i915_perf.c 132.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright © 2015-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *   Robert Bragg <robert@sixbynine.org>
 */

27 28

/**
29
 * DOC: i915 Perf Overview
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *
 * Gen graphics supports a large number of performance counters that can help
 * driver and application developers understand and optimize their use of the
 * GPU.
 *
 * This i915 perf interface enables userspace to configure and open a file
 * descriptor representing a stream of GPU metrics which can then be read() as
 * a stream of sample records.
 *
 * The interface is particularly suited to exposing buffered metrics that are
 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
 *
 * Streams representing a single context are accessible to applications with a
 * corresponding drm file descriptor, such that OpenGL can use the interface
 * without special privileges. Access to system-wide metrics requires root
 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
 * sysctl option.
 *
48 49 50 51
 */

/**
 * DOC: i915 Perf History and Comparison with Core Perf
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 *
 * The interface was initially inspired by the core Perf infrastructure but
 * some notable differences are:
 *
 * i915 perf file descriptors represent a "stream" instead of an "event"; where
 * a perf event primarily corresponds to a single 64bit value, while a stream
 * might sample sets of tightly-coupled counters, depending on the
 * configuration.  For example the Gen OA unit isn't designed to support
 * orthogonal configurations of individual counters; it's configured for a set
 * of related counters. Samples for an i915 perf stream capturing OA metrics
 * will include a set of counter values packed in a compact HW specific format.
 * The OA unit supports a number of different packing formats which can be
 * selected by the user opening the stream. Perf has support for grouping
 * events, but each event in the group is configured, validated and
 * authenticated individually with separate system calls.
 *
 * i915 perf stream configurations are provided as an array of u64 (key,value)
 * pairs, instead of a fixed struct with multiple miscellaneous config members,
 * interleaved with event-type specific members.
 *
 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
 * The supported metrics are being written to memory by the GPU unsynchronized
 * with the CPU, using HW specific packing formats for counter sets. Sometimes
 * the constraints on HW configuration require reports to be filtered before it
 * would be acceptable to expose them to unprivileged applications - to hide
 * the metrics of other processes/contexts. For these use cases a read() based
 * interface is a good fit, and provides an opportunity to filter data as it
 * gets copied from the GPU mapped buffers to userspace buffers.
 *
 *
82 83
 * Issues hit with first prototype based on Core Perf
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 *
 * The first prototype of this driver was based on the core perf
 * infrastructure, and while we did make that mostly work, with some changes to
 * perf, we found we were breaking or working around too many assumptions baked
 * into perf's currently cpu centric design.
 *
 * In the end we didn't see a clear benefit to making perf's implementation and
 * interface more complex by changing design assumptions while we knew we still
 * wouldn't be able to use any existing perf based userspace tools.
 *
 * Also considering the Gen specific nature of the Observability hardware and
 * how userspace will sometimes need to combine i915 perf OA metrics with
 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
 * expecting the interface to be used by a platform specific userspace such as
 * OpenGL or tools. This is to say; we aren't inherently missing out on having
 * a standard vendor/architecture agnostic interface by not using perf.
 *
 *
 * For posterity, in case we might re-visit trying to adapt core perf to be
 * better suited to exposing i915 metrics these were the main pain points we
 * hit:
 *
 * - The perf based OA PMU driver broke some significant design assumptions:
 *
 *   Existing perf pmus are used for profiling work on a cpu and we were
 *   introducing the idea of _IS_DEVICE pmus with different security
 *   implications, the need to fake cpu-related data (such as user/kernel
 *   registers) to fit with perf's current design, and adding _DEVICE records
 *   as a way to forward device-specific status records.
 *
 *   The OA unit writes reports of counters into a circular buffer, without
 *   involvement from the CPU, making our PMU driver the first of a kind.
 *
 *   Given the way we were periodically forward data from the GPU-mapped, OA
 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 *   we were sampling too fast and so we had to subvert its throttling checks.
 *
 *   Perf supports groups of counters and allows those to be read via
 *   transactions internally but transactions currently seem designed to be
 *   explicitly initiated from the cpu (say in response to a userspace read())
 *   and while we could pull a report out of the OA buffer we can't
 *   trigger a report from the cpu on demand.
 *
 *   Related to being report based; the OA counters are configured in HW as a
 *   set while perf generally expects counter configurations to be orthogonal.
 *   Although counters can be associated with a group leader as they are
 *   opened, there's no clear precedent for being able to provide group-wide
 *   configuration attributes (for example we want to let userspace choose the
 *   OA unit report format used to capture all counters in a set, or specify a
 *   GPU context to filter metrics on). We avoided using perf's grouping
 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 *   field. This suited our userspace well considering how coupled the counters
 *   are when dealing with normalizing. It would be inconvenient to split
 *   counters up into separate events, only to require userspace to recombine
 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 *   for combining with the side-band raw reports it captures using
 *   MI_REPORT_PERF_COUNT commands.
 *
142
 *   - As a side note on perf's grouping feature; there was also some concern
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 *     would quite drastically inflate our sample sizes, which would likely
 *     lower the effective sampling resolutions we could use when the available
 *     memory bandwidth is limited.
 *
 *     With the OA unit's report formats, counters are packed together as 32
 *     or 40bit values, with the largest report size being 256 bytes.
 *
 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 *
 *   Related to counter orthogonality; we can't time share the OA unit, while
 *   event scheduling is a central design idea within perf for allowing
 *   userspace to open + enable more events than can be configured in HW at any
 *   one time.  The OA unit is not designed to allow re-configuration while in
 *   use. We can't reconfigure the OA unit without losing internal OA unit
 *   state which we can't access explicitly to save and restore. Reconfiguring
 *   the OA unit is also relatively slow, involving ~100 register writes. From
 *   userspace Mesa also depends on a stable OA configuration when emitting
 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 *   disabled while there are outstanding MI_RPC commands lest we hang the
 *   command streamer.
 *
 *   The contents of sample records aren't extensible by device drivers (i.e.
 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 *   into sample records by using the 'raw' field, but it's tricky to pack more
 *   than one thing into this field because events/core.c currently only lets a
 *   pmu give a single raw data pointer plus len which will be copied into the
 *   ring buffer. To include more than the OA report we'd have to copy the
 *   report into an intermediate larger buffer. I'd been considering allowing a
 *   vector of data+len values to be specified for copying the raw data, but
 *   it felt like a kludge to being using the raw field for this purpose.
 *
 * - It felt like our perf based PMU was making some technical compromises
 *   just for the sake of using perf:
 *
 *   perf_event_open() requires events to either relate to a pid or a specific
 *   cpu core, while our device pmu related to neither.  Events opened with a
 *   pid will be automatically enabled/disabled according to the scheduling of
 *   that process - so not appropriate for us. When an event is related to a
 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 *   perf events for a specific cpu. This was workable but it meant the
 *   majority of the OA driver ran in atomic context, including all OA report
 *   forwarding, which wasn't really necessary in our case and seems to make
 *   our locking requirements somewhat complex as we handled the interaction
 *   with the rest of the i915 driver.
 */

194
#include <linux/anon_inodes.h>
195
#include <linux/sizes.h>
196
#include <linux/uuid.h>
197

198
#include "gem/i915_gem_context.h"
199
#include "gt/intel_engine_pm.h"
200
#include "gt/intel_engine_user.h"
201
#include "gt/intel_gt.h"
202
#include "gt/intel_lrc_reg.h"
203
#include "gt/intel_ring.h"
204

205
#include "i915_drv.h"
206
#include "i915_perf.h"
207

208 209 210 211 212 213 214
/* HW requires this to be a power of two, between 128k and 16M, though driver
 * is currently generally designed assuming the largest 16M size is used such
 * that the overflow cases are unlikely in normal operation.
 */
#define OA_BUFFER_SIZE		SZ_16M

#define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
215

216 217 218 219
/**
 * DOC: OA Tail Pointer Race
 *
 * There's a HW race condition between OA unit tail pointer register updates and
220
 * writes to memory whereby the tail pointer can sometimes get ahead of what's
221 222 223 224 225
 * been written out to the OA buffer so far (in terms of what's visible to the
 * CPU).
 *
 * Although this can be observed explicitly while copying reports to userspace
 * by checking for a zeroed report-id field in tail reports, we want to account
226 227 228 229 230 231 232 233 234 235 236
 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
 * redundant read() attempts.
 *
 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
 * in the OA buffer, starting from the tail reported by the HW until we find a
 * report with its first 2 dwords not 0 meaning its previous report is
 * completely in memory and ready to be read. Those dwords are also set to 0
 * once read and the whole buffer is cleared upon OA buffer initialization. The
 * first dword is the reason for this report while the second is the timestamp,
 * making the chances of having those 2 fields at 0 fairly unlikely. A more
 * detailed explanation is available in oa_buffer_check_unlocked().
237 238
 *
 * Most of the implementation details for this workaround are in
239
 * oa_buffer_check_unlocked() and _append_oa_reports()
240 241 242 243 244 245 246
 *
 * Note for posterity: previously the driver used to define an effective tail
 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 * This was flawed considering that the OA unit may also automatically generate
 * non-periodic reports (such as on context switch) or the OA unit may be
 * enabled without any periodic sampling.
247 248
 */
#define OA_TAIL_MARGIN_NSEC	100000ULL
249
#define INVALID_TAIL_PTR	0xffffffff
250

251 252
/* The default frequency for checking whether the OA unit has written new
 * reports to the circular OA buffer...
253
 */
254 255
#define DEFAULT_POLL_FREQUENCY_HZ 200
#define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
256

257 258 259
/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
static u32 i915_perf_stream_paranoid = true;

260 261 262 263 264 265 266 267 268 269 270 271
/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 * of the 64bit timestamp bits to trigger reports from) but there's currently
 * no known use case for sampling as infrequently as once per 47 thousand years.
 *
 * Since the timestamps included in OA reports are only 32bits it seems
 * reasonable to limit the OA exponent where it's still possible to account for
 * overflow in OA report timestamps.
 */
#define OA_EXPONENT_MAX 31

#define INVALID_CTX_ID 0xffffffff

272 273
/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
#define OAREPORT_REASON_MASK           0x3f
274
#define OAREPORT_REASON_MASK_EXTENDED  0x7f
275 276 277 278 279
#define OAREPORT_REASON_SHIFT          19
#define OAREPORT_REASON_TIMER          (1<<0)
#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
#define OAREPORT_REASON_CLK_RATIO      (1<<5)

280

281 282
/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 *
283 284 285 286
 * The highest sampling frequency we can theoretically program the OA unit
 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
 *
 * Initialized just before we register the sysctl parameter.
287
 */
288
static int oa_sample_rate_hard_limit;
289 290 291 292 293 294 295 296 297

/* Theoretically we can program the OA unit to sample every 160ns but don't
 * allow that by default unless root...
 *
 * The default threshold of 100000Hz is based on perf's similar
 * kernel.perf_event_max_sample_rate sysctl parameter.
 */
static u32 i915_oa_max_sample_rate = 100000;

298 299 300 301
/* XXX: beware if future OA HW adds new report formats that the current
 * code assumes all reports have a power-of-two size and ~(size - 1) can
 * be used as a mask to align the OA tail pointer.
 */
302
static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
303 304 305 306 307 308 309 310 311 312
	[I915_OA_FORMAT_A13]	    = { 0, 64 },
	[I915_OA_FORMAT_A29]	    = { 1, 128 },
	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
};

313
static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
314 315 316 317 318 319
	[I915_OA_FORMAT_A12]		    = { 0, 64 },
	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
};

320 321 322 323
static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
};

324
#define SAMPLE_OA_REPORT      (1<<0)
325

326 327 328 329
/**
 * struct perf_open_properties - for validated properties given to open a stream
 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 * @single_context: Whether a single or all gpu contexts should be monitored
330 331
 * @hold_preemption: Whether the preemption is disabled for the filtered
 *                   context
332 333 334 335 336
 * @ctx_handle: A gem ctx handle for use with @single_context
 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 * @oa_format: An OA unit HW report format
 * @oa_periodic: Whether to enable periodic OA unit sampling
 * @oa_period_exponent: The OA unit sampling period is derived from this
337
 * @engine: The engine (typically rcs0) being monitored by the OA unit
338 339 340 341
 * @has_sseu: Whether @sseu was specified by userspace
 * @sseu: internal SSEU configuration computed either from the userspace
 *        specified configuration in the opening parameters or a default value
 *        (see get_default_sseu_config())
342 343
 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
 * data availability
344 345 346 347 348
 *
 * As read_properties_unlocked() enumerates and validates the properties given
 * to open a stream of metrics the configuration is built up in the structure
 * which starts out zero initialized.
 */
349 350 351 352
struct perf_open_properties {
	u32 sample_flags;

	u64 single_context:1;
353
	u64 hold_preemption:1;
354
	u64 ctx_handle;
355 356 357 358 359 360

	/* OA sampling state */
	int metrics_set;
	int oa_format;
	bool oa_periodic;
	int oa_period_exponent;
361 362

	struct intel_engine_cs *engine;
363 364 365

	bool has_sseu;
	struct intel_sseu sseu;
366 367

	u64 poll_oa_period;
368 369
};

370 371 372 373 374 375 376
struct i915_oa_config_bo {
	struct llist_node node;

	struct i915_oa_config *oa_config;
	struct i915_vma *vma;
};

377 378
static struct ctl_table_header *sysctl_header;

379 380
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);

381
void i915_oa_config_release(struct kref *ref)
382
{
383 384 385
	struct i915_oa_config *oa_config =
		container_of(ref, typeof(*oa_config), ref);

386 387 388
	kfree(oa_config->flex_regs);
	kfree(oa_config->b_counter_regs);
	kfree(oa_config->mux_regs);
389

390
	kfree_rcu(oa_config, rcu);
391 392
}

393 394
struct i915_oa_config *
i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
395
{
396
	struct i915_oa_config *oa_config;
397

398
	rcu_read_lock();
399
	oa_config = idr_find(&perf->metrics_idr, metrics_set);
400 401 402
	if (oa_config)
		oa_config = i915_oa_config_get(oa_config);
	rcu_read_unlock();
403

404 405
	return oa_config;
}
406

407 408 409 410 411
static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
{
	i915_oa_config_put(oa_bo->oa_config);
	i915_vma_put(oa_bo->vma);
	kfree(oa_bo);
412 413
}

414 415 416 417 418 419 420 421
static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
{
	struct intel_uncore *uncore = stream->uncore;

	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
	       GEN12_OAG_OATAILPTR_MASK;
}

422
static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
423
{
424
	struct intel_uncore *uncore = stream->uncore;
425

426
	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
427 428
}

429
static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
430
{
431
	struct intel_uncore *uncore = stream->uncore;
432
	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
433 434 435 436

	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
}

437
/**
438
 * oa_buffer_check_unlocked - check for data and update tail ptr state
439
 * @stream: i915 stream instance
440
 *
441 442 443
 * This is either called via fops (for blocking reads in user ctx) or the poll
 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 * if there is data available for userspace to read.
444
 *
445 446 447 448 449 450 451
 * This function is central to providing a workaround for the OA unit tail
 * pointer having a race with respect to what data is visible to the CPU.
 * It is responsible for reading tail pointers from the hardware and giving
 * the pointers time to 'age' before they are made available for reading.
 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 *
 * Besides returning true when there is data available to read() this function
452 453
 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
 * object.
454 455 456 457 458 459
 *
 * Note: It's safe to read OA config state here unlocked, assuming that this is
 * only called while the stream is enabled, while the global OA configuration
 * can't be modified.
 *
 * Returns: %true if the OA buffer contains data, else %false
460
 */
461
static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
462
{
463
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
464
	int report_size = stream->oa_buffer.format_size;
465
	unsigned long flags;
466
	bool pollin;
467
	u32 hw_tail;
468 469 470
	u64 now;

	/* We have to consider the (unlikely) possibility that read() errors
471 472
	 * could result in an OA buffer reset which might reset the head and
	 * tail state.
473
	 */
474
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
475

476
	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
477 478 479 480 481 482 483 484

	/* The tail pointer increases in 64 byte increments,
	 * not in report_size steps...
	 */
	hw_tail &= ~(report_size - 1);

	now = ktime_get_mono_fast_ns();

485 486 487 488 489 490 491 492 493
	if (hw_tail == stream->oa_buffer.aging_tail &&
	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
		/* If the HW tail hasn't move since the last check and the HW
		 * tail has been aging for long enough, declare it the new
		 * tail.
		 */
		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
	} else {
		u32 head, tail, aged_tail;
494

