i915_perf.c 132.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright © 2015-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *   Robert Bragg <robert@sixbynine.org>
 */

27 28

/**
29
 * DOC: i915 Perf Overview
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *
 * Gen graphics supports a large number of performance counters that can help
 * driver and application developers understand and optimize their use of the
 * GPU.
 *
 * This i915 perf interface enables userspace to configure and open a file
 * descriptor representing a stream of GPU metrics which can then be read() as
 * a stream of sample records.
 *
 * The interface is particularly suited to exposing buffered metrics that are
 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
 *
 * Streams representing a single context are accessible to applications with a
 * corresponding drm file descriptor, such that OpenGL can use the interface
 * without special privileges. Access to system-wide metrics requires root
 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
 * sysctl option.
 *
48 49 50 51
 */

/**
 * DOC: i915 Perf History and Comparison with Core Perf
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 *
 * The interface was initially inspired by the core Perf infrastructure but
 * some notable differences are:
 *
 * i915 perf file descriptors represent a "stream" instead of an "event"; where
 * a perf event primarily corresponds to a single 64bit value, while a stream
 * might sample sets of tightly-coupled counters, depending on the
 * configuration.  For example the Gen OA unit isn't designed to support
 * orthogonal configurations of individual counters; it's configured for a set
 * of related counters. Samples for an i915 perf stream capturing OA metrics
 * will include a set of counter values packed in a compact HW specific format.
 * The OA unit supports a number of different packing formats which can be
 * selected by the user opening the stream. Perf has support for grouping
 * events, but each event in the group is configured, validated and
 * authenticated individually with separate system calls.
 *
 * i915 perf stream configurations are provided as an array of u64 (key,value)
 * pairs, instead of a fixed struct with multiple miscellaneous config members,
 * interleaved with event-type specific members.
 *
 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
 * The supported metrics are being written to memory by the GPU unsynchronized
 * with the CPU, using HW specific packing formats for counter sets. Sometimes
 * the constraints on HW configuration require reports to be filtered before it
 * would be acceptable to expose them to unprivileged applications - to hide
 * the metrics of other processes/contexts. For these use cases a read() based
 * interface is a good fit, and provides an opportunity to filter data as it
 * gets copied from the GPU mapped buffers to userspace buffers.
 *
 *
82 83
 * Issues hit with first prototype based on Core Perf
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 *
 * The first prototype of this driver was based on the core perf
 * infrastructure, and while we did make that mostly work, with some changes to
 * perf, we found we were breaking or working around too many assumptions baked
 * into perf's currently cpu centric design.
 *
 * In the end we didn't see a clear benefit to making perf's implementation and
 * interface more complex by changing design assumptions while we knew we still
 * wouldn't be able to use any existing perf based userspace tools.
 *
 * Also considering the Gen specific nature of the Observability hardware and
 * how userspace will sometimes need to combine i915 perf OA metrics with
 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
 * expecting the interface to be used by a platform specific userspace such as
 * OpenGL or tools. This is to say; we aren't inherently missing out on having
 * a standard vendor/architecture agnostic interface by not using perf.
 *
 *
 * For posterity, in case we might re-visit trying to adapt core perf to be
 * better suited to exposing i915 metrics these were the main pain points we
 * hit:
 *
 * - The perf based OA PMU driver broke some significant design assumptions:
 *
 *   Existing perf pmus are used for profiling work on a cpu and we were
 *   introducing the idea of _IS_DEVICE pmus with different security
 *   implications, the need to fake cpu-related data (such as user/kernel
 *   registers) to fit with perf's current design, and adding _DEVICE records
 *   as a way to forward device-specific status records.
 *
 *   The OA unit writes reports of counters into a circular buffer, without
 *   involvement from the CPU, making our PMU driver the first of a kind.
 *
 *   Given the way we were periodically forward data from the GPU-mapped, OA
 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 *   we were sampling too fast and so we had to subvert its throttling checks.
 *
 *   Perf supports groups of counters and allows those to be read via
 *   transactions internally but transactions currently seem designed to be
 *   explicitly initiated from the cpu (say in response to a userspace read())
 *   and while we could pull a report out of the OA buffer we can't
 *   trigger a report from the cpu on demand.
 *
 *   Related to being report based; the OA counters are configured in HW as a
 *   set while perf generally expects counter configurations to be orthogonal.
 *   Although counters can be associated with a group leader as they are
 *   opened, there's no clear precedent for being able to provide group-wide
 *   configuration attributes (for example we want to let userspace choose the
 *   OA unit report format used to capture all counters in a set, or specify a
 *   GPU context to filter metrics on). We avoided using perf's grouping
 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 *   field. This suited our userspace well considering how coupled the counters
 *   are when dealing with normalizing. It would be inconvenient to split
 *   counters up into separate events, only to require userspace to recombine
 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 *   for combining with the side-band raw reports it captures using
 *   MI_REPORT_PERF_COUNT commands.
 *
142
 *   - As a side note on perf's grouping feature; there was also some concern
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 *     would quite drastically inflate our sample sizes, which would likely
 *     lower the effective sampling resolutions we could use when the available
 *     memory bandwidth is limited.
 *
 *     With the OA unit's report formats, counters are packed together as 32
 *     or 40bit values, with the largest report size being 256 bytes.
 *
 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 *
 *   Related to counter orthogonality; we can't time share the OA unit, while
 *   event scheduling is a central design idea within perf for allowing
 *   userspace to open + enable more events than can be configured in HW at any
 *   one time.  The OA unit is not designed to allow re-configuration while in
 *   use. We can't reconfigure the OA unit without losing internal OA unit
 *   state which we can't access explicitly to save and restore. Reconfiguring
 *   the OA unit is also relatively slow, involving ~100 register writes. From
 *   userspace Mesa also depends on a stable OA configuration when emitting
 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 *   disabled while there are outstanding MI_RPC commands lest we hang the
 *   command streamer.
 *
 *   The contents of sample records aren't extensible by device drivers (i.e.
 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 *   into sample records by using the 'raw' field, but it's tricky to pack more
 *   than one thing into this field because events/core.c currently only lets a
 *   pmu give a single raw data pointer plus len which will be copied into the
 *   ring buffer. To include more than the OA report we'd have to copy the
 *   report into an intermediate larger buffer. I'd been considering allowing a
 *   vector of data+len values to be specified for copying the raw data, but
 *   it felt like a kludge to being using the raw field for this purpose.
 *
 * - It felt like our perf based PMU was making some technical compromises
 *   just for the sake of using perf:
 *
 *   perf_event_open() requires events to either relate to a pid or a specific
 *   cpu core, while our device pmu related to neither.  Events opened with a
 *   pid will be automatically enabled/disabled according to the scheduling of
 *   that process - so not appropriate for us. When an event is related to a
 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 *   perf events for a specific cpu. This was workable but it meant the
 *   majority of the OA driver ran in atomic context, including all OA report
 *   forwarding, which wasn't really necessary in our case and seems to make
 *   our locking requirements somewhat complex as we handled the interaction
 *   with the rest of the i915 driver.
 */

194
#include <linux/anon_inodes.h>
195
#include <linux/sizes.h>
196
#include <linux/uuid.h>
197

198
#include "gem/i915_gem_context.h"
199
#include "gt/intel_engine_pm.h"
200
#include "gt/intel_engine_user.h"
201
#include "gt/intel_gt.h"
202
#include "gt/intel_lrc_reg.h"
203
#include "gt/intel_ring.h"
204

205
#include "i915_drv.h"
206
#include "i915_perf.h"
207 208 209 210 211 212 213 214 215 216 217 218 219 220
#include "oa/i915_oa_hsw.h"
#include "oa/i915_oa_bdw.h"
#include "oa/i915_oa_chv.h"
#include "oa/i915_oa_sklgt2.h"
#include "oa/i915_oa_sklgt3.h"
#include "oa/i915_oa_sklgt4.h"
#include "oa/i915_oa_bxt.h"
#include "oa/i915_oa_kblgt2.h"
#include "oa/i915_oa_kblgt3.h"
#include "oa/i915_oa_glk.h"
#include "oa/i915_oa_cflgt2.h"
#include "oa/i915_oa_cflgt3.h"
#include "oa/i915_oa_cnl.h"
#include "oa/i915_oa_icl.h"
221
#include "oa/i915_oa_tgl.h"
222

223 224 225 226 227 228 229
/* HW requires this to be a power of two, between 128k and 16M, though driver
 * is currently generally designed assuming the largest 16M size is used such
 * that the overflow cases are unlikely in normal operation.
 */
#define OA_BUFFER_SIZE		SZ_16M

#define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
230

231 232 233 234
/**
 * DOC: OA Tail Pointer Race
 *
 * There's a HW race condition between OA unit tail pointer register updates and
235
 * writes to memory whereby the tail pointer can sometimes get ahead of what's
236 237 238 239 240
 * been written out to the OA buffer so far (in terms of what's visible to the
 * CPU).
 *
 * Although this can be observed explicitly while copying reports to userspace
 * by checking for a zeroed report-id field in tail reports, we want to account
241
 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
242 243 244 245 246 247 248 249 250 251 252
 * read() attempts.
 *
 * In effect we define a tail pointer for reading that lags the real tail
 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
 * time for the corresponding reports to become visible to the CPU.
 *
 * To manage this we actually track two tail pointers:
 *  1) An 'aging' tail with an associated timestamp that is tracked until we
 *     can trust the corresponding data is visible to the CPU; at which point
 *     it is considered 'aged'.
 *  2) An 'aged' tail that can be used for read()ing.
253
 *
254
 * The two separate pointers let us decouple read()s from tail pointer aging.
255
 *
256
 * The tail pointers are checked and updated at a limited rate within a hrtimer
257
 * callback (the same callback that is used for delivering EPOLLIN events)
258
 *
259 260 261 262
 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
 * indicates that an updated tail pointer is needed.
 *
 * Most of the implementation details for this workaround are in
263
 * oa_buffer_check_unlocked() and _append_oa_reports()
264 265 266 267 268 269 270
 *
 * Note for posterity: previously the driver used to define an effective tail
 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 * This was flawed considering that the OA unit may also automatically generate
 * non-periodic reports (such as on context switch) or the OA unit may be
 * enabled without any periodic sampling.
271 272
 */
#define OA_TAIL_MARGIN_NSEC	100000ULL
273
#define INVALID_TAIL_PTR	0xffffffff
274 275 276 277 278 279 280

/* frequency for checking whether the OA unit has written new reports to the
 * circular OA buffer...
 */
#define POLL_FREQUENCY 200
#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)

281 282 283
/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
static u32 i915_perf_stream_paranoid = true;

284 285 286 287 288 289 290 291 292 293 294 295
/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 * of the 64bit timestamp bits to trigger reports from) but there's currently
 * no known use case for sampling as infrequently as once per 47 thousand years.
 *
 * Since the timestamps included in OA reports are only 32bits it seems
 * reasonable to limit the OA exponent where it's still possible to account for
 * overflow in OA report timestamps.
 */
#define OA_EXPONENT_MAX 31

#define INVALID_CTX_ID 0xffffffff

296 297
/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
#define OAREPORT_REASON_MASK           0x3f
298
#define OAREPORT_REASON_MASK_EXTENDED  0x7f
299 300 301 302 303
#define OAREPORT_REASON_SHIFT          19
#define OAREPORT_REASON_TIMER          (1<<0)
#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
#define OAREPORT_REASON_CLK_RATIO      (1<<5)

304

305 306
/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 *
307 308 309 310
 * The highest sampling frequency we can theoretically program the OA unit
 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
 *
 * Initialized just before we register the sysctl parameter.
311
 */
312
static int oa_sample_rate_hard_limit;
313 314 315 316 317 318 319 320 321

/* Theoretically we can program the OA unit to sample every 160ns but don't
 * allow that by default unless root...
 *
 * The default threshold of 100000Hz is based on perf's similar
 * kernel.perf_event_max_sample_rate sysctl parameter.
 */
static u32 i915_oa_max_sample_rate = 100000;

322 323 324 325
/* XXX: beware if future OA HW adds new report formats that the current
 * code assumes all reports have a power-of-two size and ~(size - 1) can
 * be used as a mask to align the OA tail pointer.
 */
326
static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
327 328 329 330 331 332 333 334 335 336
	[I915_OA_FORMAT_A13]	    = { 0, 64 },
	[I915_OA_FORMAT_A29]	    = { 1, 128 },
	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
};

337
static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
338 339 340 341 342 343
	[I915_OA_FORMAT_A12]		    = { 0, 64 },
	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
};

344 345 346 347
static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
};

348
#define SAMPLE_OA_REPORT      (1<<0)
349

350 351 352 353
/**
 * struct perf_open_properties - for validated properties given to open a stream
 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 * @single_context: Whether a single or all gpu contexts should be monitored
354 355
 * @hold_preemption: Whether the preemption is disabled for the filtered
 *                   context
356 357 358 359 360
 * @ctx_handle: A gem ctx handle for use with @single_context
 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 * @oa_format: An OA unit HW report format
 * @oa_periodic: Whether to enable periodic OA unit sampling
 * @oa_period_exponent: The OA unit sampling period is derived from this
361
 * @engine: The engine (typically rcs0) being monitored by the OA unit
362 363 364 365 366
 *
 * As read_properties_unlocked() enumerates and validates the properties given
 * to open a stream of metrics the configuration is built up in the structure
 * which starts out zero initialized.
 */
367 368 369 370
struct perf_open_properties {
	u32 sample_flags;

	u64 single_context:1;
371
	u64 hold_preemption:1;
372
	u64 ctx_handle;
373 374 375 376 377 378

	/* OA sampling state */
	int metrics_set;
	int oa_format;
	bool oa_periodic;
	int oa_period_exponent;
379 380

	struct intel_engine_cs *engine;
381 382
};

383 384 385 386 387 388 389
struct i915_oa_config_bo {
	struct llist_node node;

	struct i915_oa_config *oa_config;
	struct i915_vma *vma;
};

390 391
static struct ctl_table_header *sysctl_header;

392 393
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);

394
void i915_oa_config_release(struct kref *ref)
395
{
396 397 398
	struct i915_oa_config *oa_config =
		container_of(ref, typeof(*oa_config), ref);

399 400 401
	kfree(oa_config->flex_regs);
	kfree(oa_config->b_counter_regs);
	kfree(oa_config->mux_regs);
402

403
	kfree_rcu(oa_config, rcu);
404 405
}

406 407
struct i915_oa_config *
i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
408
{
409
	struct i915_oa_config *oa_config;
410

411 412 413
	rcu_read_lock();
	if (metrics_set == 1)
		oa_config = &perf->test_config;
414
	else
415 416 417 418
		oa_config = idr_find(&perf->metrics_idr, metrics_set);
	if (oa_config)
		oa_config = i915_oa_config_get(oa_config);
	rcu_read_unlock();
419

420 421
	return oa_config;
}
422

423 424 425 426 427
static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
{
	i915_oa_config_put(oa_bo->oa_config);
	i915_vma_put(oa_bo->vma);
	kfree(oa_bo);
428 429
}

430 431 432 433 434 435 436 437
static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
{
	struct intel_uncore *uncore = stream->uncore;

	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
	       GEN12_OAG_OATAILPTR_MASK;
}

438
static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
439
{
440
	struct intel_uncore *uncore = stream->uncore;
441

442
	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
443 444
}

445
static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
446
{
447
	struct intel_uncore *uncore = stream->uncore;
448
	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
449 450 451 452

	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
}

453
/**
454
 * oa_buffer_check_unlocked - check for data and update tail ptr state
455
 * @stream: i915 stream instance
456
 *
457 458 459
 * This is either called via fops (for blocking reads in user ctx) or the poll
 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 * if there is data available for userspace to read.
460
 *
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
 * This function is central to providing a workaround for the OA unit tail
 * pointer having a race with respect to what data is visible to the CPU.
 * It is responsible for reading tail pointers from the hardware and giving
 * the pointers time to 'age' before they are made available for reading.
 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 *
 * Besides returning true when there is data available to read() this function
 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
 * and .aged_tail_idx state used for reading.
 *
 * Note: It's safe to read OA config state here unlocked, assuming that this is
 * only called while the stream is enabled, while the global OA configuration
 * can't be modified.
 *
 * Returns: %true if the OA buffer contains data, else %false
476
 */
477
static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
478
{
479
	int report_size = stream->oa_buffer.format_size;
480 481 482 483 484 485 486 487 488
	unsigned long flags;
	unsigned int aged_idx;
	u32 head, hw_tail, aged_tail, aging_tail;
	u64 now;

