i915_perf.c 121.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright © 2015-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *   Robert Bragg <robert@sixbynine.org>
 */

27 28

/**
29
 * DOC: i915 Perf Overview
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *
 * Gen graphics supports a large number of performance counters that can help
 * driver and application developers understand and optimize their use of the
 * GPU.
 *
 * This i915 perf interface enables userspace to configure and open a file
 * descriptor representing a stream of GPU metrics which can then be read() as
 * a stream of sample records.
 *
 * The interface is particularly suited to exposing buffered metrics that are
 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
 *
 * Streams representing a single context are accessible to applications with a
 * corresponding drm file descriptor, such that OpenGL can use the interface
 * without special privileges. Access to system-wide metrics requires root
 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
 * sysctl option.
 *
48 49 50 51
 */

/**
 * DOC: i915 Perf History and Comparison with Core Perf
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 *
 * The interface was initially inspired by the core Perf infrastructure but
 * some notable differences are:
 *
 * i915 perf file descriptors represent a "stream" instead of an "event"; where
 * a perf event primarily corresponds to a single 64bit value, while a stream
 * might sample sets of tightly-coupled counters, depending on the
 * configuration.  For example the Gen OA unit isn't designed to support
 * orthogonal configurations of individual counters; it's configured for a set
 * of related counters. Samples for an i915 perf stream capturing OA metrics
 * will include a set of counter values packed in a compact HW specific format.
 * The OA unit supports a number of different packing formats which can be
 * selected by the user opening the stream. Perf has support for grouping
 * events, but each event in the group is configured, validated and
 * authenticated individually with separate system calls.
 *
 * i915 perf stream configurations are provided as an array of u64 (key,value)
 * pairs, instead of a fixed struct with multiple miscellaneous config members,
 * interleaved with event-type specific members.
 *
 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
 * The supported metrics are being written to memory by the GPU unsynchronized
 * with the CPU, using HW specific packing formats for counter sets. Sometimes
 * the constraints on HW configuration require reports to be filtered before it
 * would be acceptable to expose them to unprivileged applications - to hide
 * the metrics of other processes/contexts. For these use cases a read() based
 * interface is a good fit, and provides an opportunity to filter data as it
 * gets copied from the GPU mapped buffers to userspace buffers.
 *
 *
82 83
 * Issues hit with first prototype based on Core Perf
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 *
 * The first prototype of this driver was based on the core perf
 * infrastructure, and while we did make that mostly work, with some changes to
 * perf, we found we were breaking or working around too many assumptions baked
 * into perf's currently cpu centric design.
 *
 * In the end we didn't see a clear benefit to making perf's implementation and
 * interface more complex by changing design assumptions while we knew we still
 * wouldn't be able to use any existing perf based userspace tools.
 *
 * Also considering the Gen specific nature of the Observability hardware and
 * how userspace will sometimes need to combine i915 perf OA metrics with
 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
 * expecting the interface to be used by a platform specific userspace such as
 * OpenGL or tools. This is to say; we aren't inherently missing out on having
 * a standard vendor/architecture agnostic interface by not using perf.
 *
 *
 * For posterity, in case we might re-visit trying to adapt core perf to be
 * better suited to exposing i915 metrics these were the main pain points we
 * hit:
 *
 * - The perf based OA PMU driver broke some significant design assumptions:
 *
 *   Existing perf pmus are used for profiling work on a cpu and we were
 *   introducing the idea of _IS_DEVICE pmus with different security
 *   implications, the need to fake cpu-related data (such as user/kernel
 *   registers) to fit with perf's current design, and adding _DEVICE records
 *   as a way to forward device-specific status records.
 *
 *   The OA unit writes reports of counters into a circular buffer, without
 *   involvement from the CPU, making our PMU driver the first of a kind.
 *
 *   Given the way we were periodically forward data from the GPU-mapped, OA
 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 *   we were sampling too fast and so we had to subvert its throttling checks.
 *
 *   Perf supports groups of counters and allows those to be read via
 *   transactions internally but transactions currently seem designed to be
 *   explicitly initiated from the cpu (say in response to a userspace read())
 *   and while we could pull a report out of the OA buffer we can't
 *   trigger a report from the cpu on demand.
 *
 *   Related to being report based; the OA counters are configured in HW as a
 *   set while perf generally expects counter configurations to be orthogonal.
 *   Although counters can be associated with a group leader as they are
 *   opened, there's no clear precedent for being able to provide group-wide
 *   configuration attributes (for example we want to let userspace choose the
 *   OA unit report format used to capture all counters in a set, or specify a
 *   GPU context to filter metrics on). We avoided using perf's grouping
 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 *   field. This suited our userspace well considering how coupled the counters
 *   are when dealing with normalizing. It would be inconvenient to split
 *   counters up into separate events, only to require userspace to recombine
 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 *   for combining with the side-band raw reports it captures using
 *   MI_REPORT_PERF_COUNT commands.
 *
142
 *   - As a side note on perf's grouping feature; there was also some concern
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 *     would quite drastically inflate our sample sizes, which would likely
 *     lower the effective sampling resolutions we could use when the available
 *     memory bandwidth is limited.
 *
 *     With the OA unit's report formats, counters are packed together as 32
 *     or 40bit values, with the largest report size being 256 bytes.
 *
 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 *
 *   Related to counter orthogonality; we can't time share the OA unit, while
 *   event scheduling is a central design idea within perf for allowing
 *   userspace to open + enable more events than can be configured in HW at any
 *   one time.  The OA unit is not designed to allow re-configuration while in
 *   use. We can't reconfigure the OA unit without losing internal OA unit
 *   state which we can't access explicitly to save and restore. Reconfiguring
 *   the OA unit is also relatively slow, involving ~100 register writes. From
 *   userspace Mesa also depends on a stable OA configuration when emitting
 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 *   disabled while there are outstanding MI_RPC commands lest we hang the
 *   command streamer.
 *
 *   The contents of sample records aren't extensible by device drivers (i.e.
 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 *   into sample records by using the 'raw' field, but it's tricky to pack more
 *   than one thing into this field because events/core.c currently only lets a
 *   pmu give a single raw data pointer plus len which will be copied into the
 *   ring buffer. To include more than the OA report we'd have to copy the
 *   report into an intermediate larger buffer. I'd been considering allowing a
 *   vector of data+len values to be specified for copying the raw data, but
 *   it felt like a kludge to being using the raw field for this purpose.
 *
 * - It felt like our perf based PMU was making some technical compromises
 *   just for the sake of using perf:
 *
 *   perf_event_open() requires events to either relate to a pid or a specific
 *   cpu core, while our device pmu related to neither.  Events opened with a
 *   pid will be automatically enabled/disabled according to the scheduling of
 *   that process - so not appropriate for us. When an event is related to a
 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 *   perf events for a specific cpu. This was workable but it meant the
 *   majority of the OA driver ran in atomic context, including all OA report
 *   forwarding, which wasn't really necessary in our case and seems to make
 *   our locking requirements somewhat complex as we handled the interaction
 *   with the rest of the i915 driver.
 */

194
#include <linux/anon_inodes.h>
195
#include <linux/sizes.h>
196
#include <linux/uuid.h>
197

198
#include "gem/i915_gem_context.h"
199
#include "gt/intel_engine_pm.h"
200
#include "gt/intel_engine_user.h"
201
#include "gt/intel_gt.h"
202 203
#include "gt/intel_lrc_reg.h"

204
#include "i915_drv.h"
205
#include "i915_perf.h"
206 207 208 209 210 211 212 213 214 215 216 217 218 219
#include "oa/i915_oa_hsw.h"
#include "oa/i915_oa_bdw.h"
#include "oa/i915_oa_chv.h"
#include "oa/i915_oa_sklgt2.h"
#include "oa/i915_oa_sklgt3.h"
#include "oa/i915_oa_sklgt4.h"
#include "oa/i915_oa_bxt.h"
#include "oa/i915_oa_kblgt2.h"
#include "oa/i915_oa_kblgt3.h"
#include "oa/i915_oa_glk.h"
#include "oa/i915_oa_cflgt2.h"
#include "oa/i915_oa_cflgt3.h"
#include "oa/i915_oa_cnl.h"
#include "oa/i915_oa_icl.h"
220

221 222 223 224 225 226 227
/* HW requires this to be a power of two, between 128k and 16M, though driver
 * is currently generally designed assuming the largest 16M size is used such
 * that the overflow cases are unlikely in normal operation.
 */
#define OA_BUFFER_SIZE		SZ_16M

#define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
228

229 230 231 232
/**
 * DOC: OA Tail Pointer Race
 *
 * There's a HW race condition between OA unit tail pointer register updates and
233
 * writes to memory whereby the tail pointer can sometimes get ahead of what's
234 235 236 237 238
 * been written out to the OA buffer so far (in terms of what's visible to the
 * CPU).
 *
 * Although this can be observed explicitly while copying reports to userspace
 * by checking for a zeroed report-id field in tail reports, we want to account
239
 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
240 241 242 243 244 245 246 247 248 249 250
 * read() attempts.
 *
 * In effect we define a tail pointer for reading that lags the real tail
 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
 * time for the corresponding reports to become visible to the CPU.
 *
 * To manage this we actually track two tail pointers:
 *  1) An 'aging' tail with an associated timestamp that is tracked until we
 *     can trust the corresponding data is visible to the CPU; at which point
 *     it is considered 'aged'.
 *  2) An 'aged' tail that can be used for read()ing.
251
 *
252
 * The two separate pointers let us decouple read()s from tail pointer aging.
253
 *
254
 * The tail pointers are checked and updated at a limited rate within a hrtimer
255
 * callback (the same callback that is used for delivering EPOLLIN events)
256
 *
257 258 259 260
 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
 * indicates that an updated tail pointer is needed.
 *
 * Most of the implementation details for this workaround are in
261
 * oa_buffer_check_unlocked() and _append_oa_reports()
262 263 264 265 266 267 268
 *
 * Note for posterity: previously the driver used to define an effective tail
 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 * This was flawed considering that the OA unit may also automatically generate
 * non-periodic reports (such as on context switch) or the OA unit may be
 * enabled without any periodic sampling.
269 270
 */
#define OA_TAIL_MARGIN_NSEC	100000ULL
271
#define INVALID_TAIL_PTR	0xffffffff
272 273 274 275 276 277 278

/* frequency for checking whether the OA unit has written new reports to the
 * circular OA buffer...
 */
#define POLL_FREQUENCY 200
#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)

279 280 281
/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
static u32 i915_perf_stream_paranoid = true;

282 283 284 285 286 287 288 289 290 291 292 293
/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 * of the 64bit timestamp bits to trigger reports from) but there's currently
 * no known use case for sampling as infrequently as once per 47 thousand years.
 *
 * Since the timestamps included in OA reports are only 32bits it seems
 * reasonable to limit the OA exponent where it's still possible to account for
 * overflow in OA report timestamps.
 */
#define OA_EXPONENT_MAX 31

#define INVALID_CTX_ID 0xffffffff

294 295 296 297 298 299 300
/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
#define OAREPORT_REASON_MASK           0x3f
#define OAREPORT_REASON_SHIFT          19
#define OAREPORT_REASON_TIMER          (1<<0)
#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
#define OAREPORT_REASON_CLK_RATIO      (1<<5)

301

302 303
/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 *
304 305 306 307
 * The highest sampling frequency we can theoretically program the OA unit
 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
 *
 * Initialized just before we register the sysctl parameter.
308
 */
309
static int oa_sample_rate_hard_limit;
310 311 312 313 314 315 316 317 318

/* Theoretically we can program the OA unit to sample every 160ns but don't
 * allow that by default unless root...
 *
 * The default threshold of 100000Hz is based on perf's similar
 * kernel.perf_event_max_sample_rate sysctl parameter.
 */
static u32 i915_oa_max_sample_rate = 100000;

319 320 321 322
/* XXX: beware if future OA HW adds new report formats that the current
 * code assumes all reports have a power-of-two size and ~(size - 1) can
 * be used as a mask to align the OA tail pointer.
 */
323
static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
324 325 326 327 328 329 330 331 332 333
	[I915_OA_FORMAT_A13]	    = { 0, 64 },
	[I915_OA_FORMAT_A29]	    = { 1, 128 },
	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
};

334
static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
335 336 337 338 339 340
	[I915_OA_FORMAT_A12]		    = { 0, 64 },
	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
};

341
#define SAMPLE_OA_REPORT      (1<<0)
342

343 344 345 346 347 348 349 350 351
/**
 * struct perf_open_properties - for validated properties given to open a stream
 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 * @single_context: Whether a single or all gpu contexts should be monitored
 * @ctx_handle: A gem ctx handle for use with @single_context
 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 * @oa_format: An OA unit HW report format
 * @oa_periodic: Whether to enable periodic OA unit sampling
 * @oa_period_exponent: The OA unit sampling period is derived from this
352
 * @engine: The engine (typically rcs0) being monitored by the OA unit
353 354 355 356 357
 *
 * As read_properties_unlocked() enumerates and validates the properties given
 * to open a stream of metrics the configuration is built up in the structure
 * which starts out zero initialized.
 */
358 359 360 361 362
struct perf_open_properties {
	u32 sample_flags;

	u64 single_context:1;
	u64 ctx_handle;
363 364 365 366 367 368

	/* OA sampling state */
	int metrics_set;
	int oa_format;
	bool oa_periodic;
	int oa_period_exponent;
369 370

	struct intel_engine_cs *engine;
371 372
};

373 374 375 376 377 378 379
struct i915_oa_config_bo {
	struct llist_node node;

	struct i915_oa_config *oa_config;
	struct i915_vma *vma;
};

380 381
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);

382
void i915_oa_config_release(struct kref *ref)
383
{
384 385 386
	struct i915_oa_config *oa_config =
		container_of(ref, typeof(*oa_config), ref);

387 388 389
	kfree(oa_config->flex_regs);
	kfree(oa_config->b_counter_regs);
	kfree(oa_config->mux_regs);
390

391
	kfree_rcu(oa_config, rcu);
392 393
}

394 395
struct i915_oa_config *
i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
396
{
397
	struct i915_oa_config *oa_config;
398

399 400 401
	rcu_read_lock();
	if (metrics_set == 1)
		oa_config = &perf->test_config;
402
	else
403 404 405 406
		oa_config = idr_find(&perf->metrics_idr, metrics_set);
	if (oa_config)
		oa_config = i915_oa_config_get(oa_config);
	rcu_read_unlock();
407

408 409
	return oa_config;
}
410

411 412 413 414 415
static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
{
	i915_oa_config_put(oa_bo->oa_config);
	i915_vma_put(oa_bo->vma);
	kfree(oa_bo);
416 417
}

418
static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
419
{
420
	struct intel_uncore *uncore = stream->uncore;
421

422
	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
423 424
}

425
static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
426
{
427
	struct intel_uncore *uncore = stream->uncore;
428
	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
429 430 431 432

