rcar_du_crtc.c 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
 *
 * Copyright (C) 2013 Renesas Corporation
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/clk.h>
#include <linux/mutex.h>

#include <drm/drmP.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>

#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"

#define to_rcar_crtc(c)	container_of(c, struct rcar_du_crtc, crtc)

static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
33
	struct rcar_du_device *rcdu = rcrtc->group->dev;
34 35 36 37 38 39

	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}

static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
40
	struct rcar_du_device *rcdu = rcrtc->group->dev;
41 42 43 44 45 46

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}

static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
47
	struct rcar_du_device *rcdu = rcrtc->group->dev;
48 49 50 51 52 53 54

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}

static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
55
	struct rcar_du_device *rcdu = rcrtc->group->dev;
56 57 58 59 60 61 62 63

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}

static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
				 u32 clr, u32 set)
{
64
	struct rcar_du_device *rcdu = rcrtc->group->dev;
65 66 67 68 69
	u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
}

70 71 72 73 74 75 76 77
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
	int ret;

	ret = clk_prepare_enable(rcrtc->clock);
	if (ret < 0)
		return ret;

78
	ret = rcar_du_group_get(rcrtc->group);
79 80 81 82 83 84 85 86
	if (ret < 0)
		clk_disable_unprepare(rcrtc->clock);

	return ret;
}

static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
87
	rcar_du_group_put(rcrtc->group);
88 89 90
	clk_disable_unprepare(rcrtc->clock);
}

91 92
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
93
	const struct drm_display_mode *mode = &rcrtc->crtc.mode;
94 95 96 97 98
	unsigned long clk;
	u32 value;
	u32 div;

	/* Dot clock */
99
	clk = clk_get_rate(rcrtc->clock);
100 101 102
	div = DIV_ROUND_CLOSEST(clk, mode->clock * 1000);
	div = clamp(div, 1U, 64U) - 1;

103 104 105
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
			    ESCR_DCLKSEL_CLKS | div);
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	/* Signal polarities */
	value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL)
	      | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL)
	      | DSMR_DIPM_DE;
	rcar_du_crtc_write(rcrtc, DSMR, value);

	/* Display timings */
	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
					mode->hdisplay - 19);
	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
					mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);

	rcar_du_crtc_write(rcrtc, VDSR, mode->vtotal - mode->vsync_end - 2);
	rcar_du_crtc_write(rcrtc, VDER, mode->vtotal - mode->vsync_end +
					mode->vdisplay - 2);
	rcar_du_crtc_write(rcrtc, VSPR, mode->vtotal - mode->vsync_end +
					mode->vsync_start - 1);
	rcar_du_crtc_write(rcrtc, VCR,  mode->vtotal - 1);

	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start);
	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
}

void rcar_du_crtc_route_output(struct drm_crtc *crtc, unsigned int output)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	/* Store the route from the CRTC output to the DU output. The DU will be
	 * configured when starting the CRTC.
	 */
	rcrtc->outputs |= 1 << output;
}

void rcar_du_crtc_update_planes(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
	unsigned int num_planes = 0;
	unsigned int prio = 0;
	unsigned int i;
	u32 dptsr = 0;
	u32 dspr = 0;

152 153
	for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
		struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
		unsigned int j;

		if (plane->crtc != &rcrtc->crtc || !plane->enabled)
			continue;

		/* Insert the plane in the sorted planes array. */
		for (j = num_planes++; j > 0; --j) {
			if (planes[j-1]->zpos <= plane->zpos)
				break;
			planes[j] = planes[j-1];
		}

		planes[j] = plane;
		prio += plane->format->planes * 4;
	}

	for (i = 0; i < num_planes; ++i) {
		struct rcar_du_plane *plane = planes[i];
		unsigned int index = plane->hwindex;

		prio -= 4;
		dspr |= (index + 1) << prio;
		dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);

		if (plane->format->planes == 2) {
			index = (index + 1) % 8;

			prio -= 4;
			dspr |= (index + 1) << prio;
			dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
		}
	}

	/* Select display timing and dot clock generator 2 for planes associated
	 * with superposition controller 2.
	 */
190 191
	if (rcrtc->index % 2) {
		u32 value = rcar_du_group_read(rcrtc->group, DPTSR);
192 193 194 195 196 197 198 199 200

		/* The DPTSR register is updated when the display controller is
		 * stopped. We thus need to restart the DU. Once again, sorry
		 * for the flicker. One way to mitigate the issue would be to
		 * pre-associate planes with CRTCs (either with a fixed 4/4
		 * split, or through a module parameter). Flicker would then
		 * occur only if we need to break the pre-association.
		 */
		if (value != dptsr) {
201
			rcar_du_group_write(rcrtc->group, DPTSR, dptsr);
202 203
			if (rcrtc->group->used_crtcs)
				rcar_du_group_restart(rcrtc->group);
204 205 206
		}
	}