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
		/* NB: The head we observe here might effectively be a little
		 * out of date. If a read() is in progress, the head could be
		 * anywhere between this head and stream->oa_buffer.tail.
		 */
		head = stream->oa_buffer.head - gtt_offset;
		aged_tail = stream->oa_buffer.tail - gtt_offset;

		hw_tail -= gtt_offset;
		tail = hw_tail;

		/* Walk the stream backward until we find a report with dword 0
		 * & 1 not at 0. Since the circular buffer pointers progress by
		 * increments of 64 bytes and that reports can be up to 256
		 * bytes long, we can't tell whether a report has fully landed
		 * in memory before the first 2 dwords of the following report
		 * have effectively landed.
		 *
		 * This is assuming that the writes of the OA unit land in
		 * memory in the order they were written to.
		 * If not : (╯°□°)╯︵ ┻━┻
		 */
		while (OA_TAKEN(tail, aged_tail) >= report_size) {
			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
518

519 520
			if (report32[0] != 0 || report32[1] != 0)
				break;
521

522
			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
523
		}
524 525 526 527 528 529 530 531 532 533

		if (OA_TAKEN(hw_tail, tail) > report_size &&
		    __ratelimit(&stream->perf->tail_pointer_race))
			DRM_NOTE("unlanded report(s) head=0x%x "
				 "tail=0x%x hw_tail=0x%x\n",
				 head, tail, hw_tail);

		stream->oa_buffer.tail = gtt_offset + tail;
		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
		stream->oa_buffer.aging_timestamp = now;
534 535
	}

536 537 538
	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
			  stream->oa_buffer.head - gtt_offset) >= report_size;

539
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
540

541
	return pollin;
542 543 544
}

/**
545 546 547 548 549 550 551 552 553 554 555 556 557
 * append_oa_status - Appends a status record to a userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @type: The kind of status to report to userspace
 *
 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 * into the userspace read() buffer.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
 */
static int append_oa_status(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    enum drm_i915_perf_record_type type)
{
	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };

	if ((count - *offset) < header.size)
		return -ENOSPC;

	if (copy_to_user(buf + *offset, &header, sizeof(header)))
		return -EFAULT;

	(*offset) += header.size;

	return 0;
}

/**
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
 * append_oa_sample - Copies single OA report into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @report: A single OA report to (optionally) include as part of the sample
 *
 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 * properties when opening a stream, tracked as `stream->sample_flags`. This
 * function copies the requested components of a single sample to the given
 * read() @buf.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
594 595 596 597 598 599 600
 */
static int append_oa_sample(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    const u8 *report)
{
601
	int report_size = stream->oa_buffer.format_size;
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	struct drm_i915_perf_record_header header;
	u32 sample_flags = stream->sample_flags;

	header.type = DRM_I915_PERF_RECORD_SAMPLE;
	header.pad = 0;
	header.size = stream->sample_size;

	if ((count - *offset) < header.size)
		return -ENOSPC;

	buf += *offset;
	if (copy_to_user(buf, &header, sizeof(header)))
		return -EFAULT;
	buf += sizeof(header);

	if (sample_flags & SAMPLE_OA_REPORT) {
		if (copy_to_user(buf, report, report_size))
			return -EFAULT;
	}

	(*offset) += header.size;

	return 0;
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
/**
 * Copies all buffered OA reports into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Notably any error condition resulting in a short read (-%ENOSPC or
 * -%EFAULT) will be returned even though one or more records may
 * have been successfully copied. In this case it's up to the caller
 * to decide if the error should be squashed before returning to
 * userspace.
 *
 * Note: reports are consumed from the head, and appended to the
 * tail, so the tail chases the head?... If you think that's mad
 * and back-to-front you're not alone, but this follows the
 * Gen PRM naming convention.
 *
 * Returns: 0 on success, negative error code on failure.
 */
static int gen8_append_oa_reports(struct i915_perf_stream *stream,
				  char __user *buf,
				  size_t count,
				  size_t *offset)
{
652
	struct intel_uncore *uncore = stream->uncore;
653 654 655
	int report_size = stream->oa_buffer.format_size;
	u8 *oa_buf_base = stream->oa_buffer.vaddr;
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
656
	u32 mask = (OA_BUFFER_SIZE - 1);
657 658 659 660 661 662
	size_t start_offset = *offset;
	unsigned long flags;
	u32 head, tail;
	u32 taken;
	int ret = 0;

663
	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
664 665
		return -EIO;

666
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
667

668
	head = stream->oa_buffer.head;
669
	tail = stream->oa_buffer.tail;
670

671
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

	/*
	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
	 * while indexing relative to oa_buf_base.
	 */
	head -= gtt_offset;
	tail -= gtt_offset;

	/*
	 * An out of bounds or misaligned head or tail pointer implies a driver
	 * bug since we validate + align the tail pointers we read from the
	 * hardware and we are in full control of the head pointer which should
	 * only be incremented by multiples of the report size (notably also
	 * all a power of two).
	 */
687 688 689 690 691
	if (drm_WARN_ONCE(&uncore->i915->drm,
			  head > OA_BUFFER_SIZE || head % report_size ||
			  tail > OA_BUFFER_SIZE || tail % report_size,
			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
			  head, tail))
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
		return -EIO;


	for (/* none */;
	     (taken = OA_TAKEN(tail, head));
	     head = (head + report_size) & mask) {
		u8 *report = oa_buf_base + head;
		u32 *report32 = (void *)report;
		u32 ctx_id;
		u32 reason;

		/*
		 * All the report sizes factor neatly into the buffer
		 * size so we never expect to see a report split
		 * between the beginning and end of the buffer.
		 *
		 * Given the initial alignment check a misalignment
		 * here would imply a driver bug that would result
		 * in an overrun.
		 */
712 713
		if (drm_WARN_ON(&uncore->i915->drm,
				(OA_BUFFER_SIZE - head) < report_size)) {
714 715
			drm_err(&uncore->i915->drm,
				"Spurious OA head ptr: non-integral report offset\n");
716 717 718 719 720 721 722 723 724 725 726 727 728
			break;
		}

		/*
		 * The reason field includes flags identifying what
		 * triggered this specific report (mostly timer
		 * triggered or e.g. due to a context switch).
		 *
		 * This field is never expected to be zero so we can
		 * check that the report isn't invalid before copying
		 * it to userspace...
		 */
		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
729 730 731
			  (IS_GEN(stream->perf->i915, 12) ?
			   OAREPORT_REASON_MASK_EXTENDED :
			   OAREPORT_REASON_MASK));
732
		if (reason == 0) {
733
			if (__ratelimit(&stream->perf->spurious_report_rs))
734 735 736 737
				DRM_NOTE("Skipping spurious, invalid OA report\n");
			continue;
		}

738
		ctx_id = report32[2] & stream->specific_ctx_id_mask;
739 740 741 742 743 744 745 746 747

		/*
		 * Squash whatever is in the CTX_ID field if it's marked as
		 * invalid to be sure we avoid false-positive, single-context
		 * filtering below...
		 *
		 * Note: that we don't clear the valid_ctx_bit so userspace can
		 * understand that the ID has been squashed by the kernel.
		 */
748 749
		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
		    INTEL_GEN(stream->perf->i915) <= 11)
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
			ctx_id = report32[2] = INVALID_CTX_ID;

		/*
		 * NB: For Gen 8 the OA unit no longer supports clock gating
		 * off for a specific context and the kernel can't securely
		 * stop the counters from updating as system-wide / global
		 * values.
		 *
		 * Automatic reports now include a context ID so reports can be
		 * filtered on the cpu but it's not worth trying to
		 * automatically subtract/hide counter progress for other
		 * contexts while filtering since we can't stop userspace
		 * issuing MI_REPORT_PERF_COUNT commands which would still
		 * provide a side-band view of the real values.
		 *
		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
		 * to normalize counters for a single filtered context then it
		 * needs be forwarded bookend context-switch reports so that it
		 * can track switches in between MI_REPORT_PERF_COUNT commands
		 * and can itself subtract/ignore the progress of counters
		 * associated with other contexts. Note that the hardware
		 * automatically triggers reports when switching to a new
		 * context which are tagged with the ID of the newly active
		 * context. To avoid the complexity (and likely fragility) of
		 * reading ahead while parsing reports to try and minimize
		 * forwarding redundant context switch reports (i.e. between
		 * other, unrelated contexts) we simply elect to forward them
		 * all.
		 *
		 * We don't rely solely on the reason field to identify context
		 * switches since it's not-uncommon for periodic samples to
		 * identify a switch before any 'context switch' report.
		 */
783
		if (!stream->perf->exclusive_stream->ctx ||
784 785
		    stream->specific_ctx_id == ctx_id ||
		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
786 787 788 789 790 791
		    reason & OAREPORT_REASON_CTX_SWITCH) {

			/*
			 * While filtering for a single context we avoid
			 * leaking the IDs of other contexts.
			 */
792
			if (stream->perf->exclusive_stream->ctx &&
793
			    stream->specific_ctx_id != ctx_id) {
794 795 796 797 798 799 800 801
				report32[2] = INVALID_CTX_ID;
			}

			ret = append_oa_sample(stream, buf, count, offset,
					       report);
			if (ret)
				break;

802
			stream->oa_buffer.last_ctx_id = ctx_id;
803 804 805
		}

		/*
806 807
		 * Clear out the first 2 dword as a mean to detect unlanded
		 * reports.
808 809
		 */
		report32[0] = 0;
810
		report32[1] = 0;
811 812 813
	}

	if (start_offset != *offset) {
814 815 816 817 818
		i915_reg_t oaheadptr;

		oaheadptr = IS_GEN(stream->perf->i915, 12) ?
			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;

819
		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
820 821 822 823 824 825

		/*
		 * We removed the gtt_offset for the copy loop above, indexing
		 * relative to oa_buf_base so put back here...
		 */
		head += gtt_offset;
826 827
		intel_uncore_write(uncore, oaheadptr,
				   head & GEN12_OAG_OAHEADPTR_MASK);
828
		stream->oa_buffer.head = head;
829

830
		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	}

	return ret;
}

/**
 * gen8_oa_read - copy status records then buffered OA reports
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Checks OA unit status registers and if necessary appends corresponding
 * status records for userspace (such as for a buffer full condition) and then
 * initiate appending any buffered OA reports.
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * NB: some data may be successfully copied to the userspace buffer
 * even if an error is returned, and this is reflected in the
 * updated @offset.
 *
 * Returns: zero on success or a negative error code
 */
static int gen8_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
861
	struct intel_uncore *uncore = stream->uncore;
862
	u32 oastatus;
863
	i915_reg_t oastatus_reg;
864 865
	int ret;

866
	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
867 868
		return -EIO;

869 870 871 872
	oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;

	oastatus = intel_uncore_read(uncore, oastatus_reg);
873 874 875 876 877 878 879 880 881

	/*
	 * We treat OABUFFER_OVERFLOW as a significant error:
	 *
	 * Although theoretically we could handle this more gracefully
	 * sometimes, some Gens don't correctly suppress certain
	 * automatically triggered reports in this condition and so we
	 * have to assume that old reports are now being trampled
	 * over.
882 883 884 885 886
	 *
	 * Considering how we don't currently give userspace control
	 * over the OA buffer size and always configure a large 16MB
	 * buffer, then a buffer overflow does anyway likely indicate
	 * that something has gone quite badly wrong.
887 888 889 890 891 892 893 894
	 */
	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
		if (ret)
			return ret;

		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
895
			  stream->period_exponent);
896

897 898
		stream->perf->ops.oa_disable(stream);
		stream->perf->ops.oa_enable(stream);
899 900 901 902 903

		/*
		 * Note: .oa_enable() is expected to re-init the oabuffer and
		 * reset GEN8_OASTATUS for us
		 */
904
		oastatus = intel_uncore_read(uncore, oastatus_reg);
905 906 907 908 909 910 911
	}

	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
		if (ret)
			return ret;
912
		intel_uncore_write(uncore, oastatus_reg,
913
				   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
914 915 916 917 918
	}

	return gen8_append_oa_reports(stream, buf, count, offset);
}

919 920 921 922 923 924 925
/**
 * Copies all buffered OA reports into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
926 927
 * Notably any error condition resulting in a short read (-%ENOSPC or
 * -%EFAULT) will be returned even though one or more records may
928 929 930 931 932
 * have been successfully copied. In this case it's up to the caller
 * to decide if the error should be squashed before returning to
 * userspace.
 *
 * Note: reports are consumed from the head, and appended to the
933
 * tail, so the tail chases the head?... If you think that's mad
934 935
 * and back-to-front you're not alone, but this follows the
 * Gen PRM naming convention.
936 937
 *
 * Returns: 0 on success, negative error code on failure.
938 939 940 941
 */
static int gen7_append_oa_reports(struct i915_perf_stream *stream,
				  char __user *buf,
				  size_t count,
942
				  size_t *offset)
943
{
944
	struct intel_uncore *uncore = stream->uncore;
945 946 947
	int report_size = stream->oa_buffer.format_size;
	u8 *oa_buf_base = stream->oa_buffer.vaddr;
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
948
	u32 mask = (OA_BUFFER_SIZE - 1);
949
	size_t start_offset = *offset;
950 951
	unsigned long flags;
	u32 head, tail;
952 953 954
	u32 taken;
	int ret = 0;

955
	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
956 957
		return -EIO;

958
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
959

960
	head = stream->oa_buffer.head;
961
	tail = stream->oa_buffer.tail;
962

963
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
964

965 966
	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
	 * while indexing relative to oa_buf_base.
967
	 */
968 969
	head -= gtt_offset;
	tail -= gtt_offset;
970

971 972 973 974 975
	/* An out of bounds or misaligned head or tail pointer implies a driver
	 * bug since we validate + align the tail pointers we read from the
	 * hardware and we are in full control of the head pointer which should
	 * only be incremented by multiples of the report size (notably also
	 * all a power of two).
976
	 */
977 978 979 980 981
	if (drm_WARN_ONCE(&uncore->i915->drm,
			  head > OA_BUFFER_SIZE || head % report_size ||
			  tail > OA_BUFFER_SIZE || tail % report_size,
			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
			  head, tail))
982
		return -EIO;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998


	for (/* none */;
	     (taken = OA_TAKEN(tail, head));
	     head = (head + report_size) & mask) {
		u8 *report = oa_buf_base + head;
		u32 *report32 = (void *)report;

		/* All the report sizes factor neatly into the buffer
		 * size so we never expect to see a report split
		 * between the beginning and end of the buffer.
		 *
		 * Given the initial alignment check a misalignment
		 * here would imply a driver bug that would result
		 * in an overrun.
		 */
999 1000
		if (drm_WARN_ON(&uncore->i915->drm,
				(OA_BUFFER_SIZE - head) < report_size)) {
1001 1002
			drm_err(&uncore->i915->drm,
				"Spurious OA head ptr: non-integral report offset\n");
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
			break;
		}

		/* The report-ID field for periodic samples includes
		 * some undocumented flags related to what triggered
		 * the report and is never expected to be zero so we
		 * can check that the report isn't invalid before
		 * copying it to userspace...
		 */
		if (report32[0] == 0) {
1013
			if (__ratelimit(&stream->perf->spurious_report_rs))
1014
				DRM_NOTE("Skipping spurious, invalid OA report\n");
1015 1016 1017 1018 1019 1020 1021
			continue;
		}

		ret = append_oa_sample(stream, buf, count, offset, report);
		if (ret)
			break;

1022 1023
		/* Clear out the first 2 dwords as a mean to detect unlanded
		 * reports.
1024 1025
		 */
		report32[0] = 0;
1026
		report32[1] = 0;
1027 1028
	}

1029
	if (start_offset != *offset) {
1030
		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1031

1032 1033 1034 1035 1036
		/* We removed the gtt_offset for the copy loop above, indexing
		 * relative to oa_buf_base so put back here...
		 */
		head += gtt_offset;

1037 1038 1039
		intel_uncore_write(uncore, GEN7_OASTATUS2,
				   (head & GEN7_OASTATUS2_HEAD_MASK) |
				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1040
		stream->oa_buffer.head = head;
1041

1042
		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1043
	}
1044 1045 1046 1047

	return ret;
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
/**
 * gen7_oa_read - copy status records then buffered OA reports
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Checks Gen 7 specific OA unit status registers and if necessary appends
 * corresponding status records for userspace (such as for a buffer full
 * condition) and then initiate appending any buffered OA reports.
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
1064 1065 1066 1067 1068
static int gen7_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
1069
	struct intel_uncore *uncore = stream->uncore;
1070 1071 1072
	u32 oastatus1;
	int ret;