	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
}

433
/**
434
 * oa_buffer_check_unlocked - check for data and update tail ptr state
435
 * @stream: i915 stream instance
436
 *
437 438 439
 * This is either called via fops (for blocking reads in user ctx) or the poll
 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 * if there is data available for userspace to read.
440
 *
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
 * This function is central to providing a workaround for the OA unit tail
 * pointer having a race with respect to what data is visible to the CPU.
 * It is responsible for reading tail pointers from the hardware and giving
 * the pointers time to 'age' before they are made available for reading.
 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 *
 * Besides returning true when there is data available to read() this function
 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
 * and .aged_tail_idx state used for reading.
 *
 * Note: It's safe to read OA config state here unlocked, assuming that this is
 * only called while the stream is enabled, while the global OA configuration
 * can't be modified.
 *
 * Returns: %true if the OA buffer contains data, else %false
456
 */
457
static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
458
{
459
	int report_size = stream->oa_buffer.format_size;
460 461 462 463 464 465 466 467 468
	unsigned long flags;
	unsigned int aged_idx;
	u32 head, hw_tail, aged_tail, aging_tail;
	u64 now;

	/* We have to consider the (unlikely) possibility that read() errors
	 * could result in an OA buffer reset which might reset the head,
	 * tails[] and aged_tail state.
	 */
469
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
470 471 472 473 474

	/* NB: The head we observe here might effectively be a little out of
	 * date (between head and tails[aged_idx].offset if there is currently
	 * a read() in progress.
	 */
475
	head = stream->oa_buffer.head;
476

477 478 479
	aged_idx = stream->oa_buffer.aged_tail_idx;
	aged_tail = stream->oa_buffer.tails[aged_idx].offset;
	aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
480

481
	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
482 483 484 485 486 487 488 489

	/* The tail pointer increases in 64 byte increments,
	 * not in report_size steps...
	 */
	hw_tail &= ~(report_size - 1);

	now = ktime_get_mono_fast_ns();

490 491 492 493 494 495 496 497 498 499 500
	/* Update the aged tail
	 *
	 * Flip the tail pointer available for read()s once the aging tail is
	 * old enough to trust that the corresponding data will be visible to
	 * the CPU...
	 *
	 * Do this before updating the aging pointer in case we may be able to
	 * immediately start aging a new pointer too (if new data has become
	 * available) without needing to wait for a later hrtimer callback.
	 */
	if (aging_tail != INVALID_TAIL_PTR &&
501
	    ((now - stream->oa_buffer.aging_timestamp) >
502
	     OA_TAIL_MARGIN_NSEC)) {
503

504
		aged_idx ^= 1;
505
		stream->oa_buffer.aged_tail_idx = aged_idx;
506 507 508 509

		aged_tail = aging_tail;

		/* Mark that we need a new pointer to start aging... */
510
		stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
511 512 513
		aging_tail = INVALID_TAIL_PTR;
	}

514 515 516 517 518 519 520 521 522 523 524
	/* Update the aging tail
	 *
	 * We throttle aging tail updates until we have a new tail that
	 * represents >= one report more data than is already available for
	 * reading. This ensures there will be enough data for a successful
	 * read once this new pointer has aged and ensures we will give the new
	 * pointer time to age.
	 */
	if (aging_tail == INVALID_TAIL_PTR &&
	    (aged_tail == INVALID_TAIL_PTR ||
	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
525
		struct i915_vma *vma = stream->oa_buffer.vma;
526 527 528 529 530 531 532
		u32 gtt_offset = i915_ggtt_offset(vma);

		/* Be paranoid and do a bounds check on the pointer read back
		 * from hardware, just in case some spurious hardware condition
		 * could put the tail out of bounds...
		 */
		if (hw_tail >= gtt_offset &&
533
		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
534
			stream->oa_buffer.tails[!aged_idx].offset =
535
				aging_tail = hw_tail;
536
			stream->oa_buffer.aging_timestamp = now;
537 538 539 540 541 542
		} else {
			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
				  hw_tail);
		}
	}

543
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
544 545 546

	return aged_tail == INVALID_TAIL_PTR ?
		false : OA_TAKEN(aged_tail, head) >= report_size;
547 548 549
}

/**
550 551 552 553 554 555 556 557 558 559 560 561 562
 * append_oa_status - Appends a status record to a userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @type: The kind of status to report to userspace
 *
 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 * into the userspace read() buffer.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
 */
static int append_oa_status(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    enum drm_i915_perf_record_type type)
{
	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };

	if ((count - *offset) < header.size)
		return -ENOSPC;

	if (copy_to_user(buf + *offset, &header, sizeof(header)))
		return -EFAULT;

	(*offset) += header.size;

	return 0;
}

/**
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
 * append_oa_sample - Copies single OA report into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @report: A single OA report to (optionally) include as part of the sample
 *
 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 * properties when opening a stream, tracked as `stream->sample_flags`. This
 * function copies the requested components of a single sample to the given
 * read() @buf.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
599 600 601 602 603 604 605
 */
static int append_oa_sample(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    const u8 *report)
{
606
	int report_size = stream->oa_buffer.format_size;
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	struct drm_i915_perf_record_header header;
	u32 sample_flags = stream->sample_flags;

	header.type = DRM_I915_PERF_RECORD_SAMPLE;
	header.pad = 0;
	header.size = stream->sample_size;

	if ((count - *offset) < header.size)
		return -ENOSPC;

	buf += *offset;
	if (copy_to_user(buf, &header, sizeof(header)))
		return -EFAULT;
	buf += sizeof(header);

	if (sample_flags & SAMPLE_OA_REPORT) {
		if (copy_to_user(buf, report, report_size))
			return -EFAULT;
	}

	(*offset) += header.size;

	return 0;
}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
/**
 * Copies all buffered OA reports into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Notably any error condition resulting in a short read (-%ENOSPC or
 * -%EFAULT) will be returned even though one or more records may
 * have been successfully copied. In this case it's up to the caller
 * to decide if the error should be squashed before returning to
 * userspace.
 *
 * Note: reports are consumed from the head, and appended to the
 * tail, so the tail chases the head?... If you think that's mad
 * and back-to-front you're not alone, but this follows the
 * Gen PRM naming convention.
 *
 * Returns: 0 on success, negative error code on failure.
 */
static int gen8_append_oa_reports(struct i915_perf_stream *stream,
				  char __user *buf,
				  size_t count,
				  size_t *offset)
{
657
	struct intel_uncore *uncore = stream->uncore;
658 659 660
	int report_size = stream->oa_buffer.format_size;
	u8 *oa_buf_base = stream->oa_buffer.vaddr;
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
661
	u32 mask = (OA_BUFFER_SIZE - 1);
662 663 664 665 666 667 668 669 670 671
	size_t start_offset = *offset;
	unsigned long flags;
	unsigned int aged_tail_idx;
	u32 head, tail;
	u32 taken;
	int ret = 0;

	if (WARN_ON(!stream->enabled))
		return -EIO;

672
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
673

674 675 676
	head = stream->oa_buffer.head;
	aged_tail_idx = stream->oa_buffer.aged_tail_idx;
	tail = stream->oa_buffer.tails[aged_tail_idx].offset;
677

678
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

	/*
	 * An invalid tail pointer here means we're still waiting for the poll
	 * hrtimer callback to give us a pointer
	 */
	if (tail == INVALID_TAIL_PTR)
		return -EAGAIN;

	/*
	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
	 * while indexing relative to oa_buf_base.
	 */
	head -= gtt_offset;
	tail -= gtt_offset;

	/*
	 * An out of bounds or misaligned head or tail pointer implies a driver
	 * bug since we validate + align the tail pointers we read from the
	 * hardware and we are in full control of the head pointer which should
	 * only be incremented by multiples of the report size (notably also
	 * all a power of two).
	 */
701 702
	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
		      tail > OA_BUFFER_SIZE || tail % report_size,
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
		      head, tail))
		return -EIO;


	for (/* none */;
	     (taken = OA_TAKEN(tail, head));
	     head = (head + report_size) & mask) {
		u8 *report = oa_buf_base + head;
		u32 *report32 = (void *)report;
		u32 ctx_id;
		u32 reason;

		/*
		 * All the report sizes factor neatly into the buffer
		 * size so we never expect to see a report split
		 * between the beginning and end of the buffer.
		 *
		 * Given the initial alignment check a misalignment
		 * here would imply a driver bug that would result
		 * in an overrun.
		 */
725
		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
			break;
		}

		/*
		 * The reason field includes flags identifying what
		 * triggered this specific report (mostly timer
		 * triggered or e.g. due to a context switch).
		 *
		 * This field is never expected to be zero so we can
		 * check that the report isn't invalid before copying
		 * it to userspace...
		 */
		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
			  OAREPORT_REASON_MASK);
		if (reason == 0) {
742
			if (__ratelimit(&stream->perf->spurious_report_rs))
743 744 745 746
				DRM_NOTE("Skipping spurious, invalid OA report\n");
			continue;
		}

747
		ctx_id = report32[2] & stream->specific_ctx_id_mask;
748 749 750 751 752 753 754 755 756

		/*
		 * Squash whatever is in the CTX_ID field if it's marked as
		 * invalid to be sure we avoid false-positive, single-context
		 * filtering below...
		 *
		 * Note: that we don't clear the valid_ctx_bit so userspace can
		 * understand that the ID has been squashed by the kernel.
		 */
757
		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit))
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
			ctx_id = report32[2] = INVALID_CTX_ID;

		/*
		 * NB: For Gen 8 the OA unit no longer supports clock gating
		 * off for a specific context and the kernel can't securely
		 * stop the counters from updating as system-wide / global
		 * values.
		 *
		 * Automatic reports now include a context ID so reports can be
		 * filtered on the cpu but it's not worth trying to
		 * automatically subtract/hide counter progress for other
		 * contexts while filtering since we can't stop userspace
		 * issuing MI_REPORT_PERF_COUNT commands which would still
		 * provide a side-band view of the real values.
		 *
		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
		 * to normalize counters for a single filtered context then it
		 * needs be forwarded bookend context-switch reports so that it
		 * can track switches in between MI_REPORT_PERF_COUNT commands
		 * and can itself subtract/ignore the progress of counters
		 * associated with other contexts. Note that the hardware
		 * automatically triggers reports when switching to a new
		 * context which are tagged with the ID of the newly active
		 * context. To avoid the complexity (and likely fragility) of
		 * reading ahead while parsing reports to try and minimize
		 * forwarding redundant context switch reports (i.e. between
		 * other, unrelated contexts) we simply elect to forward them
		 * all.
		 *
		 * We don't rely solely on the reason field to identify context
		 * switches since it's not-uncommon for periodic samples to
		 * identify a switch before any 'context switch' report.
		 */
791
		if (!stream->perf->exclusive_stream->ctx ||
792 793
		    stream->specific_ctx_id == ctx_id ||
		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
794 795 796 797 798 799
		    reason & OAREPORT_REASON_CTX_SWITCH) {

			/*
			 * While filtering for a single context we avoid
			 * leaking the IDs of other contexts.
			 */
800
			if (stream->perf->exclusive_stream->ctx &&
801
			    stream->specific_ctx_id != ctx_id) {
802 803 804 805 806 807 808 809
				report32[2] = INVALID_CTX_ID;
			}

			ret = append_oa_sample(stream, buf, count, offset,
					       report);
			if (ret)
				break;

810
			stream->oa_buffer.last_ctx_id = ctx_id;
811 812 813 814 815 816 817 818 819 820 821 822 823
		}

		/*
		 * The above reason field sanity check is based on
		 * the assumption that the OA buffer is initially
		 * zeroed and we reset the field after copying so the
		 * check is still meaningful once old reports start
		 * being overwritten.
		 */
		report32[0] = 0;
	}

	if (start_offset != *offset) {
824
		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
825 826 827 828 829 830 831

		/*
		 * We removed the gtt_offset for the copy loop above, indexing
		 * relative to oa_buf_base so put back here...
		 */
		head += gtt_offset;

832 833
		intel_uncore_write(uncore, GEN8_OAHEADPTR,
				   head & GEN8_OAHEADPTR_MASK);
834
		stream->oa_buffer.head = head;
835

836
		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	}

	return ret;
}

/**
 * gen8_oa_read - copy status records then buffered OA reports
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Checks OA unit status registers and if necessary appends corresponding
 * status records for userspace (such as for a buffer full condition) and then
 * initiate appending any buffered OA reports.
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * NB: some data may be successfully copied to the userspace buffer
 * even if an error is returned, and this is reflected in the
 * updated @offset.
 *
 * Returns: zero on success or a negative error code
 */
static int gen8_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
867
	struct intel_uncore *uncore = stream->uncore;
868 869 870
	u32 oastatus;
	int ret;

871
	if (WARN_ON(!stream->oa_buffer.vaddr))
872 873
		return -EIO;

874
	oastatus = intel_uncore_read(uncore, GEN8_OASTATUS);
875 876 877 878 879 880 881 882 883

	/*
	 * We treat OABUFFER_OVERFLOW as a significant error:
	 *
	 * Although theoretically we could handle this more gracefully
	 * sometimes, some Gens don't correctly suppress certain
	 * automatically triggered reports in this condition and so we
	 * have to assume that old reports are now being trampled
	 * over.
884 885 886 887 888
	 *
	 * Considering how we don't currently give userspace control
	 * over the OA buffer size and always configure a large 16MB
	 * buffer, then a buffer overflow does anyway likely indicate
	 * that something has gone quite badly wrong.
889 890 891 892 893 894 895 896
	 */
	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
		if (ret)
			return ret;

		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
897
			  stream->period_exponent);
898

899 900
		stream->perf->ops.oa_disable(stream);
		stream->perf->ops.oa_enable(stream);
901 902 903 904 905

		/*
		 * Note: .oa_enable() is expected to re-init the oabuffer and
		 * reset GEN8_OASTATUS for us
		 */
906
		oastatus = intel_uncore_read(uncore, GEN8_OASTATUS);
907 908 909 910 911 912 913
	}

	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
		if (ret)
			return ret;
914 915
		intel_uncore_write(uncore, GEN8_OASTATUS,
				   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
916 917 918 919 920
	}

	return gen8_append_oa_reports(stream, buf, count, offset);
}

921 922 923 924 925 926 927
/**
 * Copies all buffered OA reports into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
928 929
 * Notably any error condition resulting in a short read (-%ENOSPC or
 * -%EFAULT) will be returned even though one or more records may
930 931 932 933 934
 * have been successfully copied. In this case it's up to the caller
 * to decide if the error should be squashed before returning to
 * userspace.
 *
 * Note: reports are consumed from the head, and appended to the
935
 * tail, so the tail chases the head?... If you think that's mad
936 937
 * and back-to-front you're not alone, but this follows the
 * Gen PRM naming convention.
938 939
 *
 * Returns: 0 on success, negative error code on failure.
940 941 942 943
 */
static int gen7_append_oa_reports(struct i915_perf_stream *stream,
				  char __user *buf,
				  size_t count,
944
				  size_t *offset)
945
{
946
	struct intel_uncore *uncore = stream->uncore;
947 948 949
	int report_size = stream->oa_buffer.format_size;
	u8 *oa_buf_base = stream->oa_buffer.vaddr;
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
950
	u32 mask = (OA_BUFFER_SIZE - 1);
951
	size_t start_offset = *offset;
952 953 954
	unsigned long flags;
	unsigned int aged_tail_idx;
	u32 head, tail;
955 956 957 958 959 960
	u32 taken;
	int ret = 0;

	if (WARN_ON(!stream->enabled))
		return -EIO;