	/* We have to consider the (unlikely) possibility that read() errors
	 * could result in an OA buffer reset which might reset the head,
	 * tails[] and aged_tail state.
	 */
489
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
490 491 492 493 494

	/* NB: The head we observe here might effectively be a little out of
	 * date (between head and tails[aged_idx].offset if there is currently
	 * a read() in progress.
	 */
495
	head = stream->oa_buffer.head;
496

497 498 499
	aged_idx = stream->oa_buffer.aged_tail_idx;
	aged_tail = stream->oa_buffer.tails[aged_idx].offset;
	aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
500

501
	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
502 503 504 505 506 507 508 509

	/* The tail pointer increases in 64 byte increments,
	 * not in report_size steps...
	 */
	hw_tail &= ~(report_size - 1);

	now = ktime_get_mono_fast_ns();

510 511 512 513 514 515 516 517 518 519 520
	/* Update the aged tail
	 *
	 * Flip the tail pointer available for read()s once the aging tail is
	 * old enough to trust that the corresponding data will be visible to
	 * the CPU...
	 *
	 * Do this before updating the aging pointer in case we may be able to
	 * immediately start aging a new pointer too (if new data has become
	 * available) without needing to wait for a later hrtimer callback.
	 */
	if (aging_tail != INVALID_TAIL_PTR &&
521
	    ((now - stream->oa_buffer.aging_timestamp) >
522
	     OA_TAIL_MARGIN_NSEC)) {
523

524
		aged_idx ^= 1;
525
		stream->oa_buffer.aged_tail_idx = aged_idx;
526 527 528 529

		aged_tail = aging_tail;

		/* Mark that we need a new pointer to start aging... */
530
		stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
531 532 533
		aging_tail = INVALID_TAIL_PTR;
	}

534 535 536 537 538 539 540 541 542 543 544
	/* Update the aging tail
	 *
	 * We throttle aging tail updates until we have a new tail that
	 * represents >= one report more data than is already available for
	 * reading. This ensures there will be enough data for a successful
	 * read once this new pointer has aged and ensures we will give the new
	 * pointer time to age.
	 */
	if (aging_tail == INVALID_TAIL_PTR &&
	    (aged_tail == INVALID_TAIL_PTR ||
	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
545
		struct i915_vma *vma = stream->oa_buffer.vma;
546 547 548 549 550 551 552
		u32 gtt_offset = i915_ggtt_offset(vma);

		/* Be paranoid and do a bounds check on the pointer read back
		 * from hardware, just in case some spurious hardware condition
		 * could put the tail out of bounds...
		 */
		if (hw_tail >= gtt_offset &&
553
		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
554
			stream->oa_buffer.tails[!aged_idx].offset =
555
				aging_tail = hw_tail;
556
			stream->oa_buffer.aging_timestamp = now;
557
		} else {
558
			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %x\n",
559 560 561 562
				  hw_tail);
		}
	}

563
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
564 565 566

	return aged_tail == INVALID_TAIL_PTR ?
		false : OA_TAKEN(aged_tail, head) >= report_size;
567 568 569
}

/**
570 571 572 573 574 575 576 577 578 579 580 581 582
 * append_oa_status - Appends a status record to a userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @type: The kind of status to report to userspace
 *
 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 * into the userspace read() buffer.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
 */
static int append_oa_status(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    enum drm_i915_perf_record_type type)
{
	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };

	if ((count - *offset) < header.size)
		return -ENOSPC;

	if (copy_to_user(buf + *offset, &header, sizeof(header)))
		return -EFAULT;

	(*offset) += header.size;

	return 0;
}

/**
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
 * append_oa_sample - Copies single OA report into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @report: A single OA report to (optionally) include as part of the sample
 *
 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 * properties when opening a stream, tracked as `stream->sample_flags`. This
 * function copies the requested components of a single sample to the given
 * read() @buf.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
619 620 621 622 623 624 625
 */
static int append_oa_sample(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    const u8 *report)
{
626
	int report_size = stream->oa_buffer.format_size;
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	struct drm_i915_perf_record_header header;
	u32 sample_flags = stream->sample_flags;

	header.type = DRM_I915_PERF_RECORD_SAMPLE;
	header.pad = 0;
	header.size = stream->sample_size;

	if ((count - *offset) < header.size)
		return -ENOSPC;

	buf += *offset;
	if (copy_to_user(buf, &header, sizeof(header)))
		return -EFAULT;
	buf += sizeof(header);

	if (sample_flags & SAMPLE_OA_REPORT) {
		if (copy_to_user(buf, report, report_size))
			return -EFAULT;
	}

	(*offset) += header.size;

	return 0;
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
/**
 * Copies all buffered OA reports into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Notably any error condition resulting in a short read (-%ENOSPC or
 * -%EFAULT) will be returned even though one or more records may
 * have been successfully copied. In this case it's up to the caller
 * to decide if the error should be squashed before returning to
 * userspace.
 *
 * Note: reports are consumed from the head, and appended to the
 * tail, so the tail chases the head?... If you think that's mad
 * and back-to-front you're not alone, but this follows the
 * Gen PRM naming convention.
 *
 * Returns: 0 on success, negative error code on failure.
 */
static int gen8_append_oa_reports(struct i915_perf_stream *stream,
				  char __user *buf,
				  size_t count,
				  size_t *offset)
{
677
	struct intel_uncore *uncore = stream->uncore;
678 679 680
	int report_size = stream->oa_buffer.format_size;
	u8 *oa_buf_base = stream->oa_buffer.vaddr;
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
681
	u32 mask = (OA_BUFFER_SIZE - 1);
682 683 684 685 686 687 688 689 690 691
	size_t start_offset = *offset;
	unsigned long flags;
	unsigned int aged_tail_idx;
	u32 head, tail;
	u32 taken;
	int ret = 0;

	if (WARN_ON(!stream->enabled))
		return -EIO;

692
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
693

694 695 696
	head = stream->oa_buffer.head;
	aged_tail_idx = stream->oa_buffer.aged_tail_idx;
	tail = stream->oa_buffer.tails[aged_tail_idx].offset;
697

698
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

	/*
	 * An invalid tail pointer here means we're still waiting for the poll
	 * hrtimer callback to give us a pointer
	 */
	if (tail == INVALID_TAIL_PTR)
		return -EAGAIN;

	/*
	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
	 * while indexing relative to oa_buf_base.
	 */
	head -= gtt_offset;
	tail -= gtt_offset;

	/*
	 * An out of bounds or misaligned head or tail pointer implies a driver
	 * bug since we validate + align the tail pointers we read from the
	 * hardware and we are in full control of the head pointer which should
	 * only be incremented by multiples of the report size (notably also
	 * all a power of two).
	 */
721 722
	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
		      tail > OA_BUFFER_SIZE || tail % report_size,
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
		      head, tail))
		return -EIO;


	for (/* none */;
	     (taken = OA_TAKEN(tail, head));
	     head = (head + report_size) & mask) {
		u8 *report = oa_buf_base + head;
		u32 *report32 = (void *)report;
		u32 ctx_id;
		u32 reason;

		/*
		 * All the report sizes factor neatly into the buffer
		 * size so we never expect to see a report split
		 * between the beginning and end of the buffer.
		 *
		 * Given the initial alignment check a misalignment
		 * here would imply a driver bug that would result
		 * in an overrun.
		 */
745
		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759
			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
			break;
		}

		/*
		 * The reason field includes flags identifying what
		 * triggered this specific report (mostly timer
		 * triggered or e.g. due to a context switch).
		 *
		 * This field is never expected to be zero so we can
		 * check that the report isn't invalid before copying
		 * it to userspace...
		 */
		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
760 761 762
			  (IS_GEN(stream->perf->i915, 12) ?
			   OAREPORT_REASON_MASK_EXTENDED :
			   OAREPORT_REASON_MASK));
763
		if (reason == 0) {
764
			if (__ratelimit(&stream->perf->spurious_report_rs))
765 766 767 768
				DRM_NOTE("Skipping spurious, invalid OA report\n");
			continue;
		}

769
		ctx_id = report32[2] & stream->specific_ctx_id_mask;
770 771 772 773 774 775 776 777 778

		/*
		 * Squash whatever is in the CTX_ID field if it's marked as
		 * invalid to be sure we avoid false-positive, single-context
		 * filtering below...
		 *
		 * Note: that we don't clear the valid_ctx_bit so userspace can
		 * understand that the ID has been squashed by the kernel.
		 */
779 780
		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
		    INTEL_GEN(stream->perf->i915) <= 11)
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
			ctx_id = report32[2] = INVALID_CTX_ID;

		/*
		 * NB: For Gen 8 the OA unit no longer supports clock gating
		 * off for a specific context and the kernel can't securely
		 * stop the counters from updating as system-wide / global
		 * values.
		 *
		 * Automatic reports now include a context ID so reports can be
		 * filtered on the cpu but it's not worth trying to
		 * automatically subtract/hide counter progress for other
		 * contexts while filtering since we can't stop userspace
		 * issuing MI_REPORT_PERF_COUNT commands which would still
		 * provide a side-band view of the real values.
		 *
		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
		 * to normalize counters for a single filtered context then it
		 * needs be forwarded bookend context-switch reports so that it
		 * can track switches in between MI_REPORT_PERF_COUNT commands
		 * and can itself subtract/ignore the progress of counters
		 * associated with other contexts. Note that the hardware
		 * automatically triggers reports when switching to a new
		 * context which are tagged with the ID of the newly active
		 * context. To avoid the complexity (and likely fragility) of
		 * reading ahead while parsing reports to try and minimize
		 * forwarding redundant context switch reports (i.e. between
		 * other, unrelated contexts) we simply elect to forward them
		 * all.
		 *
		 * We don't rely solely on the reason field to identify context
		 * switches since it's not-uncommon for periodic samples to
		 * identify a switch before any 'context switch' report.
		 */
814
		if (!stream->perf->exclusive_stream->ctx ||
815 816
		    stream->specific_ctx_id == ctx_id ||
		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
817 818 819 820 821 822
		    reason & OAREPORT_REASON_CTX_SWITCH) {

			/*
			 * While filtering for a single context we avoid
			 * leaking the IDs of other contexts.
			 */
823
			if (stream->perf->exclusive_stream->ctx &&
824
			    stream->specific_ctx_id != ctx_id) {
825 826 827 828 829 830 831 832
				report32[2] = INVALID_CTX_ID;
			}

			ret = append_oa_sample(stream, buf, count, offset,
					       report);
			if (ret)
				break;

833
			stream->oa_buffer.last_ctx_id = ctx_id;
834 835 836 837 838 839 840 841 842 843 844 845 846
		}

		/*
		 * The above reason field sanity check is based on
		 * the assumption that the OA buffer is initially
		 * zeroed and we reset the field after copying so the
		 * check is still meaningful once old reports start
		 * being overwritten.
		 */
		report32[0] = 0;
	}

	if (start_offset != *offset) {
847 848 849 850 851
		i915_reg_t oaheadptr;

		oaheadptr = IS_GEN(stream->perf->i915, 12) ?
			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;

852
		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
853 854 855 856 857 858

		/*
		 * We removed the gtt_offset for the copy loop above, indexing
		 * relative to oa_buf_base so put back here...
		 */
		head += gtt_offset;
859 860
		intel_uncore_write(uncore, oaheadptr,
				   head & GEN12_OAG_OAHEADPTR_MASK);
861
		stream->oa_buffer.head = head;
862

863
		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	}

	return ret;
}

/**
 * gen8_oa_read - copy status records then buffered OA reports
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Checks OA unit status registers and if necessary appends corresponding
 * status records for userspace (such as for a buffer full condition) and then
 * initiate appending any buffered OA reports.
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * NB: some data may be successfully copied to the userspace buffer
 * even if an error is returned, and this is reflected in the
 * updated @offset.
 *
 * Returns: zero on success or a negative error code
 */
static int gen8_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
894
	struct intel_uncore *uncore = stream->uncore;
895
	u32 oastatus;
896
	i915_reg_t oastatus_reg;
897 898
	int ret;

899
	if (WARN_ON(!stream->oa_buffer.vaddr))
900 901
		return -EIO;

902 903 904 905
	oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;

	oastatus = intel_uncore_read(uncore, oastatus_reg);
906 907 908 909 910 911 912 913 914

	/*
	 * We treat OABUFFER_OVERFLOW as a significant error:
	 *
	 * Although theoretically we could handle this more gracefully
	 * sometimes, some Gens don't correctly suppress certain
	 * automatically triggered reports in this condition and so we
	 * have to assume that old reports are now being trampled
	 * over.
915 916 917 918 919
	 *
	 * Considering how we don't currently give userspace control
	 * over the OA buffer size and always configure a large 16MB
	 * buffer, then a buffer overflow does anyway likely indicate
	 * that something has gone quite badly wrong.
920 921 922 923 924 925 926 927
	 */
	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
		if (ret)
			return ret;

		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
928
			  stream->period_exponent);
929

930 931
		stream->perf->ops.oa_disable(stream);
		stream->perf->ops.oa_enable(stream);
932 933 934 935 936

		/*
		 * Note: .oa_enable() is expected to re-init the oabuffer and
		 * reset GEN8_OASTATUS for us
		 */
937
		oastatus = intel_uncore_read(uncore, oastatus_reg);
938 939 940 941 942 943 944
	}

	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
		if (ret)
			return ret;
945
		intel_uncore_write(uncore, oastatus_reg,
946
				   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
947 948 949 950 951
	}

	return gen8_append_oa_reports(stream, buf, count, offset);
}

952 953 954 955 956 957 958
/**
 * Copies all buffered OA reports into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
959 960
 * Notably any error condition resulting in a short read (-%ENOSPC or
 * -%EFAULT) will be returned even though one or more records may
961 962 963 964 965
 * have been successfully copied. In this case it's up to the caller
 * to decide if the error should be squashed before returning to
 * userspace.
 *
 * Note: reports are consumed from the head, and appended to the
966
 * tail, so the tail chases the head?... If you think that's mad
967 968
 * and back-to-front you're not alone, but this follows the
 * Gen PRM naming convention.
969 970
 *
 * Returns: 0 on success, negative error code on failure.
971 972 973 974
 */
static int gen7_append_oa_reports(struct i915_perf_stream *stream,
				  char __user *buf,
				  size_t count,
975
				  size_t *offset)
976
{
977
	struct intel_uncore *uncore = stream->uncore;
978 979 980
	int report_size = stream->oa_buffer.format_size;
	u8 *oa_buf_base = stream->oa_buffer.vaddr;
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
981
	u32 mask = (OA_BUFFER_SIZE - 1);
982
	size_t start_offset = *offset;
983 984 985
	unsigned long flags;
	unsigned int aged_tail_idx;
	u32 head, tail;
986 987 988 989 990 991
	u32 taken;
	int ret = 0;

	if (WARN_ON(!stream->enabled))
		return -EIO;

992
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
993

994 995 996
	head = stream->oa_buffer.head;
	aged_tail_idx = stream->oa_buffer.aged_tail_idx;
	tail = stream->oa_buffer.tails[aged_tail_idx].offset;
997

998
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
999

1000 1001
	/* An invalid tail pointer here means we're still waiting for the poll
	 * hrtimer callback to give us a pointer
1002
	 */
1003 1004
	if (tail == INVALID_TAIL_PTR)
		return -EAGAIN;
1005

1006 1007
	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
	 * while indexing relative to oa_buf_base.
1008
	 */
1009 1010
	head -= gtt_offset;
	tail -= gtt_offset;
1011

1012 1013 1014 1015 1016
	/* An out of bounds or misaligned head or tail pointer implies a driver
	 * bug since we validate + align the tail pointers we read from the
	 * hardware and we are in full control of the head pointer which should
	 * only be incremented by multiples of the report size (notably also
	 * all a power of two).
1017
	 */
1018 1019
	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
		      tail > OA_BUFFER_SIZE || tail % report_size,
1020 1021 1022
		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
		      head, tail))
		return -EIO;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038


	for (/* none */;
	     (taken = OA_TAKEN(tail, head));
	     head = (head + report_size) & mask) {
		u8 *report = oa_buf_base + head;
		u32 *report32 = (void *)report;

		/* All the report sizes factor neatly into the buffer
		 * size so we never expect to see a report split
		 * between the beginning and end of the buffer.
		 *
		 * Given the initial alignment check a misalignment
		 * here would imply a driver bug that would result
		 * in an overrun.
		 */
1039
		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
			break;
		}

