i915_perf.c 112.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright © 2015-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *   Robert Bragg <robert@sixbynine.org>
 */

27 28

/**
29
 * DOC: i915 Perf Overview
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *
 * Gen graphics supports a large number of performance counters that can help
 * driver and application developers understand and optimize their use of the
 * GPU.
 *
 * This i915 perf interface enables userspace to configure and open a file
 * descriptor representing a stream of GPU metrics which can then be read() as
 * a stream of sample records.
 *
 * The interface is particularly suited to exposing buffered metrics that are
 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
 *
 * Streams representing a single context are accessible to applications with a
 * corresponding drm file descriptor, such that OpenGL can use the interface
 * without special privileges. Access to system-wide metrics requires root
 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
 * sysctl option.
 *
48 49 50 51
 */

/**
 * DOC: i915 Perf History and Comparison with Core Perf
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 *
 * The interface was initially inspired by the core Perf infrastructure but
 * some notable differences are:
 *
 * i915 perf file descriptors represent a "stream" instead of an "event"; where
 * a perf event primarily corresponds to a single 64bit value, while a stream
 * might sample sets of tightly-coupled counters, depending on the
 * configuration.  For example the Gen OA unit isn't designed to support
 * orthogonal configurations of individual counters; it's configured for a set
 * of related counters. Samples for an i915 perf stream capturing OA metrics
 * will include a set of counter values packed in a compact HW specific format.
 * The OA unit supports a number of different packing formats which can be
 * selected by the user opening the stream. Perf has support for grouping
 * events, but each event in the group is configured, validated and
 * authenticated individually with separate system calls.
 *
 * i915 perf stream configurations are provided as an array of u64 (key,value)
 * pairs, instead of a fixed struct with multiple miscellaneous config members,
 * interleaved with event-type specific members.
 *
 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
 * The supported metrics are being written to memory by the GPU unsynchronized
 * with the CPU, using HW specific packing formats for counter sets. Sometimes
 * the constraints on HW configuration require reports to be filtered before it
 * would be acceptable to expose them to unprivileged applications - to hide
 * the metrics of other processes/contexts. For these use cases a read() based
 * interface is a good fit, and provides an opportunity to filter data as it
 * gets copied from the GPU mapped buffers to userspace buffers.
 *
 *
82 83
 * Issues hit with first prototype based on Core Perf
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 *
 * The first prototype of this driver was based on the core perf
 * infrastructure, and while we did make that mostly work, with some changes to
 * perf, we found we were breaking or working around too many assumptions baked
 * into perf's currently cpu centric design.
 *
 * In the end we didn't see a clear benefit to making perf's implementation and
 * interface more complex by changing design assumptions while we knew we still
 * wouldn't be able to use any existing perf based userspace tools.
 *
 * Also considering the Gen specific nature of the Observability hardware and
 * how userspace will sometimes need to combine i915 perf OA metrics with
 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
 * expecting the interface to be used by a platform specific userspace such as
 * OpenGL or tools. This is to say; we aren't inherently missing out on having
 * a standard vendor/architecture agnostic interface by not using perf.
 *
 *
 * For posterity, in case we might re-visit trying to adapt core perf to be
 * better suited to exposing i915 metrics these were the main pain points we
 * hit:
 *
 * - The perf based OA PMU driver broke some significant design assumptions:
 *
 *   Existing perf pmus are used for profiling work on a cpu and we were
 *   introducing the idea of _IS_DEVICE pmus with different security
 *   implications, the need to fake cpu-related data (such as user/kernel
 *   registers) to fit with perf's current design, and adding _DEVICE records
 *   as a way to forward device-specific status records.
 *
 *   The OA unit writes reports of counters into a circular buffer, without
 *   involvement from the CPU, making our PMU driver the first of a kind.
 *
 *   Given the way we were periodically forward data from the GPU-mapped, OA
 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 *   we were sampling too fast and so we had to subvert its throttling checks.
 *
 *   Perf supports groups of counters and allows those to be read via
 *   transactions internally but transactions currently seem designed to be
 *   explicitly initiated from the cpu (say in response to a userspace read())
 *   and while we could pull a report out of the OA buffer we can't
 *   trigger a report from the cpu on demand.
 *
 *   Related to being report based; the OA counters are configured in HW as a
 *   set while perf generally expects counter configurations to be orthogonal.
 *   Although counters can be associated with a group leader as they are
 *   opened, there's no clear precedent for being able to provide group-wide
 *   configuration attributes (for example we want to let userspace choose the
 *   OA unit report format used to capture all counters in a set, or specify a
 *   GPU context to filter metrics on). We avoided using perf's grouping
 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 *   field. This suited our userspace well considering how coupled the counters
 *   are when dealing with normalizing. It would be inconvenient to split
 *   counters up into separate events, only to require userspace to recombine
 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 *   for combining with the side-band raw reports it captures using
 *   MI_REPORT_PERF_COUNT commands.
 *
142
 *   - As a side note on perf's grouping feature; there was also some concern
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 *     would quite drastically inflate our sample sizes, which would likely
 *     lower the effective sampling resolutions we could use when the available
 *     memory bandwidth is limited.
 *
 *     With the OA unit's report formats, counters are packed together as 32
 *     or 40bit values, with the largest report size being 256 bytes.
 *
 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 *
 *   Related to counter orthogonality; we can't time share the OA unit, while
 *   event scheduling is a central design idea within perf for allowing
 *   userspace to open + enable more events than can be configured in HW at any
 *   one time.  The OA unit is not designed to allow re-configuration while in
 *   use. We can't reconfigure the OA unit without losing internal OA unit
 *   state which we can't access explicitly to save and restore. Reconfiguring
 *   the OA unit is also relatively slow, involving ~100 register writes. From
 *   userspace Mesa also depends on a stable OA configuration when emitting
 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 *   disabled while there are outstanding MI_RPC commands lest we hang the
 *   command streamer.
 *
 *   The contents of sample records aren't extensible by device drivers (i.e.
 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 *   into sample records by using the 'raw' field, but it's tricky to pack more
 *   than one thing into this field because events/core.c currently only lets a
 *   pmu give a single raw data pointer plus len which will be copied into the
 *   ring buffer. To include more than the OA report we'd have to copy the
 *   report into an intermediate larger buffer. I'd been considering allowing a
 *   vector of data+len values to be specified for copying the raw data, but
 *   it felt like a kludge to being using the raw field for this purpose.
 *
 * - It felt like our perf based PMU was making some technical compromises
 *   just for the sake of using perf:
 *
 *   perf_event_open() requires events to either relate to a pid or a specific
 *   cpu core, while our device pmu related to neither.  Events opened with a
 *   pid will be automatically enabled/disabled according to the scheduling of
 *   that process - so not appropriate for us. When an event is related to a
 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 *   perf events for a specific cpu. This was workable but it meant the
 *   majority of the OA driver ran in atomic context, including all OA report
 *   forwarding, which wasn't really necessary in our case and seems to make
 *   our locking requirements somewhat complex as we handled the interaction
 *   with the rest of the i915 driver.
 */