961
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
962

963 964 965
	head = stream->oa_buffer.head;
	aged_tail_idx = stream->oa_buffer.aged_tail_idx;
	tail = stream->oa_buffer.tails[aged_tail_idx].offset;
966

967
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
968

969 970
	/* An invalid tail pointer here means we're still waiting for the poll
	 * hrtimer callback to give us a pointer
971
	 */
972 973
	if (tail == INVALID_TAIL_PTR)
		return -EAGAIN;
974

975 976
	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
	 * while indexing relative to oa_buf_base.
977
	 */
978 979
	head -= gtt_offset;
	tail -= gtt_offset;
980

981 982 983 984 985
	/* An out of bounds or misaligned head or tail pointer implies a driver
	 * bug since we validate + align the tail pointers we read from the
	 * hardware and we are in full control of the head pointer which should
	 * only be incremented by multiples of the report size (notably also
	 * all a power of two).
986
	 */
987 988
	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
		      tail > OA_BUFFER_SIZE || tail % report_size,
989 990 991
		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
		      head, tail))
		return -EIO;
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007


	for (/* none */;
	     (taken = OA_TAKEN(tail, head));
	     head = (head + report_size) & mask) {
		u8 *report = oa_buf_base + head;
		u32 *report32 = (void *)report;

		/* All the report sizes factor neatly into the buffer
		 * size so we never expect to see a report split
		 * between the beginning and end of the buffer.
		 *
		 * Given the initial alignment check a misalignment
		 * here would imply a driver bug that would result
		 * in an overrun.
		 */
1008
		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
			break;
		}

		/* The report-ID field for periodic samples includes
		 * some undocumented flags related to what triggered
		 * the report and is never expected to be zero so we
		 * can check that the report isn't invalid before
		 * copying it to userspace...
		 */
		if (report32[0] == 0) {
1020
			if (__ratelimit(&stream->perf->spurious_report_rs))
1021
				DRM_NOTE("Skipping spurious, invalid OA report\n");
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
			continue;
		}

		ret = append_oa_sample(stream, buf, count, offset, report);
		if (ret)
			break;

		/* The above report-id field sanity check is based on
		 * the assumption that the OA buffer is initially
		 * zeroed and we reset the field after copying so the
		 * check is still meaningful once old reports start
		 * being overwritten.
		 */
		report32[0] = 0;
	}

1038
	if (start_offset != *offset) {
1039
		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1040

1041 1042 1043 1044 1045
		/* We removed the gtt_offset for the copy loop above, indexing
		 * relative to oa_buf_base so put back here...
		 */
		head += gtt_offset;

1046 1047 1048
		intel_uncore_write(uncore, GEN7_OASTATUS2,
				   (head & GEN7_OASTATUS2_HEAD_MASK) |
				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1049
		stream->oa_buffer.head = head;
1050

1051
		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1052
	}
1053 1054 1055 1056

	return ret;
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/**
 * gen7_oa_read - copy status records then buffered OA reports
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Checks Gen 7 specific OA unit status registers and if necessary appends
 * corresponding status records for userspace (such as for a buffer full
 * condition) and then initiate appending any buffered OA reports.
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
1073 1074 1075 1076 1077
static int gen7_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
1078
	struct intel_uncore *uncore = stream->uncore;
1079 1080 1081
	u32 oastatus1;
	int ret;

1082
	if (WARN_ON(!stream->oa_buffer.vaddr))
1083 1084
		return -EIO;

1085
	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1086 1087 1088 1089 1090 1091

	/* XXX: On Haswell we don't have a safe way to clear oastatus1
	 * bits while the OA unit is enabled (while the tail pointer
	 * may be updated asynchronously) so we ignore status bits
	 * that have already been reported to userspace.
	 */
1092
	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	/* We treat OABUFFER_OVERFLOW as a significant error:
	 *
	 * - The status can be interpreted to mean that the buffer is
	 *   currently full (with a higher precedence than OA_TAKEN()
	 *   which will start to report a near-empty buffer after an
	 *   overflow) but it's awkward that we can't clear the status
	 *   on Haswell, so without a reset we won't be able to catch
	 *   the state again.
	 *
	 * - Since it also implies the HW has started overwriting old
	 *   reports it may also affect our sanity checks for invalid
	 *   reports when copying to userspace that assume new reports
	 *   are being written to cleared memory.
	 *
	 * - In the future we may want to introduce a flight recorder
	 *   mode where the driver will automatically maintain a safe
	 *   guard band between head/tail, avoiding this overflow
	 *   condition, but we avoid the added driver complexity for
	 *   now.
	 */
	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
		if (ret)
			return ret;

1120
		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1121
			  stream->period_exponent);
1122

1123 1124
		stream->perf->ops.oa_disable(stream);
		stream->perf->ops.oa_enable(stream);
1125

1126
		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1127 1128 1129 1130 1131 1132 1133
	}

	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
		if (ret)
			return ret;
1134
		stream->perf->gen7_latched_oastatus1 |=
1135 1136 1137
			GEN7_OASTATUS1_REPORT_LOST;
	}

1138
	return gen7_append_oa_reports(stream, buf, count, offset);
1139 1140
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/**
 * i915_oa_wait_unlocked - handles blocking IO until OA data available
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Called when userspace tries to read() from a blocking stream FD opened
 * for OA metrics. It waits until the hrtimer callback finds a non-empty
 * OA buffer and wakes us.
 *
 * Note: it's acceptable to have this return with some false positives
 * since any subsequent read handling will return -EAGAIN if there isn't
 * really data ready for userspace yet.
 *
 * Returns: zero on success or a negative error code
 */
1155 1156 1157
static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
{
	/* We would wait indefinitely if periodic sampling is not enabled */
1158
	if (!stream->periodic)
1159 1160
		return -EIO;

1161 1162
	return wait_event_interruptible(stream->poll_wq,
					oa_buffer_check_unlocked(stream));
1163 1164
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/**
 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
 * @stream: An i915-perf stream opened for OA metrics
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream opened for OA metrics,
 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
 * when it sees data ready to read in the circular OA buffer.
 */
1175 1176 1177 1178
static void i915_oa_poll_wait(struct i915_perf_stream *stream,
			      struct file *file,
			      poll_table *wait)
{
1179
	poll_wait(file, &stream->poll_wq, wait);
1180 1181
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/**
 * i915_oa_read - just calls through to &i915_oa_ops->read
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
1194 1195 1196 1197 1198
static int i915_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
1199
	return stream->perf->ops.read(stream, buf, count, offset);
1200 1201
}

1202
static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1203
{
1204
	struct i915_gem_engines_iter it;
1205
	struct i915_gem_context *ctx = stream->ctx;
1206
	struct intel_context *ce;
1207
	int err;
1208

1209
	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1210
		if (ce->engine != stream->engine) /* first match! */
1211 1212 1213 1214 1215 1216 1217 1218
			continue;

		/*
		 * As the ID is the gtt offset of the context's vma we
		 * pin the vma to ensure the ID remains fixed.
		 */
		err = intel_context_pin(ce);
		if (err == 0) {
1219
			stream->pinned_ctx = ce;
1220 1221
			break;
		}
1222
	}
1223
	i915_gem_context_unlock_engines(ctx);
1224

1225
	return stream->pinned_ctx;
1226 1227
}

1228 1229 1230 1231 1232
/**
 * oa_get_render_ctx_id - determine and hold ctx hw id
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Determine the render context hw id, and ensure it remains fixed for the
1233 1234
 * lifetime of the stream. This ensures that we don't have to worry about
 * updating the context ID in OACONTROL on the fly.
1235 1236
 *
 * Returns: zero on success or a negative error code
1237 1238 1239
 */
static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
{
1240
	struct intel_context *ce;
1241

1242
	ce = oa_pin_context(stream);
1243 1244
	if (IS_ERR(ce))
		return PTR_ERR(ce);
1245

1246
	switch (INTEL_GEN(ce->engine->i915)) {
1247
	case 7: {
1248
		/*
1249 1250
		 * On Haswell we don't do any post processing of the reports
		 * and don't need to use the mask.
1251
		 */
1252 1253
		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
		stream->specific_ctx_id_mask = 0;
1254 1255
		break;
	}
1256

1257 1258 1259
	case 8:
	case 9:
	case 10:
1260
		if (USES_GUC_SUBMISSION(ce->engine->i915)) {
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
			/*
			 * When using GuC, the context descriptor we write in
			 * i915 is read by GuC and rewritten before it's
			 * actually written into the hardware. The LRCA is
			 * what is put into the context id field of the
			 * context descriptor by GuC. Because it's aligned to
			 * a page, the lower 12bits are always at 0 and
			 * dropped by GuC. They won't be part of the context
			 * ID in the OA reports, so squash those lower bits.
			 */
1271
			stream->specific_ctx_id =
1272
				lower_32_bits(ce->lrc_desc) >> 12;
1273

1274 1275 1276 1277
			/*
			 * GuC uses the top bit to signal proxy submission, so
			 * ignore that bit.
			 */
1278
			stream->specific_ctx_id_mask =
1279 1280
				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
		} else {
1281
			stream->specific_ctx_id_mask =
1282
				(1U << GEN8_CTX_ID_WIDTH) - 1;
C
Chris Wilson 已提交
1283
			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1284 1285 1286
		}
		break;

1287 1288
	case 11:
	case 12: {
1289
		stream->specific_ctx_id_mask =
C
Chris Wilson 已提交
1290 1291
			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
		stream->specific_ctx_id = stream->specific_ctx_id_mask;
1292 1293 1294 1295
		break;
	}

	default:
1296
		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1297
	}
1298

C
Chris Wilson 已提交
1299 1300
	ce->tag = stream->specific_ctx_id_mask;

1301
	DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1302 1303
			 stream->specific_ctx_id,
			 stream->specific_ctx_id_mask);
1304

1305
	return 0;
1306 1307
}

1308 1309 1310 1311 1312 1313 1314
/**
 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
 * @stream: An i915-perf stream opened for OA metrics
 *
 * In case anything needed doing to ensure the context HW ID would remain valid
 * for the lifetime of the stream, then that can be undone here.
 */
1315 1316
static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
{
1317
	struct intel_context *ce;
1318

1319
	ce = fetch_and_zero(&stream->pinned_ctx);
C
Chris Wilson 已提交
1320 1321
	if (ce) {
		ce->tag = 0; /* recomputed on next submission after parking */
1322
		intel_context_unpin(ce);
C
Chris Wilson 已提交
1323 1324 1325 1326
	}

	stream->specific_ctx_id = INVALID_CTX_ID;
	stream->specific_ctx_id_mask = 0;
1327 1328 1329
}

static void
1330
free_oa_buffer(struct i915_perf_stream *stream)
1331
{
1332
	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1333
				   I915_VMA_RELEASE_MAP);
1334

1335
	stream->oa_buffer.vaddr = NULL;
1336 1337
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static void
free_oa_configs(struct i915_perf_stream *stream)
{
	struct i915_oa_config_bo *oa_bo, *tmp;

	i915_oa_config_put(stream->oa_config);
	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
		free_oa_config_bo(oa_bo);
}

1348 1349 1350 1351 1352 1353
static void
free_noa_wait(struct i915_perf_stream *stream)
{
	i915_vma_unpin_and_release(&stream->noa_wait, 0);
}

1354 1355
static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
{
1356
	struct i915_perf *perf = stream->perf;
1357

1358
	BUG_ON(stream != perf->exclusive_stream);
1359

1360
	/*
1361 1362
	 * Unset exclusive_stream first, it will be checked while disabling
	 * the metric set on gen8+.
1363
	 */
1364 1365
	perf->exclusive_stream = NULL;
	perf->ops.disable_metric_set(stream);
1366

1367
	free_oa_buffer(stream);
1368

1369
	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1370
	intel_engine_pm_put(stream->engine);
1371 1372 1373 1374

	if (stream->ctx)
		oa_put_render_ctx_id(stream);

1375
	free_oa_configs(stream);
1376
	free_noa_wait(stream);
1377

1378
	if (perf->spurious_report_rs.missed) {
1379
		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1380
			 perf->spurious_report_rs.missed);
1381
	}
1382 1383
}

1384
static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1385
{
1386
	struct intel_uncore *uncore = stream->uncore;
1387
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1388 1389
	unsigned long flags;

1390
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1391 1392 1393 1394

	/* Pre-DevBDW: OABUFFER must be set with counters off,
	 * before OASTATUS1, but after OASTATUS2
	 */
1395 1396
	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1397
	stream->oa_buffer.head = gtt_offset;
1398

1399
	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1400

1401 1402
	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
			   gtt_offset | OABUFFER_SIZE_16M);
1403

1404
	/* Mark that we need updated tail pointers to read from... */
1405 1406
	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1407

1408
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1409

1410 1411 1412 1413
	/* On Haswell we have to track which OASTATUS1 flags we've
	 * already seen since they can't be cleared while periodic
	 * sampling is enabled.
	 */
1414
	stream->perf->gen7_latched_oastatus1 = 0;
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

	/* NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen7_append_oa_reports() that looks at the
	 * report-id field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
1427
	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1428

1429
	stream->pollin = false;
1430 1431
}

1432
static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1433
{
1434
	struct intel_uncore *uncore = stream->uncore;
1435
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1436 1437
	unsigned long flags;

1438
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1439

1440 1441
	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1442
	stream->oa_buffer.head = gtt_offset;
1443

1444
	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1445 1446 1447 1448 1449 1450 1451 1452 1453

	/*
	 * PRM says:
	 *
	 *  "This MMIO must be set before the OATAILPTR
	 *  register and after the OAHEADPTR register. This is
	 *  to enable proper functionality of the overflow
	 *  bit."
	 */
1454
	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1455
		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1456
	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1457 1458

	/* Mark that we need updated tail pointers to read from... */
1459 1460
	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1461 1462 1463 1464 1465 1466

	/*
	 * Reset state used to recognise context switches, affecting which
	 * reports we will forward to userspace while filtering for a single
	 * context.
	 */
1467
	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1468

1469
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

	/*
	 * NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen8_append_oa_reports() that looks at the
	 * reason field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
1483
	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1484

1485
	stream->pollin = false;
1486 1487
}

1488
static int alloc_oa_buffer(struct i915_perf_stream *stream)
1489 1490 1491 1492 1493
{
	struct drm_i915_gem_object *bo;
	struct i915_vma *vma;
	int ret;

1494
	if (WARN_ON(stream->oa_buffer.vma))
1495 1496
		return -ENODEV;

1497 1498 1499
	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);

1500
	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1501 1502
	if (IS_ERR(bo)) {
		DRM_ERROR("Failed to allocate OA buffer\n");
1503
		return PTR_ERR(bo);
1504 1505
	}

1506
	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1507 1508 1509 1510 1511 1512 1513

	/* PreHSW required 512K alignment, HSW requires 16M */
	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}
1514
	stream->oa_buffer.vma = vma;
1515