		/* The report-ID field for periodic samples includes
		 * some undocumented flags related to what triggered
		 * the report and is never expected to be zero so we
		 * can check that the report isn't invalid before
		 * copying it to userspace...
		 */
		if (report32[0] == 0) {
1051
			if (__ratelimit(&stream->perf->spurious_report_rs))
1052
				DRM_NOTE("Skipping spurious, invalid OA report\n");
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
			continue;
		}

		ret = append_oa_sample(stream, buf, count, offset, report);
		if (ret)
			break;

		/* The above report-id field sanity check is based on
		 * the assumption that the OA buffer is initially
		 * zeroed and we reset the field after copying so the
		 * check is still meaningful once old reports start
		 * being overwritten.
		 */
		report32[0] = 0;
	}

1069
	if (start_offset != *offset) {
1070
		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1071

1072 1073 1074 1075 1076
		/* We removed the gtt_offset for the copy loop above, indexing
		 * relative to oa_buf_base so put back here...
		 */
		head += gtt_offset;

1077 1078 1079
		intel_uncore_write(uncore, GEN7_OASTATUS2,
				   (head & GEN7_OASTATUS2_HEAD_MASK) |
				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1080
		stream->oa_buffer.head = head;
1081

1082
		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1083
	}
1084 1085 1086 1087

	return ret;
}

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
/**
 * gen7_oa_read - copy status records then buffered OA reports
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Checks Gen 7 specific OA unit status registers and if necessary appends
 * corresponding status records for userspace (such as for a buffer full
 * condition) and then initiate appending any buffered OA reports.
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
1104 1105 1106 1107 1108
static int gen7_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
1109
	struct intel_uncore *uncore = stream->uncore;
1110 1111 1112
	u32 oastatus1;
	int ret;

1113
	if (WARN_ON(!stream->oa_buffer.vaddr))
1114 1115
		return -EIO;

1116
	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1117 1118 1119 1120 1121 1122

	/* XXX: On Haswell we don't have a safe way to clear oastatus1
	 * bits while the OA unit is enabled (while the tail pointer
	 * may be updated asynchronously) so we ignore status bits
	 * that have already been reported to userspace.
	 */
1123
	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	/* We treat OABUFFER_OVERFLOW as a significant error:
	 *
	 * - The status can be interpreted to mean that the buffer is
	 *   currently full (with a higher precedence than OA_TAKEN()
	 *   which will start to report a near-empty buffer after an
	 *   overflow) but it's awkward that we can't clear the status
	 *   on Haswell, so without a reset we won't be able to catch
	 *   the state again.
	 *
	 * - Since it also implies the HW has started overwriting old
	 *   reports it may also affect our sanity checks for invalid
	 *   reports when copying to userspace that assume new reports
	 *   are being written to cleared memory.
	 *
	 * - In the future we may want to introduce a flight recorder
	 *   mode where the driver will automatically maintain a safe
	 *   guard band between head/tail, avoiding this overflow
	 *   condition, but we avoid the added driver complexity for
	 *   now.
	 */
	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
		if (ret)
			return ret;

1151
		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1152
			  stream->period_exponent);
1153

1154 1155
		stream->perf->ops.oa_disable(stream);
		stream->perf->ops.oa_enable(stream);
1156

1157
		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1158 1159 1160 1161 1162 1163 1164
	}

	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
		if (ret)
			return ret;
1165
		stream->perf->gen7_latched_oastatus1 |=
1166 1167 1168
			GEN7_OASTATUS1_REPORT_LOST;
	}

1169
	return gen7_append_oa_reports(stream, buf, count, offset);
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/**
 * i915_oa_wait_unlocked - handles blocking IO until OA data available
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Called when userspace tries to read() from a blocking stream FD opened
 * for OA metrics. It waits until the hrtimer callback finds a non-empty
 * OA buffer and wakes us.
 *
 * Note: it's acceptable to have this return with some false positives
 * since any subsequent read handling will return -EAGAIN if there isn't
 * really data ready for userspace yet.
 *
 * Returns: zero on success or a negative error code
 */
1186 1187 1188
static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
{
	/* We would wait indefinitely if periodic sampling is not enabled */
1189
	if (!stream->periodic)
1190 1191
		return -EIO;

1192 1193
	return wait_event_interruptible(stream->poll_wq,
					oa_buffer_check_unlocked(stream));
1194 1195
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/**
 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
 * @stream: An i915-perf stream opened for OA metrics
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream opened for OA metrics,
 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
 * when it sees data ready to read in the circular OA buffer.
 */
1206 1207 1208 1209
static void i915_oa_poll_wait(struct i915_perf_stream *stream,
			      struct file *file,
			      poll_table *wait)
{
1210
	poll_wait(file, &stream->poll_wq, wait);
1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/**
 * i915_oa_read - just calls through to &i915_oa_ops->read
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
1225 1226 1227 1228 1229
static int i915_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
1230
	return stream->perf->ops.read(stream, buf, count, offset);
1231 1232
}

1233
static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1234
{
1235
	struct i915_gem_engines_iter it;
1236
	struct i915_gem_context *ctx = stream->ctx;
1237
	struct intel_context *ce;
1238
	int err;
1239

1240
	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1241
		if (ce->engine != stream->engine) /* first match! */
1242 1243 1244 1245 1246 1247 1248 1249
			continue;

		/*
		 * As the ID is the gtt offset of the context's vma we
		 * pin the vma to ensure the ID remains fixed.
		 */
		err = intel_context_pin(ce);
		if (err == 0) {
1250
			stream->pinned_ctx = ce;
1251 1252
			break;
		}
1253
	}
1254
	i915_gem_context_unlock_engines(ctx);
1255

1256
	return stream->pinned_ctx;
1257 1258
}

1259 1260 1261 1262 1263
/**
 * oa_get_render_ctx_id - determine and hold ctx hw id
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Determine the render context hw id, and ensure it remains fixed for the
1264 1265
 * lifetime of the stream. This ensures that we don't have to worry about
 * updating the context ID in OACONTROL on the fly.
1266 1267
 *
 * Returns: zero on success or a negative error code
1268 1269 1270
 */
static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
{
1271
	struct intel_context *ce;
1272

1273
	ce = oa_pin_context(stream);
1274 1275
	if (IS_ERR(ce))
		return PTR_ERR(ce);
1276

1277
	switch (INTEL_GEN(ce->engine->i915)) {
1278
	case 7: {
1279
		/*
1280 1281
		 * On Haswell we don't do any post processing of the reports
		 * and don't need to use the mask.
1282
		 */
1283 1284
		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
		stream->specific_ctx_id_mask = 0;
1285 1286
		break;
	}
1287

1288 1289 1290
	case 8:
	case 9:
	case 10:
1291 1292 1293 1294 1295
		if (intel_engine_in_execlists_submission_mode(ce->engine)) {
			stream->specific_ctx_id_mask =
				(1U << GEN8_CTX_ID_WIDTH) - 1;
			stream->specific_ctx_id = stream->specific_ctx_id_mask;
		} else {
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
			/*
			 * When using GuC, the context descriptor we write in
			 * i915 is read by GuC and rewritten before it's
			 * actually written into the hardware. The LRCA is
			 * what is put into the context id field of the
			 * context descriptor by GuC. Because it's aligned to
			 * a page, the lower 12bits are always at 0 and
			 * dropped by GuC. They won't be part of the context
			 * ID in the OA reports, so squash those lower bits.
			 */
1306
			stream->specific_ctx_id =
1307
				lower_32_bits(ce->lrc_desc) >> 12;
1308

1309 1310 1311 1312
			/*
			 * GuC uses the top bit to signal proxy submission, so
			 * ignore that bit.
			 */
1313
			stream->specific_ctx_id_mask =
1314 1315 1316 1317
				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
		}
		break;

1318 1319
	case 11:
	case 12: {
1320
		stream->specific_ctx_id_mask =
C
Chris Wilson 已提交
1321 1322
			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
		stream->specific_ctx_id = stream->specific_ctx_id_mask;
1323 1324 1325 1326
		break;
	}

	default:
1327
		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1328
	}
1329

C
Chris Wilson 已提交
1330 1331
	ce->tag = stream->specific_ctx_id_mask;

1332
	DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1333 1334
			 stream->specific_ctx_id,
			 stream->specific_ctx_id_mask);
1335

1336
	return 0;
1337 1338
}

1339 1340 1341 1342 1343 1344 1345
/**
 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
 * @stream: An i915-perf stream opened for OA metrics
 *
 * In case anything needed doing to ensure the context HW ID would remain valid
 * for the lifetime of the stream, then that can be undone here.
 */
1346 1347
static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
{
1348
	struct intel_context *ce;
1349

1350
	ce = fetch_and_zero(&stream->pinned_ctx);
C
Chris Wilson 已提交
1351 1352
	if (ce) {
		ce->tag = 0; /* recomputed on next submission after parking */
1353
		intel_context_unpin(ce);
C
Chris Wilson 已提交
1354 1355 1356 1357
	}

	stream->specific_ctx_id = INVALID_CTX_ID;
	stream->specific_ctx_id_mask = 0;
1358 1359 1360
}

static void
1361
free_oa_buffer(struct i915_perf_stream *stream)
1362
{
1363
	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1364
				   I915_VMA_RELEASE_MAP);
1365

1366
	stream->oa_buffer.vaddr = NULL;
1367 1368
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static void
free_oa_configs(struct i915_perf_stream *stream)
{
	struct i915_oa_config_bo *oa_bo, *tmp;

	i915_oa_config_put(stream->oa_config);
	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
		free_oa_config_bo(oa_bo);
}

1379 1380 1381 1382 1383 1384
static void
free_noa_wait(struct i915_perf_stream *stream)
{
	i915_vma_unpin_and_release(&stream->noa_wait, 0);
}

1385 1386
static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
{
1387
	struct i915_perf *perf = stream->perf;
1388

1389
	BUG_ON(stream != perf->exclusive_stream);
1390

1391
	/*
1392 1393
	 * Unset exclusive_stream first, it will be checked while disabling
	 * the metric set on gen8+.
1394
	 */
1395 1396
	perf->exclusive_stream = NULL;
	perf->ops.disable_metric_set(stream);
1397

1398
	free_oa_buffer(stream);
1399

1400
	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1401
	intel_engine_pm_put(stream->engine);
1402 1403 1404 1405

	if (stream->ctx)
		oa_put_render_ctx_id(stream);

1406
	free_oa_configs(stream);
1407
	free_noa_wait(stream);
1408

1409
	if (perf->spurious_report_rs.missed) {
1410
		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1411
			 perf->spurious_report_rs.missed);
1412
	}
1413 1414
}

1415
static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1416
{
1417
	struct intel_uncore *uncore = stream->uncore;
1418
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1419 1420
	unsigned long flags;

1421
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1422 1423 1424 1425

	/* Pre-DevBDW: OABUFFER must be set with counters off,
	 * before OASTATUS1, but after OASTATUS2
	 */
1426 1427
	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1428
	stream->oa_buffer.head = gtt_offset;
1429

1430
	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1431

1432 1433
	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
			   gtt_offset | OABUFFER_SIZE_16M);
1434

1435
	/* Mark that we need updated tail pointers to read from... */
1436 1437
	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1438

1439
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1440

1441 1442 1443 1444
	/* On Haswell we have to track which OASTATUS1 flags we've
	 * already seen since they can't be cleared while periodic
	 * sampling is enabled.
	 */
1445
	stream->perf->gen7_latched_oastatus1 = 0;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

	/* NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen7_append_oa_reports() that looks at the
	 * report-id field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
1458
	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1459

1460
	stream->pollin = false;
1461 1462
}

1463
static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1464
{
1465
	struct intel_uncore *uncore = stream->uncore;
1466
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1467 1468
	unsigned long flags;

1469
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1470

1471 1472
	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1473
	stream->oa_buffer.head = gtt_offset;
1474

1475
	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1476 1477 1478 1479 1480 1481 1482 1483 1484

	/*
	 * PRM says:
	 *
	 *  "This MMIO must be set before the OATAILPTR
	 *  register and after the OAHEADPTR register. This is
	 *  to enable proper functionality of the overflow
	 *  bit."
	 */
1485
	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1486
		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1487
	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1488 1489

	/* Mark that we need updated tail pointers to read from... */
1490 1491
	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1492 1493 1494 1495 1496 1497

	/*
	 * Reset state used to recognise context switches, affecting which
	 * reports we will forward to userspace while filtering for a single
	 * context.
	 */
1498
	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1499

1500
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	/*
	 * NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen8_append_oa_reports() that looks at the
	 * reason field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
1514
	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1515

1516
	stream->pollin = false;
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
{
	struct intel_uncore *uncore = stream->uncore;
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
	unsigned long flags;

	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);

	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
	stream->oa_buffer.head = gtt_offset;

	/*
	 * PRM says:
	 *
	 *  "This MMIO must be set before the OATAILPTR
	 *  register and after the OAHEADPTR register. This is
	 *  to enable proper functionality of the overflow
	 *  bit."
	 */
	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);

	/* Mark that we need updated tail pointers to read from... */
	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;

	/*
	 * Reset state used to recognise context switches, affecting which
	 * reports we will forward to userspace while filtering for a single
	 * context.
	 */
	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;

	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);

	/*
	 * NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen8_append_oa_reports() that looks at the
	 * reason field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
	memset(stream->oa_buffer.vaddr, 0,
	       stream->oa_buffer.vma->size);

	stream->pollin = false;
}

1576
static int alloc_oa_buffer(struct i915_perf_stream *stream)
1577 1578 1579 1580 1581
{
	struct drm_i915_gem_object *bo;
	struct i915_vma *vma;
	int ret;

1582
	if (WARN_ON(stream->oa_buffer.vma))
1583 1584
		return -ENODEV;

1585 1586 1587
	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);

1588
	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1589 1590
	if (IS_ERR(bo)) {
		DRM_ERROR("Failed to allocate OA buffer\n");
1591
		return PTR_ERR(bo);
1592 1593
	}

1594
	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1595 1596 1597 1598 1599 1600 1601

	/* PreHSW required 512K alignment, HSW requires 16M */
	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}
1602
	stream->oa_buffer.vma = vma;
1603

1604
	stream->oa_buffer.vaddr =
1605
		i915_gem_object_pin_map(bo, I915_MAP_WB);
1606 1607
	if (IS_ERR(stream->oa_buffer.vaddr)) {
		ret = PTR_ERR(stream->oa_buffer.vaddr);
1608 1609 1610
		goto err_unpin;
	}

1611
	return 0;
1612 1613 1614 1615 1616 1617 1618

err_unpin:
	__i915_vma_unpin(vma);

err_unref:
	i915_gem_object_put(bo);

1619 1620
	stream->oa_buffer.vaddr = NULL;
	stream->oa_buffer.vma = NULL;
1621 1622 1623 1624

	return ret;
}

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
				  bool save, i915_reg_t reg, u32 offset,
				  u32 dword_count)
{
	u32 cmd;
	u32 d;

	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
	if (INTEL_GEN(stream->perf->i915) >= 8)
		cmd++;

	for (d = 0; d < dword_count; d++) {
		*cs++ = cmd;
		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
						offset) + 4 * d;
		*cs++ = 0;
	}

	return cs;
}

static int alloc_noa_wait(struct i915_perf_stream *stream)
{
	struct drm_i915_private *i915 = stream->perf->i915;
	struct drm_i915_gem_object *bo;
	struct i915_vma *vma;
	const u64 delay_ticks = 0xffffffffffffffff -
		DIV64_U64_ROUND_UP(
			atomic64_read(&stream->perf->noa_programming_delay) *
			RUNTIME_INFO(i915)->cs_timestamp_frequency_khz,
			1000000ull);
	const u32 base = stream->engine->mmio_base;
#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
	u32 *batch, *ts0, *cs, *jump;
	int ret, i;
	enum {
		START_TS,
		NOW_TS,
		DELTA_TS,
		JUMP_PREDICATE,
		DELTA_TARGET,
		N_CS_GPR
	};

	bo = i915_gem_object_create_internal(i915, 4096);
	if (IS_ERR(bo)) {
		DRM_ERROR("Failed to allocate NOA wait batchbuffer\n");
		return PTR_ERR(bo);
	}