1073
	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1074 1075
		return -EIO;

1076
	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1077 1078 1079 1080 1081 1082

	/* XXX: On Haswell we don't have a safe way to clear oastatus1
	 * bits while the OA unit is enabled (while the tail pointer
	 * may be updated asynchronously) so we ignore status bits
	 * that have already been reported to userspace.
	 */
1083
	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

	/* We treat OABUFFER_OVERFLOW as a significant error:
	 *
	 * - The status can be interpreted to mean that the buffer is
	 *   currently full (with a higher precedence than OA_TAKEN()
	 *   which will start to report a near-empty buffer after an
	 *   overflow) but it's awkward that we can't clear the status
	 *   on Haswell, so without a reset we won't be able to catch
	 *   the state again.
	 *
	 * - Since it also implies the HW has started overwriting old
	 *   reports it may also affect our sanity checks for invalid
	 *   reports when copying to userspace that assume new reports
	 *   are being written to cleared memory.
	 *
	 * - In the future we may want to introduce a flight recorder
	 *   mode where the driver will automatically maintain a safe
	 *   guard band between head/tail, avoiding this overflow
	 *   condition, but we avoid the added driver complexity for
	 *   now.
	 */
	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
		if (ret)
			return ret;

1111
		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1112
			  stream->period_exponent);
1113

1114 1115
		stream->perf->ops.oa_disable(stream);
		stream->perf->ops.oa_enable(stream);
1116

1117
		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1118 1119 1120 1121 1122 1123 1124
	}

	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
		if (ret)
			return ret;
1125
		stream->perf->gen7_latched_oastatus1 |=
1126 1127 1128
			GEN7_OASTATUS1_REPORT_LOST;
	}

1129
	return gen7_append_oa_reports(stream, buf, count, offset);
1130 1131
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
/**
 * i915_oa_wait_unlocked - handles blocking IO until OA data available
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Called when userspace tries to read() from a blocking stream FD opened
 * for OA metrics. It waits until the hrtimer callback finds a non-empty
 * OA buffer and wakes us.
 *
 * Note: it's acceptable to have this return with some false positives
 * since any subsequent read handling will return -EAGAIN if there isn't
 * really data ready for userspace yet.
 *
 * Returns: zero on success or a negative error code
 */
1146 1147 1148
static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
{
	/* We would wait indefinitely if periodic sampling is not enabled */
1149
	if (!stream->periodic)
1150 1151
		return -EIO;

1152 1153
	return wait_event_interruptible(stream->poll_wq,
					oa_buffer_check_unlocked(stream));
1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/**
 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
 * @stream: An i915-perf stream opened for OA metrics
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream opened for OA metrics,
 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
 * when it sees data ready to read in the circular OA buffer.
 */
1166 1167 1168 1169
static void i915_oa_poll_wait(struct i915_perf_stream *stream,
			      struct file *file,
			      poll_table *wait)
{
1170
	poll_wait(file, &stream->poll_wq, wait);
1171 1172
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/**
 * i915_oa_read - just calls through to &i915_oa_ops->read
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
1185 1186 1187 1188 1189
static int i915_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
1190
	return stream->perf->ops.read(stream, buf, count, offset);
1191 1192
}

1193
static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1194
{
1195
	struct i915_gem_engines_iter it;
1196
	struct i915_gem_context *ctx = stream->ctx;
1197
	struct intel_context *ce;
1198
	int err;
1199

1200
	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1201
		if (ce->engine != stream->engine) /* first match! */
1202 1203 1204 1205 1206 1207 1208 1209
			continue;

		/*
		 * As the ID is the gtt offset of the context's vma we
		 * pin the vma to ensure the ID remains fixed.
		 */
		err = intel_context_pin(ce);
		if (err == 0) {
1210
			stream->pinned_ctx = ce;
1211 1212
			break;
		}
1213
	}
1214
	i915_gem_context_unlock_engines(ctx);
1215

1216
	return stream->pinned_ctx;
1217 1218
}

1219 1220 1221 1222 1223
/**
 * oa_get_render_ctx_id - determine and hold ctx hw id
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Determine the render context hw id, and ensure it remains fixed for the
1224 1225
 * lifetime of the stream. This ensures that we don't have to worry about
 * updating the context ID in OACONTROL on the fly.
1226 1227
 *
 * Returns: zero on success or a negative error code
1228 1229 1230
 */
static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
{
1231
	struct intel_context *ce;
1232

1233
	ce = oa_pin_context(stream);
1234 1235
	if (IS_ERR(ce))
		return PTR_ERR(ce);
1236

1237
	switch (INTEL_GEN(ce->engine->i915)) {
1238
	case 7: {
1239
		/*
1240 1241
		 * On Haswell we don't do any post processing of the reports
		 * and don't need to use the mask.
1242
		 */
1243 1244
		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
		stream->specific_ctx_id_mask = 0;
1245 1246
		break;
	}
1247

1248 1249 1250
	case 8:
	case 9:
	case 10:
1251 1252 1253 1254 1255
		if (intel_engine_in_execlists_submission_mode(ce->engine)) {
			stream->specific_ctx_id_mask =
				(1U << GEN8_CTX_ID_WIDTH) - 1;
			stream->specific_ctx_id = stream->specific_ctx_id_mask;
		} else {
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
			/*
			 * When using GuC, the context descriptor we write in
			 * i915 is read by GuC and rewritten before it's
			 * actually written into the hardware. The LRCA is
			 * what is put into the context id field of the
			 * context descriptor by GuC. Because it's aligned to
			 * a page, the lower 12bits are always at 0 and
			 * dropped by GuC. They won't be part of the context
			 * ID in the OA reports, so squash those lower bits.
			 */
1266
			stream->specific_ctx_id =
1267
				lower_32_bits(ce->lrc_desc) >> 12;
1268

1269 1270 1271 1272
			/*
			 * GuC uses the top bit to signal proxy submission, so
			 * ignore that bit.
			 */
1273
			stream->specific_ctx_id_mask =
1274 1275 1276 1277
				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
		}
		break;

1278 1279
	case 11:
	case 12: {
1280
		stream->specific_ctx_id_mask =
C
Chris Wilson 已提交
1281
			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1282 1283 1284 1285 1286 1287 1288
		/*
		 * Pick an unused context id
		 * 0 - (NUM_CONTEXT_TAG - 1) are used by other contexts
		 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
		 */
		stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
		BUILD_BUG_ON((GEN12_MAX_CONTEXT_HW_ID - 1) < NUM_CONTEXT_TAG);
1289 1290 1291 1292
		break;
	}

	default:
1293
		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1294
	}
1295

1296
	ce->tag = stream->specific_ctx_id;
C
Chris Wilson 已提交
1297

1298 1299 1300 1301
	drm_dbg(&stream->perf->i915->drm,
		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
		stream->specific_ctx_id,
		stream->specific_ctx_id_mask);
1302

1303
	return 0;
1304 1305
}

1306 1307 1308 1309 1310 1311 1312
/**
 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
 * @stream: An i915-perf stream opened for OA metrics
 *
 * In case anything needed doing to ensure the context HW ID would remain valid
 * for the lifetime of the stream, then that can be undone here.
 */
1313 1314
static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
{
1315
	struct intel_context *ce;
1316

1317
	ce = fetch_and_zero(&stream->pinned_ctx);
C
Chris Wilson 已提交
1318 1319
	if (ce) {
		ce->tag = 0; /* recomputed on next submission after parking */
1320
		intel_context_unpin(ce);
C
Chris Wilson 已提交
1321 1322 1323 1324
	}

	stream->specific_ctx_id = INVALID_CTX_ID;
	stream->specific_ctx_id_mask = 0;
1325 1326 1327
}

static void
1328
free_oa_buffer(struct i915_perf_stream *stream)
1329
{
1330
	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1331
				   I915_VMA_RELEASE_MAP);
1332

1333
	stream->oa_buffer.vaddr = NULL;
1334 1335
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static void
free_oa_configs(struct i915_perf_stream *stream)
{
	struct i915_oa_config_bo *oa_bo, *tmp;

	i915_oa_config_put(stream->oa_config);
	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
		free_oa_config_bo(oa_bo);
}

1346 1347 1348 1349 1350 1351
static void
free_noa_wait(struct i915_perf_stream *stream)
{
	i915_vma_unpin_and_release(&stream->noa_wait, 0);
}

1352 1353
static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
{
1354
	struct i915_perf *perf = stream->perf;
1355

1356
	BUG_ON(stream != perf->exclusive_stream);
1357

1358
	/*
1359 1360
	 * Unset exclusive_stream first, it will be checked while disabling
	 * the metric set on gen8+.
1361 1362
	 *
	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1363
	 */
1364
	WRITE_ONCE(perf->exclusive_stream, NULL);
1365
	perf->ops.disable_metric_set(stream);
1366

1367
	free_oa_buffer(stream);
1368

1369
	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1370
	intel_engine_pm_put(stream->engine);
1371 1372 1373 1374

	if (stream->ctx)
		oa_put_render_ctx_id(stream);

1375
	free_oa_configs(stream);
1376
	free_noa_wait(stream);
1377

1378
	if (perf->spurious_report_rs.missed) {
1379
		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1380
			 perf->spurious_report_rs.missed);
1381
	}
1382 1383
}

1384
static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1385
{
1386
	struct intel_uncore *uncore = stream->uncore;
1387
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1388 1389
	unsigned long flags;

1390
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1391 1392 1393 1394

	/* Pre-DevBDW: OABUFFER must be set with counters off,
	 * before OASTATUS1, but after OASTATUS2
	 */
1395 1396
	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1397
	stream->oa_buffer.head = gtt_offset;
1398

1399
	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1400

1401 1402
	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
			   gtt_offset | OABUFFER_SIZE_16M);
1403

1404
	/* Mark that we need updated tail pointers to read from... */
1405 1406
	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
	stream->oa_buffer.tail = gtt_offset;
1407

1408
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1409

1410 1411 1412 1413
	/* On Haswell we have to track which OASTATUS1 flags we've
	 * already seen since they can't be cleared while periodic
	 * sampling is enabled.
	 */
1414
	stream->perf->gen7_latched_oastatus1 = 0;
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

	/* NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen7_append_oa_reports() that looks at the
	 * report-id field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
1427
	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1428 1429
}

1430
static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1431
{
1432
	struct intel_uncore *uncore = stream->uncore;
1433
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1434 1435
	unsigned long flags;

1436
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1437

1438 1439
	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1440
	stream->oa_buffer.head = gtt_offset;
1441

1442
	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1443 1444 1445 1446 1447 1448 1449 1450 1451

	/*
	 * PRM says:
	 *
	 *  "This MMIO must be set before the OATAILPTR
	 *  register and after the OAHEADPTR register. This is
	 *  to enable proper functionality of the overflow
	 *  bit."
	 */
1452
	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1453
		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1454
	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1455 1456

	/* Mark that we need updated tail pointers to read from... */
1457 1458
	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
	stream->oa_buffer.tail = gtt_offset;
1459 1460 1461 1462 1463 1464

	/*
	 * Reset state used to recognise context switches, affecting which
	 * reports we will forward to userspace while filtering for a single
	 * context.
	 */
1465
	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1466

1467
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

	/*
	 * NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen8_append_oa_reports() that looks at the
	 * reason field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
1481
	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1482 1483
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
{
	struct intel_uncore *uncore = stream->uncore;
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
	unsigned long flags;

	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);

	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
	stream->oa_buffer.head = gtt_offset;

	/*
	 * PRM says:
	 *
	 *  "This MMIO must be set before the OATAILPTR
	 *  register and after the OAHEADPTR register. This is
	 *  to enable proper functionality of the overflow
	 *  bit."
	 */
	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);

	/* Mark that we need updated tail pointers to read from... */
1511 1512
	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
	stream->oa_buffer.tail = gtt_offset;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

	/*
	 * Reset state used to recognise context switches, affecting which
	 * reports we will forward to userspace while filtering for a single
	 * context.
	 */
	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;

	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);

	/*
	 * NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen8_append_oa_reports() that looks at the
	 * reason field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
	memset(stream->oa_buffer.vaddr, 0,
	       stream->oa_buffer.vma->size);
}

1539
static int alloc_oa_buffer(struct i915_perf_stream *stream)
1540
{
1541
	struct drm_i915_private *i915 = stream->perf->i915;
1542 1543 1544 1545
	struct drm_i915_gem_object *bo;
	struct i915_vma *vma;
	int ret;

1546
	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1547 1548
		return -ENODEV;

1549 1550 1551
	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);

1552
	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1553
	if (IS_ERR(bo)) {
1554
		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1555
		return PTR_ERR(bo);
1556 1557
	}

1558
	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1559 1560 1561 1562 1563 1564 1565

	/* PreHSW required 512K alignment, HSW requires 16M */
	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}
1566
	stream->oa_buffer.vma = vma;
1567

1568
	stream->oa_buffer.vaddr =
1569
		i915_gem_object_pin_map(bo, I915_MAP_WB);
1570 1571
	if (IS_ERR(stream->oa_buffer.vaddr)) {
		ret = PTR_ERR(stream->oa_buffer.vaddr);
1572 1573 1574
		goto err_unpin;
	}

1575
	return 0;
1576 1577 1578 1579 1580 1581 1582

err_unpin:
	__i915_vma_unpin(vma);

err_unref:
	i915_gem_object_put(bo);

1583 1584
	stream->oa_buffer.vaddr = NULL;
	stream->oa_buffer.vma = NULL;
1585 1586 1587 1588

	return ret;
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
				  bool save, i915_reg_t reg, u32 offset,
				  u32 dword_count)
{
	u32 cmd;
	u32 d;

	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
	if (INTEL_GEN(stream->perf->i915) >= 8)
		cmd++;

	for (d = 0; d < dword_count; d++) {
		*cs++ = cmd;
		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
						offset) + 4 * d;
		*cs++ = 0;
	}

	return cs;
}

static int alloc_noa_wait(struct i915_perf_stream *stream)
{
	struct drm_i915_private *i915 = stream->perf->i915;
	struct drm_i915_gem_object *bo;
	struct i915_vma *vma;
	const u64 delay_ticks = 0xffffffffffffffff -
		DIV64_U64_ROUND_UP(
			atomic64_read(&stream->perf->noa_programming_delay) *
			RUNTIME_INFO(i915)->cs_timestamp_frequency_khz,
			1000000ull);
	const u32 base = stream->engine->mmio_base;
#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
	u32 *batch, *ts0, *cs, *jump;
	int ret, i;
	enum {
		START_TS,
		NOW_TS,
		DELTA_TS,
		JUMP_PREDICATE,
		DELTA_TARGET,
		N_CS_GPR
	};

	bo = i915_gem_object_create_internal(i915, 4096);
	if (IS_ERR(bo)) {
1636 1637
		drm_err(&i915->drm,
			"Failed to allocate NOA wait batchbuffer\n");
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
		return PTR_ERR(bo);
	}

	/*
	 * We pin in GGTT because we jump into this buffer now because
	 * multiple OA config BOs will have a jump to this address and it
	 * needs to be fixed during the lifetime of the i915/perf stream.
	 */
	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
	if (IS_ERR(batch)) {
		ret = PTR_ERR(batch);
		goto err_unpin;
	}

	/* Save registers. */
	for (i = 0; i < N_CS_GPR; i++)
		cs = save_restore_register(
			stream, cs, true /* save */, CS_GPR(i),
			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
	cs = save_restore_register(
		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);

	/* First timestamp snapshot location. */
	ts0 = cs;

	/*
	 * Initial snapshot of the timestamp register to implement the wait.
	 * We work with 32b values, so clear out the top 32b bits of the
	 * register because the ALU works 64bits.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(1);
	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
	*cs++ = 0;
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));

	/*
	 * This is the location we're going to jump back into until the
	 * required amount of time has passed.
	 */
	jump = cs;

	/*
	 * Take another snapshot of the timestamp register. Take care to clear
	 * up the top 32bits of CS_GPR(1) as we're using it for other
	 * operations below.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(1);
	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
	*cs++ = 0;
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));

	/*
	 * Do a diff between the 2 timestamps and store the result back into
	 * CS_GPR(1).
	 */
	*cs++ = MI_MATH(5);
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
	*cs++ = MI_MATH_SUB;
	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);

	/*
	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
	 * timestamp have rolled over the 32bits) into the predicate register
	 * to be used for the predicated jump.
	 */
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);