1516
	stream->oa_buffer.vaddr =
1517
		i915_gem_object_pin_map(bo, I915_MAP_WB);
1518 1519
	if (IS_ERR(stream->oa_buffer.vaddr)) {
		ret = PTR_ERR(stream->oa_buffer.vaddr);
1520 1521 1522
		goto err_unpin;
	}

1523
	return 0;
1524 1525 1526 1527 1528 1529 1530

err_unpin:
	__i915_vma_unpin(vma);

err_unref:
	i915_gem_object_put(bo);

1531 1532
	stream->oa_buffer.vaddr = NULL;
	stream->oa_buffer.vma = NULL;
1533 1534 1535 1536

	return ret;
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
				  bool save, i915_reg_t reg, u32 offset,
				  u32 dword_count)
{
	u32 cmd;
	u32 d;

	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
	if (INTEL_GEN(stream->perf->i915) >= 8)
		cmd++;

	for (d = 0; d < dword_count; d++) {
		*cs++ = cmd;
		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
						offset) + 4 * d;
		*cs++ = 0;
	}

	return cs;
}

static int alloc_noa_wait(struct i915_perf_stream *stream)
{
	struct drm_i915_private *i915 = stream->perf->i915;
	struct drm_i915_gem_object *bo;
	struct i915_vma *vma;
	const u64 delay_ticks = 0xffffffffffffffff -
		DIV64_U64_ROUND_UP(
			atomic64_read(&stream->perf->noa_programming_delay) *
			RUNTIME_INFO(i915)->cs_timestamp_frequency_khz,
			1000000ull);
	const u32 base = stream->engine->mmio_base;
#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
	u32 *batch, *ts0, *cs, *jump;
	int ret, i;
	enum {
		START_TS,
		NOW_TS,
		DELTA_TS,
		JUMP_PREDICATE,
		DELTA_TARGET,
		N_CS_GPR
	};

	bo = i915_gem_object_create_internal(i915, 4096);
	if (IS_ERR(bo)) {
		DRM_ERROR("Failed to allocate NOA wait batchbuffer\n");
		return PTR_ERR(bo);
	}

	/*
	 * We pin in GGTT because we jump into this buffer now because
	 * multiple OA config BOs will have a jump to this address and it
	 * needs to be fixed during the lifetime of the i915/perf stream.
	 */
	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
	if (IS_ERR(batch)) {
		ret = PTR_ERR(batch);
		goto err_unpin;
	}

	/* Save registers. */
	for (i = 0; i < N_CS_GPR; i++)
		cs = save_restore_register(
			stream, cs, true /* save */, CS_GPR(i),
			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
	cs = save_restore_register(
		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);

	/* First timestamp snapshot location. */
	ts0 = cs;

	/*
	 * Initial snapshot of the timestamp register to implement the wait.
	 * We work with 32b values, so clear out the top 32b bits of the
	 * register because the ALU works 64bits.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(1);
	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
	*cs++ = 0;
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));

	/*
	 * This is the location we're going to jump back into until the
	 * required amount of time has passed.
	 */
	jump = cs;

	/*
	 * Take another snapshot of the timestamp register. Take care to clear
	 * up the top 32bits of CS_GPR(1) as we're using it for other
	 * operations below.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(1);
	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
	*cs++ = 0;
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));

	/*
	 * Do a diff between the 2 timestamps and store the result back into
	 * CS_GPR(1).
	 */
	*cs++ = MI_MATH(5);
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
	*cs++ = MI_MATH_SUB;
	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);

	/*
	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
	 * timestamp have rolled over the 32bits) into the predicate register
	 * to be used for the predicated jump.
	 */
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);

	/* Restart from the beginning if we had timestamps roll over. */
	*cs++ = (INTEL_GEN(i915) < 8 ?
		 MI_BATCH_BUFFER_START :
		 MI_BATCH_BUFFER_START_GEN8) |
		MI_BATCH_PREDICATE;
	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
	*cs++ = 0;

	/*
	 * Now add the diff between to previous timestamps and add it to :
	 *      (((1 * << 64) - 1) - delay_ns)
	 *
	 * When the Carry Flag contains 1 this means the elapsed time is
	 * longer than the expected delay, and we can exit the wait loop.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(2);
	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
	*cs++ = lower_32_bits(delay_ticks);
	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
	*cs++ = upper_32_bits(delay_ticks);

	*cs++ = MI_MATH(4);
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
	*cs++ = MI_MATH_ADD;
	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);

	/*
	 * Transfer the result into the predicate register to be used for the
	 * predicated jump.
	 */
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);

	/* Predicate the jump.  */
	*cs++ = (INTEL_GEN(i915) < 8 ?
		 MI_BATCH_BUFFER_START :
		 MI_BATCH_BUFFER_START_GEN8) |
		MI_BATCH_PREDICATE;
	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
	*cs++ = 0;

	/* Restore registers. */
	for (i = 0; i < N_CS_GPR; i++)
		cs = save_restore_register(
			stream, cs, false /* restore */, CS_GPR(i),
			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
	cs = save_restore_register(
		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);

	/* And return to the ring. */
	*cs++ = MI_BATCH_BUFFER_END;

	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));

	i915_gem_object_flush_map(bo);
	i915_gem_object_unpin_map(bo);

	stream->noa_wait = vma;
	return 0;

err_unpin:
1731
	i915_vma_unpin_and_release(&vma, 0);
1732 1733 1734 1735 1736
err_unref:
	i915_gem_object_put(bo);
	return ret;
}

1737 1738 1739
static u32 *write_cs_mi_lri(u32 *cs,
			    const struct i915_oa_reg *reg_data,
			    u32 n_regs)
1740
{
1741
	u32 i;
1742 1743

	for (i = 0; i < n_regs; i++) {
1744 1745 1746 1747
		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
			u32 n_lri = min_t(u32,
					  n_regs - i,
					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1748

1749 1750 1751 1752
			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
		}
		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
		*cs++ = reg_data[i].value;
1753
	}
1754 1755

	return cs;
1756 1757
}

1758
static int num_lri_dwords(int num_regs)
1759
{
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	int count = 0;

	if (num_regs > 0) {
		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
		count += num_regs * 2;
	}

	return count;
}

static struct i915_oa_config_bo *
alloc_oa_config_buffer(struct i915_perf_stream *stream,
		       struct i915_oa_config *oa_config)
{
	struct drm_i915_gem_object *obj;
	struct i915_oa_config_bo *oa_bo;
	size_t config_length = 0;
	u32 *cs;
	int err;

	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
	if (!oa_bo)
		return ERR_PTR(-ENOMEM);

	config_length += num_lri_dwords(oa_config->mux_regs_len);
	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
	config_length += num_lri_dwords(oa_config->flex_regs_len);
	config_length++; /* MI_BATCH_BUFFER_END */
	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);

	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
	if (IS_ERR(obj)) {
		err = PTR_ERR(obj);
		goto err_free;
	}

	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(cs)) {
		err = PTR_ERR(cs);
		goto err_oa_bo;
	}

	cs = write_cs_mi_lri(cs,
			     oa_config->mux_regs,
			     oa_config->mux_regs_len);
	cs = write_cs_mi_lri(cs,
			     oa_config->b_counter_regs,
			     oa_config->b_counter_regs_len);
	cs = write_cs_mi_lri(cs,
			     oa_config->flex_regs,
			     oa_config->flex_regs_len);

	*cs++ = MI_BATCH_BUFFER_END;

	i915_gem_object_flush_map(obj);
	i915_gem_object_unpin_map(obj);

	oa_bo->vma = i915_vma_instance(obj,
				       &stream->engine->gt->ggtt->vm,
				       NULL);
	if (IS_ERR(oa_bo->vma)) {
		err = PTR_ERR(oa_bo->vma);
		goto err_oa_bo;
	}

	oa_bo->oa_config = i915_oa_config_get(oa_config);
	llist_add(&oa_bo->node, &stream->oa_config_bos);

	return oa_bo;

err_oa_bo:
	i915_gem_object_put(obj);
err_free:
	kfree(oa_bo);
	return ERR_PTR(err);
}

static struct i915_vma *
get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
{
	struct i915_oa_config_bo *oa_bo;

1842
	/*
1843 1844
	 * Look for the buffer in the already allocated BOs attached
	 * to the stream.
1845
	 */
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
		if (oa_bo->oa_config == oa_config &&
		    memcmp(oa_bo->oa_config->uuid,
			   oa_config->uuid,
			   sizeof(oa_config->uuid)) == 0)
			goto out;
	}

	oa_bo = alloc_oa_config_buffer(stream, oa_config);
	if (IS_ERR(oa_bo))
		return ERR_CAST(oa_bo);

out:
	return i915_vma_get(oa_bo->vma);
}

static int emit_oa_config(struct i915_perf_stream *stream,
			  struct intel_context *ce)
{
	struct i915_request *rq;
	struct i915_vma *vma;
	int err;

	vma = get_oa_vma(stream, stream->oa_config);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err_vma_put;

	rq = i915_request_create(ce);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_vma_unpin;
	}

	i915_vma_lock(vma);
	err = i915_request_await_object(rq, vma->obj, 0);
	if (!err)
		err = i915_vma_move_to_active(vma, rq, 0);
	i915_vma_unlock(vma);
	if (err)
		goto err_add_request;

	err = rq->engine->emit_bb_start(rq,
					vma->node.start, 0,
					I915_DISPATCH_SECURE);
err_add_request:
	i915_request_add(rq);
err_vma_unpin:
	i915_vma_unpin(vma);
err_vma_put:
	i915_vma_put(vma);
	return err;
1901 1902
}

1903 1904 1905 1906 1907
static struct intel_context *oa_context(struct i915_perf_stream *stream)
{
	return stream->pinned_ctx ?: stream->engine->kernel_context;
}

1908 1909
static int hsw_enable_metric_set(struct i915_perf_stream *stream)
{
1910
	struct intel_uncore *uncore = stream->uncore;
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

	/*
	 * PRM:
	 *
	 * OA unit is using “crclk” for its functionality. When trunk
	 * level clock gating takes place, OA clock would be gated,
	 * unable to count the events from non-render clock domain.
	 * Render clock gating must be disabled when OA is enabled to
	 * count the events from non-render domain. Unit level clock
	 * gating for RCS should also be disabled.
	 */
1922 1923 1924 1925
	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
1926

1927
	return emit_oa_config(stream, oa_context(stream));
1928 1929
}

1930
static void hsw_disable_metric_set(struct i915_perf_stream *stream)
1931
{
1932
	struct intel_uncore *uncore = stream->uncore;
1933

1934 1935 1936 1937
	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
1938

1939
	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
1940 1941
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
			      i915_reg_t reg)
{
	u32 mmio = i915_mmio_reg_offset(reg);
	int i;

	/*
	 * This arbitrary default will select the 'EU FPU0 Pipeline
	 * Active' event. In the future it's anticipated that there
	 * will be an explicit 'No Event' we can select, but not yet...
	 */
	if (!oa_config)
		return 0;

	for (i = 0; i < oa_config->flex_regs_len; i++) {
		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
			return oa_config->flex_regs[i].value;
	}

	return 0;
}
1963 1964 1965 1966 1967 1968 1969
/*
 * NB: It must always remain pointer safe to run this even if the OA unit
 * has been disabled.
 *
 * It's fine to put out-of-date values into these per-context registers
 * in the case that the OA unit has been disabled.
 */
1970
static void
1971 1972
gen8_update_reg_state_unlocked(const struct intel_context *ce,
			       const struct i915_perf_stream *stream)
1973
{
1974 1975
	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
1976
	/* The MMIO offsets for Flex EU registers aren't contiguous */
1977 1978 1979 1980 1981 1982 1983 1984
	i915_reg_t flex_regs[] = {
		EU_PERF_CNTL0,
		EU_PERF_CNTL1,
		EU_PERF_CNTL2,
		EU_PERF_CNTL3,
		EU_PERF_CNTL4,
		EU_PERF_CNTL5,
		EU_PERF_CNTL6,
1985
	};
1986
	u32 *reg_state = ce->lrc_reg_state;
1987 1988
	int i;

1989
	reg_state[ctx_oactxctrl + 1] =
1990 1991
		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1992
		GEN8_OA_COUNTER_RESUME;
1993

1994 1995 1996
	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
		reg_state[ctx_flexeu0 + i * 2 + 1] =
			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
1997

1998 1999
	reg_state[CTX_R_PWR_CLK_STATE] =
		intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu);
2000 2001
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
struct flex {
	i915_reg_t reg;
	u32 offset;
	u32 value;
};

static int
gen8_store_flex(struct i915_request *rq,
		struct intel_context *ce,
		const struct flex *flex, unsigned int count)
{
	u32 offset;
	u32 *cs;

	cs = intel_ring_begin(rq, 4 * count);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
	do {
		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2023
		*cs++ = offset + flex->offset * sizeof(u32);
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		*cs++ = 0;
		*cs++ = flex->value;
	} while (flex++, --count);

	intel_ring_advance(rq, cs);

	return 0;
}

static int
gen8_load_flex(struct i915_request *rq,
	       struct intel_context *ce,
	       const struct flex *flex, unsigned int count)
{
	u32 *cs;

	GEM_BUG_ON(!count || count > 63);

	cs = intel_ring_begin(rq, 2 * count + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*cs++ = i915_mmio_reg_offset(flex->reg);
		*cs++ = flex->value;
	} while (flex++, --count);
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen8_modify_context(struct intel_context *ce,
			       const struct flex *flex, unsigned int count)
{
	struct i915_request *rq;
	int err;

	lockdep_assert_held(&ce->pin_mutex);

	rq = i915_request_create(ce->engine->kernel_context);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	/* Serialise with the remote context */
	err = intel_context_prepare_remote_request(ce, rq);
	if (err == 0)
		err = gen8_store_flex(rq, ce, flex, count);

	i915_request_add(rq);
	return err;
}

static int gen8_modify_self(struct intel_context *ce,
			    const struct flex *flex, unsigned int count)
{
	struct i915_request *rq;
	int err;

	rq = i915_request_create(ce);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	err = gen8_load_flex(rq, ce, flex, count);

	i915_request_add(rq);
	return err;
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
static int gen8_configure_context(struct i915_gem_context *ctx,
				  struct flex *flex, unsigned int count)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;
	int err = 0;

	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
		GEM_BUG_ON(ce == ce->engine->kernel_context);

		if (ce->engine->class != RENDER_CLASS)
			continue;

		err = intel_context_lock_pinned(ce);
		if (err)
			break;

		flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);