	/*
	 * We pin in GGTT because we jump into this buffer now because
	 * multiple OA config BOs will have a jump to this address and it
	 * needs to be fixed during the lifetime of the i915/perf stream.
	 */
	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
	if (IS_ERR(batch)) {
		ret = PTR_ERR(batch);
		goto err_unpin;
	}

	/* Save registers. */
	for (i = 0; i < N_CS_GPR; i++)
		cs = save_restore_register(
			stream, cs, true /* save */, CS_GPR(i),
			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
	cs = save_restore_register(
		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);

	/* First timestamp snapshot location. */
	ts0 = cs;

	/*
	 * Initial snapshot of the timestamp register to implement the wait.
	 * We work with 32b values, so clear out the top 32b bits of the
	 * register because the ALU works 64bits.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(1);
	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
	*cs++ = 0;
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));

	/*
	 * This is the location we're going to jump back into until the
	 * required amount of time has passed.
	 */
	jump = cs;

	/*
	 * Take another snapshot of the timestamp register. Take care to clear
	 * up the top 32bits of CS_GPR(1) as we're using it for other
	 * operations below.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(1);
	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
	*cs++ = 0;
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));

	/*
	 * Do a diff between the 2 timestamps and store the result back into
	 * CS_GPR(1).
	 */
	*cs++ = MI_MATH(5);
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
	*cs++ = MI_MATH_SUB;
	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);

	/*
	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
	 * timestamp have rolled over the 32bits) into the predicate register
	 * to be used for the predicated jump.
	 */
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);

	/* Restart from the beginning if we had timestamps roll over. */
	*cs++ = (INTEL_GEN(i915) < 8 ?
		 MI_BATCH_BUFFER_START :
		 MI_BATCH_BUFFER_START_GEN8) |
		MI_BATCH_PREDICATE;
	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
	*cs++ = 0;

	/*
	 * Now add the diff between to previous timestamps and add it to :
	 *      (((1 * << 64) - 1) - delay_ns)
	 *
	 * When the Carry Flag contains 1 this means the elapsed time is
	 * longer than the expected delay, and we can exit the wait loop.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(2);
	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
	*cs++ = lower_32_bits(delay_ticks);
	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
	*cs++ = upper_32_bits(delay_ticks);

	*cs++ = MI_MATH(4);
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
	*cs++ = MI_MATH_ADD;
	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);

1782 1783
	*cs++ = MI_ARB_CHECK;

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	/*
	 * Transfer the result into the predicate register to be used for the
	 * predicated jump.
	 */
	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);

	/* Predicate the jump.  */
	*cs++ = (INTEL_GEN(i915) < 8 ?
		 MI_BATCH_BUFFER_START :
		 MI_BATCH_BUFFER_START_GEN8) |
		MI_BATCH_PREDICATE;
	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
	*cs++ = 0;

	/* Restore registers. */
	for (i = 0; i < N_CS_GPR; i++)
		cs = save_restore_register(
			stream, cs, false /* restore */, CS_GPR(i),
			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
	cs = save_restore_register(
		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);

	/* And return to the ring. */
	*cs++ = MI_BATCH_BUFFER_END;

	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));

	i915_gem_object_flush_map(bo);
	i915_gem_object_unpin_map(bo);

	stream->noa_wait = vma;
	return 0;

err_unpin:
1821
	i915_vma_unpin_and_release(&vma, 0);
1822 1823 1824 1825 1826
err_unref:
	i915_gem_object_put(bo);
	return ret;
}

1827 1828 1829
static u32 *write_cs_mi_lri(u32 *cs,
			    const struct i915_oa_reg *reg_data,
			    u32 n_regs)
1830
{
1831
	u32 i;
1832 1833

	for (i = 0; i < n_regs; i++) {
1834 1835 1836 1837
		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
			u32 n_lri = min_t(u32,
					  n_regs - i,
					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1838

1839 1840 1841 1842
			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
		}
		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
		*cs++ = reg_data[i].value;
1843
	}
1844 1845

	return cs;
1846 1847
}

1848
static int num_lri_dwords(int num_regs)
1849
{
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	int count = 0;

	if (num_regs > 0) {
		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
		count += num_regs * 2;
	}

	return count;
}

static struct i915_oa_config_bo *
alloc_oa_config_buffer(struct i915_perf_stream *stream,
		       struct i915_oa_config *oa_config)
{
	struct drm_i915_gem_object *obj;
	struct i915_oa_config_bo *oa_bo;
	size_t config_length = 0;
	u32 *cs;
	int err;

	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
	if (!oa_bo)
		return ERR_PTR(-ENOMEM);

	config_length += num_lri_dwords(oa_config->mux_regs_len);
	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
	config_length += num_lri_dwords(oa_config->flex_regs_len);
1877
	config_length += 3; /* MI_BATCH_BUFFER_START */
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);

	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
	if (IS_ERR(obj)) {
		err = PTR_ERR(obj);
		goto err_free;
	}

	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(cs)) {
		err = PTR_ERR(cs);
		goto err_oa_bo;
	}

	cs = write_cs_mi_lri(cs,
			     oa_config->mux_regs,
			     oa_config->mux_regs_len);
	cs = write_cs_mi_lri(cs,
			     oa_config->b_counter_regs,
			     oa_config->b_counter_regs_len);
	cs = write_cs_mi_lri(cs,
			     oa_config->flex_regs,
			     oa_config->flex_regs_len);

1902 1903 1904 1905 1906 1907
	/* Jump into the active wait. */
	*cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
		 MI_BATCH_BUFFER_START :
		 MI_BATCH_BUFFER_START_GEN8);
	*cs++ = i915_ggtt_offset(stream->noa_wait);
	*cs++ = 0;
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936

	i915_gem_object_flush_map(obj);
	i915_gem_object_unpin_map(obj);

	oa_bo->vma = i915_vma_instance(obj,
				       &stream->engine->gt->ggtt->vm,
				       NULL);
	if (IS_ERR(oa_bo->vma)) {
		err = PTR_ERR(oa_bo->vma);
		goto err_oa_bo;
	}

	oa_bo->oa_config = i915_oa_config_get(oa_config);
	llist_add(&oa_bo->node, &stream->oa_config_bos);

	return oa_bo;

err_oa_bo:
	i915_gem_object_put(obj);
err_free:
	kfree(oa_bo);
	return ERR_PTR(err);
}

static struct i915_vma *
get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
{
	struct i915_oa_config_bo *oa_bo;

1937
	/*
1938 1939
	 * Look for the buffer in the already allocated BOs attached
	 * to the stream.
1940
	 */
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
		if (oa_bo->oa_config == oa_config &&
		    memcmp(oa_bo->oa_config->uuid,
			   oa_config->uuid,
			   sizeof(oa_config->uuid)) == 0)
			goto out;
	}

	oa_bo = alloc_oa_config_buffer(stream, oa_config);
	if (IS_ERR(oa_bo))
		return ERR_CAST(oa_bo);

out:
	return i915_vma_get(oa_bo->vma);
}

static int emit_oa_config(struct i915_perf_stream *stream,
1958
			  struct i915_oa_config *oa_config,
1959 1960 1961 1962 1963 1964
			  struct intel_context *ce)
{
	struct i915_request *rq;
	struct i915_vma *vma;
	int err;

1965
	vma = get_oa_vma(stream, oa_config);
1966 1967 1968 1969 1970 1971 1972
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err_vma_put;

1973
	intel_engine_pm_get(ce->engine);
1974
	rq = i915_request_create(ce);
1975
	intel_engine_pm_put(ce->engine);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_vma_unpin;
	}

	i915_vma_lock(vma);
	err = i915_request_await_object(rq, vma->obj, 0);
	if (!err)
		err = i915_vma_move_to_active(vma, rq, 0);
	i915_vma_unlock(vma);
	if (err)
		goto err_add_request;

	err = rq->engine->emit_bb_start(rq,
					vma->node.start, 0,
					I915_DISPATCH_SECURE);
err_add_request:
	i915_request_add(rq);
err_vma_unpin:
	i915_vma_unpin(vma);
err_vma_put:
	i915_vma_put(vma);
	return err;
1999 2000
}

2001 2002 2003 2004 2005
static struct intel_context *oa_context(struct i915_perf_stream *stream)
{
	return stream->pinned_ctx ?: stream->engine->kernel_context;
}

2006 2007
static int hsw_enable_metric_set(struct i915_perf_stream *stream)
{
2008
	struct intel_uncore *uncore = stream->uncore;
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

	/*
	 * PRM:
	 *
	 * OA unit is using “crclk” for its functionality. When trunk
	 * level clock gating takes place, OA clock would be gated,
	 * unable to count the events from non-render clock domain.
	 * Render clock gating must be disabled when OA is enabled to
	 * count the events from non-render domain. Unit level clock
	 * gating for RCS should also be disabled.
	 */
2020 2021 2022 2023
	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2024

2025
	return emit_oa_config(stream, stream->oa_config, oa_context(stream));
2026 2027
}

2028
static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2029
{
2030
	struct intel_uncore *uncore = stream->uncore;
2031

2032 2033 2034 2035
	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2036

2037
	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2038 2039
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
			      i915_reg_t reg)
{
	u32 mmio = i915_mmio_reg_offset(reg);
	int i;

	/*
	 * This arbitrary default will select the 'EU FPU0 Pipeline
	 * Active' event. In the future it's anticipated that there
	 * will be an explicit 'No Event' we can select, but not yet...
	 */
	if (!oa_config)
		return 0;

	for (i = 0; i < oa_config->flex_regs_len; i++) {
		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
			return oa_config->flex_regs[i].value;
	}

	return 0;
}
2061 2062 2063 2064 2065 2066 2067
/*
 * NB: It must always remain pointer safe to run this even if the OA unit
 * has been disabled.
 *
 * It's fine to put out-of-date values into these per-context registers
 * in the case that the OA unit has been disabled.
 */
2068
static void
2069 2070
gen8_update_reg_state_unlocked(const struct intel_context *ce,
			       const struct i915_perf_stream *stream)
2071
{
2072 2073
	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2074
	/* The MMIO offsets for Flex EU registers aren't contiguous */
2075 2076 2077 2078 2079 2080 2081 2082
	i915_reg_t flex_regs[] = {
		EU_PERF_CNTL0,
		EU_PERF_CNTL1,
		EU_PERF_CNTL2,
		EU_PERF_CNTL3,
		EU_PERF_CNTL4,
		EU_PERF_CNTL5,
		EU_PERF_CNTL6,
2083
	};
2084
	u32 *reg_state = ce->lrc_reg_state;
2085 2086
	int i;

2087 2088 2089 2090
	reg_state[ctx_oactxctrl + 1] =
		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
		GEN8_OA_COUNTER_RESUME;
2091

2092
	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2093 2094
		reg_state[ctx_flexeu0 + i * 2 + 1] =
			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2095

2096 2097
	reg_state[CTX_R_PWR_CLK_STATE] =
		intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu);
2098 2099
}

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
struct flex {
	i915_reg_t reg;
	u32 offset;
	u32 value;
};

static int
gen8_store_flex(struct i915_request *rq,
		struct intel_context *ce,
		const struct flex *flex, unsigned int count)
{
	u32 offset;
	u32 *cs;

	cs = intel_ring_begin(rq, 4 * count);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
	do {
		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2121
		*cs++ = offset + flex->offset * sizeof(u32);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
		*cs++ = 0;
		*cs++ = flex->value;
	} while (flex++, --count);

	intel_ring_advance(rq, cs);

	return 0;
}

static int
gen8_load_flex(struct i915_request *rq,
	       struct intel_context *ce,
	       const struct flex *flex, unsigned int count)
{
	u32 *cs;

	GEM_BUG_ON(!count || count > 63);

	cs = intel_ring_begin(rq, 2 * count + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*cs++ = i915_mmio_reg_offset(flex->reg);
		*cs++ = flex->value;
	} while (flex++, --count);
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen8_modify_context(struct intel_context *ce,
			       const struct flex *flex, unsigned int count)
{
	struct i915_request *rq;
	int err;

2162
	rq = intel_engine_create_kernel_request(ce->engine);
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	/* Serialise with the remote context */
	err = intel_context_prepare_remote_request(ce, rq);
	if (err == 0)
		err = gen8_store_flex(rq, ce, flex, count);

	i915_request_add(rq);
	return err;
}

static int gen8_modify_self(struct intel_context *ce,
			    const struct flex *flex, unsigned int count)
{
	struct i915_request *rq;
	int err;

	rq = i915_request_create(ce);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	err = gen8_load_flex(rq, ce, flex, count);

	i915_request_add(rq);
	return err;
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
static int gen8_configure_context(struct i915_gem_context *ctx,
				  struct flex *flex, unsigned int count)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;
	int err = 0;

	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
		GEM_BUG_ON(ce == ce->engine->kernel_context);

		if (ce->engine->class != RENDER_CLASS)
			continue;

2204 2205 2206
		/* Otherwise OA settings will be set upon first use */
		if (!intel_context_pin_if_active(ce))
			continue;
2207 2208

		flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
2209
		err = gen8_modify_context(ce, flex, count);
2210

2211
		intel_context_unpin(ce);
2212 2213 2214 2215 2216 2217 2218 2219
		if (err)
			break;
	}
	i915_gem_context_unlock_engines(ctx);

	return err;
}

2220
static int gen12_configure_oar_context(struct i915_perf_stream *stream, bool enable)
2221
{
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	int err;
	struct intel_context *ce = stream->pinned_ctx;
	u32 format = stream->oa_buffer.format;
	struct flex regs_context[] = {
		{
			GEN8_OACTXCONTROL,
			stream->perf->ctx_oactxctrl_offset + 1,
			enable ? GEN8_OA_COUNTER_RESUME : 0,
		},
	};
	/* Offsets in regs_lri are not used since this configuration is only
	 * applied using LRI. Initialize the correct offsets for posterity.
	 */
#define GEN12_OAR_OACONTROL_OFFSET 0x5B0
	struct flex regs_lri[] = {
		{
			GEN12_OAR_OACONTROL,
			GEN12_OAR_OACONTROL_OFFSET + 1,
			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
			(enable ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
		},
		{
			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
			CTX_CONTEXT_CONTROL,
			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
				      enable ?
				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
				      0)
		},
	};
2252

2253 2254 2255 2256
	/* Modify the context image of pinned context with regs_context*/
	err = intel_context_lock_pinned(ce);
	if (err)
		return err;
2257

2258 2259 2260 2261
	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
	intel_context_unlock_pinned(ce);
	if (err)
		return err;
2262

2263 2264
	/* Apply regs_lri using LRI with pinned context */
	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri));
2265 2266
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
/*
 * Manages updating the per-context aspects of the OA stream
 * configuration across all contexts.
 *
 * The awkward consideration here is that OACTXCONTROL controls the
 * exponent for periodic sampling which is primarily used for system
 * wide profiling where we'd like a consistent sampling period even in
 * the face of context switches.
 *
 * Our approach of updating the register state context (as opposed to
 * say using a workaround batch buffer) ensures that the hardware
 * won't automatically reload an out-of-date timer exponent even
 * transiently before a WA BB could be parsed.
 *
 * This function needs to:
 * - Ensure the currently running context's per-context OA state is
 *   updated
 * - Ensure that all existing contexts will have the correct per-context
 *   OA state if they are scheduled for use.
 * - Ensure any new contexts will be initialized with the correct
 *   per-context OA state.
 *
 * Note: it's only the RCS/Render context that has any OA state.
2290
 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2291
 */
2292 2293 2294
static int oa_configure_all_contexts(struct i915_perf_stream *stream,
				     struct flex *regs,
				     size_t num_regs)
2295
{
2296
	struct drm_i915_private *i915 = stream->perf->i915;
2297
	struct intel_engine_cs *engine;
2298
	struct i915_gem_context *ctx, *cn;
2299
	int err;
2300

2301
	lockdep_assert_held(&stream->perf->lock);
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

	/*
	 * The OA register config is setup through the context image. This image
	 * might be written to by the GPU on context switch (in particular on
	 * lite-restore). This means we can't safely update a context's image,
	 * if this context is scheduled/submitted to run on the GPU.
	 *
	 * We could emit the OA register config through the batch buffer but
	 * this might leave small interval of time where the OA unit is
	 * configured at an invalid sampling period.
	 *
2313 2314 2315 2316 2317
	 * Note that since we emit all requests from a single ring, there
	 * is still an implicit global barrier here that may cause a high
	 * priority context to wait for an otherwise independent low priority
	 * context. Contexts idle at the time of reconfiguration are not
	 * trapped behind the barrier.
2318
	 */
2319 2320 2321 2322 2323 2324 2325
	spin_lock(&i915->gem.contexts.lock);
	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
		if (!kref_get_unless_zero(&ctx->ref))
			continue;

		spin_unlock(&i915->gem.contexts.lock);