194
#include <linux/anon_inodes.h>
195
#include <linux/sizes.h>
196
#include <linux/uuid.h>
197

198 199
#include "gem/i915_gem_context.h"
#include "gem/i915_gem_pm.h"
200 201
#include "gt/intel_lrc_reg.h"

202
#include "i915_drv.h"
203
#include "i915_perf.h"
204 205 206 207 208 209 210 211 212 213 214 215 216 217
#include "oa/i915_oa_hsw.h"
#include "oa/i915_oa_bdw.h"
#include "oa/i915_oa_chv.h"
#include "oa/i915_oa_sklgt2.h"
#include "oa/i915_oa_sklgt3.h"
#include "oa/i915_oa_sklgt4.h"
#include "oa/i915_oa_bxt.h"
#include "oa/i915_oa_kblgt2.h"
#include "oa/i915_oa_kblgt3.h"
#include "oa/i915_oa_glk.h"
#include "oa/i915_oa_cflgt2.h"
#include "oa/i915_oa_cflgt3.h"
#include "oa/i915_oa_cnl.h"
#include "oa/i915_oa_icl.h"
218

219 220 221 222 223 224 225
/* HW requires this to be a power of two, between 128k and 16M, though driver
 * is currently generally designed assuming the largest 16M size is used such
 * that the overflow cases are unlikely in normal operation.
 */
#define OA_BUFFER_SIZE		SZ_16M