207 208
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
			    dspr);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
}

static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;
	unsigned int i;

	if (rcrtc->started)
		return;

	if (WARN_ON(rcrtc->plane->format == NULL))
		return;

	/* Set display off and background to black */
	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));

	/* Configure display timings and output routing */
	rcar_du_crtc_set_display_timing(rcrtc);
228
	rcar_du_group_set_routing(rcrtc->group);
229

230
	mutex_lock(&rcrtc->group->planes.lock);
231 232
	rcrtc->plane->enabled = true;
	rcar_du_crtc_update_planes(crtc);
233
	mutex_unlock(&rcrtc->group->planes.lock);
234 235

	/* Setup planes. */
236 237
	for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
		struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
238 239 240 241 242 243 244 245 246 247 248 249 250

		if (plane->crtc != crtc || !plane->enabled)
			continue;

		rcar_du_plane_setup(plane);
	}

	/* Select master sync mode. This enables display operation in master
	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
	 * actively driven).
	 */
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_MASTER);

251
	rcar_du_group_start_stop(rcrtc->group, true);
252 253 254 255 256 257 258 259 260 261 262

	rcrtc->started = true;
}

static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

	if (!rcrtc->started)
		return;

263
	mutex_lock(&rcrtc->group->planes.lock);
264 265
	rcrtc->plane->enabled = false;
	rcar_du_crtc_update_planes(crtc);
266
	mutex_unlock(&rcrtc->group->planes.lock);
267 268 269 270 271 272

	/* Select switch sync mode. This stops display operation and configures
	 * the HSYNC and VSYNC signals as inputs.
	 */
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);

273
	rcar_du_group_start_stop(rcrtc->group, false);
274 275 276 277 278 279 280

	rcrtc->started = false;
}

void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
{
	rcar_du_crtc_stop(rcrtc);
281
	rcar_du_crtc_put(rcrtc);
282 283 284 285 286 287 288
}

void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
{
	if (rcrtc->dpms != DRM_MODE_DPMS_ON)
		return;

289
	rcar_du_crtc_get(rcrtc);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	rcar_du_crtc_start(rcrtc);
}

static void rcar_du_crtc_update_base(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

	rcar_du_plane_compute_base(rcrtc->plane, crtc->fb);
	rcar_du_plane_update_base(rcrtc->plane);
}

static void rcar_du_crtc_dpms(struct drm_crtc *crtc, int mode)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	if (rcrtc->dpms == mode)
		return;

	if (mode == DRM_MODE_DPMS_ON) {
309
		rcar_du_crtc_get(rcrtc);
310 311 312
		rcar_du_crtc_start(rcrtc);
	} else {
		rcar_du_crtc_stop(rcrtc);
313
		rcar_du_crtc_put(rcrtc);
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	}

	rcrtc->dpms = mode;
}

static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
				    const struct drm_display_mode *mode,
				    struct drm_display_mode *adjusted_mode)
{
	/* TODO Fixup modes */
	return true;
}

static void rcar_du_crtc_mode_prepare(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	/* We need to access the hardware during mode set, acquire a reference
332
	 * to the CRTC.
333
	 */
334
	rcar_du_crtc_get(rcrtc);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	/* Stop the CRTC and release the plane. Force the DPMS mode to off as a
	 * result.
	 */
	rcar_du_crtc_stop(rcrtc);
	rcar_du_plane_release(rcrtc->plane);

	rcrtc->dpms = DRM_MODE_DPMS_OFF;
}

static int rcar_du_crtc_mode_set(struct drm_crtc *crtc,
				 struct drm_display_mode *mode,
				 struct drm_display_mode *adjusted_mode,
				 int x, int y,
				 struct drm_framebuffer *old_fb)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
352
	struct rcar_du_device *rcdu = rcrtc->group->dev;
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	const struct rcar_du_format_info *format;
	int ret;

	format = rcar_du_format_info(crtc->fb->pixel_format);
	if (format == NULL) {
		dev_dbg(rcdu->dev, "mode_set: unsupported format %08x\n",
			crtc->fb->pixel_format);
		ret = -EINVAL;
		goto error;
	}

	ret = rcar_du_plane_reserve(rcrtc->plane, format);
	if (ret < 0)
		goto error;

	rcrtc->plane->format = format;
	rcrtc->plane->pitch = crtc->fb->pitches[0];

	rcrtc->plane->src_x = x;
	rcrtc->plane->src_y = y;
	rcrtc->plane->width = mode->hdisplay;
	rcrtc->plane->height = mode->vdisplay;

	rcar_du_plane_compute_base(rcrtc->plane, crtc->fb);

	rcrtc->outputs = 0;

	return 0;

error:
	/* There's no rollback/abort operation to clean up in case of error. We
384
	 * thus need to release the reference to the CRTC acquired in prepare()
385 386
	 * here.
	 */
387
	rcar_du_crtc_put(rcrtc);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	return ret;
}