		/* Otherwise OA settings will be set upon first use */
		if (intel_context_is_pinned(ce))
			err = gen8_modify_context(ce, flex, count);

		intel_context_unlock_pinned(ce);
		if (err)
			break;
	}
	i915_gem_context_unlock_engines(ctx);

	return err;
}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
/*
 * Manages updating the per-context aspects of the OA stream
 * configuration across all contexts.
 *
 * The awkward consideration here is that OACTXCONTROL controls the
 * exponent for periodic sampling which is primarily used for system
 * wide profiling where we'd like a consistent sampling period even in
 * the face of context switches.
 *
 * Our approach of updating the register state context (as opposed to
 * say using a workaround batch buffer) ensures that the hardware
 * won't automatically reload an out-of-date timer exponent even
 * transiently before a WA BB could be parsed.
 *
 * This function needs to:
 * - Ensure the currently running context's per-context OA state is
 *   updated
 * - Ensure that all existing contexts will have the correct per-context
 *   OA state if they are scheduled for use.
 * - Ensure any new contexts will be initialized with the correct
 *   per-context OA state.
 *
 * Note: it's only the RCS/Render context that has any OA state.
 */
2151
static int gen8_configure_all_contexts(struct i915_perf_stream *stream,
2152
				       const struct i915_oa_config *oa_config)
2153
{
2154
	struct drm_i915_private *i915 = stream->perf->i915;
2155
	/* The MMIO offsets for Flex EU registers aren't contiguous */
2156
	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2157
#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2158 2159 2160 2161 2162 2163 2164
	struct flex regs[] = {
		{
			GEN8_R_PWR_CLK_STATE,
			CTX_R_PWR_CLK_STATE,
		},
		{
			GEN8_OACTXCONTROL,
2165
			stream->perf->ctx_oactxctrl_offset + 1,
2166 2167
			((stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
			 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
			 GEN8_OA_COUNTER_RESUME)
		},
		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
	};
#undef ctx_flexeuN
	struct intel_engine_cs *engine;
2180 2181
	struct i915_gem_context *ctx, *cn;
	int i, err;
2182

2183 2184 2185
	for (i = 2; i < ARRAY_SIZE(regs); i++)
		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);

2186
	lockdep_assert_held(&stream->perf->lock);
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197

	/*
	 * The OA register config is setup through the context image. This image
	 * might be written to by the GPU on context switch (in particular on
	 * lite-restore). This means we can't safely update a context's image,
	 * if this context is scheduled/submitted to run on the GPU.
	 *
	 * We could emit the OA register config through the batch buffer but
	 * this might leave small interval of time where the OA unit is
	 * configured at an invalid sampling period.
	 *
2198 2199 2200 2201 2202
	 * Note that since we emit all requests from a single ring, there
	 * is still an implicit global barrier here that may cause a high
	 * priority context to wait for an otherwise independent low priority
	 * context. Contexts idle at the time of reconfiguration are not
	 * trapped behind the barrier.
2203
	 */
2204 2205
	spin_lock(&i915->gem.contexts.lock);
	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2206 2207 2208
		if (ctx == i915->kernel_context)
			continue;

2209 2210 2211 2212 2213
		if (!kref_get_unless_zero(&ctx->ref))
			continue;

		spin_unlock(&i915->gem.contexts.lock);

2214
		err = gen8_configure_context(ctx, regs, ARRAY_SIZE(regs));
2215 2216
		if (err) {
			i915_gem_context_put(ctx);
2217
			return err;
2218 2219 2220 2221 2222
		}

		spin_lock(&i915->gem.contexts.lock);
		list_safe_reset_next(ctx, cn, link);
		i915_gem_context_put(ctx);
2223
	}
2224
	spin_unlock(&i915->gem.contexts.lock);
2225

2226
	/*
2227 2228 2229
	 * After updating all other contexts, we need to modify ourselves.
	 * If we don't modify the kernel_context, we do not get events while
	 * idle.
2230
	 */
2231
	for_each_uabi_engine(engine, i915) {
2232
		struct intel_context *ce = engine->kernel_context;
2233

2234 2235 2236 2237 2238 2239 2240 2241 2242
		if (engine->class != RENDER_CLASS)
			continue;

		regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);

		err = gen8_modify_self(ce, regs, ARRAY_SIZE(regs));
		if (err)
			return err;
	}
2243 2244

	return 0;
2245 2246
}

2247
static int gen8_enable_metric_set(struct i915_perf_stream *stream)
2248
{
2249
	struct intel_uncore *uncore = stream->uncore;
2250
	const struct i915_oa_config *oa_config = stream->oa_config;
2251
	int ret;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	/*
	 * We disable slice/unslice clock ratio change reports on SKL since
	 * they are too noisy. The HW generates a lot of redundant reports
	 * where the ratio hasn't really changed causing a lot of redundant
	 * work to processes and increasing the chances we'll hit buffer
	 * overruns.
	 *
	 * Although we don't currently use the 'disable overrun' OABUFFER
	 * feature it's worth noting that clock ratio reports have to be
	 * disabled before considering to use that feature since the HW doesn't
	 * correctly block these reports.
	 *
	 * Currently none of the high-level metrics we have depend on knowing
	 * this ratio to normalize.
	 *
	 * Note: This register is not power context saved and restored, but
	 * that's OK considering that we disable RC6 while the OA unit is
	 * enabled.
	 *
	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
	 * be read back from automatically triggered reports, as part of the
	 * RPT_ID field.
	 */
2276 2277 2278 2279
	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
		intel_uncore_write(uncore, GEN8_OA_DEBUG,
				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2280 2281 2282 2283 2284 2285 2286
	}

	/*
	 * Update all contexts prior writing the mux configurations as we need
	 * to make sure all slices/subslices are ON before writing to NOA
	 * registers.
	 */
2287
	ret = gen8_configure_all_contexts(stream, oa_config);
2288 2289 2290
	if (ret)
		return ret;

2291
	return emit_oa_config(stream, oa_context(stream));
2292 2293
}

2294
static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2295
{
2296
	struct intel_uncore *uncore = stream->uncore;
2297

2298
	/* Reset all contexts' slices/subslices configurations. */
2299
	gen8_configure_all_contexts(stream, NULL);
2300

2301
	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2302 2303
}

2304
static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2305
{
2306
	struct intel_uncore *uncore = stream->uncore;
2307

2308
	/* Reset all contexts' slices/subslices configurations. */
2309
	gen8_configure_all_contexts(stream, NULL);
2310 2311

	/* Make sure we disable noa to save power. */
2312
	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2313 2314
}

2315
static void gen7_oa_enable(struct i915_perf_stream *stream)
2316
{
2317
	struct intel_uncore *uncore = stream->uncore;
2318
	struct i915_gem_context *ctx = stream->ctx;
2319 2320 2321 2322
	u32 ctx_id = stream->specific_ctx_id;
	bool periodic = stream->periodic;
	u32 period_exponent = stream->period_exponent;
	u32 report_format = stream->oa_buffer.format;
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332
	/*
	 * Reset buf pointers so we don't forward reports from before now.
	 *
	 * Think carefully if considering trying to avoid this, since it
	 * also ensures status flags and the buffer itself are cleared
	 * in error paths, and we have checks for invalid reports based
	 * on the assumption that certain fields are written to zeroed
	 * memory which this helps maintains.
	 */
2333
	gen7_init_oa_buffer(stream);
2334

2335 2336 2337 2338 2339 2340 2341 2342
	intel_uncore_write(uncore, GEN7_OACONTROL,
			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
			   (period_exponent <<
			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
			   GEN7_OACONTROL_ENABLE);
2343 2344
}

2345
static void gen8_oa_enable(struct i915_perf_stream *stream)
2346
{
2347
	struct intel_uncore *uncore = stream->uncore;
2348
	u32 report_format = stream->oa_buffer.format;
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

	/*
	 * Reset buf pointers so we don't forward reports from before now.
	 *
	 * Think carefully if considering trying to avoid this, since it
	 * also ensures status flags and the buffer itself are cleared
	 * in error paths, and we have checks for invalid reports based
	 * on the assumption that certain fields are written to zeroed
	 * memory which this helps maintains.
	 */
2359
	gen8_init_oa_buffer(stream);
2360 2361 2362 2363 2364 2365

	/*
	 * Note: we don't rely on the hardware to perform single context
	 * filtering and instead filter on the cpu based on the context-id
	 * field of reports
	 */
2366 2367 2368
	intel_uncore_write(uncore, GEN8_OACONTROL,
			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
			   GEN8_OA_COUNTER_ENABLE);
2369 2370
}

2371 2372 2373 2374 2375 2376 2377 2378 2379
/**
 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * [Re]enables hardware periodic sampling according to the period configured
 * when opening the stream. This also starts a hrtimer that will periodically
 * check for data in the circular OA buffer for notifying userspace (e.g.
 * during a read() or poll()).
 */
2380 2381
static void i915_oa_stream_enable(struct i915_perf_stream *stream)
{
2382
	stream->perf->ops.oa_enable(stream);
2383

2384 2385
	if (stream->periodic)
		hrtimer_start(&stream->poll_check_timer,
2386 2387 2388 2389
			      ns_to_ktime(POLL_PERIOD),
			      HRTIMER_MODE_REL_PINNED);
}

2390
static void gen7_oa_disable(struct i915_perf_stream *stream)
2391
{
2392
	struct intel_uncore *uncore = stream->uncore;
2393

2394 2395
	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
	if (intel_wait_for_register(uncore,
2396 2397 2398
				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
				    50))
		DRM_ERROR("wait for OA to be disabled timed out\n");
2399 2400
}

2401
static void gen8_oa_disable(struct i915_perf_stream *stream)
2402
{
2403
	struct intel_uncore *uncore = stream->uncore;
2404

2405 2406
	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
	if (intel_wait_for_register(uncore,
2407 2408 2409
				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
				    50))
		DRM_ERROR("wait for OA to be disabled timed out\n");
2410 2411
}

2412 2413 2414 2415 2416 2417 2418 2419
/**
 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * Stops the OA unit from periodically writing counter reports into the
 * circular OA buffer. This also stops the hrtimer that periodically checks for
 * data in the circular OA buffer, for notifying userspace.
 */
2420 2421
static void i915_oa_stream_disable(struct i915_perf_stream *stream)
{
2422
	stream->perf->ops.oa_disable(stream);
2423

2424 2425
	if (stream->periodic)
		hrtimer_cancel(&stream->poll_check_timer);
2426 2427 2428 2429 2430 2431 2432 2433 2434
}

static const struct i915_perf_stream_ops i915_oa_stream_ops = {
	.destroy = i915_oa_stream_destroy,
	.enable = i915_oa_stream_enable,
	.disable = i915_oa_stream_disable,
	.wait_unlocked = i915_oa_wait_unlocked,
	.poll_wait = i915_oa_poll_wait,
	.read = i915_oa_read,
2435 2436
};

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
/**
 * i915_oa_stream_init - validate combined props for OA stream and init
 * @stream: An i915 perf stream
 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
 * @props: The property state that configures stream (individually validated)
 *
 * While read_properties_unlocked() validates properties in isolation it
 * doesn't ensure that the combination necessarily makes sense.
 *
 * At this point it has been determined that userspace wants a stream of
 * OA metrics, but still we need to further validate the combined
 * properties are OK.
 *
 * If the configuration makes sense then we can allocate memory for
 * a circular OA buffer and apply the requested metric set configuration.
 *
 * Returns: zero on success or a negative error code.
 */
2455 2456 2457 2458
static int i915_oa_stream_init(struct i915_perf_stream *stream,
			       struct drm_i915_perf_open_param *param,
			       struct perf_open_properties *props)
{
2459
	struct i915_perf *perf = stream->perf;
2460 2461 2462
	int format_size;
	int ret;

2463 2464 2465 2466 2467 2468 2469
	if (!props->engine) {
		DRM_DEBUG("OA engine not specified\n");
		return -EINVAL;
	}

	/*
	 * If the sysfs metrics/ directory wasn't registered for some
2470 2471 2472
	 * reason then don't let userspace try their luck with config
	 * IDs
	 */
2473
	if (!perf->metrics_kobj) {
2474
		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2475 2476 2477
		return -EINVAL;
	}

2478
	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2479
		DRM_DEBUG("Only OA report sampling supported\n");
2480 2481 2482
		return -EINVAL;
	}

2483
	if (!perf->ops.enable_metric_set) {
2484
		DRM_DEBUG("OA unit not supported\n");
2485 2486 2487
		return -ENODEV;
	}

2488 2489
	/*
	 * To avoid the complexity of having to accurately filter
2490 2491 2492
	 * counter reports and marshal to the appropriate client
	 * we currently only allow exclusive access
	 */
2493
	if (perf->exclusive_stream) {
2494
		DRM_DEBUG("OA unit already in use\n");
2495 2496 2497 2498
		return -EBUSY;
	}

	if (!props->oa_format) {
2499
		DRM_DEBUG("OA report format not specified\n");
2500 2501 2502
		return -EINVAL;
	}

2503
	stream->engine = props->engine;
2504
	stream->uncore = stream->engine->gt->uncore;
2505

2506 2507
	stream->sample_size = sizeof(struct drm_i915_perf_record_header);

2508
	format_size = perf->oa_formats[props->oa_format].size;
2509 2510 2511 2512

	stream->sample_flags |= SAMPLE_OA_REPORT;
	stream->sample_size += format_size;

2513 2514
	stream->oa_buffer.format_size = format_size;
	if (WARN_ON(stream->oa_buffer.format_size == 0))
2515 2516
		return -EINVAL;

2517
	stream->oa_buffer.format =
2518
		perf->oa_formats[props->oa_format].format;
2519

2520 2521 2522
	stream->periodic = props->oa_periodic;
	if (stream->periodic)
		stream->period_exponent = props->oa_period_exponent;
2523 2524 2525

	if (stream->ctx) {
		ret = oa_get_render_ctx_id(stream);
2526 2527
		if (ret) {
			DRM_DEBUG("Invalid context id to filter with\n");
2528
			return ret;
2529
		}
2530 2531
	}

2532 2533 2534 2535 2536 2537
	ret = alloc_noa_wait(stream);
	if (ret) {
		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
		goto err_noa_wait_alloc;
	}

2538 2539
	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
	if (!stream->oa_config) {
2540
		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2541
		ret = -EINVAL;
2542
		goto err_config;
2543
	}
2544

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	/* PRM - observability performance counters:
	 *
	 *   OACONTROL, performance counter enable, note:
	 *
	 *   "When this bit is set, in order to have coherent counts,
	 *   RC6 power state and trunk clock gating must be disabled.
	 *   This can be achieved by programming MMIO registers as
	 *   0xA094=0 and 0xA090[31]=1"
	 *
	 *   In our case we are expecting that taking pm + FORCEWAKE
	 *   references will effectively disable RC6.
	 */
2557
	intel_engine_pm_get(stream->engine);
2558
	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2559

2560
	ret = alloc_oa_buffer(stream);
2561 2562 2563
	if (ret)
		goto err_oa_buf_alloc;

2564
	stream->ops = &i915_oa_stream_ops;
2565
	perf->exclusive_stream = stream;
2566

2567
	ret = perf->ops.enable_metric_set(stream);
2568 2569
	if (ret) {
		DRM_DEBUG("Unable to enable metric set\n");
2570
		goto err_enable;
2571
	}
2572

2573 2574 2575
	DRM_DEBUG("opening stream oa config uuid=%s\n",
		  stream->oa_config->uuid);

2576 2577 2578 2579 2580 2581
	hrtimer_init(&stream->poll_check_timer,
		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	stream->poll_check_timer.function = oa_poll_check_timer_cb;
	init_waitqueue_head(&stream->poll_wq);
	spin_lock_init(&stream->oa_buffer.ptr_lock);