	/* Restart from the beginning if we had timestamps roll over. */
	*cs++ = (INTEL_GEN(i915) < 8 ?
		 MI_BATCH_BUFFER_START :
		 MI_BATCH_BUFFER_START_GEN8) |
		MI_BATCH_PREDICATE;
	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
	*cs++ = 0;

	/*
	 * Now add the diff between to previous timestamps and add it to :
	 *      (((1 * << 64) - 1) - delay_ns)
	 *
	 * When the Carry Flag contains 1 this means the elapsed time is
	 * longer than the expected delay, and we can exit the wait loop.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(2);
	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
	*cs++ = lower_32_bits(delay_ticks);
	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
	*cs++ = upper_32_bits(delay_ticks);

	*cs++ = MI_MATH(4);
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
	*cs++ = MI_MATH_ADD;
	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);

1747 1748
	*cs++ = MI_ARB_CHECK;

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	/*
	 * Transfer the result into the predicate register to be used for the
	 * predicated jump.
	 */
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);

	/* Predicate the jump.  */
	*cs++ = (INTEL_GEN(i915) < 8 ?
		 MI_BATCH_BUFFER_START :
		 MI_BATCH_BUFFER_START_GEN8) |
		MI_BATCH_PREDICATE;
	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
	*cs++ = 0;

	/* Restore registers. */
	for (i = 0; i < N_CS_GPR; i++)
		cs = save_restore_register(
			stream, cs, false /* restore */, CS_GPR(i),
			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
	cs = save_restore_register(
		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);

	/* And return to the ring. */
	*cs++ = MI_BATCH_BUFFER_END;

	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));

	i915_gem_object_flush_map(bo);
	i915_gem_object_unpin_map(bo);

	stream->noa_wait = vma;
	return 0;

err_unpin:
1786
	i915_vma_unpin_and_release(&vma, 0);
1787 1788 1789 1790 1791
err_unref:
	i915_gem_object_put(bo);
	return ret;
}

1792 1793 1794
static u32 *write_cs_mi_lri(u32 *cs,
			    const struct i915_oa_reg *reg_data,
			    u32 n_regs)
1795
{
1796
	u32 i;
1797 1798

	for (i = 0; i < n_regs; i++) {
1799 1800 1801 1802
		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
			u32 n_lri = min_t(u32,
					  n_regs - i,
					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1803

1804 1805 1806 1807
			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
		}
		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
		*cs++ = reg_data[i].value;
1808
	}
1809 1810

	return cs;
1811 1812
}

1813
static int num_lri_dwords(int num_regs)
1814
{
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	int count = 0;

	if (num_regs > 0) {
		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
		count += num_regs * 2;
	}

	return count;
}

static struct i915_oa_config_bo *
alloc_oa_config_buffer(struct i915_perf_stream *stream,
		       struct i915_oa_config *oa_config)
{
	struct drm_i915_gem_object *obj;
	struct i915_oa_config_bo *oa_bo;
	size_t config_length = 0;
	u32 *cs;
	int err;

	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
	if (!oa_bo)
		return ERR_PTR(-ENOMEM);

	config_length += num_lri_dwords(oa_config->mux_regs_len);
	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
	config_length += num_lri_dwords(oa_config->flex_regs_len);
1842
	config_length += 3; /* MI_BATCH_BUFFER_START */
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);

	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
	if (IS_ERR(obj)) {
		err = PTR_ERR(obj);
		goto err_free;
	}

	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(cs)) {
		err = PTR_ERR(cs);
		goto err_oa_bo;
	}

	cs = write_cs_mi_lri(cs,
			     oa_config->mux_regs,
			     oa_config->mux_regs_len);
	cs = write_cs_mi_lri(cs,
			     oa_config->b_counter_regs,
			     oa_config->b_counter_regs_len);
	cs = write_cs_mi_lri(cs,
			     oa_config->flex_regs,
			     oa_config->flex_regs_len);

1867 1868 1869 1870 1871 1872
	/* Jump into the active wait. */
	*cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
		 MI_BATCH_BUFFER_START :
		 MI_BATCH_BUFFER_START_GEN8);
	*cs++ = i915_ggtt_offset(stream->noa_wait);
	*cs++ = 0;
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

	i915_gem_object_flush_map(obj);
	i915_gem_object_unpin_map(obj);

	oa_bo->vma = i915_vma_instance(obj,
				       &stream->engine->gt->ggtt->vm,
				       NULL);
	if (IS_ERR(oa_bo->vma)) {
		err = PTR_ERR(oa_bo->vma);
		goto err_oa_bo;
	}

	oa_bo->oa_config = i915_oa_config_get(oa_config);
	llist_add(&oa_bo->node, &stream->oa_config_bos);

	return oa_bo;

err_oa_bo:
	i915_gem_object_put(obj);
err_free:
	kfree(oa_bo);
	return ERR_PTR(err);
}

static struct i915_vma *
get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
{
	struct i915_oa_config_bo *oa_bo;

1902
	/*
1903 1904
	 * Look for the buffer in the already allocated BOs attached
	 * to the stream.
1905
	 */
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
		if (oa_bo->oa_config == oa_config &&
		    memcmp(oa_bo->oa_config->uuid,
			   oa_config->uuid,
			   sizeof(oa_config->uuid)) == 0)
			goto out;
	}

	oa_bo = alloc_oa_config_buffer(stream, oa_config);
	if (IS_ERR(oa_bo))
		return ERR_CAST(oa_bo);

out:
	return i915_vma_get(oa_bo->vma);
}

1922
static int
1923 1924
emit_oa_config(struct i915_perf_stream *stream,
	       struct i915_oa_config *oa_config,
1925 1926
	       struct intel_context *ce,
	       struct i915_active *active)
1927 1928 1929 1930 1931
{
	struct i915_request *rq;
	struct i915_vma *vma;
	int err;

1932
	vma = get_oa_vma(stream, oa_config);
1933
	if (IS_ERR(vma))
1934
		return PTR_ERR(vma);
1935 1936 1937 1938 1939

	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err_vma_put;

1940
	intel_engine_pm_get(ce->engine);
1941
	rq = i915_request_create(ce);
1942
	intel_engine_pm_put(ce->engine);
1943 1944 1945 1946 1947
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_vma_unpin;
	}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	if (!IS_ERR_OR_NULL(active)) {
		/* After all individual context modifications */
		err = i915_request_await_active(rq, active,
						I915_ACTIVE_AWAIT_ALL);
		if (err)
			goto err_add_request;

		err = i915_active_add_request(active, rq);
		if (err)
			goto err_add_request;
	}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	i915_vma_lock(vma);
	err = i915_request_await_object(rq, vma->obj, 0);
	if (!err)
		err = i915_vma_move_to_active(vma, rq, 0);
	i915_vma_unlock(vma);
	if (err)
		goto err_add_request;

	err = rq->engine->emit_bb_start(rq,
					vma->node.start, 0,
					I915_DISPATCH_SECURE);
1971 1972 1973
	if (err)
		goto err_add_request;

1974 1975 1976 1977 1978 1979
err_add_request:
	i915_request_add(rq);
err_vma_unpin:
	i915_vma_unpin(vma);
err_vma_put:
	i915_vma_put(vma);
1980
	return err;
1981 1982
}

1983 1984 1985 1986 1987
static struct intel_context *oa_context(struct i915_perf_stream *stream)
{
	return stream->pinned_ctx ?: stream->engine->kernel_context;
}

1988 1989 1990
static int
hsw_enable_metric_set(struct i915_perf_stream *stream,
		      struct i915_active *active)
1991
{
1992
	struct intel_uncore *uncore = stream->uncore;
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

	/*
	 * PRM:
	 *
	 * OA unit is using “crclk” for its functionality. When trunk
	 * level clock gating takes place, OA clock would be gated,
	 * unable to count the events from non-render clock domain.
	 * Render clock gating must be disabled when OA is enabled to
	 * count the events from non-render domain. Unit level clock
	 * gating for RCS should also be disabled.
	 */
2004 2005 2006 2007
	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2008

2009 2010 2011
	return emit_oa_config(stream,
			      stream->oa_config, oa_context(stream),
			      active);
2012 2013
}

2014
static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2015
{
2016
	struct intel_uncore *uncore = stream->uncore;
2017

2018 2019 2020 2021
	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2022

2023
	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2024 2025
}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
			      i915_reg_t reg)
{
	u32 mmio = i915_mmio_reg_offset(reg);
	int i;

	/*
	 * This arbitrary default will select the 'EU FPU0 Pipeline
	 * Active' event. In the future it's anticipated that there
	 * will be an explicit 'No Event' we can select, but not yet...
	 */
	if (!oa_config)
		return 0;

	for (i = 0; i < oa_config->flex_regs_len; i++) {
		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
			return oa_config->flex_regs[i].value;
	}

	return 0;
}
2047 2048 2049 2050 2051 2052 2053
/*
 * NB: It must always remain pointer safe to run this even if the OA unit
 * has been disabled.
 *
 * It's fine to put out-of-date values into these per-context registers
 * in the case that the OA unit has been disabled.
 */
2054
static void
2055 2056
gen8_update_reg_state_unlocked(const struct intel_context *ce,
			       const struct i915_perf_stream *stream)
2057
{
2058 2059
	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2060
	/* The MMIO offsets for Flex EU registers aren't contiguous */
2061 2062 2063 2064 2065 2066 2067 2068
	i915_reg_t flex_regs[] = {
		EU_PERF_CNTL0,
		EU_PERF_CNTL1,
		EU_PERF_CNTL2,
		EU_PERF_CNTL3,
		EU_PERF_CNTL4,
		EU_PERF_CNTL5,
		EU_PERF_CNTL6,
2069
	};
2070
	u32 *reg_state = ce->lrc_reg_state;
2071 2072
	int i;

2073 2074 2075 2076
	reg_state[ctx_oactxctrl + 1] =
		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
		GEN8_OA_COUNTER_RESUME;
2077

2078
	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2079 2080
		reg_state[ctx_flexeu0 + i * 2 + 1] =
			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
struct flex {
	i915_reg_t reg;
	u32 offset;
	u32 value;
};

static int
gen8_store_flex(struct i915_request *rq,
		struct intel_context *ce,
		const struct flex *flex, unsigned int count)
{
	u32 offset;
	u32 *cs;

	cs = intel_ring_begin(rq, 4 * count);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
	do {
		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2104
		*cs++ = offset + flex->offset * sizeof(u32);
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
		*cs++ = 0;
		*cs++ = flex->value;
	} while (flex++, --count);

	intel_ring_advance(rq, cs);

	return 0;
}

static int
gen8_load_flex(struct i915_request *rq,
	       struct intel_context *ce,
	       const struct flex *flex, unsigned int count)
{
	u32 *cs;

	GEM_BUG_ON(!count || count > 63);

	cs = intel_ring_begin(rq, 2 * count + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*cs++ = i915_mmio_reg_offset(flex->reg);
		*cs++ = flex->value;
	} while (flex++, --count);
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen8_modify_context(struct intel_context *ce,
			       const struct flex *flex, unsigned int count)
{
	struct i915_request *rq;
	int err;

2145
	rq = intel_engine_create_kernel_request(ce->engine);
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	/* Serialise with the remote context */
	err = intel_context_prepare_remote_request(ce, rq);
	if (err == 0)
		err = gen8_store_flex(rq, ce, flex, count);

	i915_request_add(rq);
	return err;
}

2158 2159 2160 2161
static int
gen8_modify_self(struct intel_context *ce,
		 const struct flex *flex, unsigned int count,
		 struct i915_active *active)
2162 2163 2164 2165
{
	struct i915_request *rq;
	int err;

2166
	intel_engine_pm_get(ce->engine);
2167
	rq = i915_request_create(ce);
2168
	intel_engine_pm_put(ce->engine);
2169 2170 2171
	if (IS_ERR(rq))
		return PTR_ERR(rq);

2172 2173 2174 2175 2176 2177
	if (!IS_ERR_OR_NULL(active)) {
		err = i915_active_add_request(active, rq);
		if (err)
			goto err_add_request;
	}

2178
	err = gen8_load_flex(rq, ce, flex, count);
2179 2180
	if (err)
		goto err_add_request;
2181

2182
err_add_request:
2183 2184 2185 2186
	i915_request_add(rq);
	return err;
}

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
static int gen8_configure_context(struct i915_gem_context *ctx,
				  struct flex *flex, unsigned int count)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;
	int err = 0;

	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
		GEM_BUG_ON(ce == ce->engine->kernel_context);

		if (ce->engine->class != RENDER_CLASS)
			continue;

2200 2201 2202
		/* Otherwise OA settings will be set upon first use */
		if (!intel_context_pin_if_active(ce))
			continue;
2203 2204

		flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
2205
		err = gen8_modify_context(ce, flex, count);
2206

2207
		intel_context_unpin(ce);
2208 2209 2210 2211 2212 2213 2214 2215
		if (err)
			break;
	}
	i915_gem_context_unlock_engines(ctx);

	return err;
}

2216 2217
static int gen12_configure_oar_context(struct i915_perf_stream *stream,
				       struct i915_active *active)
2218
{
2219 2220 2221 2222 2223 2224 2225
	int err;
	struct intel_context *ce = stream->pinned_ctx;
	u32 format = stream->oa_buffer.format;
	struct flex regs_context[] = {
		{
			GEN8_OACTXCONTROL,
			stream->perf->ctx_oactxctrl_offset + 1,
2226
			active ? GEN8_OA_COUNTER_RESUME : 0,
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
		},
	};
	/* Offsets in regs_lri are not used since this configuration is only
	 * applied using LRI. Initialize the correct offsets for posterity.
	 */
#define GEN12_OAR_OACONTROL_OFFSET 0x5B0
	struct flex regs_lri[] = {
		{
			GEN12_OAR_OACONTROL,
			GEN12_OAR_OACONTROL_OFFSET + 1,
			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2238
			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2239 2240 2241 2242 2243
		},
		{
			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
			CTX_CONTEXT_CONTROL,
			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2244
				      active ?
2245 2246 2247 2248
				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
				      0)
		},
	};
2249

2250 2251 2252 2253
	/* Modify the context image of pinned context with regs_context*/
	err = intel_context_lock_pinned(ce);
	if (err)
		return err;
2254

2255 2256 2257 2258
	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
	intel_context_unlock_pinned(ce);
	if (err)
		return err;
2259

2260
	/* Apply regs_lri using LRI with pinned context */
2261
	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2262 2263
}

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/*
 * Manages updating the per-context aspects of the OA stream
 * configuration across all contexts.
 *
 * The awkward consideration here is that OACTXCONTROL controls the
 * exponent for periodic sampling which is primarily used for system
 * wide profiling where we'd like a consistent sampling period even in
 * the face of context switches.
 *
 * Our approach of updating the register state context (as opposed to
 * say using a workaround batch buffer) ensures that the hardware
 * won't automatically reload an out-of-date timer exponent even
 * transiently before a WA BB could be parsed.
 *
 * This function needs to:
 * - Ensure the currently running context's per-context OA state is
 *   updated
 * - Ensure that all existing contexts will have the correct per-context
 *   OA state if they are scheduled for use.
 * - Ensure any new contexts will be initialized with the correct
 *   per-context OA state.
 *
 * Note: it's only the RCS/Render context that has any OA state.
2287
 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2288
 */
2289 2290 2291 2292 2293
static int
oa_configure_all_contexts(struct i915_perf_stream *stream,
			  struct flex *regs,
			  size_t num_regs,
			  struct i915_active *active)
2294
{
2295
	struct drm_i915_private *i915 = stream->perf->i915;
2296
	struct intel_engine_cs *engine;
2297
	struct i915_gem_context *ctx, *cn;
2298
	int err;
2299

2300
	lockdep_assert_held(&stream->perf->lock);
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

	/*
	 * The OA register config is setup through the context image. This image
	 * might be written to by the GPU on context switch (in particular on
	 * lite-restore). This means we can't safely update a context's image,
	 * if this context is scheduled/submitted to run on the GPU.
	 *
	 * We could emit the OA register config through the batch buffer but
	 * this might leave small interval of time where the OA unit is
	 * configured at an invalid sampling period.
	 *
2312 2313 2314 2315 2316
	 * Note that since we emit all requests from a single ring, there
	 * is still an implicit global barrier here that may cause a high
	 * priority context to wait for an otherwise independent low priority
	 * context. Contexts idle at the time of reconfiguration are not
	 * trapped behind the barrier.
2317
	 */
2318 2319 2320 2321 2322 2323 2324
	spin_lock(&i915->gem.contexts.lock);
	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
		if (!kref_get_unless_zero(&ctx->ref))
			continue;

		spin_unlock(&i915->gem.contexts.lock);