2326
		err = gen8_configure_context(ctx, regs, num_regs);
2327 2328
		if (err) {
			i915_gem_context_put(ctx);
2329
			return err;
2330 2331 2332 2333 2334
		}

		spin_lock(&i915->gem.contexts.lock);
		list_safe_reset_next(ctx, cn, link);
		i915_gem_context_put(ctx);
2335
	}
2336
	spin_unlock(&i915->gem.contexts.lock);
2337

2338
	/*
2339 2340 2341
	 * After updating all other contexts, we need to modify ourselves.
	 * If we don't modify the kernel_context, we do not get events while
	 * idle.
2342
	 */
2343
	for_each_uabi_engine(engine, i915) {
2344
		struct intel_context *ce = engine->kernel_context;
2345

2346 2347 2348 2349 2350
		if (engine->class != RENDER_CLASS)
			continue;

		regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);

2351
		err = gen8_modify_self(ce, regs, num_regs);
2352 2353 2354
		if (err)
			return err;
	}
2355 2356

	return 0;
2357 2358
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
static int gen12_configure_all_contexts(struct i915_perf_stream *stream,
					const struct i915_oa_config *oa_config)
{
	struct flex regs[] = {
		{
			GEN8_R_PWR_CLK_STATE,
			CTX_R_PWR_CLK_STATE,
		},
	};

	return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs));
}

static int lrc_configure_all_contexts(struct i915_perf_stream *stream,
				      const struct i915_oa_config *oa_config)
{
	/* The MMIO offsets for Flex EU registers aren't contiguous */
	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
	struct flex regs[] = {
		{
			GEN8_R_PWR_CLK_STATE,
			CTX_R_PWR_CLK_STATE,
		},
		{
			GEN8_OACTXCONTROL,
			stream->perf->ctx_oactxctrl_offset + 1,
		},
		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
	};
#undef ctx_flexeuN
	int i;

	regs[1].value =
		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
		GEN8_OA_COUNTER_RESUME;

	for (i = 2; i < ARRAY_SIZE(regs); i++)
		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);

	return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs));
}

2409
static int gen8_enable_metric_set(struct i915_perf_stream *stream)
2410
{
2411
	struct intel_uncore *uncore = stream->uncore;
2412
	struct i915_oa_config *oa_config = stream->oa_config;
2413
	int ret;
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437

	/*
	 * We disable slice/unslice clock ratio change reports on SKL since
	 * they are too noisy. The HW generates a lot of redundant reports
	 * where the ratio hasn't really changed causing a lot of redundant
	 * work to processes and increasing the chances we'll hit buffer
	 * overruns.
	 *
	 * Although we don't currently use the 'disable overrun' OABUFFER
	 * feature it's worth noting that clock ratio reports have to be
	 * disabled before considering to use that feature since the HW doesn't
	 * correctly block these reports.
	 *
	 * Currently none of the high-level metrics we have depend on knowing
	 * this ratio to normalize.
	 *
	 * Note: This register is not power context saved and restored, but
	 * that's OK considering that we disable RC6 while the OA unit is
	 * enabled.
	 *
	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
	 * be read back from automatically triggered reports, as part of the
	 * RPT_ID field.
	 */
2438 2439 2440 2441
	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
		intel_uncore_write(uncore, GEN8_OA_DEBUG,
				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2442 2443 2444 2445 2446 2447 2448
	}

	/*
	 * Update all contexts prior writing the mux configurations as we need
	 * to make sure all slices/subslices are ON before writing to NOA
	 * registers.
	 */
2449 2450 2451 2452 2453 2454 2455
	ret = lrc_configure_all_contexts(stream, oa_config);
	if (ret)
		return ret;

	return emit_oa_config(stream, oa_config, oa_context(stream));
}

2456 2457 2458 2459 2460 2461 2462
static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
{
	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
static int gen12_enable_metric_set(struct i915_perf_stream *stream)
{
	struct intel_uncore *uncore = stream->uncore;
	struct i915_oa_config *oa_config = stream->oa_config;
	bool periodic = stream->periodic;
	u32 period_exponent = stream->period_exponent;
	int ret;

	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
			   /* Disable clk ratio reports, like previous Gens. */
			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
			   /*
2476 2477
			    * If the user didn't require OA reports, instruct
			    * the hardware not to emit ctx switch reports.
2478
			    */
2479
			   oag_report_ctx_switches(stream));
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491

	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
			    : 0);

	/*
	 * Update all contexts prior writing the mux configurations as we need
	 * to make sure all slices/subslices are ON before writing to NOA
	 * registers.
	 */
2492
	ret = gen12_configure_all_contexts(stream, oa_config);
2493 2494 2495
	if (ret)
		return ret;

2496 2497 2498 2499 2500 2501
	/*
	 * For Gen12, performance counters are context
	 * saved/restored. Only enable it for the context that
	 * requested this.
	 */
	if (stream->ctx) {
2502
		ret = gen12_configure_oar_context(stream, true);
2503 2504 2505 2506
		if (ret)
			return ret;
	}

2507
	return emit_oa_config(stream, oa_config, oa_context(stream));
2508 2509
}

2510
static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2511
{
2512
	struct intel_uncore *uncore = stream->uncore;
2513

2514
	/* Reset all contexts' slices/subslices configurations. */
2515
	lrc_configure_all_contexts(stream, NULL);
2516

2517
	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2518 2519
}

2520
static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2521
{
2522
	struct intel_uncore *uncore = stream->uncore;
2523

2524
	/* Reset all contexts' slices/subslices configurations. */
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	lrc_configure_all_contexts(stream, NULL);

	/* Make sure we disable noa to save power. */
	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
}

static void gen12_disable_metric_set(struct i915_perf_stream *stream)
{
	struct intel_uncore *uncore = stream->uncore;

	/* Reset all contexts' slices/subslices configurations. */
2536
	gen12_configure_all_contexts(stream, NULL);
2537 2538 2539

	/* disable the context save/restore or OAR counters */
	if (stream->ctx)
2540
		gen12_configure_oar_context(stream, false);
2541 2542

	/* Make sure we disable noa to save power. */
2543
	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2544 2545
}

2546
static void gen7_oa_enable(struct i915_perf_stream *stream)
2547
{
2548
	struct intel_uncore *uncore = stream->uncore;
2549
	struct i915_gem_context *ctx = stream->ctx;
2550 2551 2552 2553
	u32 ctx_id = stream->specific_ctx_id;
	bool periodic = stream->periodic;
	u32 period_exponent = stream->period_exponent;
	u32 report_format = stream->oa_buffer.format;
2554

2555 2556 2557 2558 2559 2560 2561 2562 2563
	/*
	 * Reset buf pointers so we don't forward reports from before now.
	 *
	 * Think carefully if considering trying to avoid this, since it
	 * also ensures status flags and the buffer itself are cleared
	 * in error paths, and we have checks for invalid reports based
	 * on the assumption that certain fields are written to zeroed
	 * memory which this helps maintains.
	 */
2564
	gen7_init_oa_buffer(stream);
2565

2566 2567 2568 2569 2570 2571 2572 2573
	intel_uncore_write(uncore, GEN7_OACONTROL,
			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
			   (period_exponent <<
			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
			   GEN7_OACONTROL_ENABLE);
2574 2575
}

2576
static void gen8_oa_enable(struct i915_perf_stream *stream)
2577
{
2578
	struct intel_uncore *uncore = stream->uncore;
2579
	u32 report_format = stream->oa_buffer.format;
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589

	/*
	 * Reset buf pointers so we don't forward reports from before now.
	 *
	 * Think carefully if considering trying to avoid this, since it
	 * also ensures status flags and the buffer itself are cleared
	 * in error paths, and we have checks for invalid reports based
	 * on the assumption that certain fields are written to zeroed
	 * memory which this helps maintains.
	 */
2590
	gen8_init_oa_buffer(stream);
2591 2592 2593 2594 2595 2596

	/*
	 * Note: we don't rely on the hardware to perform single context
	 * filtering and instead filter on the cpu based on the context-id
	 * field of reports
	 */
2597 2598 2599
	intel_uncore_write(uncore, GEN8_OACONTROL,
			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
			   GEN8_OA_COUNTER_ENABLE);
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
static void gen12_oa_enable(struct i915_perf_stream *stream)
{
	struct intel_uncore *uncore = stream->uncore;
	u32 report_format = stream->oa_buffer.format;

	/*
	 * If we don't want OA reports from the OA buffer, then we don't even
	 * need to program the OAG unit.
	 */
	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
		return;

	gen12_init_oa_buffer(stream);

	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
}

2621 2622 2623 2624 2625 2626 2627 2628 2629
/**
 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * [Re]enables hardware periodic sampling according to the period configured
 * when opening the stream. This also starts a hrtimer that will periodically
 * check for data in the circular OA buffer for notifying userspace (e.g.
 * during a read() or poll()).
 */
2630 2631
static void i915_oa_stream_enable(struct i915_perf_stream *stream)
{
2632
	stream->perf->ops.oa_enable(stream);
2633

2634 2635
	if (stream->periodic)
		hrtimer_start(&stream->poll_check_timer,
2636 2637 2638 2639
			      ns_to_ktime(POLL_PERIOD),
			      HRTIMER_MODE_REL_PINNED);
}

2640
static void gen7_oa_disable(struct i915_perf_stream *stream)
2641
{
2642
	struct intel_uncore *uncore = stream->uncore;
2643

2644 2645
	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
	if (intel_wait_for_register(uncore,
2646 2647 2648
				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
				    50))
		DRM_ERROR("wait for OA to be disabled timed out\n");
2649 2650
}

2651
static void gen8_oa_disable(struct i915_perf_stream *stream)
2652
{
2653
	struct intel_uncore *uncore = stream->uncore;
2654

2655 2656
	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
	if (intel_wait_for_register(uncore,
2657 2658 2659
				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
				    50))
		DRM_ERROR("wait for OA to be disabled timed out\n");
2660 2661
}

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
static void gen12_oa_disable(struct i915_perf_stream *stream)
{
	struct intel_uncore *uncore = stream->uncore;

	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
	if (intel_wait_for_register(uncore,
				    GEN12_OAG_OACONTROL,
				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
				    50))
		DRM_ERROR("wait for OA to be disabled timed out\n");
}

2674 2675 2676 2677 2678 2679 2680 2681
/**
 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * Stops the OA unit from periodically writing counter reports into the
 * circular OA buffer. This also stops the hrtimer that periodically checks for
 * data in the circular OA buffer, for notifying userspace.
 */
2682 2683
static void i915_oa_stream_disable(struct i915_perf_stream *stream)
{
2684
	stream->perf->ops.oa_disable(stream);
2685

2686 2687
	if (stream->periodic)
		hrtimer_cancel(&stream->poll_check_timer);
2688 2689 2690 2691 2692 2693 2694 2695 2696
}

static const struct i915_perf_stream_ops i915_oa_stream_ops = {
	.destroy = i915_oa_stream_destroy,
	.enable = i915_oa_stream_enable,
	.disable = i915_oa_stream_disable,
	.wait_unlocked = i915_oa_wait_unlocked,
	.poll_wait = i915_oa_poll_wait,
	.read = i915_oa_read,
2697 2698
};

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
/**
 * i915_oa_stream_init - validate combined props for OA stream and init
 * @stream: An i915 perf stream
 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
 * @props: The property state that configures stream (individually validated)
 *
 * While read_properties_unlocked() validates properties in isolation it
 * doesn't ensure that the combination necessarily makes sense.
 *
 * At this point it has been determined that userspace wants a stream of
 * OA metrics, but still we need to further validate the combined
 * properties are OK.
 *
 * If the configuration makes sense then we can allocate memory for
 * a circular OA buffer and apply the requested metric set configuration.
 *
 * Returns: zero on success or a negative error code.
 */
2717 2718 2719 2720
static int i915_oa_stream_init(struct i915_perf_stream *stream,
			       struct drm_i915_perf_open_param *param,
			       struct perf_open_properties *props)
{
2721
	struct i915_perf *perf = stream->perf;
2722 2723 2724
	int format_size;
	int ret;

2725 2726 2727 2728 2729 2730 2731
	if (!props->engine) {
		DRM_DEBUG("OA engine not specified\n");
		return -EINVAL;
	}

	/*
	 * If the sysfs metrics/ directory wasn't registered for some
2732 2733 2734
	 * reason then don't let userspace try their luck with config
	 * IDs
	 */
2735
	if (!perf->metrics_kobj) {
2736
		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2737 2738 2739
		return -EINVAL;
	}

2740 2741
	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
	    (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2742
		DRM_DEBUG("Only OA report sampling supported\n");
2743 2744 2745
		return -EINVAL;
	}

2746
	if (!perf->ops.enable_metric_set) {
2747
		DRM_DEBUG("OA unit not supported\n");
2748 2749 2750
		return -ENODEV;
	}

2751 2752
	/*
	 * To avoid the complexity of having to accurately filter
2753 2754 2755
	 * counter reports and marshal to the appropriate client
	 * we currently only allow exclusive access
	 */
2756
	if (perf->exclusive_stream) {
2757
		DRM_DEBUG("OA unit already in use\n");
2758 2759 2760 2761
		return -EBUSY;
	}

	if (!props->oa_format) {
2762
		DRM_DEBUG("OA report format not specified\n");
2763 2764 2765
		return -EINVAL;
	}

2766
	stream->engine = props->engine;
2767
	stream->uncore = stream->engine->gt->uncore;
2768

2769 2770
	stream->sample_size = sizeof(struct drm_i915_perf_record_header);

2771
	format_size = perf->oa_formats[props->oa_format].size;
2772

2773
	stream->sample_flags = props->sample_flags;
2774 2775
	stream->sample_size += format_size;

2776 2777
	stream->oa_buffer.format_size = format_size;
	if (WARN_ON(stream->oa_buffer.format_size == 0))
2778 2779
		return -EINVAL;

2780 2781
	stream->hold_preemption = props->hold_preemption;

2782
	stream->oa_buffer.format =
2783
		perf->oa_formats[props->oa_format].format;
2784

2785 2786 2787
	stream->periodic = props->oa_periodic;
	if (stream->periodic)
		stream->period_exponent = props->oa_period_exponent;
2788 2789 2790

	if (stream->ctx) {
		ret = oa_get_render_ctx_id(stream);
2791 2792
		if (ret) {
			DRM_DEBUG("Invalid context id to filter with\n");
2793
			return ret;
2794
		}
2795 2796
	}

2797 2798 2799 2800 2801 2802
	ret = alloc_noa_wait(stream);
	if (ret) {
		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
		goto err_noa_wait_alloc;
	}

2803 2804
	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
	if (!stream->oa_config) {
2805
		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2806
		ret = -EINVAL;
2807
		goto err_config;
2808
	}
2809

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	/* PRM - observability performance counters:
	 *
	 *   OACONTROL, performance counter enable, note:
	 *
	 *   "When this bit is set, in order to have coherent counts,
	 *   RC6 power state and trunk clock gating must be disabled.
	 *   This can be achieved by programming MMIO registers as
	 *   0xA094=0 and 0xA090[31]=1"
	 *
	 *   In our case we are expecting that taking pm + FORCEWAKE
	 *   references will effectively disable RC6.
	 */
2822
	intel_engine_pm_get(stream->engine);
2823
	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2824

2825
	ret = alloc_oa_buffer(stream);
2826 2827 2828
	if (ret)
		goto err_oa_buf_alloc;

2829
	stream->ops = &i915_oa_stream_ops;
2830
	perf->exclusive_stream = stream;
2831

2832
	ret = perf->ops.enable_metric_set(stream);
2833 2834
	if (ret) {
		DRM_DEBUG("Unable to enable metric set\n");
2835
		goto err_enable;
2836
	}
2837

2838 2839 2840
	DRM_DEBUG("opening stream oa config uuid=%s\n",
		  stream->oa_config->uuid);

2841 2842 2843 2844 2845 2846
	hrtimer_init(&stream->poll_check_timer,
		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	stream->poll_check_timer.function = oa_poll_check_timer_cb;
	init_waitqueue_head(&stream->poll_wq);
	spin_lock_init(&stream->oa_buffer.ptr_lock);

2847 2848
	return 0;

