto out;

	rc = -ENOMEM;
1970

1971
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1972
	if (!vcpu)
1973
		goto out;
1974

1975 1976
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1977 1978
		goto out_free_cpu;

1979 1980 1981
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1982 1983 1984 1985
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1986
	vcpu->arch.sie_block->icpua = id;
1987 1988
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1989
	vcpu->arch.local_int.wq = &vcpu->wq;
1990
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1991
	seqcount_init(&vcpu->arch.cputm_seqcount);
1992

1993 1994
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1995
		goto out_free_sie_block;
1996
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1997
		 vcpu->arch.sie_block);
1998
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1999 2000

	return vcpu;
2001 2002
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
2003
out_free_cpu:
2004
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2005
out:
2006 2007 2008 2009 2010
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
2011
	return kvm_s390_vcpu_has_irq(vcpu, 0);
2012 2013
}

2014
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2015
{
2016
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2017
	exit_sie(vcpu);
2018 2019
}

2020
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2021
{
2022
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2023 2024
}

2025 2026
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2027
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2028
	exit_sie(vcpu);
2029 2030 2031 2032
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2033
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2034 2035
}

2036 2037 2038 2039 2040 2041
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2042
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2043 2044 2045 2046
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2047 2048
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2049
{
2050 2051
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2052 2053
}

2054 2055
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2056 2057 2058
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2059 2060
	unsigned long prefix;
	int i;
2061

2062 2063
	if (gmap_is_shadow(gmap))
		return;
2064 2065 2066
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2067 2068
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2069 2070 2071 2072
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2073
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2074 2075 2076 2077
		}
	}
}

2078 2079 2080 2081 2082 2083 2084
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2085 2086 2087 2088 2089 2090
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2091 2092 2093 2094 2095 2096 2097 2098
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2099
	case KVM_REG_S390_CPU_TIMER:
2100
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2101 2102 2103 2104 2105 2106
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2119 2120 2121 2122
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2123 2124 2125 2126
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2138
	__u64 val;
2139 2140

	switch (reg->id) {
2141 2142 2143 2144 2145 2146 2147 2148
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2149
	case KVM_REG_S390_CPU_TIMER:
2150 2151 2152
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2153 2154 2155 2156 2157
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2158 2159 2160
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2161 2162
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2163 2164 2165 2166 2167 2168 2169 2170 2171
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2172 2173 2174 2175
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2176 2177 2178 2179
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2180 2181 2182 2183 2184 2185
	default:
		break;
	}

	return r;
}
2186

2187 2188 2189 2190 2191 2192 2193 2194
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2195
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2196 2197 2198 2199 2200
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2201
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2202 2203 2204 2205 2206 2207
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2208
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2209
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2210
	restore_access_regs(vcpu->run->s.regs.acrs);
2211 2212 2213 2214 2215 2216
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2217
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2218 2219 2220 2221 2222 2223
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2224 2225
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2226 2227
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2228 2229 2230 2231 2232
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2233 2234 2235 2236 2237
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2238 2239 2240 2241 2242 2243 2244
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2245 2246 2247 2248 2249 2250 2251
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2252
	if (!is_vcpu_stopped(vcpu))
2253
		rc = -EBUSY;
2254 2255 2256 2257
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2258 2259 2260 2261 2262 2263 2264 2265 2266
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2267 2268 2269 2270
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2271 2272
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2273
{
2274 2275 2276 2277 2278
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2279
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2280
		return -EINVAL;
2281 2282
	if (!sclp.has_gpere)
		return -EINVAL;
2283 2284 2285 2286

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2287
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2288 2289 2290 2291

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2292
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2293 2294 2295 2296 2297 2298
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2299
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2300 2301 2302
	}

	return rc;
2303 2304
}

2305 2306 2307
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2308 2309 2310
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2311 2312 2313 2314 2315
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2336 2337
}

2338 2339 2340 2341 2342
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2343 2344
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2345
retry:
2346
	kvm_s390_vcpu_request_handled(vcpu);
2347 2348
	if (!vcpu->requests)
		return 0;
2349 2350
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2351
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2352 2353 2354 2355
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2356
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2357
		int rc;
2358 2359 2360
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2361 2362
		if (rc)
			return rc;
2363
		goto retry;
2364
	}
2365

2366 2367 2368 2369 2370
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2371 2372 2373
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2374
			atomic_or(CPUSTAT_IBS,
2375 2376 2377
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2378
	}
2379 2380 2381 2382