2325
		err = gen8_configure_context(ctx, regs, num_regs);
2326 2327
		if (err) {
			i915_gem_context_put(ctx);
2328
			return err;
2329 2330 2331 2332 2333
		}

		spin_lock(&i915->gem.contexts.lock);
		list_safe_reset_next(ctx, cn, link);
		i915_gem_context_put(ctx);
2334
	}
2335
	spin_unlock(&i915->gem.contexts.lock);
2336

2337
	/*
2338 2339 2340
	 * After updating all other contexts, we need to modify ourselves.
	 * If we don't modify the kernel_context, we do not get events while
	 * idle.
2341
	 */
2342
	for_each_uabi_engine(engine, i915) {
2343
		struct intel_context *ce = engine->kernel_context;
2344

2345 2346 2347 2348 2349
		if (engine->class != RENDER_CLASS)
			continue;

		regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);

2350
		err = gen8_modify_self(ce, regs, num_regs, active);
2351 2352 2353
		if (err)
			return err;
	}
2354 2355

	return 0;
2356 2357
}

2358 2359 2360 2361
static int
gen12_configure_all_contexts(struct i915_perf_stream *stream,
			     const struct i915_oa_config *oa_config,
			     struct i915_active *active)
2362 2363 2364 2365 2366 2367 2368 2369
{
	struct flex regs[] = {
		{
			GEN8_R_PWR_CLK_STATE,
			CTX_R_PWR_CLK_STATE,
		},
	};

2370 2371 2372
	return oa_configure_all_contexts(stream,
					 regs, ARRAY_SIZE(regs),
					 active);
2373 2374
}

2375 2376 2377 2378
static int
lrc_configure_all_contexts(struct i915_perf_stream *stream,
			   const struct i915_oa_config *oa_config,
			   struct i915_active *active)
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
{
	/* The MMIO offsets for Flex EU registers aren't contiguous */
	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
	struct flex regs[] = {
		{
			GEN8_R_PWR_CLK_STATE,
			CTX_R_PWR_CLK_STATE,
		},
		{
			GEN8_OACTXCONTROL,
			stream->perf->ctx_oactxctrl_offset + 1,
		},
		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
	};
#undef ctx_flexeuN
	int i;

	regs[1].value =
		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
		GEN8_OA_COUNTER_RESUME;

	for (i = 2; i < ARRAY_SIZE(regs); i++)
		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);

2411 2412 2413
	return oa_configure_all_contexts(stream,
					 regs, ARRAY_SIZE(regs),
					 active);
2414 2415
}

2416 2417 2418
static int
gen8_enable_metric_set(struct i915_perf_stream *stream,
		       struct i915_active *active)
2419
{
2420
	struct intel_uncore *uncore = stream->uncore;
2421
	struct i915_oa_config *oa_config = stream->oa_config;
2422
	int ret;
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446

	/*
	 * We disable slice/unslice clock ratio change reports on SKL since
	 * they are too noisy. The HW generates a lot of redundant reports
	 * where the ratio hasn't really changed causing a lot of redundant
	 * work to processes and increasing the chances we'll hit buffer
	 * overruns.
	 *
	 * Although we don't currently use the 'disable overrun' OABUFFER
	 * feature it's worth noting that clock ratio reports have to be
	 * disabled before considering to use that feature since the HW doesn't
	 * correctly block these reports.
	 *
	 * Currently none of the high-level metrics we have depend on knowing
	 * this ratio to normalize.
	 *
	 * Note: This register is not power context saved and restored, but
	 * that's OK considering that we disable RC6 while the OA unit is
	 * enabled.
	 *
	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
	 * be read back from automatically triggered reports, as part of the
	 * RPT_ID field.
	 */
2447 2448 2449 2450
	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
		intel_uncore_write(uncore, GEN8_OA_DEBUG,
				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2451 2452 2453 2454 2455 2456 2457
	}

	/*
	 * Update all contexts prior writing the mux configurations as we need
	 * to make sure all slices/subslices are ON before writing to NOA
	 * registers.
	 */
2458
	ret = lrc_configure_all_contexts(stream, oa_config, active);
2459
	if (ret)
2460
		return ret;
2461

2462 2463 2464
	return emit_oa_config(stream,
			      stream->oa_config, oa_context(stream),
			      active);
2465 2466
}

2467 2468 2469 2470 2471 2472 2473
static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
{
	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
}

2474 2475 2476
static int
gen12_enable_metric_set(struct i915_perf_stream *stream,
			struct i915_active *active)
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
{
	struct intel_uncore *uncore = stream->uncore;
	struct i915_oa_config *oa_config = stream->oa_config;
	bool periodic = stream->periodic;
	u32 period_exponent = stream->period_exponent;
	int ret;

	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
			   /* Disable clk ratio reports, like previous Gens. */
			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
			   /*
2489 2490
			    * If the user didn't require OA reports, instruct
			    * the hardware not to emit ctx switch reports.
2491
			    */
2492
			   oag_report_ctx_switches(stream));
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504

	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
			    : 0);

	/*
	 * Update all contexts prior writing the mux configurations as we need
	 * to make sure all slices/subslices are ON before writing to NOA
	 * registers.
	 */
2505
	ret = gen12_configure_all_contexts(stream, oa_config, active);
2506
	if (ret)
2507
		return ret;
2508

2509 2510 2511 2512 2513 2514
	/*
	 * For Gen12, performance counters are context
	 * saved/restored. Only enable it for the context that
	 * requested this.
	 */
	if (stream->ctx) {
2515
		ret = gen12_configure_oar_context(stream, active);
2516
		if (ret)
2517
			return ret;
2518 2519
	}

2520 2521 2522
	return emit_oa_config(stream,
			      stream->oa_config, oa_context(stream),
			      active);
2523 2524
}

2525
static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2526
{
2527
	struct intel_uncore *uncore = stream->uncore;
2528

2529
	/* Reset all contexts' slices/subslices configurations. */
2530
	lrc_configure_all_contexts(stream, NULL, NULL);
2531

2532
	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2533 2534
}

2535
static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2536
{
2537
	struct intel_uncore *uncore = stream->uncore;
2538

2539
	/* Reset all contexts' slices/subslices configurations. */
2540
	lrc_configure_all_contexts(stream, NULL, NULL);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

	/* Make sure we disable noa to save power. */
	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
}

static void gen12_disable_metric_set(struct i915_perf_stream *stream)
{
	struct intel_uncore *uncore = stream->uncore;

	/* Reset all contexts' slices/subslices configurations. */
2551
	gen12_configure_all_contexts(stream, NULL, NULL);
2552 2553 2554

	/* disable the context save/restore or OAR counters */
	if (stream->ctx)
2555
		gen12_configure_oar_context(stream, NULL);
2556 2557

	/* Make sure we disable noa to save power. */
2558
	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2559 2560
}

2561
static void gen7_oa_enable(struct i915_perf_stream *stream)
2562
{
2563
	struct intel_uncore *uncore = stream->uncore;
2564
	struct i915_gem_context *ctx = stream->ctx;
2565 2566 2567 2568
	u32 ctx_id = stream->specific_ctx_id;
	bool periodic = stream->periodic;
	u32 period_exponent = stream->period_exponent;
	u32 report_format = stream->oa_buffer.format;
2569

2570 2571 2572 2573 2574 2575 2576 2577 2578
	/*
	 * Reset buf pointers so we don't forward reports from before now.
	 *
	 * Think carefully if considering trying to avoid this, since it
	 * also ensures status flags and the buffer itself are cleared
	 * in error paths, and we have checks for invalid reports based
	 * on the assumption that certain fields are written to zeroed
	 * memory which this helps maintains.
	 */
2579
	gen7_init_oa_buffer(stream);
2580

2581 2582 2583 2584 2585 2586 2587 2588
	intel_uncore_write(uncore, GEN7_OACONTROL,
			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
			   (period_exponent <<
			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
			   GEN7_OACONTROL_ENABLE);
2589 2590
}

2591
static void gen8_oa_enable(struct i915_perf_stream *stream)
2592
{
2593
	struct intel_uncore *uncore = stream->uncore;
2594
	u32 report_format = stream->oa_buffer.format;
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

	/*
	 * Reset buf pointers so we don't forward reports from before now.
	 *
	 * Think carefully if considering trying to avoid this, since it
	 * also ensures status flags and the buffer itself are cleared
	 * in error paths, and we have checks for invalid reports based
	 * on the assumption that certain fields are written to zeroed
	 * memory which this helps maintains.
	 */
2605
	gen8_init_oa_buffer(stream);
2606 2607 2608 2609 2610 2611

	/*
	 * Note: we don't rely on the hardware to perform single context
	 * filtering and instead filter on the cpu based on the context-id
	 * field of reports
	 */
2612 2613 2614
	intel_uncore_write(uncore, GEN8_OACONTROL,
			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
			   GEN8_OA_COUNTER_ENABLE);
2615 2616
}

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
static void gen12_oa_enable(struct i915_perf_stream *stream)
{
	struct intel_uncore *uncore = stream->uncore;
	u32 report_format = stream->oa_buffer.format;

	/*
	 * If we don't want OA reports from the OA buffer, then we don't even
	 * need to program the OAG unit.
	 */
	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
		return;

	gen12_init_oa_buffer(stream);

	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
}

2636 2637 2638 2639 2640 2641 2642 2643 2644
/**
 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * [Re]enables hardware periodic sampling according to the period configured
 * when opening the stream. This also starts a hrtimer that will periodically
 * check for data in the circular OA buffer for notifying userspace (e.g.
 * during a read() or poll()).
 */
2645 2646
static void i915_oa_stream_enable(struct i915_perf_stream *stream)
{
2647 2648
	stream->pollin = false;

2649
	stream->perf->ops.oa_enable(stream);
2650

2651 2652
	if (stream->periodic)
		hrtimer_start(&stream->poll_check_timer,
2653
			      ns_to_ktime(stream->poll_oa_period),
2654 2655 2656
			      HRTIMER_MODE_REL_PINNED);
}

2657
static void gen7_oa_disable(struct i915_perf_stream *stream)
2658
{
2659
	struct intel_uncore *uncore = stream->uncore;
2660

2661 2662
	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
	if (intel_wait_for_register(uncore,
2663 2664
				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
				    50))
2665 2666
		drm_err(&stream->perf->i915->drm,
			"wait for OA to be disabled timed out\n");
2667 2668
}

2669
static void gen8_oa_disable(struct i915_perf_stream *stream)
2670
{
2671
	struct intel_uncore *uncore = stream->uncore;
2672

2673 2674
	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
	if (intel_wait_for_register(uncore,
2675 2676
				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
				    50))
2677 2678
		drm_err(&stream->perf->i915->drm,
			"wait for OA to be disabled timed out\n");
2679 2680
}

2681 2682 2683 2684 2685 2686 2687 2688 2689
static void gen12_oa_disable(struct i915_perf_stream *stream)
{
	struct intel_uncore *uncore = stream->uncore;

	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
	if (intel_wait_for_register(uncore,
				    GEN12_OAG_OACONTROL,
				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
				    50))
2690 2691
		drm_err(&stream->perf->i915->drm,
			"wait for OA to be disabled timed out\n");
2692 2693 2694 2695 2696 2697 2698 2699

	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
	if (intel_wait_for_register(uncore,
				    GEN12_OA_TLB_INV_CR,
				    1, 0,
				    50))
		drm_err(&stream->perf->i915->drm,
			"wait for OA tlb invalidate timed out\n");
2700 2701
}

2702 2703 2704 2705 2706 2707 2708 2709
/**
 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * Stops the OA unit from periodically writing counter reports into the
 * circular OA buffer. This also stops the hrtimer that periodically checks for
 * data in the circular OA buffer, for notifying userspace.
 */
2710 2711
static void i915_oa_stream_disable(struct i915_perf_stream *stream)
{
2712
	stream->perf->ops.oa_disable(stream);
2713

2714 2715
	if (stream->periodic)
		hrtimer_cancel(&stream->poll_check_timer);
2716 2717 2718 2719 2720 2721 2722 2723 2724
}

static const struct i915_perf_stream_ops i915_oa_stream_ops = {
	.destroy = i915_oa_stream_destroy,
	.enable = i915_oa_stream_enable,
	.disable = i915_oa_stream_disable,
	.wait_unlocked = i915_oa_wait_unlocked,
	.poll_wait = i915_oa_poll_wait,
	.read = i915_oa_read,
2725 2726
};

2727 2728
static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
{
2729 2730
	struct i915_active *active;
	int err;
2731

2732 2733 2734
	active = i915_active_create();
	if (!active)
		return -ENOMEM;
2735

2736 2737 2738
	err = stream->perf->ops.enable_metric_set(stream, active);
	if (err == 0)
		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2739

2740 2741
	i915_active_put(active);
	return err;
2742 2743
}

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
static void
get_default_sseu_config(struct intel_sseu *out_sseu,
			struct intel_engine_cs *engine)
{
	const struct sseu_dev_info *devinfo_sseu =
		&RUNTIME_INFO(engine->i915)->sseu;

	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);

	if (IS_GEN(engine->i915, 11)) {
		/*
		 * We only need subslice count so it doesn't matter which ones
		 * we select - just turn off low bits in the amount of half of
		 * all available subslices per slice.
		 */
		out_sseu->subslice_mask =
			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
		out_sseu->slice_mask = 0x1;
	}
}

static int
get_sseu_config(struct intel_sseu *out_sseu,
		struct intel_engine_cs *engine,
		const struct drm_i915_gem_context_param_sseu *drm_sseu)
{
	if (drm_sseu->engine.engine_class != engine->uabi_class ||
	    drm_sseu->engine.engine_instance != engine->uabi_instance)
		return -EINVAL;

	return i915_gem_user_to_context_sseu(engine->i915, drm_sseu, out_sseu);
}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
/**
 * i915_oa_stream_init - validate combined props for OA stream and init
 * @stream: An i915 perf stream
 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
 * @props: The property state that configures stream (individually validated)
 *
 * While read_properties_unlocked() validates properties in isolation it
 * doesn't ensure that the combination necessarily makes sense.
 *
 * At this point it has been determined that userspace wants a stream of
 * OA metrics, but still we need to further validate the combined
 * properties are OK.
 *
 * If the configuration makes sense then we can allocate memory for
 * a circular OA buffer and apply the requested metric set configuration.
 *
 * Returns: zero on success or a negative error code.
 */
2795 2796 2797 2798
static int i915_oa_stream_init(struct i915_perf_stream *stream,
			       struct drm_i915_perf_open_param *param,
			       struct perf_open_properties *props)
{
2799
	struct drm_i915_private *i915 = stream->perf->i915;
2800
	struct i915_perf *perf = stream->perf;
2801 2802 2803
	int format_size;
	int ret;

2804 2805 2806 2807 2808 2809 2810
	if (!props->engine) {
		DRM_DEBUG("OA engine not specified\n");
		return -EINVAL;
	}

	/*
	 * If the sysfs metrics/ directory wasn't registered for some
2811 2812 2813
	 * reason then don't let userspace try their luck with config
	 * IDs
	 */
2814
	if (!perf->metrics_kobj) {
2815
		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2816 2817 2818
		return -EINVAL;
	}

2819 2820
	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
	    (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2821
		DRM_DEBUG("Only OA report sampling supported\n");
2822 2823 2824
		return -EINVAL;
	}

2825
	if (!perf->ops.enable_metric_set) {
2826
		DRM_DEBUG("OA unit not supported\n");
2827 2828 2829
		return -ENODEV;
	}

2830 2831
	/*
	 * To avoid the complexity of having to accurately filter
2832 2833 2834
	 * counter reports and marshal to the appropriate client
	 * we currently only allow exclusive access
	 */
2835
	if (perf->exclusive_stream) {
2836
		DRM_DEBUG("OA unit already in use\n");
2837 2838 2839 2840
		return -EBUSY;
	}

	if (!props->oa_format) {
2841
		DRM_DEBUG("OA report format not specified\n");
2842 2843 2844
		return -EINVAL;
	}

2845
	stream->engine = props->engine;
2846
	stream->uncore = stream->engine->gt->uncore;
2847

2848 2849
	stream->sample_size = sizeof(struct drm_i915_perf_record_header);

2850
	format_size = perf->oa_formats[props->oa_format].size;
2851

2852
	stream->sample_flags = props->sample_flags;
2853 2854
	stream->sample_size += format_size;