2582 2583
	return 0;

2584
err_enable:
2585 2586
	perf->exclusive_stream = NULL;
	perf->ops.disable_metric_set(stream);
2587

2588
	free_oa_buffer(stream);
2589 2590

err_oa_buf_alloc:
2591
	free_oa_configs(stream);
2592

2593
	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2594
	intel_engine_pm_put(stream->engine);
2595 2596

err_config:
2597 2598 2599
	free_noa_wait(stream);

err_noa_wait_alloc:
2600 2601 2602 2603 2604 2605
	if (stream->ctx)
		oa_put_render_ctx_id(stream);

	return ret;
}

2606 2607
void i915_oa_init_reg_state(const struct intel_context *ce,
			    const struct intel_engine_cs *engine)
2608
{
2609
	struct i915_perf_stream *stream;
2610

2611 2612 2613
	/* perf.exclusive_stream serialised by gen8_configure_all_contexts() */
	lockdep_assert_held(&ce->pin_mutex);

2614
	if (engine->class != RENDER_CLASS)
2615 2616
		return;

2617
	stream = engine->i915->perf.exclusive_stream;
2618
	if (stream)
2619
		gen8_update_reg_state_unlocked(ce, stream);
2620 2621
}

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
/**
 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
 * @stream: An i915 perf stream
 * @file: An i915 perf stream file
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @ppos: (inout) file seek position (unused)
 *
 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
 * ensure that if we've successfully copied any data then reporting that takes
 * precedence over any internal error status, so the data isn't lost.
 *
 * For example ret will be -ENOSPC whenever there is more buffered data than
 * can be copied to userspace, but that's only interesting if we weren't able
 * to copy some data because it implies the userspace buffer is too small to
 * receive a single record (and we never split records).
 *
 * Another case with ret == -EFAULT is more of a grey area since it would seem
 * like bad form for userspace to ask us to overrun its buffer, but the user
 * knows best:
 *
 *   http://yarchive.net/comp/linux/partial_reads_writes.html
 *
 * Returns: The number of bytes copied or a negative error code on failure.
 */
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
				     struct file *file,
				     char __user *buf,
				     size_t count,
				     loff_t *ppos)
{
	/* Note we keep the offset (aka bytes read) separate from any
	 * error status so that the final check for whether we return
	 * the bytes read with a higher precedence than any error (see
	 * comment below) doesn't need to be handled/duplicated in
	 * stream->ops->read() implementations.
	 */
	size_t offset = 0;
	int ret = stream->ops->read(stream, buf, count, &offset);

	return offset ?: (ret ?: -EAGAIN);
}

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
/**
 * i915_perf_read - handles read() FOP for i915 perf stream FDs
 * @file: An i915 perf stream file
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @ppos: (inout) file seek position (unused)
 *
 * The entry point for handling a read() on a stream file descriptor from
 * userspace. Most of the work is left to the i915_perf_read_locked() and
 * &i915_perf_stream_ops->read but to save having stream implementations (of
 * which we might have multiple later) we handle blocking read here.
 *
 * We can also consistently treat trying to read from a disabled stream
 * as an IO error so implementations can assume the stream is enabled
 * while reading.
 *
 * Returns: The number of bytes copied or a negative error code on failure.
 */
2683 2684 2685 2686 2687 2688
static ssize_t i915_perf_read(struct file *file,
			      char __user *buf,
			      size_t count,
			      loff_t *ppos)
{
	struct i915_perf_stream *stream = file->private_data;
2689
	struct i915_perf *perf = stream->perf;
2690 2691
	ssize_t ret;

2692 2693 2694 2695 2696 2697 2698
	/* To ensure it's handled consistently we simply treat all reads of a
	 * disabled stream as an error. In particular it might otherwise lead
	 * to a deadlock for blocking file descriptors...
	 */
	if (!stream->enabled)
		return -EIO;

2699
	if (!(file->f_flags & O_NONBLOCK)) {
2700 2701 2702 2703 2704 2705
		/* There's the small chance of false positives from
		 * stream->ops->wait_unlocked.
		 *
		 * E.g. with single context filtering since we only wait until
		 * oabuffer has >= 1 report we don't immediately know whether
		 * any reports really belong to the current context
2706 2707 2708 2709 2710 2711
		 */
		do {
			ret = stream->ops->wait_unlocked(stream);
			if (ret)
				return ret;

2712
			mutex_lock(&perf->lock);
2713 2714
			ret = i915_perf_read_locked(stream, file,
						    buf, count, ppos);
2715
			mutex_unlock(&perf->lock);
2716 2717
		} while (ret == -EAGAIN);
	} else {
2718
		mutex_lock(&perf->lock);
2719
		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2720
		mutex_unlock(&perf->lock);
2721 2722
	}

2723
	/* We allow the poll checking to sometimes report false positive EPOLLIN
2724 2725
	 * events where we might actually report EAGAIN on read() if there's
	 * not really any data available. In this situation though we don't
2726
	 * want to enter a busy loop between poll() reporting a EPOLLIN event
2727 2728
	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
	 * effectively ensures we back off until the next hrtimer callback
2729
	 * before reporting another EPOLLIN event.
2730 2731
	 */
	if (ret >= 0 || ret == -EAGAIN) {
2732 2733 2734
		/* Maybe make ->pollin per-stream state if we support multiple
		 * concurrent streams in the future.
		 */
2735
		stream->pollin = false;
2736 2737
	}

2738 2739 2740
	return ret;
}

2741 2742
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
{
2743 2744
	struct i915_perf_stream *stream =
		container_of(hrtimer, typeof(*stream), poll_check_timer);
2745

2746 2747 2748
	if (oa_buffer_check_unlocked(stream)) {
		stream->pollin = true;
		wake_up(&stream->poll_wq);
2749 2750 2751 2752 2753 2754 2755
	}

	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));

	return HRTIMER_RESTART;
}

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
/**
 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
 * @stream: An i915 perf stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this calls through to
 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
 * will be woken for new stream data.
 *
2766
 * Note: The &perf->lock mutex has been taken to serialize
2767 2768 2769 2770
 * with any non-file-operation driver hooks.
 *
 * Returns: any poll events that are ready without sleeping
 */
2771 2772 2773
static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
				      struct file *file,
				      poll_table *wait)
2774
{
2775
	__poll_t events = 0;
2776 2777 2778

	stream->ops->poll_wait(stream, file, wait);

2779 2780 2781 2782 2783 2784
	/* Note: we don't explicitly check whether there's something to read
	 * here since this path may be very hot depending on what else
	 * userspace is polling, or on the timeout in use. We rely solely on
	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
	 * samples to read.
	 */
2785
	if (stream->pollin)
2786
		events |= EPOLLIN;
2787

2788
	return events;
2789 2790
}

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
/**
 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this ensures
 * poll_wait() gets called with a wait queue that will be woken for new stream
 * data.
 *
 * Note: Implementation deferred to i915_perf_poll_locked()
 *
 * Returns: any poll events that are ready without sleeping
 */
2804
static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2805 2806
{
	struct i915_perf_stream *stream = file->private_data;
2807
	struct i915_perf *perf = stream->perf;
2808
	__poll_t ret;
2809

2810 2811 2812
	mutex_lock(&perf->lock);
	ret = i915_perf_poll_locked(stream, file, wait);
	mutex_unlock(&perf->lock);
2813 2814 2815 2816

	return ret;
}

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
/**
 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
 * @stream: A disabled i915 perf stream
 *
 * [Re]enables the associated capture of data for this stream.
 *
 * If a stream was previously enabled then there's currently no intention
 * to provide userspace any guarantee about the preservation of previously
 * buffered data.
 */
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
static void i915_perf_enable_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		return;

	/* Allow stream->ops->enable() to refer to this */
	stream->enabled = true;

	if (stream->ops->enable)
		stream->ops->enable(stream);
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/**
 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
 * @stream: An enabled i915 perf stream
 *
 * Disables the associated capture of data for this stream.
 *
 * The intention is that disabling an re-enabling a stream will ideally be
 * cheaper than destroying and re-opening a stream with the same configuration,
 * though there are no formal guarantees about what state or buffered data
 * must be retained between disabling and re-enabling a stream.
 *
 * Note: while a stream is disabled it's considered an error for userspace
 * to attempt to read from the stream (-EIO).
 */
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
static void i915_perf_disable_locked(struct i915_perf_stream *stream)
{
	if (!stream->enabled)
		return;

	/* Allow stream->ops->disable() to refer to this */
	stream->enabled = false;

	if (stream->ops->disable)
		stream->ops->disable(stream);
}

2865 2866 2867 2868 2869 2870
/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @stream: An i915 perf stream
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
2871
 * Note: The &perf->lock mutex has been taken to serialize
2872 2873 2874 2875 2876
 * with any non-file-operation driver hooks.
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
				   unsigned int cmd,
				   unsigned long arg)
{
	switch (cmd) {
	case I915_PERF_IOCTL_ENABLE:
		i915_perf_enable_locked(stream);
		return 0;
	case I915_PERF_IOCTL_DISABLE:
		i915_perf_disable_locked(stream);
		return 0;
	}

	return -EINVAL;
}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @file: An i915 perf stream file
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
 * Implementation deferred to i915_perf_ioctl_locked().
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
2904 2905 2906 2907 2908
static long i915_perf_ioctl(struct file *file,
			    unsigned int cmd,
			    unsigned long arg)
{
	struct i915_perf_stream *stream = file->private_data;
2909
	struct i915_perf *perf = stream->perf;
2910 2911
	long ret;

2912
	mutex_lock(&perf->lock);
2913
	ret = i915_perf_ioctl_locked(stream, cmd, arg);
2914
	mutex_unlock(&perf->lock);
2915 2916 2917 2918

	return ret;
}

2919 2920 2921 2922 2923 2924 2925
/**
 * i915_perf_destroy_locked - destroy an i915 perf stream
 * @stream: An i915 perf stream
 *
 * Frees all resources associated with the given i915 perf @stream, disabling
 * any associated data capture in the process.
 *
2926
 * Note: The &perf->lock mutex has been taken to serialize
2927 2928
 * with any non-file-operation driver hooks.
 */
2929 2930 2931 2932 2933 2934 2935 2936
static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		i915_perf_disable_locked(stream);

	if (stream->ops->destroy)
		stream->ops->destroy(stream);

2937
	if (stream->ctx)
2938
		i915_gem_context_put(stream->ctx);
2939 2940 2941 2942

	kfree(stream);
}

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/**
 * i915_perf_release - handles userspace close() of a stream file
 * @inode: anonymous inode associated with file
 * @file: An i915 perf stream file
 *
 * Cleans up any resources associated with an open i915 perf stream file.
 *
 * NB: close() can't really fail from the userspace point of view.
 *
 * Returns: zero on success or a negative error code.
 */
2954 2955 2956
static int i915_perf_release(struct inode *inode, struct file *file)
{
	struct i915_perf_stream *stream = file->private_data;
2957
	struct i915_perf *perf = stream->perf;
2958

2959
	mutex_lock(&perf->lock);
2960
	i915_perf_destroy_locked(stream);
2961
	mutex_unlock(&perf->lock);
2962

2963
	/* Release the reference the perf stream kept on the driver. */
2964
	drm_dev_put(&perf->i915->drm);
2965

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
	return 0;
}


static const struct file_operations fops = {
	.owner		= THIS_MODULE,
	.llseek		= no_llseek,
	.release	= i915_perf_release,
	.poll		= i915_perf_poll,
	.read		= i915_perf_read,
	.unlocked_ioctl	= i915_perf_ioctl,
2977 2978 2979 2980
	/* Our ioctl have no arguments, so it's safe to use the same function
	 * to handle 32bits compatibility.
	 */
	.compat_ioctl   = i915_perf_ioctl,
2981 2982 2983
};


2984 2985
/**
 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2986
 * @perf: i915 perf instance
2987 2988 2989 2990 2991 2992 2993
 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
 * @props: individually validated u64 property value pairs
 * @file: drm file
 *
 * See i915_perf_ioctl_open() for interface details.
 *
 * Implements further stream config validation and stream initialization on
2994
 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
 * taken to serialize with any non-file-operation driver hooks.
 *
 * Note: at this point the @props have only been validated in isolation and
 * it's still necessary to validate that the combination of properties makes
 * sense.
 *
 * In the case where userspace is interested in OA unit metrics then further
 * config validation and stream initialization details will be handled by
 * i915_oa_stream_init(). The code here should only validate config state that
 * will be relevant to all stream types / backends.
 *
 * Returns: zero on success or a negative error code.
 */
3008
static int
3009
i915_perf_open_ioctl_locked(struct i915_perf *perf,
3010 3011 3012 3013 3014 3015 3016
			    struct drm_i915_perf_open_param *param,
			    struct perf_open_properties *props,
			    struct drm_file *file)
{
	struct i915_gem_context *specific_ctx = NULL;
	struct i915_perf_stream *stream = NULL;
	unsigned long f_flags = 0;
3017
	bool privileged_op = true;
3018 3019 3020 3021 3022 3023 3024
	int stream_fd;
	int ret;

	if (props->single_context) {
		u32 ctx_handle = props->ctx_handle;
		struct drm_i915_file_private *file_priv = file->driver_priv;

3025 3026 3027 3028 3029
		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
		if (!specific_ctx) {
			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
				  ctx_handle);
			ret = -ENOENT;
3030 3031 3032 3033
			goto err;
		}
	}

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
	/*
	 * On Haswell the OA unit supports clock gating off for a specific
	 * context and in this mode there's no visibility of metrics for the
	 * rest of the system, which we consider acceptable for a
	 * non-privileged client.
	 *
	 * For Gen8+ the OA unit no longer supports clock gating off for a
	 * specific context and the kernel can't securely stop the counters
	 * from updating as system-wide / global values. Even though we can
	 * filter reports based on the included context ID we can't block
	 * clients from seeing the raw / global counter values via
	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
	 * enable the OA unit by default.
	 */
3048
	if (IS_HASWELL(perf->i915) && specific_ctx)
3049 3050
		privileged_op = false;

3051 3052 3053 3054 3055
	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
	 * we check a dev.i915.perf_stream_paranoid sysctl option
	 * to determine if it's ok to access system wide OA counters
	 * without CAP_SYS_ADMIN privileges.
	 */
3056
	if (privileged_op &&
3057
	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3058
		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
		ret = -EACCES;
		goto err_ctx;
	}

	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
	if (!stream) {
		ret = -ENOMEM;
		goto err_ctx;
	}

3069
	stream->perf = perf;
3070 3071
	stream->ctx = specific_ctx;

3072 3073 3074 3075 3076 3077 3078
	ret = i915_oa_stream_init(stream, param, props);
	if (ret)
		goto err_alloc;

	/* we avoid simply assigning stream->sample_flags = props->sample_flags
	 * to have _stream_init check the combination of sample flags more
	 * thoroughly, but still this is the expected result at this point.
3079
	 */
3080 3081
	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
		ret = -ENODEV;
3082
		goto err_flags;
3083
	}
3084 3085 3086 3087 3088 3089 3090 3091 3092

	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;
	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
		f_flags |= O_NONBLOCK;