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2383
			atomic_andnot(CPUSTAT_IBS,
2384 2385 2386 2387 2388
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2389 2390 2391 2392 2393
	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
		goto retry;
	}

2394 2395 2396
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2397 2398 2399
	return 0;
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2427
{
2428 2429
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2430 2431
}

2432 2433 2434 2435
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2436
	struct kvm_s390_irq irq;
2437 2438

	if (start_token) {
2439 2440 2441
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2442 2443
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2444
		inti.parm64 = token;
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2491
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2492 2493 2494 2495 2496 2497
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2498 2499 2500
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2501 2502 2503 2504 2505 2506
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2507
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2508
{
2509
	int rc, cpuflags;
2510

2511 2512 2513 2514 2515 2516 2517
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2518 2519
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2520 2521 2522 2523

	if (need_resched())
		schedule();

2524
	if (test_cpu_flag(CIF_MCCK_PENDING))
2525 2526
		s390_handle_mcck();

2527 2528 2529 2530 2531
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2532

2533 2534 2535 2536
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2537 2538 2539 2540 2541
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2542
	vcpu->arch.sie_block->icptcode = 0;
2543 2544 2545
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2546

2547 2548 2549
	return 0;
}

2550 2551
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2552 2553 2554 2555
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2569
	rc = read_guest_instr(vcpu, &opcode, 1);
2570
	ilen = insn_length(opcode);
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2581 2582 2583
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2584 2585
}

2586 2587
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2588 2589 2590 2591
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2592 2593 2594
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2595 2596
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2611 2612 2613 2614 2615
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2616
		return -EREMOTE;
2617
	} else if (current->thread.gmap_pfault) {
2618
		trace_kvm_s390_major_guest_pfault(vcpu);
2619
		current->thread.gmap_pfault = 0;
2620 2621 2622
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2623
	}
2624
	return vcpu_post_run_fault_in_sie(vcpu);
2625 2626 2627 2628 2629 2630
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2631 2632 2633 2634 2635 2636
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2637 2638 2639 2640
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2641

2642
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2643 2644 2645 2646
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2647
		local_irq_disable();
2648
		guest_enter_irqoff();
2649
		__disable_cpu_timer_accounting(vcpu);
2650
		local_irq_enable();
2651 2652
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2653
		local_irq_disable();
2654
		__enable_cpu_timer_accounting(vcpu);
2655
		guest_exit_irqoff();
2656
		local_irq_enable();
2657
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2658 2659

		rc = vcpu_post_run(vcpu, exit_reason);
2660
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2661

2662
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2663
	return rc;
2664 2665
}

2666 2667 2668 2669 2670 2671 2672 2673
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2674 2675
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2676 2677
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2678
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2679 2680 2681 2682 2683 2684 2685 2686 2687
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2688 2689
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2700
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2701 2702 2703 2704 2705 2706 2707 2708 2709
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2710 2711
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2712
	int rc;
2713 2714
	sigset_t sigsaved;

2715 2716 2717 2718 2719
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2720 2721 2722
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2723 2724 2725
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2726
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2727 2728 2729
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2730

2731
	sync_regs(vcpu, kvm_run);
2732
	enable_cpu_timer_accounting(vcpu);
2733

2734
	might_fault();
2735
	rc = __vcpu_run(vcpu);
2736

2737 2738
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2739
		rc = -EINTR;
2740
	}
2741

2742 2743 2744 2745 2746
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2747
	if (rc == -EREMOTE) {
2748
		/* userspace support is needed, kvm_run has been prepared */
2749 2750
		rc = 0;
	}
2751

2752
	disable_cpu_timer_accounting(vcpu);
2753
	store_regs(vcpu, kvm_run);
2754

2755 2756 2757 2758
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2759
	return rc;
2760 2761 2762 2763 2764 2765 2766 2767
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2768
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2769
{
2770
	unsigned char archmode = 1;
2771
	freg_t fprs[NUM_FPRS];
2772
	unsigned int px;
2773
	u64 clkcomp, cputm;
2774
	int rc;
2775

2776
	px = kvm_s390_get_prefix(vcpu);
2777 2778
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2779
			return -EFAULT;
2780
		gpa = 0;
2781 2782
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2783
			return -EFAULT;
2784 2785 2786
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2787 2788 2789