2849
err_enable:
2850 2851
	perf->exclusive_stream = NULL;
	perf->ops.disable_metric_set(stream);
2852

2853
	free_oa_buffer(stream);
2854 2855

err_oa_buf_alloc:
2856
	free_oa_configs(stream);
2857

2858
	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2859
	intel_engine_pm_put(stream->engine);
2860 2861

err_config:
2862 2863 2864
	free_noa_wait(stream);

err_noa_wait_alloc:
2865 2866 2867 2868 2869 2870
	if (stream->ctx)
		oa_put_render_ctx_id(stream);

	return ret;
}

2871 2872
void i915_oa_init_reg_state(const struct intel_context *ce,
			    const struct intel_engine_cs *engine)
2873
{
2874
	struct i915_perf_stream *stream;
2875

2876
	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2877

2878
	if (engine->class != RENDER_CLASS)
2879 2880
		return;

2881
	stream = engine->i915->perf.exclusive_stream;
2882 2883 2884 2885 2886
	/*
	 * For gen12, only CTX_R_PWR_CLK_STATE needs update, but the caller
	 * is already doing that, so nothing to be done for gen12 here.
	 */
	if (stream && INTEL_GEN(stream->perf->i915) < 12)
2887
		gen8_update_reg_state_unlocked(ce, stream);
2888 2889
}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
/**
 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
 * @stream: An i915 perf stream
 * @file: An i915 perf stream file
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @ppos: (inout) file seek position (unused)
 *
 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
 * ensure that if we've successfully copied any data then reporting that takes
 * precedence over any internal error status, so the data isn't lost.
 *
 * For example ret will be -ENOSPC whenever there is more buffered data than
 * can be copied to userspace, but that's only interesting if we weren't able
 * to copy some data because it implies the userspace buffer is too small to
 * receive a single record (and we never split records).
 *
 * Another case with ret == -EFAULT is more of a grey area since it would seem
 * like bad form for userspace to ask us to overrun its buffer, but the user
 * knows best:
 *
 *   http://yarchive.net/comp/linux/partial_reads_writes.html
 *
 * Returns: The number of bytes copied or a negative error code on failure.
 */
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
				     struct file *file,
				     char __user *buf,
				     size_t count,
				     loff_t *ppos)
{
	/* Note we keep the offset (aka bytes read) separate from any
	 * error status so that the final check for whether we return
	 * the bytes read with a higher precedence than any error (see
	 * comment below) doesn't need to be handled/duplicated in
	 * stream->ops->read() implementations.
	 */
	size_t offset = 0;
	int ret = stream->ops->read(stream, buf, count, &offset);

	return offset ?: (ret ?: -EAGAIN);
}

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
/**
 * i915_perf_read - handles read() FOP for i915 perf stream FDs
 * @file: An i915 perf stream file
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @ppos: (inout) file seek position (unused)
 *
 * The entry point for handling a read() on a stream file descriptor from
 * userspace. Most of the work is left to the i915_perf_read_locked() and
 * &i915_perf_stream_ops->read but to save having stream implementations (of
 * which we might have multiple later) we handle blocking read here.
 *
 * We can also consistently treat trying to read from a disabled stream
 * as an IO error so implementations can assume the stream is enabled
 * while reading.
 *
 * Returns: The number of bytes copied or a negative error code on failure.
 */
2951 2952 2953 2954 2955 2956
static ssize_t i915_perf_read(struct file *file,
			      char __user *buf,
			      size_t count,
			      loff_t *ppos)
{
	struct i915_perf_stream *stream = file->private_data;
2957
	struct i915_perf *perf = stream->perf;
2958 2959
	ssize_t ret;

2960 2961 2962 2963 2964 2965 2966
	/* To ensure it's handled consistently we simply treat all reads of a
	 * disabled stream as an error. In particular it might otherwise lead
	 * to a deadlock for blocking file descriptors...
	 */
	if (!stream->enabled)
		return -EIO;

2967
	if (!(file->f_flags & O_NONBLOCK)) {
2968 2969 2970 2971 2972 2973
		/* There's the small chance of false positives from
		 * stream->ops->wait_unlocked.
		 *
		 * E.g. with single context filtering since we only wait until
		 * oabuffer has >= 1 report we don't immediately know whether
		 * any reports really belong to the current context
2974 2975 2976 2977 2978 2979
		 */
		do {
			ret = stream->ops->wait_unlocked(stream);
			if (ret)
				return ret;

2980
			mutex_lock(&perf->lock);
2981 2982
			ret = i915_perf_read_locked(stream, file,
						    buf, count, ppos);
2983
			mutex_unlock(&perf->lock);
2984 2985
		} while (ret == -EAGAIN);
	} else {
2986
		mutex_lock(&perf->lock);
2987
		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2988
		mutex_unlock(&perf->lock);
2989 2990
	}

2991
	/* We allow the poll checking to sometimes report false positive EPOLLIN
2992 2993
	 * events where we might actually report EAGAIN on read() if there's
	 * not really any data available. In this situation though we don't
2994
	 * want to enter a busy loop between poll() reporting a EPOLLIN event
2995 2996
	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
	 * effectively ensures we back off until the next hrtimer callback
2997
	 * before reporting another EPOLLIN event.
2998 2999
	 */
	if (ret >= 0 || ret == -EAGAIN) {
3000 3001 3002
		/* Maybe make ->pollin per-stream state if we support multiple
		 * concurrent streams in the future.
		 */
3003
		stream->pollin = false;
3004 3005
	}

3006 3007 3008
	return ret;
}

3009 3010
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
{
3011 3012
	struct i915_perf_stream *stream =
		container_of(hrtimer, typeof(*stream), poll_check_timer);
3013

3014 3015 3016
	if (oa_buffer_check_unlocked(stream)) {
		stream->pollin = true;
		wake_up(&stream->poll_wq);
3017 3018 3019 3020 3021 3022 3023
	}

	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));

	return HRTIMER_RESTART;
}

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
/**
 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
 * @stream: An i915 perf stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this calls through to
 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
 * will be woken for new stream data.
 *
3034
 * Note: The &perf->lock mutex has been taken to serialize
3035 3036 3037 3038
 * with any non-file-operation driver hooks.
 *
 * Returns: any poll events that are ready without sleeping
 */
3039 3040 3041
static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
				      struct file *file,
				      poll_table *wait)
3042
{
3043
	__poll_t events = 0;
3044 3045 3046

	stream->ops->poll_wait(stream, file, wait);

3047 3048 3049 3050 3051 3052
	/* Note: we don't explicitly check whether there's something to read
	 * here since this path may be very hot depending on what else
	 * userspace is polling, or on the timeout in use. We rely solely on
	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
	 * samples to read.
	 */
3053
	if (stream->pollin)
3054
		events |= EPOLLIN;
3055

3056
	return events;
3057 3058
}

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
/**
 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this ensures
 * poll_wait() gets called with a wait queue that will be woken for new stream
 * data.
 *
 * Note: Implementation deferred to i915_perf_poll_locked()
 *
 * Returns: any poll events that are ready without sleeping
 */
3072
static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3073 3074
{
	struct i915_perf_stream *stream = file->private_data;
3075
	struct i915_perf *perf = stream->perf;
3076
	__poll_t ret;
3077

3078 3079 3080
	mutex_lock(&perf->lock);
	ret = i915_perf_poll_locked(stream, file, wait);
	mutex_unlock(&perf->lock);
3081 3082 3083 3084

	return ret;
}

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
/**
 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
 * @stream: A disabled i915 perf stream
 *
 * [Re]enables the associated capture of data for this stream.
 *
 * If a stream was previously enabled then there's currently no intention
 * to provide userspace any guarantee about the preservation of previously
 * buffered data.
 */
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
static void i915_perf_enable_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		return;

	/* Allow stream->ops->enable() to refer to this */
	stream->enabled = true;

	if (stream->ops->enable)
		stream->ops->enable(stream);
3105 3106

	if (stream->hold_preemption)
3107
		intel_context_set_nopreempt(stream->pinned_ctx);
3108 3109
}

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
/**
 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
 * @stream: An enabled i915 perf stream
 *
 * Disables the associated capture of data for this stream.
 *
 * The intention is that disabling an re-enabling a stream will ideally be
 * cheaper than destroying and re-opening a stream with the same configuration,
 * though there are no formal guarantees about what state or buffered data
 * must be retained between disabling and re-enabling a stream.
 *
 * Note: while a stream is disabled it's considered an error for userspace
 * to attempt to read from the stream (-EIO).
 */
3124 3125 3126 3127 3128 3129 3130 3131
static void i915_perf_disable_locked(struct i915_perf_stream *stream)
{
	if (!stream->enabled)
		return;

	/* Allow stream->ops->disable() to refer to this */
	stream->enabled = false;

3132
	if (stream->hold_preemption)
3133
		intel_context_clear_nopreempt(stream->pinned_ctx);
3134

3135 3136 3137 3138
	if (stream->ops->disable)
		stream->ops->disable(stream);
}

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
static long i915_perf_config_locked(struct i915_perf_stream *stream,
				    unsigned long metrics_set)
{
	struct i915_oa_config *config;
	long ret = stream->oa_config->id;

	config = i915_perf_get_oa_config(stream->perf, metrics_set);
	if (!config)
		return -EINVAL;

	if (config != stream->oa_config) {
		int err;

		/*
		 * If OA is bound to a specific context, emit the
		 * reconfiguration inline from that context. The update
		 * will then be ordered with respect to submission on that
		 * context.
		 *
		 * When set globally, we use a low priority kernel context,
		 * so it will effectively take effect when idle.
		 */
3161
		err = emit_oa_config(stream, config, oa_context(stream));
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
		if (err == 0)
			config = xchg(&stream->oa_config, config);
		else
			ret = err;
	}

	i915_oa_config_put(config);

	return ret;
}

3173 3174 3175 3176 3177 3178
/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @stream: An i915 perf stream
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
3179
 * Note: The &perf->lock mutex has been taken to serialize
3180 3181 3182 3183 3184
 * with any non-file-operation driver hooks.
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
				   unsigned int cmd,
				   unsigned long arg)
{
	switch (cmd) {
	case I915_PERF_IOCTL_ENABLE:
		i915_perf_enable_locked(stream);
		return 0;
	case I915_PERF_IOCTL_DISABLE:
		i915_perf_disable_locked(stream);
		return 0;
3196 3197
	case I915_PERF_IOCTL_CONFIG:
		return i915_perf_config_locked(stream, arg);
3198 3199 3200 3201 3202
	}

	return -EINVAL;
}

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @file: An i915 perf stream file
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
 * Implementation deferred to i915_perf_ioctl_locked().
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
3214 3215 3216 3217 3218
static long i915_perf_ioctl(struct file *file,
			    unsigned int cmd,
			    unsigned long arg)
{
	struct i915_perf_stream *stream = file->private_data;
3219
	struct i915_perf *perf = stream->perf;
3220 3221
	long ret;

3222
	mutex_lock(&perf->lock);
3223
	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3224
	mutex_unlock(&perf->lock);
3225 3226 3227 3228

	return ret;
}

3229 3230 3231 3232 3233 3234 3235
/**
 * i915_perf_destroy_locked - destroy an i915 perf stream
 * @stream: An i915 perf stream
 *
 * Frees all resources associated with the given i915 perf @stream, disabling
 * any associated data capture in the process.
 *
3236
 * Note: The &perf->lock mutex has been taken to serialize
3237 3238
 * with any non-file-operation driver hooks.
 */
3239 3240 3241 3242 3243 3244 3245 3246
static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		i915_perf_disable_locked(stream);

	if (stream->ops->destroy)
		stream->ops->destroy(stream);

3247
	if (stream->ctx)
3248
		i915_gem_context_put(stream->ctx);
3249 3250 3251 3252

	kfree(stream);
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
/**
 * i915_perf_release - handles userspace close() of a stream file
 * @inode: anonymous inode associated with file
 * @file: An i915 perf stream file
 *
 * Cleans up any resources associated with an open i915 perf stream file.
 *
 * NB: close() can't really fail from the userspace point of view.
 *
 * Returns: zero on success or a negative error code.
 */
3264 3265 3266
static int i915_perf_release(struct inode *inode, struct file *file)
{
	struct i915_perf_stream *stream = file->private_data;
3267
	struct i915_perf *perf = stream->perf;
3268

3269
	mutex_lock(&perf->lock);
3270
	i915_perf_destroy_locked(stream);
3271
	mutex_unlock(&perf->lock);
3272

3273
	/* Release the reference the perf stream kept on the driver. */
3274
	drm_dev_put(&perf->i915->drm);
3275

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	return 0;
}


static const struct file_operations fops = {
	.owner		= THIS_MODULE,
	.llseek		= no_llseek,
	.release	= i915_perf_release,
	.poll		= i915_perf_poll,
	.read		= i915_perf_read,
	.unlocked_ioctl	= i915_perf_ioctl,
3287 3288 3289 3290
	/* Our ioctl have no arguments, so it's safe to use the same function
	 * to handle 32bits compatibility.
	 */
	.compat_ioctl   = i915_perf_ioctl,
3291 3292 3293
};


3294 3295
/**
 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3296
 * @perf: i915 perf instance
3297 3298 3299 3300 3301 3302 3303
 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
 * @props: individually validated u64 property value pairs
 * @file: drm file
 *
 * See i915_perf_ioctl_open() for interface details.
 *
 * Implements further stream config validation and stream initialization on
3304
 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
 * taken to serialize with any non-file-operation driver hooks.
 *
 * Note: at this point the @props have only been validated in isolation and
 * it's still necessary to validate that the combination of properties makes
 * sense.
 *
 * In the case where userspace is interested in OA unit metrics then further
 * config validation and stream initialization details will be handled by
 * i915_oa_stream_init(). The code here should only validate config state that
 * will be relevant to all stream types / backends.
 *
 * Returns: zero on success or a negative error code.
 */
3318
static int
3319
i915_perf_open_ioctl_locked(struct i915_perf *perf,
3320 3321 3322 3323 3324 3325 3326
			    struct drm_i915_perf_open_param *param,
			    struct perf_open_properties *props,
			    struct drm_file *file)
{
	struct i915_gem_context *specific_ctx = NULL;
	struct i915_perf_stream *stream = NULL;
	unsigned long f_flags = 0;
3327
	bool privileged_op = true;
3328 3329 3330 3331 3332 3333 3334
	int stream_fd;
	int ret;

	if (props->single_context) {
		u32 ctx_handle = props->ctx_handle;
		struct drm_i915_file_private *file_priv = file->driver_priv;

3335 3336 3337 3338 3339
		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
		if (!specific_ctx) {
			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
				  ctx_handle);
			ret = -ENOENT;
3340 3341 3342 3343
			goto err;
		}
	}

3344 3345 3346 3347 3348 3349
	/*
	 * On Haswell the OA unit supports clock gating off for a specific
	 * context and in this mode there's no visibility of metrics for the
	 * rest of the system, which we consider acceptable for a
	 * non-privileged client.
	 *
3350
	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3351 3352 3353 3354 3355 3356
	 * specific context and the kernel can't securely stop the counters
	 * from updating as system-wide / global values. Even though we can
	 * filter reports based on the included context ID we can't block
	 * clients from seeing the raw / global counter values via
	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
	 * enable the OA unit by default.
3357 3358 3359 3360 3361
	 *
	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
	 * per context basis. So we can relax requirements there if the user
	 * doesn't request global stream access (i.e. query based sampling
	 * using MI_RECORD_PERF_COUNT.
3362
	 */
3363
	if (IS_HASWELL(perf->i915) && specific_ctx)
3364
		privileged_op = false;
3365 3366 3367
	else if (IS_GEN(perf->i915, 12) && specific_ctx &&
		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
		privileged_op = false;
3368

3369 3370 3371 3372 3373 3374 3375 3376 3377
	if (props->hold_preemption) {
		if (!props->single_context) {
			DRM_DEBUG("preemption disable with no context\n");
			ret = -EINVAL;
			goto err;
		}
		privileged_op = true;
	}

3378 3379 3380 3381 3382
	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
	 * we check a dev.i915.perf_stream_paranoid sysctl option
	 * to determine if it's ok to access system wide OA counters
	 * without CAP_SYS_ADMIN privileges.
	 */
3383
	if (privileged_op &&
3384
	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3385
		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
		ret = -EACCES;
		goto err_ctx;
	}

	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
	if (!stream) {
		ret = -ENOMEM;
		goto err_ctx;
	}