2855
	stream->oa_buffer.format_size = format_size;
2856
	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2857 2858
		return -EINVAL;

2859 2860
	stream->hold_preemption = props->hold_preemption;

2861
	stream->oa_buffer.format =
2862
		perf->oa_formats[props->oa_format].format;
2863

2864 2865 2866
	stream->periodic = props->oa_periodic;
	if (stream->periodic)
		stream->period_exponent = props->oa_period_exponent;
2867 2868 2869

	if (stream->ctx) {
		ret = oa_get_render_ctx_id(stream);
2870 2871
		if (ret) {
			DRM_DEBUG("Invalid context id to filter with\n");
2872
			return ret;
2873
		}
2874 2875
	}

2876 2877 2878 2879 2880 2881
	ret = alloc_noa_wait(stream);
	if (ret) {
		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
		goto err_noa_wait_alloc;
	}

2882 2883
	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
	if (!stream->oa_config) {
2884
		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2885
		ret = -EINVAL;
2886
		goto err_config;
2887
	}
2888

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
	/* PRM - observability performance counters:
	 *
	 *   OACONTROL, performance counter enable, note:
	 *
	 *   "When this bit is set, in order to have coherent counts,
	 *   RC6 power state and trunk clock gating must be disabled.
	 *   This can be achieved by programming MMIO registers as
	 *   0xA094=0 and 0xA090[31]=1"
	 *
	 *   In our case we are expecting that taking pm + FORCEWAKE
	 *   references will effectively disable RC6.
	 */
2901
	intel_engine_pm_get(stream->engine);
2902
	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2903

2904
	ret = alloc_oa_buffer(stream);
2905 2906 2907
	if (ret)
		goto err_oa_buf_alloc;

2908
	stream->ops = &i915_oa_stream_ops;
2909 2910

	perf->sseu = props->sseu;
2911
	WRITE_ONCE(perf->exclusive_stream, stream);
2912

2913
	ret = i915_perf_stream_enable_sync(stream);
2914 2915
	if (ret) {
		DRM_DEBUG("Unable to enable metric set\n");
2916
		goto err_enable;
2917
	}
2918

2919 2920 2921
	DRM_DEBUG("opening stream oa config uuid=%s\n",
		  stream->oa_config->uuid);

2922 2923 2924 2925 2926 2927
	hrtimer_init(&stream->poll_check_timer,
		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	stream->poll_check_timer.function = oa_poll_check_timer_cb;
	init_waitqueue_head(&stream->poll_wq);
	spin_lock_init(&stream->oa_buffer.ptr_lock);

2928 2929
	return 0;

2930
err_enable:
2931
	WRITE_ONCE(perf->exclusive_stream, NULL);
2932
	perf->ops.disable_metric_set(stream);
2933

2934
	free_oa_buffer(stream);
2935 2936

err_oa_buf_alloc:
2937
	free_oa_configs(stream);
2938

2939
	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2940
	intel_engine_pm_put(stream->engine);
2941 2942

err_config:
2943 2944 2945
	free_noa_wait(stream);

err_noa_wait_alloc:
2946 2947 2948 2949 2950 2951
	if (stream->ctx)
		oa_put_render_ctx_id(stream);

	return ret;
}

2952 2953
void i915_oa_init_reg_state(const struct intel_context *ce,
			    const struct intel_engine_cs *engine)
2954
{
2955
	struct i915_perf_stream *stream;
2956

2957
	if (engine->class != RENDER_CLASS)
2958 2959
		return;

2960 2961
	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2962
	if (stream && INTEL_GEN(stream->perf->i915) < 12)
2963
		gen8_update_reg_state_unlocked(ce, stream);
2964 2965
}

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/**
 * i915_perf_read - handles read() FOP for i915 perf stream FDs
 * @file: An i915 perf stream file
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @ppos: (inout) file seek position (unused)
 *
 * The entry point for handling a read() on a stream file descriptor from
 * userspace. Most of the work is left to the i915_perf_read_locked() and
 * &i915_perf_stream_ops->read but to save having stream implementations (of
 * which we might have multiple later) we handle blocking read here.
 *
 * We can also consistently treat trying to read from a disabled stream
 * as an IO error so implementations can assume the stream is enabled
 * while reading.
 *
 * Returns: The number of bytes copied or a negative error code on failure.
 */
2984 2985 2986 2987 2988 2989
static ssize_t i915_perf_read(struct file *file,
			      char __user *buf,
			      size_t count,
			      loff_t *ppos)
{
	struct i915_perf_stream *stream = file->private_data;
2990
	struct i915_perf *perf = stream->perf;
2991 2992
	size_t offset = 0;
	int ret;
2993

2994 2995 2996 2997 2998 2999 3000
	/* To ensure it's handled consistently we simply treat all reads of a
	 * disabled stream as an error. In particular it might otherwise lead
	 * to a deadlock for blocking file descriptors...
	 */
	if (!stream->enabled)
		return -EIO;

3001
	if (!(file->f_flags & O_NONBLOCK)) {
3002 3003 3004 3005 3006 3007
		/* There's the small chance of false positives from
		 * stream->ops->wait_unlocked.
		 *
		 * E.g. with single context filtering since we only wait until
		 * oabuffer has >= 1 report we don't immediately know whether
		 * any reports really belong to the current context
3008 3009 3010 3011 3012 3013
		 */
		do {
			ret = stream->ops->wait_unlocked(stream);
			if (ret)
				return ret;

3014
			mutex_lock(&perf->lock);
3015
			ret = stream->ops->read(stream, buf, count, &offset);
3016
			mutex_unlock(&perf->lock);
3017
		} while (!offset && !ret);
3018
	} else {
3019
		mutex_lock(&perf->lock);
3020
		ret = stream->ops->read(stream, buf, count, &offset);
3021
		mutex_unlock(&perf->lock);
3022 3023
	}

3024
	/* We allow the poll checking to sometimes report false positive EPOLLIN
3025 3026
	 * events where we might actually report EAGAIN on read() if there's
	 * not really any data available. In this situation though we don't
3027
	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3028 3029
	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
	 * effectively ensures we back off until the next hrtimer callback
3030
	 * before reporting another EPOLLIN event.
3031 3032 3033
	 * The exception to this is if ops->read() returned -ENOSPC which means
	 * that more OA data is available than could fit in the user provided
	 * buffer. In this case we want the next poll() call to not block.
3034
	 */
3035
	if (ret != -ENOSPC)
3036
		stream->pollin = false;
3037

3038 3039
	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
	return offset ?: (ret ?: -EAGAIN);
3040 3041
}

3042 3043
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
{
3044 3045
	struct i915_perf_stream *stream =
		container_of(hrtimer, typeof(*stream), poll_check_timer);
3046

3047 3048 3049
	if (oa_buffer_check_unlocked(stream)) {
		stream->pollin = true;
		wake_up(&stream->poll_wq);
3050 3051
	}

3052 3053
	hrtimer_forward_now(hrtimer,
			    ns_to_ktime(stream->poll_oa_period));
3054 3055 3056 3057

	return HRTIMER_RESTART;
}

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/**
 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
 * @stream: An i915 perf stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this calls through to
 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
 * will be woken for new stream data.
 *
3068
 * Note: The &perf->lock mutex has been taken to serialize
3069 3070 3071 3072
 * with any non-file-operation driver hooks.
 *
 * Returns: any poll events that are ready without sleeping
 */
3073 3074 3075
static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
				      struct file *file,
				      poll_table *wait)
3076
{
3077
	__poll_t events = 0;
3078 3079 3080

	stream->ops->poll_wait(stream, file, wait);

3081 3082 3083 3084 3085 3086
	/* Note: we don't explicitly check whether there's something to read
	 * here since this path may be very hot depending on what else
	 * userspace is polling, or on the timeout in use. We rely solely on
	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
	 * samples to read.
	 */
3087
	if (stream->pollin)
3088
		events |= EPOLLIN;
3089

3090
	return events;
3091 3092
}

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/**
 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this ensures
 * poll_wait() gets called with a wait queue that will be woken for new stream
 * data.
 *
 * Note: Implementation deferred to i915_perf_poll_locked()
 *
 * Returns: any poll events that are ready without sleeping
 */
3106
static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3107 3108
{
	struct i915_perf_stream *stream = file->private_data;
3109
	struct i915_perf *perf = stream->perf;
3110
	__poll_t ret;
3111

3112 3113 3114
	mutex_lock(&perf->lock);
	ret = i915_perf_poll_locked(stream, file, wait);
	mutex_unlock(&perf->lock);
3115 3116 3117 3118

	return ret;
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
/**
 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
 * @stream: A disabled i915 perf stream
 *
 * [Re]enables the associated capture of data for this stream.
 *
 * If a stream was previously enabled then there's currently no intention
 * to provide userspace any guarantee about the preservation of previously
 * buffered data.
 */
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
static void i915_perf_enable_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		return;

	/* Allow stream->ops->enable() to refer to this */
	stream->enabled = true;

	if (stream->ops->enable)
		stream->ops->enable(stream);
3139 3140

	if (stream->hold_preemption)
3141
		intel_context_set_nopreempt(stream->pinned_ctx);
3142 3143
}

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
/**
 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
 * @stream: An enabled i915 perf stream
 *
 * Disables the associated capture of data for this stream.
 *
 * The intention is that disabling an re-enabling a stream will ideally be
 * cheaper than destroying and re-opening a stream with the same configuration,
 * though there are no formal guarantees about what state or buffered data
 * must be retained between disabling and re-enabling a stream.
 *
 * Note: while a stream is disabled it's considered an error for userspace
 * to attempt to read from the stream (-EIO).
 */
3158 3159 3160 3161 3162 3163 3164 3165
static void i915_perf_disable_locked(struct i915_perf_stream *stream)
{
	if (!stream->enabled)
		return;

	/* Allow stream->ops->disable() to refer to this */
	stream->enabled = false;

3166
	if (stream->hold_preemption)
3167
		intel_context_clear_nopreempt(stream->pinned_ctx);
3168

3169 3170 3171 3172
	if (stream->ops->disable)
		stream->ops->disable(stream);
}

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
static long i915_perf_config_locked(struct i915_perf_stream *stream,
				    unsigned long metrics_set)
{
	struct i915_oa_config *config;
	long ret = stream->oa_config->id;

	config = i915_perf_get_oa_config(stream->perf, metrics_set);
	if (!config)
		return -EINVAL;

	if (config != stream->oa_config) {
3184
		int err;
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194

		/*
		 * If OA is bound to a specific context, emit the
		 * reconfiguration inline from that context. The update
		 * will then be ordered with respect to submission on that
		 * context.
		 *
		 * When set globally, we use a low priority kernel context,
		 * so it will effectively take effect when idle.
		 */
3195 3196
		err = emit_oa_config(stream, config, oa_context(stream), NULL);
		if (!err)
3197
			config = xchg(&stream->oa_config, config);
3198 3199
		else
			ret = err;
3200 3201 3202 3203 3204 3205 3206
	}

	i915_oa_config_put(config);

	return ret;
}

3207 3208 3209 3210 3211 3212
/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @stream: An i915 perf stream
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
3213
 * Note: The &perf->lock mutex has been taken to serialize
3214 3215 3216 3217 3218
 * with any non-file-operation driver hooks.
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
				   unsigned int cmd,
				   unsigned long arg)
{
	switch (cmd) {
	case I915_PERF_IOCTL_ENABLE:
		i915_perf_enable_locked(stream);
		return 0;
	case I915_PERF_IOCTL_DISABLE:
		i915_perf_disable_locked(stream);
		return 0;
3230 3231
	case I915_PERF_IOCTL_CONFIG:
		return i915_perf_config_locked(stream, arg);
3232 3233 3234 3235 3236
	}

	return -EINVAL;
}

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @file: An i915 perf stream file
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
 * Implementation deferred to i915_perf_ioctl_locked().
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
3248 3249 3250 3251 3252
static long i915_perf_ioctl(struct file *file,
			    unsigned int cmd,
			    unsigned long arg)
{
	struct i915_perf_stream *stream = file->private_data;
3253
	struct i915_perf *perf = stream->perf;
3254 3255
	long ret;

3256
	mutex_lock(&perf->lock);
3257
	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3258
	mutex_unlock(&perf->lock);
3259 3260 3261 3262

	return ret;
}

3263 3264 3265 3266 3267 3268 3269
/**
 * i915_perf_destroy_locked - destroy an i915 perf stream
 * @stream: An i915 perf stream
 *
 * Frees all resources associated with the given i915 perf @stream, disabling
 * any associated data capture in the process.
 *
3270
 * Note: The &perf->lock mutex has been taken to serialize
3271 3272
 * with any non-file-operation driver hooks.
 */
3273 3274 3275 3276 3277 3278 3279 3280
static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		i915_perf_disable_locked(stream);

	if (stream->ops->destroy)
		stream->ops->destroy(stream);

3281
	if (stream->ctx)
3282
		i915_gem_context_put(stream->ctx);
3283 3284 3285 3286

	kfree(stream);
}

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
/**
 * i915_perf_release - handles userspace close() of a stream file
 * @inode: anonymous inode associated with file
 * @file: An i915 perf stream file
 *
 * Cleans up any resources associated with an open i915 perf stream file.
 *
 * NB: close() can't really fail from the userspace point of view.
 *
 * Returns: zero on success or a negative error code.
 */
3298 3299 3300
static int i915_perf_release(struct inode *inode, struct file *file)
{
	struct i915_perf_stream *stream = file->private_data;
3301
	struct i915_perf *perf = stream->perf;
3302

3303
	mutex_lock(&perf->lock);
3304
	i915_perf_destroy_locked(stream);
3305
	mutex_unlock(&perf->lock);
3306

3307
	/* Release the reference the perf stream kept on the driver. */
3308
	drm_dev_put(&perf->i915->drm);
3309

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	return 0;
}


static const struct file_operations fops = {
	.owner		= THIS_MODULE,
	.llseek		= no_llseek,
	.release	= i915_perf_release,
	.poll		= i915_perf_poll,
	.read		= i915_perf_read,
	.unlocked_ioctl	= i915_perf_ioctl,
3321 3322 3323 3324
	/* Our ioctl have no arguments, so it's safe to use the same function
	 * to handle 32bits compatibility.
	 */
	.compat_ioctl   = i915_perf_ioctl,
3325 3326 3327
};


3328 3329
/**
 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3330
 * @perf: i915 perf instance
3331 3332 3333 3334 3335 3336 3337
 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
 * @props: individually validated u64 property value pairs
 * @file: drm file
 *
 * See i915_perf_ioctl_open() for interface details.
 *
 * Implements further stream config validation and stream initialization on
3338
 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
 * taken to serialize with any non-file-operation driver hooks.
 *
 * Note: at this point the @props have only been validated in isolation and
 * it's still necessary to validate that the combination of properties makes
 * sense.
 *
 * In the case where userspace is interested in OA unit metrics then further
 * config validation and stream initialization details will be handled by
 * i915_oa_stream_init(). The code here should only validate config state that
 * will be relevant to all stream types / backends.
 *
 * Returns: zero on success or a negative error code.
 */
3352
static int
3353
i915_perf_open_ioctl_locked(struct i915_perf *perf,
3354 3355 3356 3357 3358 3359 3360
			    struct drm_i915_perf_open_param *param,
			    struct perf_open_properties *props,
			    struct drm_file *file)
{
	struct i915_gem_context *specific_ctx = NULL;
	struct i915_perf_stream *stream = NULL;
	unsigned long f_flags = 0;
3361
	bool privileged_op = true;
3362 3363 3364 3365 3366 3367 3368
	int stream_fd;
	int ret;

	if (props->single_context) {
		u32 ctx_handle = props->ctx_handle;
		struct drm_i915_file_private *file_priv = file->driver_priv;

3369 3370 3371 3372 3373
		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
		if (!specific_ctx) {
			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
				  ctx_handle);
			ret = -ENOENT;
3374 3375 3376 3377
			goto err;
		}
	}

3378 3379 3380 3381 3382 3383
	/*
	 * On Haswell the OA unit supports clock gating off for a specific
	 * context and in this mode there's no visibility of metrics for the
	 * rest of the system, which we consider acceptable for a
	 * non-privileged client.
	 *
3384
	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3385 3386 3387 3388 3389 3390
	 * specific context and the kernel can't securely stop the counters
	 * from updating as system-wide / global values. Even though we can
	 * filter reports based on the included context ID we can't block
	 * clients from seeing the raw / global counter values via
	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
	 * enable the OA unit by default.
3391 3392 3393 3394 3395
	 *
	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
	 * per context basis. So we can relax requirements there if the user
	 * doesn't request global stream access (i.e. query based sampling
	 * using MI_RECORD_PERF_COUNT.
3396
	 */
3397
	if (IS_HASWELL(perf->i915) && specific_ctx)
3398
		privileged_op = false;
3399 3400 3401
	else if (IS_GEN(perf->i915, 12) && specific_ctx &&
		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
		privileged_op = false;
3402