	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
	if (stream_fd < 0) {
		ret = stream_fd;
3093
		goto err_flags;
3094 3095 3096 3097 3098
	}

	if (!(param->flags & I915_PERF_FLAG_DISABLED))
		i915_perf_enable_locked(stream);

3099 3100 3101
	/* Take a reference on the driver that will be kept with stream_fd
	 * until its release.
	 */
3102
	drm_dev_get(&perf->i915->drm);
3103

3104 3105
	return stream_fd;

3106
err_flags:
3107 3108 3109 3110 3111
	if (stream->ops->destroy)
		stream->ops->destroy(stream);
err_alloc:
	kfree(stream);
err_ctx:
3112
	if (specific_ctx)
3113
		i915_gem_context_put(specific_ctx);
3114 3115 3116 3117
err:
	return ret;
}

3118
static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3119
{
3120
	return div64_u64(1000000000ULL * (2ULL << exponent),
3121
			 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz);
3122 3123
}

3124 3125
/**
 * read_properties_unlocked - validate + copy userspace stream open properties
3126
 * @perf: i915 perf instance
3127 3128 3129
 * @uprops: The array of u64 key value pairs given by userspace
 * @n_props: The number of key value pairs expected in @uprops
 * @props: The stream configuration built up while validating properties
3130 3131 3132 3133
 *
 * Note this function only validates properties in isolation it doesn't
 * validate that the combination of properties makes sense or that all
 * properties necessary for a particular kind of stream have been set.
3134 3135 3136 3137
 *
 * Note that there currently aren't any ordering requirements for properties so
 * we shouldn't validate or assume anything about ordering here. This doesn't
 * rule out defining new properties with ordering requirements in the future.
3138
 */
3139
static int read_properties_unlocked(struct i915_perf *perf,
3140 3141 3142 3143 3144
				    u64 __user *uprops,
				    u32 n_props,
				    struct perf_open_properties *props)
{
	u64 __user *uprop = uprops;
3145
	u32 i;
3146 3147 3148 3149

	memset(props, 0, sizeof(struct perf_open_properties));

	if (!n_props) {
3150
		DRM_DEBUG("No i915 perf properties given\n");
3151 3152 3153
		return -EINVAL;
	}

3154 3155 3156 3157 3158 3159 3160 3161 3162
	/* At the moment we only support using i915-perf on the RCS. */
	props->engine = intel_engine_lookup_user(perf->i915,
						 I915_ENGINE_CLASS_RENDER,
						 0);
	if (!props->engine) {
		DRM_DEBUG("No RENDER-capable engines\n");
		return -EINVAL;
	}

3163 3164 3165 3166 3167 3168 3169
	/* Considering that ID = 0 is reserved and assuming that we don't
	 * (currently) expect any configurations to ever specify duplicate
	 * values for a particular property ID then the last _PROP_MAX value is
	 * one greater than the maximum number of properties we expect to get
	 * from userspace.
	 */
	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3170
		DRM_DEBUG("More i915 perf properties specified than exist\n");
3171 3172 3173 3174
		return -EINVAL;
	}

	for (i = 0; i < n_props; i++) {
3175
		u64 oa_period, oa_freq_hz;
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
		u64 id, value;
		int ret;

		ret = get_user(id, uprop);
		if (ret)
			return ret;

		ret = get_user(value, uprop + 1);
		if (ret)
			return ret;

3187 3188 3189 3190 3191
		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
			DRM_DEBUG("Unknown i915 perf property ID\n");
			return -EINVAL;
		}

3192 3193 3194 3195 3196
		switch ((enum drm_i915_perf_property_id)id) {
		case DRM_I915_PERF_PROP_CTX_HANDLE:
			props->single_context = 1;
			props->ctx_handle = value;
			break;
3197
		case DRM_I915_PERF_PROP_SAMPLE_OA:
3198 3199
			if (value)
				props->sample_flags |= SAMPLE_OA_REPORT;
3200 3201
			break;
		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3202
			if (value == 0) {
3203
				DRM_DEBUG("Unknown OA metric set ID\n");
3204 3205 3206 3207 3208 3209
				return -EINVAL;
			}
			props->metrics_set = value;
			break;
		case DRM_I915_PERF_PROP_OA_FORMAT:
			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3210 3211
				DRM_DEBUG("Out-of-range OA report format %llu\n",
					  value);
3212 3213
				return -EINVAL;
			}
3214
			if (!perf->oa_formats[value].size) {
3215 3216
				DRM_DEBUG("Unsupported OA report format %llu\n",
					  value);
3217 3218 3219 3220 3221 3222
				return -EINVAL;
			}
			props->oa_format = value;
			break;
		case DRM_I915_PERF_PROP_OA_EXPONENT:
			if (value > OA_EXPONENT_MAX) {
3223 3224
				DRM_DEBUG("OA timer exponent too high (> %u)\n",
					 OA_EXPONENT_MAX);
3225 3226 3227
				return -EINVAL;
			}

3228
			/* Theoretically we can program the OA unit to sample
3229 3230 3231
			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
			 * for BXT. We don't allow such high sampling
			 * frequencies by default unless root.
3232
			 */
3233

3234
			BUILD_BUG_ON(sizeof(oa_period) != 8);
3235
			oa_period = oa_exponent_to_ns(perf, value);
3236 3237 3238 3239 3240 3241

			/* This check is primarily to ensure that oa_period <=
			 * UINT32_MAX (before passing to do_div which only
			 * accepts a u32 denominator), but we can also skip
			 * checking anything < 1Hz which implicitly can't be
			 * limited via an integer oa_max_sample_rate.
3242
			 */
3243 3244 3245 3246 3247 3248 3249 3250 3251
			if (oa_period <= NSEC_PER_SEC) {
				u64 tmp = NSEC_PER_SEC;
				do_div(tmp, oa_period);
				oa_freq_hz = tmp;
			} else
				oa_freq_hz = 0;

			if (oa_freq_hz > i915_oa_max_sample_rate &&
			    !capable(CAP_SYS_ADMIN)) {
3252
				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
3253
					  i915_oa_max_sample_rate);
3254 3255 3256 3257 3258 3259
				return -EACCES;
			}

			props->oa_periodic = true;
			props->oa_period_exponent = value;
			break;
3260
		case DRM_I915_PERF_PROP_MAX:
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
			MISSING_CASE(id);
			return -EINVAL;
		}

		uprop += 2;
	}

	return 0;
}

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
/**
 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
 * @dev: drm device
 * @data: ioctl data copied from userspace (unvalidated)
 * @file: drm file
 *
 * Validates the stream open parameters given by userspace including flags
 * and an array of u64 key, value pair properties.
 *
 * Very little is assumed up front about the nature of the stream being
 * opened (for instance we don't assume it's for periodic OA unit metrics). An
 * i915-perf stream is expected to be a suitable interface for other forms of
 * buffered data written by the GPU besides periodic OA metrics.
 *
 * Note we copy the properties from userspace outside of the i915 perf
 * mutex to avoid an awkward lockdep with mmap_sem.
 *
 * Most of the implementation details are handled by
3289
 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3290 3291 3292 3293 3294
 * mutex for serializing with any non-file-operation driver hooks.
 *
 * Return: A newly opened i915 Perf stream file descriptor or negative
 * error code on failure.
 */
3295 3296 3297
int i915_perf_open_ioctl(struct drm_device *dev, void *data,
			 struct drm_file *file)
{
3298
	struct i915_perf *perf = &to_i915(dev)->perf;
3299 3300 3301 3302 3303
	struct drm_i915_perf_open_param *param = data;
	struct perf_open_properties props;
	u32 known_open_flags;
	int ret;

3304
	if (!perf->i915) {
3305
		DRM_DEBUG("i915 perf interface not available for this system\n");
3306 3307 3308 3309 3310 3311 3312
		return -ENOTSUPP;
	}

	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
			   I915_PERF_FLAG_FD_NONBLOCK |
			   I915_PERF_FLAG_DISABLED;
	if (param->flags & ~known_open_flags) {
3313
		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3314 3315 3316
		return -EINVAL;
	}

3317
	ret = read_properties_unlocked(perf,
3318 3319 3320 3321 3322 3323
				       u64_to_user_ptr(param->properties_ptr),
				       param->num_properties,
				       &props);
	if (ret)
		return ret;

3324 3325 3326
	mutex_lock(&perf->lock);
	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
	mutex_unlock(&perf->lock);
3327 3328 3329 3330

	return ret;
}

3331 3332
/**
 * i915_perf_register - exposes i915-perf to userspace
3333
 * @i915: i915 device instance
3334 3335 3336 3337 3338
 *
 * In particular OA metric sets are advertised under a sysfs metrics/
 * directory allowing userspace to enumerate valid IDs that can be
 * used to open an i915-perf stream.
 */
3339
void i915_perf_register(struct drm_i915_private *i915)
3340
{
3341
	struct i915_perf *perf = &i915->perf;
3342 3343
	int ret;

3344
	if (!perf->i915)
3345 3346 3347 3348 3349 3350
		return;

	/* To be sure we're synchronized with an attempted
	 * i915_perf_open_ioctl(); considering that we register after
	 * being exposed to userspace.
	 */
3351
	mutex_lock(&perf->lock);
3352

3353
	perf->metrics_kobj =
3354
		kobject_create_and_add("metrics",
3355 3356
				       &i915->drm.primary->kdev->kobj);
	if (!perf->metrics_kobj)
3357 3358
		goto exit;

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
	sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr);

	if (INTEL_GEN(i915) >= 11) {
		i915_perf_load_test_config_icl(i915);
	} else if (IS_CANNONLAKE(i915)) {
		i915_perf_load_test_config_cnl(i915);
	} else if (IS_COFFEELAKE(i915)) {
		if (IS_CFL_GT2(i915))
			i915_perf_load_test_config_cflgt2(i915);
		if (IS_CFL_GT3(i915))
			i915_perf_load_test_config_cflgt3(i915);
	} else if (IS_GEMINILAKE(i915)) {
		i915_perf_load_test_config_glk(i915);
	} else if (IS_KABYLAKE(i915)) {
		if (IS_KBL_GT2(i915))
			i915_perf_load_test_config_kblgt2(i915);
		else if (IS_KBL_GT3(i915))
			i915_perf_load_test_config_kblgt3(i915);
	} else if (IS_BROXTON(i915)) {
		i915_perf_load_test_config_bxt(i915);
	} else if (IS_SKYLAKE(i915)) {
		if (IS_SKL_GT2(i915))
			i915_perf_load_test_config_sklgt2(i915);
		else if (IS_SKL_GT3(i915))
			i915_perf_load_test_config_sklgt3(i915);
		else if (IS_SKL_GT4(i915))
			i915_perf_load_test_config_sklgt4(i915);
	} else if (IS_CHERRYVIEW(i915)) {
		i915_perf_load_test_config_chv(i915);
	} else if (IS_BROADWELL(i915)) {
		i915_perf_load_test_config_bdw(i915);
	} else if (IS_HASWELL(i915)) {
		i915_perf_load_test_config_hsw(i915);
	}

	if (perf->test_config.id == 0)
3395 3396
		goto sysfs_error;

3397 3398
	ret = sysfs_create_group(perf->metrics_kobj,
				 &perf->test_config.sysfs_metric);
3399 3400
	if (ret)
		goto sysfs_error;
3401

3402 3403
	perf->test_config.perf = perf;
	kref_init(&perf->test_config.ref);
3404

3405 3406 3407
	goto exit;

sysfs_error:
3408 3409
	kobject_put(perf->metrics_kobj);
	perf->metrics_kobj = NULL;
3410

3411
exit:
3412
	mutex_unlock(&perf->lock);
3413 3414
}

3415 3416
/**
 * i915_perf_unregister - hide i915-perf from userspace
3417
 * @i915: i915 device instance
3418 3419 3420 3421 3422 3423
 *
 * i915-perf state cleanup is split up into an 'unregister' and
 * 'deinit' phase where the interface is first hidden from
 * userspace by i915_perf_unregister() before cleaning up
 * remaining state in i915_perf_fini().
 */
3424
void i915_perf_unregister(struct drm_i915_private *i915)
3425
{
3426 3427 3428
	struct i915_perf *perf = &i915->perf;

	if (!perf->metrics_kobj)
3429 3430
		return;

3431 3432
	sysfs_remove_group(perf->metrics_kobj,
			   &perf->test_config.sysfs_metric);
3433

3434 3435
	kobject_put(perf->metrics_kobj);
	perf->metrics_kobj = NULL;
3436 3437
}

3438
static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
{
	static const i915_reg_t flex_eu_regs[] = {
		EU_PERF_CNTL0,
		EU_PERF_CNTL1,
		EU_PERF_CNTL2,
		EU_PERF_CNTL3,
		EU_PERF_CNTL4,
		EU_PERF_CNTL5,
		EU_PERF_CNTL6,
	};
	int i;

	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3452
		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3453 3454 3455 3456 3457
			return true;
	}
	return false;
}

3458
static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3459
{
3460 3461 3462 3463 3464 3465
	return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
		addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
		(addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
		 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
		(addr >= i915_mmio_reg_offset(OACEC0_0) &&
		 addr <= i915_mmio_reg_offset(OACEC7_1));
3466 3467
}

3468
static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3469
{
3470 3471 3472 3473 3474 3475 3476
	return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
		(addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
		 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
		(addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
		 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
		(addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
		 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3477 3478
}

3479
static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3480
{
3481
	return gen7_is_valid_mux_addr(perf, addr) ||
3482 3483 3484
		addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
		(addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
		 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3485 3486
}

3487
static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3488
{
3489
	return gen8_is_valid_mux_addr(perf, addr) ||
3490
		addr == i915_mmio_reg_offset(GEN10_NOA_WRITE_HIGH) ||
3491 3492
		(addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
		 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3493 3494
}

3495
static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3496
{
3497
	return gen7_is_valid_mux_addr(perf, addr) ||
3498
		(addr >= 0x25100 && addr <= 0x2FF90) ||
3499 3500 3501
		(addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
		 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
		addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3502 3503
}

3504
static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3505
{
3506
	return gen7_is_valid_mux_addr(perf, addr) ||
3507 3508 3509
		(addr >= 0x182300 && addr <= 0x1823A4);
}

3510
static u32 mask_reg_value(u32 reg, u32 val)
3511 3512 3513 3514 3515
{
	/* HALF_SLICE_CHICKEN2 is programmed with a the
	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
	 * programmed by userspace doesn't change this.
	 */
3516
	if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3517 3518 3519 3520 3521 3522
		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);

	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
	 * indicated by its name and a bunch of selection fields used by OA
	 * configs.
	 */
3523
	if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3524 3525 3526 3527 3528
		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);

	return val;
}

3529 3530
static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
					 u32 __user *regs,
					 u32 n_regs)
{
	struct i915_oa_reg *oa_regs;
	int err;
	u32 i;

	if (!n_regs)
		return NULL;

3541
	if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
		return ERR_PTR(-EFAULT);

	/* No is_valid function means we're not allowing any register to be programmed. */
	GEM_BUG_ON(!is_valid);
	if (!is_valid)
		return ERR_PTR(-EINVAL);