3396
	stream->perf = perf;
3397 3398
	stream->ctx = specific_ctx;

3399 3400 3401 3402 3403 3404 3405
	ret = i915_oa_stream_init(stream, param, props);
	if (ret)
		goto err_alloc;

	/* we avoid simply assigning stream->sample_flags = props->sample_flags
	 * to have _stream_init check the combination of sample flags more
	 * thoroughly, but still this is the expected result at this point.
3406
	 */
3407 3408
	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
		ret = -ENODEV;
3409
		goto err_flags;
3410
	}
3411 3412 3413 3414 3415 3416 3417 3418 3419

	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;
	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
		f_flags |= O_NONBLOCK;

	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
	if (stream_fd < 0) {
		ret = stream_fd;
3420
		goto err_flags;
3421 3422 3423 3424 3425
	}

	if (!(param->flags & I915_PERF_FLAG_DISABLED))
		i915_perf_enable_locked(stream);

3426 3427 3428
	/* Take a reference on the driver that will be kept with stream_fd
	 * until its release.
	 */
3429
	drm_dev_get(&perf->i915->drm);
3430

3431 3432
	return stream_fd;

3433
err_flags:
3434 3435 3436 3437 3438
	if (stream->ops->destroy)
		stream->ops->destroy(stream);
err_alloc:
	kfree(stream);
err_ctx:
3439
	if (specific_ctx)
3440
		i915_gem_context_put(specific_ctx);
3441 3442 3443 3444
err:
	return ret;
}

3445
static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3446
{
3447
	return div64_u64(1000000000ULL * (2ULL << exponent),
3448
			 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz);
3449 3450
}

3451 3452
/**
 * read_properties_unlocked - validate + copy userspace stream open properties
3453
 * @perf: i915 perf instance
3454 3455 3456
 * @uprops: The array of u64 key value pairs given by userspace
 * @n_props: The number of key value pairs expected in @uprops
 * @props: The stream configuration built up while validating properties
3457 3458 3459 3460
 *
 * Note this function only validates properties in isolation it doesn't
 * validate that the combination of properties makes sense or that all
 * properties necessary for a particular kind of stream have been set.
3461 3462 3463 3464
 *
 * Note that there currently aren't any ordering requirements for properties so
 * we shouldn't validate or assume anything about ordering here. This doesn't
 * rule out defining new properties with ordering requirements in the future.
3465
 */
3466
static int read_properties_unlocked(struct i915_perf *perf,
3467 3468 3469 3470 3471
				    u64 __user *uprops,
				    u32 n_props,
				    struct perf_open_properties *props)
{
	u64 __user *uprop = uprops;
3472
	u32 i;
3473 3474 3475 3476

	memset(props, 0, sizeof(struct perf_open_properties));

	if (!n_props) {
3477
		DRM_DEBUG("No i915 perf properties given\n");
3478 3479 3480
		return -EINVAL;
	}

3481 3482 3483 3484 3485 3486 3487 3488 3489
	/* At the moment we only support using i915-perf on the RCS. */
	props->engine = intel_engine_lookup_user(perf->i915,
						 I915_ENGINE_CLASS_RENDER,
						 0);
	if (!props->engine) {
		DRM_DEBUG("No RENDER-capable engines\n");
		return -EINVAL;
	}

3490 3491 3492 3493 3494 3495 3496
	/* Considering that ID = 0 is reserved and assuming that we don't
	 * (currently) expect any configurations to ever specify duplicate
	 * values for a particular property ID then the last _PROP_MAX value is
	 * one greater than the maximum number of properties we expect to get
	 * from userspace.
	 */
	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3497
		DRM_DEBUG("More i915 perf properties specified than exist\n");
3498 3499 3500 3501
		return -EINVAL;
	}

	for (i = 0; i < n_props; i++) {
3502
		u64 oa_period, oa_freq_hz;
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
		u64 id, value;
		int ret;

		ret = get_user(id, uprop);
		if (ret)
			return ret;

		ret = get_user(value, uprop + 1);
		if (ret)
			return ret;

3514 3515 3516 3517 3518
		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
			DRM_DEBUG("Unknown i915 perf property ID\n");
			return -EINVAL;
		}

3519 3520 3521 3522 3523
		switch ((enum drm_i915_perf_property_id)id) {
		case DRM_I915_PERF_PROP_CTX_HANDLE:
			props->single_context = 1;
			props->ctx_handle = value;
			break;
3524
		case DRM_I915_PERF_PROP_SAMPLE_OA:
3525 3526
			if (value)
				props->sample_flags |= SAMPLE_OA_REPORT;
3527 3528
			break;
		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3529
			if (value == 0) {
3530
				DRM_DEBUG("Unknown OA metric set ID\n");
3531 3532 3533 3534 3535 3536
				return -EINVAL;
			}
			props->metrics_set = value;
			break;
		case DRM_I915_PERF_PROP_OA_FORMAT:
			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3537 3538
				DRM_DEBUG("Out-of-range OA report format %llu\n",
					  value);
3539 3540
				return -EINVAL;
			}
3541
			if (!perf->oa_formats[value].size) {
3542 3543
				DRM_DEBUG("Unsupported OA report format %llu\n",
					  value);
3544 3545 3546 3547 3548 3549
				return -EINVAL;
			}
			props->oa_format = value;
			break;
		case DRM_I915_PERF_PROP_OA_EXPONENT:
			if (value > OA_EXPONENT_MAX) {
3550 3551
				DRM_DEBUG("OA timer exponent too high (> %u)\n",
					 OA_EXPONENT_MAX);
3552 3553 3554
				return -EINVAL;
			}

3555
			/* Theoretically we can program the OA unit to sample
3556 3557 3558
			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
			 * for BXT. We don't allow such high sampling
			 * frequencies by default unless root.
3559
			 */
3560

3561
			BUILD_BUG_ON(sizeof(oa_period) != 8);
3562
			oa_period = oa_exponent_to_ns(perf, value);
3563 3564 3565 3566 3567 3568

			/* This check is primarily to ensure that oa_period <=
			 * UINT32_MAX (before passing to do_div which only
			 * accepts a u32 denominator), but we can also skip
			 * checking anything < 1Hz which implicitly can't be
			 * limited via an integer oa_max_sample_rate.
3569
			 */
3570 3571 3572 3573 3574 3575 3576 3577 3578
			if (oa_period <= NSEC_PER_SEC) {
				u64 tmp = NSEC_PER_SEC;
				do_div(tmp, oa_period);
				oa_freq_hz = tmp;
			} else
				oa_freq_hz = 0;

			if (oa_freq_hz > i915_oa_max_sample_rate &&
			    !capable(CAP_SYS_ADMIN)) {
3579
				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
3580
					  i915_oa_max_sample_rate);
3581 3582 3583 3584 3585 3586
				return -EACCES;
			}

			props->oa_periodic = true;
			props->oa_period_exponent = value;
			break;
3587 3588 3589
		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
			props->hold_preemption = !!value;
			break;
3590
		case DRM_I915_PERF_PROP_MAX:
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
			MISSING_CASE(id);
			return -EINVAL;
		}

		uprop += 2;
	}

	return 0;
}

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
/**
 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
 * @dev: drm device
 * @data: ioctl data copied from userspace (unvalidated)
 * @file: drm file
 *
 * Validates the stream open parameters given by userspace including flags
 * and an array of u64 key, value pair properties.
 *
 * Very little is assumed up front about the nature of the stream being
 * opened (for instance we don't assume it's for periodic OA unit metrics). An
 * i915-perf stream is expected to be a suitable interface for other forms of
 * buffered data written by the GPU besides periodic OA metrics.
 *
 * Note we copy the properties from userspace outside of the i915 perf
 * mutex to avoid an awkward lockdep with mmap_sem.
 *
 * Most of the implementation details are handled by
3619
 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3620 3621 3622 3623 3624
 * mutex for serializing with any non-file-operation driver hooks.
 *
 * Return: A newly opened i915 Perf stream file descriptor or negative
 * error code on failure.
 */
3625 3626 3627
int i915_perf_open_ioctl(struct drm_device *dev, void *data,
			 struct drm_file *file)
{
3628
	struct i915_perf *perf = &to_i915(dev)->perf;
3629 3630 3631 3632 3633
	struct drm_i915_perf_open_param *param = data;
	struct perf_open_properties props;
	u32 known_open_flags;
	int ret;

3634
	if (!perf->i915) {
3635
		DRM_DEBUG("i915 perf interface not available for this system\n");
3636 3637 3638 3639 3640 3641 3642
		return -ENOTSUPP;
	}

	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
			   I915_PERF_FLAG_FD_NONBLOCK |
			   I915_PERF_FLAG_DISABLED;
	if (param->flags & ~known_open_flags) {
3643
		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3644 3645 3646
		return -EINVAL;
	}

3647
	ret = read_properties_unlocked(perf,
3648 3649 3650 3651 3652 3653
				       u64_to_user_ptr(param->properties_ptr),
				       param->num_properties,
				       &props);
	if (ret)
		return ret;

3654 3655 3656
	mutex_lock(&perf->lock);
	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
	mutex_unlock(&perf->lock);
3657 3658 3659 3660

	return ret;
}

3661 3662
/**
 * i915_perf_register - exposes i915-perf to userspace
3663
 * @i915: i915 device instance
3664 3665 3666 3667 3668
 *
 * In particular OA metric sets are advertised under a sysfs metrics/
 * directory allowing userspace to enumerate valid IDs that can be
 * used to open an i915-perf stream.
 */
3669
void i915_perf_register(struct drm_i915_private *i915)
3670
{
3671
	struct i915_perf *perf = &i915->perf;
3672 3673
	int ret;

3674
	if (!perf->i915)
3675 3676 3677 3678 3679 3680
		return;

	/* To be sure we're synchronized with an attempted
	 * i915_perf_open_ioctl(); considering that we register after
	 * being exposed to userspace.
	 */
3681
	mutex_lock(&perf->lock);
3682

3683
	perf->metrics_kobj =
3684
		kobject_create_and_add("metrics",
3685 3686
				       &i915->drm.primary->kdev->kobj);
	if (!perf->metrics_kobj)
3687 3688
		goto exit;

3689 3690
	sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr);

3691 3692 3693
	if (IS_TIGERLAKE(i915)) {
		i915_perf_load_test_config_tgl(i915);
	} else if (INTEL_GEN(i915) >= 11) {
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		i915_perf_load_test_config_icl(i915);
	} else if (IS_CANNONLAKE(i915)) {
		i915_perf_load_test_config_cnl(i915);
	} else if (IS_COFFEELAKE(i915)) {
		if (IS_CFL_GT2(i915))
			i915_perf_load_test_config_cflgt2(i915);
		if (IS_CFL_GT3(i915))
			i915_perf_load_test_config_cflgt3(i915);
	} else if (IS_GEMINILAKE(i915)) {
		i915_perf_load_test_config_glk(i915);
	} else if (IS_KABYLAKE(i915)) {
		if (IS_KBL_GT2(i915))
			i915_perf_load_test_config_kblgt2(i915);
		else if (IS_KBL_GT3(i915))
			i915_perf_load_test_config_kblgt3(i915);
	} else if (IS_BROXTON(i915)) {
		i915_perf_load_test_config_bxt(i915);
	} else if (IS_SKYLAKE(i915)) {
		if (IS_SKL_GT2(i915))
			i915_perf_load_test_config_sklgt2(i915);
		else if (IS_SKL_GT3(i915))
			i915_perf_load_test_config_sklgt3(i915);
		else if (IS_SKL_GT4(i915))
			i915_perf_load_test_config_sklgt4(i915);
	} else if (IS_CHERRYVIEW(i915)) {
		i915_perf_load_test_config_chv(i915);
	} else if (IS_BROADWELL(i915)) {
		i915_perf_load_test_config_bdw(i915);
	} else if (IS_HASWELL(i915)) {
		i915_perf_load_test_config_hsw(i915);
	}

	if (perf->test_config.id == 0)
3727 3728
		goto sysfs_error;

3729 3730
	ret = sysfs_create_group(perf->metrics_kobj,
				 &perf->test_config.sysfs_metric);
3731 3732
	if (ret)
		goto sysfs_error;
3733

3734 3735
	perf->test_config.perf = perf;
	kref_init(&perf->test_config.ref);
3736

3737 3738 3739
	goto exit;

sysfs_error:
3740 3741
	kobject_put(perf->metrics_kobj);
	perf->metrics_kobj = NULL;
3742

3743
exit:
3744
	mutex_unlock(&perf->lock);
3745 3746
}

3747 3748
/**
 * i915_perf_unregister - hide i915-perf from userspace
3749
 * @i915: i915 device instance
3750 3751 3752 3753 3754 3755
 *
 * i915-perf state cleanup is split up into an 'unregister' and
 * 'deinit' phase where the interface is first hidden from
 * userspace by i915_perf_unregister() before cleaning up
 * remaining state in i915_perf_fini().
 */
3756
void i915_perf_unregister(struct drm_i915_private *i915)
3757
{
3758 3759 3760
	struct i915_perf *perf = &i915->perf;

	if (!perf->metrics_kobj)
3761 3762
		return;

3763 3764
	sysfs_remove_group(perf->metrics_kobj,
			   &perf->test_config.sysfs_metric);
3765

3766 3767
	kobject_put(perf->metrics_kobj);
	perf->metrics_kobj = NULL;
3768 3769
}

3770
static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
{
	static const i915_reg_t flex_eu_regs[] = {
		EU_PERF_CNTL0,
		EU_PERF_CNTL1,
		EU_PERF_CNTL2,
		EU_PERF_CNTL3,
		EU_PERF_CNTL4,
		EU_PERF_CNTL5,
		EU_PERF_CNTL6,
	};
	int i;

	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3784
		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3785 3786 3787 3788 3789
			return true;
	}
	return false;
}

3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
#define ADDR_IN_RANGE(addr, start, end) \
	((addr) >= (start) && \
	 (addr) <= (end))

#define REG_IN_RANGE(addr, start, end) \
	((addr) >= i915_mmio_reg_offset(start) && \
	 (addr) <= i915_mmio_reg_offset(end))

#define REG_EQUAL(addr, mmio) \
	((addr) == i915_mmio_reg_offset(mmio))

3801
static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3802
{
3803 3804 3805
	return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
	       REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
	       REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3806 3807
}

3808
static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3809
{
3810 3811 3812 3813
	return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
	       REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
	       REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
	       REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3814 3815
}

3816
static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3817
{
3818
	return gen7_is_valid_mux_addr(perf, addr) ||
3819 3820
	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
	       REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3821 3822
}

3823
static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3824
{
3825
	return gen8_is_valid_mux_addr(perf, addr) ||
3826 3827
	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
	       REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3828 3829
}

3830
static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3831
{
3832
	return gen7_is_valid_mux_addr(perf, addr) ||
3833 3834 3835
	       ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
	       REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
	       REG_EQUAL(addr, HSW_MBVID2_MISR0);
3836 3837
}

3838
static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3839
{
3840
	return gen7_is_valid_mux_addr(perf, addr) ||
3841
	       ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3842 3843
}

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
{
	return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
	       REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
	       REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
	       REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
	       REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
	       REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
	       REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
}

static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
{
	return REG_EQUAL(addr, NOA_WRITE) ||
	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
	       REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
	       REG_EQUAL(addr, RPM_CONFIG0) ||
	       REG_EQUAL(addr, RPM_CONFIG1) ||
	       REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
}

3866
static u32 mask_reg_value(u32 reg, u32 val)
3867 3868 3869 3870 3871
{
	/* HALF_SLICE_CHICKEN2 is programmed with a the
	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
	 * programmed by userspace doesn't change this.
	 */
3872
	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3873 3874 3875 3876 3877 3878
		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);

	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
	 * indicated by its name and a bunch of selection fields used by OA
	 * configs.
	 */
3879
	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3880 3881 3882 3883 3884
		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);

	return val;
}

3885 3886
static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
					 u32 __user *regs,
					 u32 n_regs)
{
	struct i915_oa_reg *oa_regs;
	int err;
	u32 i;

	if (!n_regs)
		return NULL;

3897
	if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
		return ERR_PTR(-EFAULT);

	/* No is_valid function means we're not allowing any register to be programmed. */
	GEM_BUG_ON(!is_valid);
	if (!is_valid)
		return ERR_PTR(-EINVAL);

	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
	if (!oa_regs)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < n_regs; i++) {
		u32 addr, value;

		err = get_user(addr, regs);
		if (err)
			goto addr_err;