3403 3404 3405 3406 3407 3408 3409 3410 3411
	if (props->hold_preemption) {
		if (!props->single_context) {
			DRM_DEBUG("preemption disable with no context\n");
			ret = -EINVAL;
			goto err;
		}
		privileged_op = true;
	}

3412 3413 3414 3415 3416 3417 3418 3419
	/*
	 * Asking for SSEU configuration is a priviliged operation.
	 */
	if (props->has_sseu)
		privileged_op = true;
	else
		get_default_sseu_config(&props->sseu, props->engine);

3420 3421 3422 3423 3424
	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
	 * we check a dev.i915.perf_stream_paranoid sysctl option
	 * to determine if it's ok to access system wide OA counters
	 * without CAP_SYS_ADMIN privileges.
	 */
3425
	if (privileged_op &&
3426
	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3427
		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
		ret = -EACCES;
		goto err_ctx;
	}

	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
	if (!stream) {
		ret = -ENOMEM;
		goto err_ctx;
	}

3438
	stream->perf = perf;
3439
	stream->ctx = specific_ctx;
3440
	stream->poll_oa_period = props->poll_oa_period;
3441

3442 3443 3444 3445 3446 3447 3448
	ret = i915_oa_stream_init(stream, param, props);
	if (ret)
		goto err_alloc;

	/* we avoid simply assigning stream->sample_flags = props->sample_flags
	 * to have _stream_init check the combination of sample flags more
	 * thoroughly, but still this is the expected result at this point.
3449
	 */
3450 3451
	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
		ret = -ENODEV;
3452
		goto err_flags;
3453
	}
3454 3455 3456 3457 3458 3459 3460 3461 3462

	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;
	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
		f_flags |= O_NONBLOCK;

	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
	if (stream_fd < 0) {
		ret = stream_fd;
3463
		goto err_flags;
3464 3465 3466 3467 3468
	}

	if (!(param->flags & I915_PERF_FLAG_DISABLED))
		i915_perf_enable_locked(stream);

3469 3470 3471
	/* Take a reference on the driver that will be kept with stream_fd
	 * until its release.
	 */
3472
	drm_dev_get(&perf->i915->drm);
3473

3474 3475
	return stream_fd;

3476
err_flags:
3477 3478 3479 3480 3481
	if (stream->ops->destroy)
		stream->ops->destroy(stream);
err_alloc:
	kfree(stream);
err_ctx:
3482
	if (specific_ctx)
3483
		i915_gem_context_put(specific_ctx);
3484 3485 3486 3487
err:
	return ret;
}

3488
static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3489
{
3490
	return div64_u64(1000000000ULL * (2ULL << exponent),
3491
			 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz);
3492 3493
}

3494 3495
/**
 * read_properties_unlocked - validate + copy userspace stream open properties
3496
 * @perf: i915 perf instance
3497 3498 3499
 * @uprops: The array of u64 key value pairs given by userspace
 * @n_props: The number of key value pairs expected in @uprops
 * @props: The stream configuration built up while validating properties
3500 3501 3502 3503
 *
 * Note this function only validates properties in isolation it doesn't
 * validate that the combination of properties makes sense or that all
 * properties necessary for a particular kind of stream have been set.
3504 3505 3506 3507
 *
 * Note that there currently aren't any ordering requirements for properties so
 * we shouldn't validate or assume anything about ordering here. This doesn't
 * rule out defining new properties with ordering requirements in the future.
3508
 */
3509
static int read_properties_unlocked(struct i915_perf *perf,
3510 3511 3512 3513 3514
				    u64 __user *uprops,
				    u32 n_props,
				    struct perf_open_properties *props)
{
	u64 __user *uprop = uprops;
3515
	u32 i;
3516
	int ret;
3517 3518

	memset(props, 0, sizeof(struct perf_open_properties));
3519
	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3520 3521

	if (!n_props) {
3522
		DRM_DEBUG("No i915 perf properties given\n");
3523 3524 3525
		return -EINVAL;
	}

3526 3527 3528 3529 3530 3531 3532 3533 3534
	/* At the moment we only support using i915-perf on the RCS. */
	props->engine = intel_engine_lookup_user(perf->i915,
						 I915_ENGINE_CLASS_RENDER,
						 0);
	if (!props->engine) {
		DRM_DEBUG("No RENDER-capable engines\n");
		return -EINVAL;
	}

3535 3536 3537 3538 3539 3540 3541
	/* Considering that ID = 0 is reserved and assuming that we don't
	 * (currently) expect any configurations to ever specify duplicate
	 * values for a particular property ID then the last _PROP_MAX value is
	 * one greater than the maximum number of properties we expect to get
	 * from userspace.
	 */
	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3542
		DRM_DEBUG("More i915 perf properties specified than exist\n");
3543 3544 3545 3546
		return -EINVAL;
	}

	for (i = 0; i < n_props; i++) {
3547
		u64 oa_period, oa_freq_hz;
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
		u64 id, value;

		ret = get_user(id, uprop);
		if (ret)
			return ret;

		ret = get_user(value, uprop + 1);
		if (ret)
			return ret;

3558 3559 3560 3561 3562
		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
			DRM_DEBUG("Unknown i915 perf property ID\n");
			return -EINVAL;
		}

3563 3564 3565 3566 3567
		switch ((enum drm_i915_perf_property_id)id) {
		case DRM_I915_PERF_PROP_CTX_HANDLE:
			props->single_context = 1;
			props->ctx_handle = value;
			break;
3568
		case DRM_I915_PERF_PROP_SAMPLE_OA:
3569 3570
			if (value)
				props->sample_flags |= SAMPLE_OA_REPORT;
3571 3572
			break;
		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3573
			if (value == 0) {
3574
				DRM_DEBUG("Unknown OA metric set ID\n");
3575 3576 3577 3578 3579 3580
				return -EINVAL;
			}
			props->metrics_set = value;
			break;
		case DRM_I915_PERF_PROP_OA_FORMAT:
			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3581 3582
				DRM_DEBUG("Out-of-range OA report format %llu\n",
					  value);
3583 3584
				return -EINVAL;
			}
3585
			if (!perf->oa_formats[value].size) {
3586 3587
				DRM_DEBUG("Unsupported OA report format %llu\n",
					  value);
3588 3589 3590 3591 3592 3593
				return -EINVAL;
			}
			props->oa_format = value;
			break;
		case DRM_I915_PERF_PROP_OA_EXPONENT:
			if (value > OA_EXPONENT_MAX) {
3594 3595
				DRM_DEBUG("OA timer exponent too high (> %u)\n",
					 OA_EXPONENT_MAX);
3596 3597 3598
				return -EINVAL;
			}

3599
			/* Theoretically we can program the OA unit to sample
3600 3601 3602
			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
			 * for BXT. We don't allow such high sampling
			 * frequencies by default unless root.
3603
			 */
3604

3605
			BUILD_BUG_ON(sizeof(oa_period) != 8);
3606
			oa_period = oa_exponent_to_ns(perf, value);
3607 3608 3609 3610 3611 3612

			/* This check is primarily to ensure that oa_period <=
			 * UINT32_MAX (before passing to do_div which only
			 * accepts a u32 denominator), but we can also skip
			 * checking anything < 1Hz which implicitly can't be
			 * limited via an integer oa_max_sample_rate.
3613
			 */
3614 3615 3616 3617 3618 3619 3620 3621 3622
			if (oa_period <= NSEC_PER_SEC) {
				u64 tmp = NSEC_PER_SEC;
				do_div(tmp, oa_period);
				oa_freq_hz = tmp;
			} else
				oa_freq_hz = 0;

			if (oa_freq_hz > i915_oa_max_sample_rate &&
			    !capable(CAP_SYS_ADMIN)) {
3623
				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
3624
					  i915_oa_max_sample_rate);
3625 3626 3627 3628 3629 3630
				return -EACCES;
			}

			props->oa_periodic = true;
			props->oa_period_exponent = value;
			break;
3631 3632 3633
		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
			props->hold_preemption = !!value;
			break;
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
			struct drm_i915_gem_context_param_sseu user_sseu;

			if (copy_from_user(&user_sseu,
					   u64_to_user_ptr(value),
					   sizeof(user_sseu))) {
				DRM_DEBUG("Unable to copy global sseu parameter\n");
				return -EFAULT;
			}

			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
			if (ret) {
				DRM_DEBUG("Invalid SSEU configuration\n");
				return ret;
			}
			props->has_sseu = true;
			break;
		}
3652 3653 3654 3655 3656 3657 3658 3659
		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
			if (value < 100000 /* 100us */) {
				DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
					  value);
				return -EINVAL;
			}
			props->poll_oa_period = value;
			break;
3660
		case DRM_I915_PERF_PROP_MAX:
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
			MISSING_CASE(id);
			return -EINVAL;
		}

		uprop += 2;
	}

	return 0;
}

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
/**
 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
 * @dev: drm device
 * @data: ioctl data copied from userspace (unvalidated)
 * @file: drm file
 *
 * Validates the stream open parameters given by userspace including flags
 * and an array of u64 key, value pair properties.
 *
 * Very little is assumed up front about the nature of the stream being
 * opened (for instance we don't assume it's for periodic OA unit metrics). An
 * i915-perf stream is expected to be a suitable interface for other forms of
 * buffered data written by the GPU besides periodic OA metrics.
 *
 * Note we copy the properties from userspace outside of the i915 perf
 * mutex to avoid an awkward lockdep with mmap_sem.
 *
 * Most of the implementation details are handled by
3689
 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3690 3691 3692 3693 3694
 * mutex for serializing with any non-file-operation driver hooks.
 *
 * Return: A newly opened i915 Perf stream file descriptor or negative
 * error code on failure.
 */
3695 3696 3697
int i915_perf_open_ioctl(struct drm_device *dev, void *data,
			 struct drm_file *file)
{
3698
	struct i915_perf *perf = &to_i915(dev)->perf;
3699 3700 3701 3702 3703
	struct drm_i915_perf_open_param *param = data;
	struct perf_open_properties props;
	u32 known_open_flags;
	int ret;

3704
	if (!perf->i915) {
3705
		DRM_DEBUG("i915 perf interface not available for this system\n");
3706 3707 3708 3709 3710 3711 3712
		return -ENOTSUPP;
	}

	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
			   I915_PERF_FLAG_FD_NONBLOCK |
			   I915_PERF_FLAG_DISABLED;
	if (param->flags & ~known_open_flags) {
3713
		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3714 3715 3716
		return -EINVAL;
	}

3717
	ret = read_properties_unlocked(perf,
3718 3719 3720 3721 3722 3723
				       u64_to_user_ptr(param->properties_ptr),
				       param->num_properties,
				       &props);
	if (ret)
		return ret;

3724 3725 3726
	mutex_lock(&perf->lock);
	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
	mutex_unlock(&perf->lock);
3727 3728 3729 3730

	return ret;
}

3731 3732
/**
 * i915_perf_register - exposes i915-perf to userspace
3733
 * @i915: i915 device instance
3734 3735 3736 3737 3738
 *
 * In particular OA metric sets are advertised under a sysfs metrics/
 * directory allowing userspace to enumerate valid IDs that can be
 * used to open an i915-perf stream.
 */
3739
void i915_perf_register(struct drm_i915_private *i915)
3740
{
3741
	struct i915_perf *perf = &i915->perf;
3742

3743
	if (!perf->i915)
3744 3745 3746 3747 3748 3749
		return;

	/* To be sure we're synchronized with an attempted
	 * i915_perf_open_ioctl(); considering that we register after
	 * being exposed to userspace.
	 */
3750
	mutex_lock(&perf->lock);
3751

3752
	perf->metrics_kobj =
3753
		kobject_create_and_add("metrics",
3754
				       &i915->drm.primary->kdev->kobj);
3755

3756
	mutex_unlock(&perf->lock);
3757 3758
}

3759 3760
/**
 * i915_perf_unregister - hide i915-perf from userspace
3761
 * @i915: i915 device instance
3762 3763 3764 3765 3766 3767
 *
 * i915-perf state cleanup is split up into an 'unregister' and
 * 'deinit' phase where the interface is first hidden from
 * userspace by i915_perf_unregister() before cleaning up
 * remaining state in i915_perf_fini().
 */
3768
void i915_perf_unregister(struct drm_i915_private *i915)
3769
{
3770 3771 3772
	struct i915_perf *perf = &i915->perf;

	if (!perf->metrics_kobj)
3773 3774
		return;

3775 3776
	kobject_put(perf->metrics_kobj);
	perf->metrics_kobj = NULL;
3777 3778
}

3779
static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
{
	static const i915_reg_t flex_eu_regs[] = {
		EU_PERF_CNTL0,
		EU_PERF_CNTL1,
		EU_PERF_CNTL2,
		EU_PERF_CNTL3,
		EU_PERF_CNTL4,
		EU_PERF_CNTL5,
		EU_PERF_CNTL6,
	};
	int i;

	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3793
		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3794 3795 3796 3797 3798
			return true;
	}
	return false;
}

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
#define ADDR_IN_RANGE(addr, start, end) \
	((addr) >= (start) && \
	 (addr) <= (end))

#define REG_IN_RANGE(addr, start, end) \
	((addr) >= i915_mmio_reg_offset(start) && \
	 (addr) <= i915_mmio_reg_offset(end))

#define REG_EQUAL(addr, mmio) \
	((addr) == i915_mmio_reg_offset(mmio))

3810
static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3811
{
3812 3813 3814
	return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
	       REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
	       REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3815 3816
}

3817
static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3818
{
3819 3820 3821 3822
	return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
	       REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
	       REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
	       REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3823 3824
}

3825
static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3826
{
3827
	return gen7_is_valid_mux_addr(perf, addr) ||
3828 3829
	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
	       REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3830 3831
}

3832
static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3833
{
3834
	return gen8_is_valid_mux_addr(perf, addr) ||
3835 3836
	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
	       REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3837 3838
}

3839
static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3840
{
3841
	return gen7_is_valid_mux_addr(perf, addr) ||
3842 3843 3844
	       ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
	       REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
	       REG_EQUAL(addr, HSW_MBVID2_MISR0);
3845 3846
}

3847
static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3848
{
3849
	return gen7_is_valid_mux_addr(perf, addr) ||
3850
	       ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3851 3852
}

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
{
	return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
	       REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
	       REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
	       REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
	       REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
	       REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
	       REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
}

static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
{
	return REG_EQUAL(addr, NOA_WRITE) ||
	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
	       REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
	       REG_EQUAL(addr, RPM_CONFIG0) ||
	       REG_EQUAL(addr, RPM_CONFIG1) ||
	       REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
}

3875
static u32 mask_reg_value(u32 reg, u32 val)
3876 3877 3878 3879 3880
{
	/* HALF_SLICE_CHICKEN2 is programmed with a the
	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
	 * programmed by userspace doesn't change this.
	 */
3881
	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3882 3883 3884 3885 3886 3887
		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);

	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
	 * indicated by its name and a bunch of selection fields used by OA
	 * configs.
	 */
3888
	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3889 3890 3891 3892 3893
		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);

	return val;
}

3894 3895
static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
					 u32 __user *regs,
					 u32 n_regs)
{
	struct i915_oa_reg *oa_regs;
	int err;
	u32 i;

	if (!n_regs)
		return NULL;

3906
	if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
		return ERR_PTR(-EFAULT);

	/* No is_valid function means we're not allowing any register to be programmed. */
	GEM_BUG_ON(!is_valid);
	if (!is_valid)
		return ERR_PTR(-EINVAL);

	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
	if (!oa_regs)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < n_regs; i++) {
		u32 addr, value;

		err = get_user(addr, regs);
		if (err)
			goto addr_err;