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2790
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2791 2792 2793 2794
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2795
				     vcpu->run->s.regs.fprs, 128);
2796
	}
2797
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2798
			      vcpu->run->s.regs.gprs, 128);
2799
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2800
			      &vcpu->arch.sie_block->gpsw, 16);
2801
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2802
			      &px, 4);
2803
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2804
			      &vcpu->run->s.regs.fpc, 4);
2805
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2806
			      &vcpu->arch.sie_block->todpr, 4);
2807
	cputm = kvm_s390_get_cpu_timer(vcpu);
2808
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2809
			      &cputm, 8);
2810
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2811
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2812
			      &clkcomp, 8);
2813
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2814
			      &vcpu->run->s.regs.acrs, 64);
2815
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2816 2817
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2818 2819
}

2820 2821 2822 2823 2824 2825 2826
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2827
	save_fpu_regs();
2828
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2829 2830 2831 2832 2833
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2855 2856 2857 2858 2859
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2860
	 */
2861
	save_fpu_regs();
E
Eric Farman 已提交
2862 2863 2864 2865

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2866 2867 2868
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2869
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2884 2885
	if (!sclp.has_ibs)
		return;
2886
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2887
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2888 2889
}

2890 2891
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2892 2893 2894 2895 2896
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2897
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2898
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2899
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2919
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2920 2921 2922 2923
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2924
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2925
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2926
	return;
2927 2928 2929 2930
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2931 2932 2933 2934 2935 2936
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2937
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2938
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2939
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2940 2941
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2942
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2943
	kvm_s390_clear_stop_irq(vcpu);
2944

2945
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2963
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2964
	return;
2965 2966
}

2967 2968 2969 2970 2971 2972 2973 2974 2975
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2976 2977 2978
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2979
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2980 2981 2982 2983
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2984 2985 2986 2987 2988 2989 2990
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3017 3018
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3029 3030
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3052 3053 3054 3055 3056
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3057
	int idx;
3058
	long r;
3059

3060
	switch (ioctl) {
3061 3062 3063 3064 3065 3066 3067 3068 3069
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3070
	case KVM_S390_INTERRUPT: {
3071
		struct kvm_s390_interrupt s390int;
3072
		struct kvm_s390_irq s390irq;
3073

3074
		r = -EFAULT;
3075
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3076
			break;
3077 3078 3079
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3080
		break;
3081
	}
3082
	case KVM_S390_STORE_STATUS:
3083
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3084
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3085
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3086
		break;
3087 3088 3089
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3090
		r = -EFAULT;
3091
		if (copy_from_user(&psw, argp, sizeof(psw)))
3092 3093 3094
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3095 3096
	}
	case KVM_S390_INITIAL_RESET:
3097 3098
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3147
	case KVM_S390_VCPU_FAULT: {
3148
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3149 3150
		break;
	}
3151 3152 3153 3154 3155 3156 3157 3158 3159
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3160 3161 3162 3163 3164 3165 3166 3167 3168
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3201
	default:
3202
		r = -ENOTTY;
3203
	}
3204
	return r;
3205 3206
}

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3220 3221
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3222 3223 3224 3225
{
	return 0;
}

3226
/* Section: memory related */
3227 3228
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3229
				   const struct kvm_userspace_memory_region *mem,
3230
				   enum kvm_mr_change change)
3231
{
3232 3233 3234 3235
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3236

3237
	if (mem->userspace_addr & 0xffffful)
3238 3239
		return -EINVAL;

3240
	if (mem->memory_size & 0xffffful)
3241 3242
		return -EINVAL;

3243 3244 3245
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3246 3247 3248 3249
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3250
				const struct kvm_userspace_memory_region *mem,
3251
				const struct kvm_memory_slot *old,
3252
				const struct kvm_memory_slot *new,
3253
				enum kvm_mr_change change)
3254
{
3255
	int rc;
3256

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3267 3268 3269 3270

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3271
		pr_warn("failed to commit memory region\n");
3272
	return;
3273 3274
}

3275 3276 3277 3278 3279 3280 3281
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3282 3283 3284 3285 3286
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3287 3288
static int __init kvm_s390_init(void)
{
3289 3290
	int i;

3291 3292 3293 3294 3295
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3296 3297 3298 3299
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3300
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3301 3302 3303 3304 3305 3306 3307 3308 3309
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3310 3311 3312 3313 3314 3315 3316 3317 3318

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");