	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
	if (!oa_regs)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < n_regs; i++) {
		u32 addr, value;

		err = get_user(addr, regs);
		if (err)
			goto addr_err;

3560
		if (!is_valid(perf, addr)) {
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
			err = -EINVAL;
			goto addr_err;
		}

		err = get_user(value, regs + 1);
		if (err)
			goto addr_err;

		oa_regs[i].addr = _MMIO(addr);
		oa_regs[i].value = mask_reg_value(addr, value);

		regs += 2;
	}

	return oa_regs;

addr_err:
	kfree(oa_regs);
	return ERR_PTR(err);
}

static ssize_t show_dynamic_id(struct device *dev,
			       struct device_attribute *attr,
			       char *buf)
{
	struct i915_oa_config *oa_config =
		container_of(attr, typeof(*oa_config), sysfs_metric_id);

	return sprintf(buf, "%d\n", oa_config->id);
}

3593
static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3594 3595
					 struct i915_oa_config *oa_config)
{
3596
	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	oa_config->sysfs_metric_id.attr.name = "id";
	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
	oa_config->sysfs_metric_id.show = show_dynamic_id;
	oa_config->sysfs_metric_id.store = NULL;

	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
	oa_config->attrs[1] = NULL;

	oa_config->sysfs_metric.name = oa_config->uuid;
	oa_config->sysfs_metric.attrs = oa_config->attrs;

3608
	return sysfs_create_group(perf->metrics_kobj,
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
				  &oa_config->sysfs_metric);
}

/**
 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
 * @dev: drm device
 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
 *        userspace (unvalidated)
 * @file: drm file
 *
 * Validates the submitted OA register to be saved into a new OA config that
 * can then be used for programming the OA unit and its NOA network.
 *
 * Returns: A new allocated config number to be used with the perf open ioctl
 * or a negative error code on failure.
 */
int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
{
3628
	struct i915_perf *perf = &to_i915(dev)->perf;
3629 3630
	struct drm_i915_perf_oa_config *args = data;
	struct i915_oa_config *oa_config, *tmp;
3631
	static struct i915_oa_reg *regs;
3632 3633
	int err, id;

3634
	if (!perf->i915) {
3635 3636 3637 3638
		DRM_DEBUG("i915 perf interface not available for this system\n");
		return -ENOTSUPP;
	}

3639
	if (!perf->metrics_kobj) {
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
		return -EINVAL;
	}

	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
		return -EACCES;
	}

	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
		DRM_DEBUG("No OA registers given\n");
		return -EINVAL;
	}

	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
	if (!oa_config) {
		DRM_DEBUG("Failed to allocate memory for the OA config\n");
		return -ENOMEM;
	}

3662 3663
	oa_config->perf = perf;
	kref_init(&oa_config->ref);
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676

	if (!uuid_is_valid(args->uuid)) {
		DRM_DEBUG("Invalid uuid format for OA config\n");
		err = -EINVAL;
		goto reg_err;
	}

	/* Last character in oa_config->uuid will be 0 because oa_config is
	 * kzalloc.
	 */
	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));

	oa_config->mux_regs_len = args->n_mux_regs;
3677 3678 3679 3680
	regs = alloc_oa_regs(perf,
			     perf->ops.is_valid_mux_reg,
			     u64_to_user_ptr(args->mux_regs_ptr),
			     args->n_mux_regs);
3681

3682
	if (IS_ERR(regs)) {
3683
		DRM_DEBUG("Failed to create OA config for mux_regs\n");
3684
		err = PTR_ERR(regs);
3685 3686
		goto reg_err;
	}
3687
	oa_config->mux_regs = regs;
3688 3689

	oa_config->b_counter_regs_len = args->n_boolean_regs;
3690 3691 3692 3693
	regs = alloc_oa_regs(perf,
			     perf->ops.is_valid_b_counter_reg,
			     u64_to_user_ptr(args->boolean_regs_ptr),
			     args->n_boolean_regs);
3694

3695
	if (IS_ERR(regs)) {
3696
		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3697
		err = PTR_ERR(regs);
3698 3699
		goto reg_err;
	}
3700
	oa_config->b_counter_regs = regs;
3701

3702
	if (INTEL_GEN(perf->i915) < 8) {
3703 3704 3705 3706 3707 3708
		if (args->n_flex_regs != 0) {
			err = -EINVAL;
			goto reg_err;
		}
	} else {
		oa_config->flex_regs_len = args->n_flex_regs;
3709 3710 3711 3712
		regs = alloc_oa_regs(perf,
				     perf->ops.is_valid_flex_reg,
				     u64_to_user_ptr(args->flex_regs_ptr),
				     args->n_flex_regs);
3713

3714
		if (IS_ERR(regs)) {
3715
			DRM_DEBUG("Failed to create OA config for flex_regs\n");
3716
			err = PTR_ERR(regs);
3717 3718
			goto reg_err;
		}
3719
		oa_config->flex_regs = regs;
3720 3721
	}

3722
	err = mutex_lock_interruptible(&perf->metrics_lock);
3723 3724 3725 3726 3727 3728
	if (err)
		goto reg_err;

	/* We shouldn't have too many configs, so this iteration shouldn't be
	 * too costly.
	 */
3729
	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
3730 3731 3732 3733 3734 3735 3736
		if (!strcmp(tmp->uuid, oa_config->uuid)) {
			DRM_DEBUG("OA config already exists with this uuid\n");
			err = -EADDRINUSE;
			goto sysfs_err;
		}
	}

3737
	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
3738 3739 3740 3741 3742 3743
	if (err) {
		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
		goto sysfs_err;
	}

	/* Config id 0 is invalid, id 1 for kernel stored test config. */
3744
	oa_config->id = idr_alloc(&perf->metrics_idr,
3745 3746 3747 3748 3749 3750 3751 3752
				  oa_config, 2,
				  0, GFP_KERNEL);
	if (oa_config->id < 0) {
		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
		err = oa_config->id;
		goto sysfs_err;
	}

3753
	mutex_unlock(&perf->metrics_lock);
3754

3755 3756
	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);

3757 3758 3759
	return oa_config->id;

sysfs_err:
3760
	mutex_unlock(&perf->metrics_lock);
3761
reg_err:
3762
	i915_oa_config_put(oa_config);
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	DRM_DEBUG("Failed to add new OA config\n");
	return err;
}

/**
 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
 * @dev: drm device
 * @data: ioctl data (pointer to u64 integer) copied from userspace
 * @file: drm file
 *
 * Configs can be removed while being used, the will stop appearing in sysfs
 * and their content will be freed when the stream using the config is closed.
 *
 * Returns: 0 on success or a negative error code on failure.
 */
int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
				  struct drm_file *file)
{
3781
	struct i915_perf *perf = &to_i915(dev)->perf;
3782 3783 3784 3785
	u64 *arg = data;
	struct i915_oa_config *oa_config;
	int ret;

3786
	if (!perf->i915) {
3787 3788 3789 3790 3791 3792 3793 3794 3795
		DRM_DEBUG("i915 perf interface not available for this system\n");
		return -ENOTSUPP;
	}

	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
		return -EACCES;
	}

3796
	ret = mutex_lock_interruptible(&perf->metrics_lock);
3797
	if (ret)
3798
		return ret;
3799

3800
	oa_config = idr_find(&perf->metrics_idr, *arg);
3801 3802 3803
	if (!oa_config) {
		DRM_DEBUG("Failed to remove unknown OA config\n");
		ret = -ENOENT;
3804
		goto err_unlock;
3805 3806 3807 3808
	}

	GEM_BUG_ON(*arg != oa_config->id);

3809
	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
3810

3811
	idr_remove(&perf->metrics_idr, *arg);
3812

3813 3814
	mutex_unlock(&perf->metrics_lock);

3815 3816
	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);

3817 3818 3819
	i915_oa_config_put(oa_config);

	return 0;
3820

3821
err_unlock:
3822
	mutex_unlock(&perf->metrics_lock);
3823 3824 3825
	return ret;
}

3826 3827 3828 3829 3830 3831 3832
static struct ctl_table oa_table[] = {
	{
	 .procname = "perf_stream_paranoid",
	 .data = &i915_perf_stream_paranoid,
	 .maxlen = sizeof(i915_perf_stream_paranoid),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
3833 3834
	 .extra1 = SYSCTL_ZERO,
	 .extra2 = SYSCTL_ONE,
3835
	 },
3836 3837 3838 3839 3840 3841
	{
	 .procname = "oa_max_sample_rate",
	 .data = &i915_oa_max_sample_rate,
	 .maxlen = sizeof(i915_oa_max_sample_rate),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
3842
	 .extra1 = SYSCTL_ZERO,
3843 3844
	 .extra2 = &oa_sample_rate_hard_limit,
	 },
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	{}
};

static struct ctl_table i915_root[] = {
	{
	 .procname = "i915",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = oa_table,
	 },
	{}
};

static struct ctl_table dev_root[] = {
	{
	 .procname = "dev",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = i915_root,
	 },
	{}
};

3868 3869
/**
 * i915_perf_init - initialize i915-perf state on module load
3870
 * @i915: i915 device instance
3871 3872 3873 3874 3875 3876
 *
 * Initializes i915-perf state without exposing anything to userspace.
 *
 * Note: i915-perf initialization is split into an 'init' and 'register'
 * phase with the i915_perf_register() exposing state to userspace.
 */
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
void i915_perf_init(struct drm_i915_private *i915)
{
	struct i915_perf *perf = &i915->perf;

	/* XXX const struct i915_perf_ops! */

	if (IS_HASWELL(i915)) {
		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
		perf->ops.is_valid_flex_reg = NULL;
		perf->ops.enable_metric_set = hsw_enable_metric_set;
		perf->ops.disable_metric_set = hsw_disable_metric_set;
		perf->ops.oa_enable = gen7_oa_enable;
		perf->ops.oa_disable = gen7_oa_disable;
		perf->ops.read = gen7_oa_read;
		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;

		perf->oa_formats = hsw_oa_formats;
	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
3896 3897 3898 3899 3900 3901
		/* Note: that although we could theoretically also support the
		 * legacy ringbuffer mode on BDW (and earlier iterations of
		 * this driver, before upstreaming did this) it didn't seem
		 * worth the complexity to maintain now that BDW+ enable
		 * execlist mode by default.
		 */
3902
		perf->oa_formats = gen8_plus_oa_formats;
3903

3904 3905 3906 3907
		perf->ops.oa_enable = gen8_oa_enable;
		perf->ops.oa_disable = gen8_oa_disable;
		perf->ops.read = gen8_oa_read;
		perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3908

3909 3910
		if (IS_GEN_RANGE(i915, 8, 9)) {
			perf->ops.is_valid_b_counter_reg =
3911
				gen7_is_valid_b_counter_addr;
3912
			perf->ops.is_valid_mux_reg =
3913
				gen8_is_valid_mux_addr;
3914
			perf->ops.is_valid_flex_reg =
3915
				gen8_is_valid_flex_addr;
3916

3917 3918
			if (IS_CHERRYVIEW(i915)) {
				perf->ops.is_valid_mux_reg =
3919 3920
					chv_is_valid_mux_addr;
			}
3921

3922 3923
			perf->ops.enable_metric_set = gen8_enable_metric_set;
			perf->ops.disable_metric_set = gen8_disable_metric_set;
3924

3925 3926 3927
			if (IS_GEN(i915, 8)) {
				perf->ctx_oactxctrl_offset = 0x120;
				perf->ctx_flexeu0_offset = 0x2ce;
3928

3929
				perf->gen8_valid_ctx_bit = BIT(25);
3930
			} else {
3931 3932
				perf->ctx_oactxctrl_offset = 0x128;
				perf->ctx_flexeu0_offset = 0x3de;
3933

3934
				perf->gen8_valid_ctx_bit = BIT(16);
3935
			}
3936 3937
		} else if (IS_GEN_RANGE(i915, 10, 11)) {
			perf->ops.is_valid_b_counter_reg =
3938
				gen7_is_valid_b_counter_addr;
3939
			perf->ops.is_valid_mux_reg =
3940
				gen10_is_valid_mux_addr;
3941
			perf->ops.is_valid_flex_reg =
3942 3943
				gen8_is_valid_flex_addr;

3944 3945
			perf->ops.enable_metric_set = gen8_enable_metric_set;
			perf->ops.disable_metric_set = gen10_disable_metric_set;
3946

3947 3948 3949
			if (IS_GEN(i915, 10)) {
				perf->ctx_oactxctrl_offset = 0x128;
				perf->ctx_flexeu0_offset = 0x3de;
3950
			} else {
3951 3952
				perf->ctx_oactxctrl_offset = 0x124;
				perf->ctx_flexeu0_offset = 0x78e;
3953
			}
3954
			perf->gen8_valid_ctx_bit = BIT(16);
3955 3956
		}
	}
3957

3958 3959
	if (perf->ops.enable_metric_set) {
		mutex_init(&perf->lock);
3960

3961
		oa_sample_rate_hard_limit = 1000 *
3962 3963
			(RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2);
		perf->sysctl_header = register_sysctl_table(dev_root);
3964

3965 3966
		mutex_init(&perf->metrics_lock);
		idr_init(&perf->metrics_idr);
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
		/* We set up some ratelimit state to potentially throttle any
		 * _NOTES about spurious, invalid OA reports which we don't
		 * forward to userspace.
		 *
		 * We print a _NOTE about any throttling when closing the
		 * stream instead of waiting until driver _fini which no one
		 * would ever see.
		 *
		 * Using the same limiting factors as printk_ratelimit()
		 */
3978
		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
3979 3980 3981 3982
		/* Since we use a DRM_NOTE for spurious reports it would be
		 * inconsistent to let __ratelimit() automatically print a
		 * warning for throttling.
		 */
3983
		ratelimit_set_flags(&perf->spurious_report_rs,
3984 3985
				    RATELIMIT_MSG_ON_RELEASE);

3986 3987 3988
		atomic64_set(&perf->noa_programming_delay,
			     500 * 1000 /* 500us */);

3989
		perf->i915 = i915;
3990
	}
3991 3992
}

3993 3994
static int destroy_config(int id, void *p, void *data)
{
3995
	i915_oa_config_put(p);
3996 3997 3998
	return 0;
}

3999 4000
/**
 * i915_perf_fini - Counter part to i915_perf_init()
4001
 * @i915: i915 device instance
4002
 */
4003
void i915_perf_fini(struct drm_i915_private *i915)
4004
{
4005
	struct i915_perf *perf = &i915->perf;
4006

4007 4008
	if (!perf->i915)
		return;
4009

4010 4011
	idr_for_each(&perf->metrics_idr, destroy_config, perf);
	idr_destroy(&perf->metrics_idr);
4012

4013
	unregister_sysctl_table(perf->sysctl_header);
4014

4015 4016
	memset(&perf->ops, 0, sizeof(perf->ops));
	perf->i915 = NULL;
4017
}
4018

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
/**
 * i915_perf_ioctl_version - Version of the i915-perf subsystem
 *
 * This version number is used by userspace to detect available features.
 */
int i915_perf_ioctl_version(void)
{
	return 1;
}

4029 4030 4031
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_perf.c"
#endif