static void rcar_du_crtc_mode_commit(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	/* We're done, restart the CRTC and set the DPMS mode to on. The
	 * reference to the DU acquired at prepare() time will thus be released
	 * by the DPMS handler (possibly called by the disable() handler).
	 */
	rcar_du_crtc_start(rcrtc);
	rcrtc->dpms = DRM_MODE_DPMS_ON;
}

static int rcar_du_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
				      struct drm_framebuffer *old_fb)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcrtc->plane->src_x = x;
	rcrtc->plane->src_y = y;

	rcar_du_crtc_update_base(to_rcar_crtc(crtc));

	return 0;
}

static void rcar_du_crtc_disable(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
	rcar_du_plane_release(rcrtc->plane);
}

static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
	.dpms = rcar_du_crtc_dpms,
	.mode_fixup = rcar_du_crtc_mode_fixup,
	.prepare = rcar_du_crtc_mode_prepare,
	.commit = rcar_du_crtc_mode_commit,
	.mode_set = rcar_du_crtc_mode_set,
	.mode_set_base = rcar_du_crtc_mode_set_base,
	.disable = rcar_du_crtc_disable,
};

void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc,
				   struct drm_file *file)
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	/* Destroy the pending vertical blanking event associated with the
	 * pending page flip, if any, and disable vertical blanking interrupts.
	 */
	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	if (event && event->base.file_priv == file) {
		rcrtc->event = NULL;
		event->base.destroy(&event->base);
		drm_vblank_put(dev, rcrtc->index);
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);
}

static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	rcrtc->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (event == NULL)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
	drm_send_vblank_event(dev, rcrtc->index, event);
	spin_unlock_irqrestore(&dev->event_lock, flags);

	drm_vblank_put(dev, rcrtc->index);
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
	struct rcar_du_crtc *rcrtc = arg;
	irqreturn_t ret = IRQ_NONE;
	u32 status;

	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);

	if (status & DSSR_VBK) {
		drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
		rcar_du_crtc_finish_page_flip(rcrtc);
		ret = IRQ_HANDLED;
	}

	return ret;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static int rcar_du_crtc_page_flip(struct drm_crtc *crtc,
				  struct drm_framebuffer *fb,
				  struct drm_pending_vblank_event *event)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	if (rcrtc->event != NULL) {
		spin_unlock_irqrestore(&dev->event_lock, flags);
		return -EBUSY;
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);

	crtc->fb = fb;
	rcar_du_crtc_update_base(rcrtc);

	if (event) {
		event->pipe = rcrtc->index;
		drm_vblank_get(dev, rcrtc->index);
		spin_lock_irqsave(&dev->event_lock, flags);
		rcrtc->event = event;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

	return 0;
}

static const struct drm_crtc_funcs crtc_funcs = {
	.destroy = drm_crtc_cleanup,
	.set_config = drm_crtc_helper_set_config,
	.page_flip = rcar_du_crtc_page_flip,
};

528
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
529
{
530 531 532 533
	static const unsigned int mmio_offsets[] = {
		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
	};

534
	struct rcar_du_device *rcdu = rgrp->dev;
535
	struct platform_device *pdev = to_platform_device(rcdu->dev);
536 537
	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
	struct drm_crtc *crtc = &rcrtc->crtc;
538 539 540 541
	unsigned int irqflags;
	char clk_name[5];
	char *name;
	int irq;
542 543
	int ret;

544 545 546 547 548 549 550 551 552 553 554 555 556 557
	/* Get the CRTC clock. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
		sprintf(clk_name, "du.%u", index);
		name = clk_name;
	} else {
		name = NULL;
	}

	rcrtc->clock = devm_clk_get(rcdu->dev, name);
	if (IS_ERR(rcrtc->clock)) {
		dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
		return PTR_ERR(rcrtc->clock);
	}

558
	rcrtc->group = rgrp;
559
	rcrtc->mmio_offset = mmio_offsets[index];
560 561
	rcrtc->index = index;
	rcrtc->dpms = DRM_MODE_DPMS_OFF;
562
	rcrtc->plane = &rgrp->planes.planes[index % 2];
563 564 565 566 567 568 569 570 571

	rcrtc->plane->crtc = crtc;

	ret = drm_crtc_init(rcdu->ddev, crtc, &crtc_funcs);
	if (ret < 0)
		return ret;

	drm_crtc_helper_add(crtc, &crtc_helper_funcs);

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	/* Register the interrupt handler. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
		irq = platform_get_irq(pdev, index);
		irqflags = 0;
	} else {
		irq = platform_get_irq(pdev, 0);
		irqflags = IRQF_SHARED;
	}

	if (irq < 0) {
		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
		return ret;
	}

	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
			       dev_name(rcdu->dev), rcrtc);
	if (ret < 0) {
		dev_err(rcdu->dev,
			"failed to register IRQ for CRTC %u\n", index);
		return ret;
	}

594 595 596 597 598 599 600 601 602 603 604 605
	return 0;
}

void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
{
	if (enable) {
		rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
		rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
	} else {
		rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
	}
}