3916
		if (!is_valid(perf, addr)) {
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
			err = -EINVAL;
			goto addr_err;
		}

		err = get_user(value, regs + 1);
		if (err)
			goto addr_err;

		oa_regs[i].addr = _MMIO(addr);
		oa_regs[i].value = mask_reg_value(addr, value);

		regs += 2;
	}

	return oa_regs;

addr_err:
	kfree(oa_regs);
	return ERR_PTR(err);
}

static ssize_t show_dynamic_id(struct device *dev,
			       struct device_attribute *attr,
			       char *buf)
{
	struct i915_oa_config *oa_config =
		container_of(attr, typeof(*oa_config), sysfs_metric_id);

	return sprintf(buf, "%d\n", oa_config->id);
}

3949
static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3950 3951
					 struct i915_oa_config *oa_config)
{
3952
	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	oa_config->sysfs_metric_id.attr.name = "id";
	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
	oa_config->sysfs_metric_id.show = show_dynamic_id;
	oa_config->sysfs_metric_id.store = NULL;

	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
	oa_config->attrs[1] = NULL;

	oa_config->sysfs_metric.name = oa_config->uuid;
	oa_config->sysfs_metric.attrs = oa_config->attrs;

3964
	return sysfs_create_group(perf->metrics_kobj,
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
				  &oa_config->sysfs_metric);
}

/**
 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
 * @dev: drm device
 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
 *        userspace (unvalidated)
 * @file: drm file
 *
 * Validates the submitted OA register to be saved into a new OA config that
 * can then be used for programming the OA unit and its NOA network.
 *
 * Returns: A new allocated config number to be used with the perf open ioctl
 * or a negative error code on failure.
 */
int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
{
3984
	struct i915_perf *perf = &to_i915(dev)->perf;
3985 3986
	struct drm_i915_perf_oa_config *args = data;
	struct i915_oa_config *oa_config, *tmp;
3987
	struct i915_oa_reg *regs;
3988 3989
	int err, id;

3990
	if (!perf->i915) {
3991 3992 3993 3994
		DRM_DEBUG("i915 perf interface not available for this system\n");
		return -ENOTSUPP;
	}

3995
	if (!perf->metrics_kobj) {
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
		return -EINVAL;
	}

	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
		return -EACCES;
	}

	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
		DRM_DEBUG("No OA registers given\n");
		return -EINVAL;
	}

	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
	if (!oa_config) {
		DRM_DEBUG("Failed to allocate memory for the OA config\n");
		return -ENOMEM;
	}

4018 4019
	oa_config->perf = perf;
	kref_init(&oa_config->ref);
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032

	if (!uuid_is_valid(args->uuid)) {
		DRM_DEBUG("Invalid uuid format for OA config\n");
		err = -EINVAL;
		goto reg_err;
	}

	/* Last character in oa_config->uuid will be 0 because oa_config is
	 * kzalloc.
	 */
	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));

	oa_config->mux_regs_len = args->n_mux_regs;
4033 4034 4035 4036
	regs = alloc_oa_regs(perf,
			     perf->ops.is_valid_mux_reg,
			     u64_to_user_ptr(args->mux_regs_ptr),
			     args->n_mux_regs);
4037

4038
	if (IS_ERR(regs)) {
4039
		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4040
		err = PTR_ERR(regs);
4041 4042
		goto reg_err;
	}
4043
	oa_config->mux_regs = regs;
4044 4045

	oa_config->b_counter_regs_len = args->n_boolean_regs;
4046 4047 4048 4049
	regs = alloc_oa_regs(perf,
			     perf->ops.is_valid_b_counter_reg,
			     u64_to_user_ptr(args->boolean_regs_ptr),
			     args->n_boolean_regs);
4050

4051
	if (IS_ERR(regs)) {
4052
		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4053
		err = PTR_ERR(regs);
4054 4055
		goto reg_err;
	}
4056
	oa_config->b_counter_regs = regs;
4057

4058
	if (INTEL_GEN(perf->i915) < 8) {
4059 4060 4061 4062 4063 4064
		if (args->n_flex_regs != 0) {
			err = -EINVAL;
			goto reg_err;
		}
	} else {
		oa_config->flex_regs_len = args->n_flex_regs;
4065 4066 4067 4068
		regs = alloc_oa_regs(perf,
				     perf->ops.is_valid_flex_reg,
				     u64_to_user_ptr(args->flex_regs_ptr),
				     args->n_flex_regs);
4069

4070
		if (IS_ERR(regs)) {
4071
			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4072
			err = PTR_ERR(regs);
4073 4074
			goto reg_err;
		}
4075
		oa_config->flex_regs = regs;
4076 4077
	}

4078
	err = mutex_lock_interruptible(&perf->metrics_lock);
4079 4080 4081 4082 4083 4084
	if (err)
		goto reg_err;

	/* We shouldn't have too many configs, so this iteration shouldn't be
	 * too costly.
	 */
4085
	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4086 4087 4088 4089 4090 4091 4092
		if (!strcmp(tmp->uuid, oa_config->uuid)) {
			DRM_DEBUG("OA config already exists with this uuid\n");
			err = -EADDRINUSE;
			goto sysfs_err;
		}
	}

4093
	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4094 4095 4096 4097 4098 4099
	if (err) {
		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
		goto sysfs_err;
	}

	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4100
	oa_config->id = idr_alloc(&perf->metrics_idr,
4101 4102 4103 4104 4105 4106 4107 4108
				  oa_config, 2,
				  0, GFP_KERNEL);
	if (oa_config->id < 0) {
		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
		err = oa_config->id;
		goto sysfs_err;
	}

4109
	mutex_unlock(&perf->metrics_lock);
4110

4111 4112
	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);

4113 4114 4115
	return oa_config->id;

sysfs_err:
4116
	mutex_unlock(&perf->metrics_lock);
4117
reg_err:
4118
	i915_oa_config_put(oa_config);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	DRM_DEBUG("Failed to add new OA config\n");
	return err;
}

/**
 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
 * @dev: drm device
 * @data: ioctl data (pointer to u64 integer) copied from userspace
 * @file: drm file
 *
 * Configs can be removed while being used, the will stop appearing in sysfs
 * and their content will be freed when the stream using the config is closed.
 *
 * Returns: 0 on success or a negative error code on failure.
 */
int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
				  struct drm_file *file)
{
4137
	struct i915_perf *perf = &to_i915(dev)->perf;
4138 4139 4140 4141
	u64 *arg = data;
	struct i915_oa_config *oa_config;
	int ret;

4142
	if (!perf->i915) {
4143 4144 4145 4146 4147 4148 4149 4150 4151
		DRM_DEBUG("i915 perf interface not available for this system\n");
		return -ENOTSUPP;
	}

	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
		return -EACCES;
	}

4152
	ret = mutex_lock_interruptible(&perf->metrics_lock);
4153
	if (ret)
4154
		return ret;
4155

4156
	oa_config = idr_find(&perf->metrics_idr, *arg);
4157 4158 4159
	if (!oa_config) {
		DRM_DEBUG("Failed to remove unknown OA config\n");
		ret = -ENOENT;
4160
		goto err_unlock;
4161 4162 4163 4164
	}

	GEM_BUG_ON(*arg != oa_config->id);

4165
	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4166

4167
	idr_remove(&perf->metrics_idr, *arg);
4168

4169 4170
	mutex_unlock(&perf->metrics_lock);

4171 4172
	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);

4173 4174 4175
	i915_oa_config_put(oa_config);

	return 0;
4176

4177
err_unlock:
4178
	mutex_unlock(&perf->metrics_lock);
4179 4180 4181
	return ret;
}

4182 4183 4184 4185 4186 4187 4188
static struct ctl_table oa_table[] = {
	{
	 .procname = "perf_stream_paranoid",
	 .data = &i915_perf_stream_paranoid,
	 .maxlen = sizeof(i915_perf_stream_paranoid),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
4189 4190
	 .extra1 = SYSCTL_ZERO,
	 .extra2 = SYSCTL_ONE,
4191
	 },
4192 4193 4194 4195 4196 4197
	{
	 .procname = "oa_max_sample_rate",
	 .data = &i915_oa_max_sample_rate,
	 .maxlen = sizeof(i915_oa_max_sample_rate),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
4198
	 .extra1 = SYSCTL_ZERO,
4199 4200
	 .extra2 = &oa_sample_rate_hard_limit,
	 },
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	{}
};

static struct ctl_table i915_root[] = {
	{
	 .procname = "i915",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = oa_table,
	 },
	{}
};

static struct ctl_table dev_root[] = {
	{
	 .procname = "dev",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = i915_root,
	 },
	{}
};

4224
/**
4225
 * i915_perf_init - initialize i915-perf state on module bind
4226
 * @i915: i915 device instance
4227 4228 4229 4230 4231 4232
 *
 * Initializes i915-perf state without exposing anything to userspace.
 *
 * Note: i915-perf initialization is split into an 'init' and 'register'
 * phase with the i915_perf_register() exposing state to userspace.
 */
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
void i915_perf_init(struct drm_i915_private *i915)
{
	struct i915_perf *perf = &i915->perf;

	/* XXX const struct i915_perf_ops! */

	if (IS_HASWELL(i915)) {
		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
		perf->ops.is_valid_flex_reg = NULL;
		perf->ops.enable_metric_set = hsw_enable_metric_set;
		perf->ops.disable_metric_set = hsw_disable_metric_set;
		perf->ops.oa_enable = gen7_oa_enable;
		perf->ops.oa_disable = gen7_oa_disable;
		perf->ops.read = gen7_oa_read;
		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;

		perf->oa_formats = hsw_oa_formats;
	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4252 4253 4254 4255 4256 4257
		/* Note: that although we could theoretically also support the
		 * legacy ringbuffer mode on BDW (and earlier iterations of
		 * this driver, before upstreaming did this) it didn't seem
		 * worth the complexity to maintain now that BDW+ enable
		 * execlist mode by default.
		 */
4258
		perf->ops.read = gen8_oa_read;
4259

4260
		if (IS_GEN_RANGE(i915, 8, 9)) {
4261 4262
			perf->oa_formats = gen8_plus_oa_formats;

4263
			perf->ops.is_valid_b_counter_reg =
4264
				gen7_is_valid_b_counter_addr;
4265
			perf->ops.is_valid_mux_reg =
4266
				gen8_is_valid_mux_addr;
4267
			perf->ops.is_valid_flex_reg =
4268
				gen8_is_valid_flex_addr;
4269

4270 4271
			if (IS_CHERRYVIEW(i915)) {
				perf->ops.is_valid_mux_reg =
4272 4273
					chv_is_valid_mux_addr;
			}
4274

4275 4276
			perf->ops.oa_enable = gen8_oa_enable;
			perf->ops.oa_disable = gen8_oa_disable;
4277 4278
			perf->ops.enable_metric_set = gen8_enable_metric_set;
			perf->ops.disable_metric_set = gen8_disable_metric_set;
4279
			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4280

4281 4282 4283
			if (IS_GEN(i915, 8)) {
				perf->ctx_oactxctrl_offset = 0x120;
				perf->ctx_flexeu0_offset = 0x2ce;
4284

4285
				perf->gen8_valid_ctx_bit = BIT(25);
4286
			} else {
4287 4288
				perf->ctx_oactxctrl_offset = 0x128;
				perf->ctx_flexeu0_offset = 0x3de;
4289

4290
				perf->gen8_valid_ctx_bit = BIT(16);
4291
			}
4292
		} else if (IS_GEN_RANGE(i915, 10, 11)) {
4293 4294
			perf->oa_formats = gen8_plus_oa_formats;

4295
			perf->ops.is_valid_b_counter_reg =
4296
				gen7_is_valid_b_counter_addr;
4297
			perf->ops.is_valid_mux_reg =
4298
				gen10_is_valid_mux_addr;
4299
			perf->ops.is_valid_flex_reg =
4300 4301
				gen8_is_valid_flex_addr;

4302 4303
			perf->ops.oa_enable = gen8_oa_enable;
			perf->ops.oa_disable = gen8_oa_disable;
4304 4305
			perf->ops.enable_metric_set = gen8_enable_metric_set;
			perf->ops.disable_metric_set = gen10_disable_metric_set;
4306
			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4307

4308 4309 4310
			if (IS_GEN(i915, 10)) {
				perf->ctx_oactxctrl_offset = 0x128;
				perf->ctx_flexeu0_offset = 0x3de;
4311
			} else {
4312 4313
				perf->ctx_oactxctrl_offset = 0x124;
				perf->ctx_flexeu0_offset = 0x78e;
4314
			}
4315
			perf->gen8_valid_ctx_bit = BIT(16);
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
		} else if (IS_GEN(i915, 12)) {
			perf->oa_formats = gen12_oa_formats;

			perf->ops.is_valid_b_counter_reg =
				gen12_is_valid_b_counter_addr;
			perf->ops.is_valid_mux_reg =
				gen12_is_valid_mux_addr;
			perf->ops.is_valid_flex_reg =
				gen8_is_valid_flex_addr;

			perf->ops.oa_enable = gen12_oa_enable;
			perf->ops.oa_disable = gen12_oa_disable;
			perf->ops.enable_metric_set = gen12_enable_metric_set;
			perf->ops.disable_metric_set = gen12_disable_metric_set;
			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;

			perf->ctx_flexeu0_offset = 0;
			perf->ctx_oactxctrl_offset = 0x144;
4334 4335
		}
	}
4336

4337 4338
	if (perf->ops.enable_metric_set) {
		mutex_init(&perf->lock);
4339

4340
		oa_sample_rate_hard_limit = 1000 *
4341
			(RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2);
4342

4343 4344
		mutex_init(&perf->metrics_lock);
		idr_init(&perf->metrics_idr);
4345

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
		/* We set up some ratelimit state to potentially throttle any
		 * _NOTES about spurious, invalid OA reports which we don't
		 * forward to userspace.
		 *
		 * We print a _NOTE about any throttling when closing the
		 * stream instead of waiting until driver _fini which no one
		 * would ever see.
		 *
		 * Using the same limiting factors as printk_ratelimit()
		 */
4356
		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4357 4358 4359 4360
		/* Since we use a DRM_NOTE for spurious reports it would be
		 * inconsistent to let __ratelimit() automatically print a
		 * warning for throttling.
		 */
4361
		ratelimit_set_flags(&perf->spurious_report_rs,
4362 4363
				    RATELIMIT_MSG_ON_RELEASE);

4364 4365 4366
		atomic64_set(&perf->noa_programming_delay,
			     500 * 1000 /* 500us */);

4367
		perf->i915 = i915;
4368
	}
4369 4370
}

4371 4372
static int destroy_config(int id, void *p, void *data)
{
4373
	i915_oa_config_put(p);
4374 4375 4376
	return 0;
}

4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
void i915_perf_sysctl_register(void)
{
	sysctl_header = register_sysctl_table(dev_root);
}

void i915_perf_sysctl_unregister(void)
{
	unregister_sysctl_table(sysctl_header);
}

4387 4388
/**
 * i915_perf_fini - Counter part to i915_perf_init()
4389
 * @i915: i915 device instance
4390
 */
4391
void i915_perf_fini(struct drm_i915_private *i915)
4392
{
4393
	struct i915_perf *perf = &i915->perf;
4394

4395 4396
	if (!perf->i915)
		return;
4397

4398 4399
	idr_for_each(&perf->metrics_idr, destroy_config, perf);
	idr_destroy(&perf->metrics_idr);
4400

4401 4402
	memset(&perf->ops, 0, sizeof(perf->ops));
	perf->i915 = NULL;
4403
}
4404

4405 4406 4407 4408 4409 4410 4411
/**
 * i915_perf_ioctl_version - Version of the i915-perf subsystem
 *
 * This version number is used by userspace to detect available features.
 */
int i915_perf_ioctl_version(void)
{
4412 4413 4414 4415 4416 4417 4418
	/*
	 * 1: Initial version
	 *   I915_PERF_IOCTL_ENABLE
	 *   I915_PERF_IOCTL_DISABLE
	 *
	 * 2: Added runtime modification of OA config.
	 *   I915_PERF_IOCTL_CONFIG
4419 4420 4421 4422 4423
	 *
	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
	 *    preemption on a particular context so that performance data is
	 *    accessible from a delta of MI_RPC reports without looking at the
	 *    OA buffer.
4424
	 */
4425
	return 3;
4426 4427
}

4428 4429 4430
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_perf.c"
#endif