3925
		if (!is_valid(perf, addr)) {
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
			err = -EINVAL;
			goto addr_err;
		}

		err = get_user(value, regs + 1);
		if (err)
			goto addr_err;

		oa_regs[i].addr = _MMIO(addr);
		oa_regs[i].value = mask_reg_value(addr, value);

		regs += 2;
	}

	return oa_regs;

addr_err:
	kfree(oa_regs);
	return ERR_PTR(err);
}

static ssize_t show_dynamic_id(struct device *dev,
			       struct device_attribute *attr,
			       char *buf)
{
	struct i915_oa_config *oa_config =
		container_of(attr, typeof(*oa_config), sysfs_metric_id);

	return sprintf(buf, "%d\n", oa_config->id);
}

3958
static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3959 3960
					 struct i915_oa_config *oa_config)
{
3961
	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
	oa_config->sysfs_metric_id.attr.name = "id";
	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
	oa_config->sysfs_metric_id.show = show_dynamic_id;
	oa_config->sysfs_metric_id.store = NULL;

	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
	oa_config->attrs[1] = NULL;

	oa_config->sysfs_metric.name = oa_config->uuid;
	oa_config->sysfs_metric.attrs = oa_config->attrs;

3973
	return sysfs_create_group(perf->metrics_kobj,
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
				  &oa_config->sysfs_metric);
}

/**
 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
 * @dev: drm device
 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
 *        userspace (unvalidated)
 * @file: drm file
 *
 * Validates the submitted OA register to be saved into a new OA config that
 * can then be used for programming the OA unit and its NOA network.
 *
 * Returns: A new allocated config number to be used with the perf open ioctl
 * or a negative error code on failure.
 */
int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
{
3993
	struct i915_perf *perf = &to_i915(dev)->perf;
3994 3995
	struct drm_i915_perf_oa_config *args = data;
	struct i915_oa_config *oa_config, *tmp;
3996
	struct i915_oa_reg *regs;
3997 3998
	int err, id;

3999
	if (!perf->i915) {
4000 4001 4002 4003
		DRM_DEBUG("i915 perf interface not available for this system\n");
		return -ENOTSUPP;
	}

4004
	if (!perf->metrics_kobj) {
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
		return -EINVAL;
	}

	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
		return -EACCES;
	}

	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
		DRM_DEBUG("No OA registers given\n");
		return -EINVAL;
	}

	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
	if (!oa_config) {
		DRM_DEBUG("Failed to allocate memory for the OA config\n");
		return -ENOMEM;
	}

4027 4028
	oa_config->perf = perf;
	kref_init(&oa_config->ref);
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041

	if (!uuid_is_valid(args->uuid)) {
		DRM_DEBUG("Invalid uuid format for OA config\n");
		err = -EINVAL;
		goto reg_err;
	}

	/* Last character in oa_config->uuid will be 0 because oa_config is
	 * kzalloc.
	 */
	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));

	oa_config->mux_regs_len = args->n_mux_regs;
4042 4043 4044 4045
	regs = alloc_oa_regs(perf,
			     perf->ops.is_valid_mux_reg,
			     u64_to_user_ptr(args->mux_regs_ptr),
			     args->n_mux_regs);
4046

4047
	if (IS_ERR(regs)) {
4048
		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4049
		err = PTR_ERR(regs);
4050 4051
		goto reg_err;
	}
4052
	oa_config->mux_regs = regs;
4053 4054

	oa_config->b_counter_regs_len = args->n_boolean_regs;
4055 4056 4057 4058
	regs = alloc_oa_regs(perf,
			     perf->ops.is_valid_b_counter_reg,
			     u64_to_user_ptr(args->boolean_regs_ptr),
			     args->n_boolean_regs);
4059

4060
	if (IS_ERR(regs)) {
4061
		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4062
		err = PTR_ERR(regs);
4063 4064
		goto reg_err;
	}
4065
	oa_config->b_counter_regs = regs;
4066

4067
	if (INTEL_GEN(perf->i915) < 8) {
4068 4069 4070 4071 4072 4073
		if (args->n_flex_regs != 0) {
			err = -EINVAL;
			goto reg_err;
		}
	} else {
		oa_config->flex_regs_len = args->n_flex_regs;
4074 4075 4076 4077
		regs = alloc_oa_regs(perf,
				     perf->ops.is_valid_flex_reg,
				     u64_to_user_ptr(args->flex_regs_ptr),
				     args->n_flex_regs);
4078

4079
		if (IS_ERR(regs)) {
4080
			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4081
			err = PTR_ERR(regs);
4082 4083
			goto reg_err;
		}
4084
		oa_config->flex_regs = regs;
4085 4086
	}

4087
	err = mutex_lock_interruptible(&perf->metrics_lock);
4088 4089 4090 4091 4092 4093
	if (err)
		goto reg_err;

	/* We shouldn't have too many configs, so this iteration shouldn't be
	 * too costly.
	 */
4094
	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4095 4096 4097 4098 4099 4100 4101
		if (!strcmp(tmp->uuid, oa_config->uuid)) {
			DRM_DEBUG("OA config already exists with this uuid\n");
			err = -EADDRINUSE;
			goto sysfs_err;
		}
	}

4102
	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4103 4104 4105 4106 4107 4108
	if (err) {
		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
		goto sysfs_err;
	}

	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4109
	oa_config->id = idr_alloc(&perf->metrics_idr,
4110 4111 4112 4113 4114 4115 4116 4117
				  oa_config, 2,
				  0, GFP_KERNEL);
	if (oa_config->id < 0) {
		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
		err = oa_config->id;
		goto sysfs_err;
	}

4118
	mutex_unlock(&perf->metrics_lock);
4119

4120 4121
	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);

4122 4123 4124
	return oa_config->id;

sysfs_err:
4125
	mutex_unlock(&perf->metrics_lock);
4126
reg_err:
4127
	i915_oa_config_put(oa_config);
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
	DRM_DEBUG("Failed to add new OA config\n");
	return err;
}

/**
 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
 * @dev: drm device
 * @data: ioctl data (pointer to u64 integer) copied from userspace
 * @file: drm file
 *
 * Configs can be removed while being used, the will stop appearing in sysfs
 * and their content will be freed when the stream using the config is closed.
 *
 * Returns: 0 on success or a negative error code on failure.
 */
int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
				  struct drm_file *file)
{
4146
	struct i915_perf *perf = &to_i915(dev)->perf;
4147 4148 4149 4150
	u64 *arg = data;
	struct i915_oa_config *oa_config;
	int ret;

4151
	if (!perf->i915) {
4152 4153 4154 4155 4156 4157 4158 4159 4160
		DRM_DEBUG("i915 perf interface not available for this system\n");
		return -ENOTSUPP;
	}

	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
		return -EACCES;
	}

4161
	ret = mutex_lock_interruptible(&perf->metrics_lock);
4162
	if (ret)
4163
		return ret;
4164

4165
	oa_config = idr_find(&perf->metrics_idr, *arg);
4166 4167 4168
	if (!oa_config) {
		DRM_DEBUG("Failed to remove unknown OA config\n");
		ret = -ENOENT;
4169
		goto err_unlock;
4170 4171 4172 4173
	}

	GEM_BUG_ON(*arg != oa_config->id);

4174
	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4175

4176
	idr_remove(&perf->metrics_idr, *arg);
4177

4178 4179
	mutex_unlock(&perf->metrics_lock);

4180 4181
	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);

4182 4183 4184
	i915_oa_config_put(oa_config);

	return 0;
4185

4186
err_unlock:
4187
	mutex_unlock(&perf->metrics_lock);
4188 4189 4190
	return ret;
}

4191 4192 4193 4194 4195 4196 4197
static struct ctl_table oa_table[] = {
	{
	 .procname = "perf_stream_paranoid",
	 .data = &i915_perf_stream_paranoid,
	 .maxlen = sizeof(i915_perf_stream_paranoid),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
4198 4199
	 .extra1 = SYSCTL_ZERO,
	 .extra2 = SYSCTL_ONE,
4200
	 },
4201 4202 4203 4204 4205 4206
	{
	 .procname = "oa_max_sample_rate",
	 .data = &i915_oa_max_sample_rate,
	 .maxlen = sizeof(i915_oa_max_sample_rate),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
4207
	 .extra1 = SYSCTL_ZERO,
4208 4209
	 .extra2 = &oa_sample_rate_hard_limit,
	 },
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	{}
};

static struct ctl_table i915_root[] = {
	{
	 .procname = "i915",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = oa_table,
	 },
	{}
};

static struct ctl_table dev_root[] = {
	{
	 .procname = "dev",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = i915_root,
	 },
	{}
};

4233
/**
4234
 * i915_perf_init - initialize i915-perf state on module bind
4235
 * @i915: i915 device instance
4236 4237 4238 4239 4240 4241
 *
 * Initializes i915-perf state without exposing anything to userspace.
 *
 * Note: i915-perf initialization is split into an 'init' and 'register'
 * phase with the i915_perf_register() exposing state to userspace.
 */
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
void i915_perf_init(struct drm_i915_private *i915)
{
	struct i915_perf *perf = &i915->perf;

	/* XXX const struct i915_perf_ops! */

	if (IS_HASWELL(i915)) {
		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
		perf->ops.is_valid_flex_reg = NULL;
		perf->ops.enable_metric_set = hsw_enable_metric_set;
		perf->ops.disable_metric_set = hsw_disable_metric_set;
		perf->ops.oa_enable = gen7_oa_enable;
		perf->ops.oa_disable = gen7_oa_disable;
		perf->ops.read = gen7_oa_read;
		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;

		perf->oa_formats = hsw_oa_formats;
	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4261 4262 4263 4264 4265 4266
		/* Note: that although we could theoretically also support the
		 * legacy ringbuffer mode on BDW (and earlier iterations of
		 * this driver, before upstreaming did this) it didn't seem
		 * worth the complexity to maintain now that BDW+ enable
		 * execlist mode by default.
		 */
4267
		perf->ops.read = gen8_oa_read;
4268

4269
		if (IS_GEN_RANGE(i915, 8, 9)) {
4270 4271
			perf->oa_formats = gen8_plus_oa_formats;

4272
			perf->ops.is_valid_b_counter_reg =
4273
				gen7_is_valid_b_counter_addr;
4274
			perf->ops.is_valid_mux_reg =
4275
				gen8_is_valid_mux_addr;
4276
			perf->ops.is_valid_flex_reg =
4277
				gen8_is_valid_flex_addr;
4278

4279 4280
			if (IS_CHERRYVIEW(i915)) {
				perf->ops.is_valid_mux_reg =
4281 4282
					chv_is_valid_mux_addr;
			}
4283

4284 4285
			perf->ops.oa_enable = gen8_oa_enable;
			perf->ops.oa_disable = gen8_oa_disable;
4286 4287
			perf->ops.enable_metric_set = gen8_enable_metric_set;
			perf->ops.disable_metric_set = gen8_disable_metric_set;
4288
			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4289

4290 4291 4292
			if (IS_GEN(i915, 8)) {
				perf->ctx_oactxctrl_offset = 0x120;
				perf->ctx_flexeu0_offset = 0x2ce;
4293

4294
				perf->gen8_valid_ctx_bit = BIT(25);
4295
			} else {
4296 4297
				perf->ctx_oactxctrl_offset = 0x128;
				perf->ctx_flexeu0_offset = 0x3de;
4298

4299
				perf->gen8_valid_ctx_bit = BIT(16);
4300
			}
4301
		} else if (IS_GEN_RANGE(i915, 10, 11)) {
4302 4303
			perf->oa_formats = gen8_plus_oa_formats;

4304
			perf->ops.is_valid_b_counter_reg =
4305
				gen7_is_valid_b_counter_addr;
4306
			perf->ops.is_valid_mux_reg =
4307
				gen10_is_valid_mux_addr;
4308
			perf->ops.is_valid_flex_reg =
4309 4310
				gen8_is_valid_flex_addr;

4311 4312
			perf->ops.oa_enable = gen8_oa_enable;
			perf->ops.oa_disable = gen8_oa_disable;
4313 4314
			perf->ops.enable_metric_set = gen8_enable_metric_set;
			perf->ops.disable_metric_set = gen10_disable_metric_set;
4315
			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4316

4317 4318 4319
			if (IS_GEN(i915, 10)) {
				perf->ctx_oactxctrl_offset = 0x128;
				perf->ctx_flexeu0_offset = 0x3de;
4320
			} else {
4321 4322
				perf->ctx_oactxctrl_offset = 0x124;
				perf->ctx_flexeu0_offset = 0x78e;
4323
			}
4324
			perf->gen8_valid_ctx_bit = BIT(16);
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
		} else if (IS_GEN(i915, 12)) {
			perf->oa_formats = gen12_oa_formats;

			perf->ops.is_valid_b_counter_reg =
				gen12_is_valid_b_counter_addr;
			perf->ops.is_valid_mux_reg =
				gen12_is_valid_mux_addr;
			perf->ops.is_valid_flex_reg =
				gen8_is_valid_flex_addr;

			perf->ops.oa_enable = gen12_oa_enable;
			perf->ops.oa_disable = gen12_oa_disable;
			perf->ops.enable_metric_set = gen12_enable_metric_set;
			perf->ops.disable_metric_set = gen12_disable_metric_set;
			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;

			perf->ctx_flexeu0_offset = 0;
			perf->ctx_oactxctrl_offset = 0x144;
4343 4344
		}
	}
4345

4346 4347
	if (perf->ops.enable_metric_set) {
		mutex_init(&perf->lock);
4348

4349
		oa_sample_rate_hard_limit = 1000 *
4350
			(RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2);
4351

4352 4353
		mutex_init(&perf->metrics_lock);
		idr_init(&perf->metrics_idr);
4354

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
		/* We set up some ratelimit state to potentially throttle any
		 * _NOTES about spurious, invalid OA reports which we don't
		 * forward to userspace.
		 *
		 * We print a _NOTE about any throttling when closing the
		 * stream instead of waiting until driver _fini which no one
		 * would ever see.
		 *
		 * Using the same limiting factors as printk_ratelimit()
		 */
4365
		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4366 4367 4368 4369
		/* Since we use a DRM_NOTE for spurious reports it would be
		 * inconsistent to let __ratelimit() automatically print a
		 * warning for throttling.
		 */
4370
		ratelimit_set_flags(&perf->spurious_report_rs,
4371 4372
				    RATELIMIT_MSG_ON_RELEASE);

4373 4374 4375 4376 4377
		ratelimit_state_init(&perf->tail_pointer_race,
				     5 * HZ, 10);
		ratelimit_set_flags(&perf->tail_pointer_race,
				    RATELIMIT_MSG_ON_RELEASE);

4378 4379 4380
		atomic64_set(&perf->noa_programming_delay,
			     500 * 1000 /* 500us */);

4381
		perf->i915 = i915;
4382
	}
4383 4384
}

4385 4386
static int destroy_config(int id, void *p, void *data)
{
4387
	i915_oa_config_put(p);
4388 4389 4390
	return 0;
}

4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
void i915_perf_sysctl_register(void)
{
	sysctl_header = register_sysctl_table(dev_root);
}

void i915_perf_sysctl_unregister(void)
{
	unregister_sysctl_table(sysctl_header);
}

4401 4402
/**
 * i915_perf_fini - Counter part to i915_perf_init()
4403
 * @i915: i915 device instance
4404
 */
4405
void i915_perf_fini(struct drm_i915_private *i915)
4406
{
4407
	struct i915_perf *perf = &i915->perf;
4408

4409 4410
	if (!perf->i915)
		return;
4411

4412 4413
	idr_for_each(&perf->metrics_idr, destroy_config, perf);
	idr_destroy(&perf->metrics_idr);
4414

4415 4416
	memset(&perf->ops, 0, sizeof(perf->ops));
	perf->i915 = NULL;
4417
}
4418

4419 4420 4421 4422 4423 4424 4425
/**
 * i915_perf_ioctl_version - Version of the i915-perf subsystem
 *
 * This version number is used by userspace to detect available features.
 */
int i915_perf_ioctl_version(void)
{
4426 4427 4428 4429 4430 4431 4432
	/*
	 * 1: Initial version
	 *   I915_PERF_IOCTL_ENABLE
	 *   I915_PERF_IOCTL_DISABLE
	 *
	 * 2: Added runtime modification of OA config.
	 *   I915_PERF_IOCTL_CONFIG
4433 4434 4435 4436 4437
	 *
	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
	 *    preemption on a particular context so that performance data is
	 *    accessible from a delta of MI_RPC reports without looking at the
	 *    OA buffer.
4438 4439 4440 4441
	 *
	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
	 *    be run for the duration of the performance recording based on
	 *    their SSEU configuration.
4442 4443 4444
	 *
	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
	 *    interval for the hrtimer used to check for OA data.
4445
	 */
4446
	return 5;
4447 4448
}

4449 4450 4451
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_perf.c"
#endif