#define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
226

227 228 229 230
/**
 * DOC: OA Tail Pointer Race
 *
 * There's a HW race condition between OA unit tail pointer register updates and
231
 * writes to memory whereby the tail pointer can sometimes get ahead of what's
232 233 234 235 236
 * been written out to the OA buffer so far (in terms of what's visible to the
 * CPU).
 *
 * Although this can be observed explicitly while copying reports to userspace
 * by checking for a zeroed report-id field in tail reports, we want to account
237
 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
238 239 240 241 242 243 244 245 246 247 248
 * read() attempts.
 *
 * In effect we define a tail pointer for reading that lags the real tail
 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
 * time for the corresponding reports to become visible to the CPU.
 *
 * To manage this we actually track two tail pointers:
 *  1) An 'aging' tail with an associated timestamp that is tracked until we
 *     can trust the corresponding data is visible to the CPU; at which point
 *     it is considered 'aged'.
 *  2) An 'aged' tail that can be used for read()ing.
249
 *
250
 * The two separate pointers let us decouple read()s from tail pointer aging.
251
 *
252
 * The tail pointers are checked and updated at a limited rate within a hrtimer
253
 * callback (the same callback that is used for delivering EPOLLIN events)
254
 *
255 256 257 258
 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
 * indicates that an updated tail pointer is needed.
 *
 * Most of the implementation details for this workaround are in
259
 * oa_buffer_check_unlocked() and _append_oa_reports()
260 261 262 263 264 265 266
 *
 * Note for posterity: previously the driver used to define an effective tail
 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 * This was flawed considering that the OA unit may also automatically generate
 * non-periodic reports (such as on context switch) or the OA unit may be
 * enabled without any periodic sampling.
267 268
 */
#define OA_TAIL_MARGIN_NSEC	100000ULL
269
#define INVALID_TAIL_PTR	0xffffffff
270 271 272 273 274 275 276

/* frequency for checking whether the OA unit has written new reports to the
 * circular OA buffer...
 */
#define POLL_FREQUENCY 200
#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)

277 278 279
/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
static u32 i915_perf_stream_paranoid = true;

280 281 282 283 284 285 286 287 288 289 290 291
/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 * of the 64bit timestamp bits to trigger reports from) but there's currently
 * no known use case for sampling as infrequently as once per 47 thousand years.
 *
 * Since the timestamps included in OA reports are only 32bits it seems
 * reasonable to limit the OA exponent where it's still possible to account for
 * overflow in OA report timestamps.
 */
#define OA_EXPONENT_MAX 31

#define INVALID_CTX_ID 0xffffffff

292 293 294 295 296 297 298
/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
#define OAREPORT_REASON_MASK           0x3f
#define OAREPORT_REASON_SHIFT          19
#define OAREPORT_REASON_TIMER          (1<<0)
#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
#define OAREPORT_REASON_CLK_RATIO      (1<<5)

299

300 301
/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 *
302 303 304 305
 * The highest sampling frequency we can theoretically program the OA unit
 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
 *
 * Initialized just before we register the sysctl parameter.
306
 */
307
static int oa_sample_rate_hard_limit;
308 309 310 311 312 313 314 315 316

/* Theoretically we can program the OA unit to sample every 160ns but don't
 * allow that by default unless root...
 *
 * The default threshold of 100000Hz is based on perf's similar
 * kernel.perf_event_max_sample_rate sysctl parameter.
 */
static u32 i915_oa_max_sample_rate = 100000;

317 318 319 320
/* XXX: beware if future OA HW adds new report formats that the current
 * code assumes all reports have a power-of-two size and ~(size - 1) can
 * be used as a mask to align the OA tail pointer.
 */
321
static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
322 323 324 325 326 327 328 329 330 331
	[I915_OA_FORMAT_A13]	    = { 0, 64 },
	[I915_OA_FORMAT_A29]	    = { 1, 128 },
	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
};

332
static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
333 334 335 336 337 338
	[I915_OA_FORMAT_A12]		    = { 0, 64 },
	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
};

339
#define SAMPLE_OA_REPORT      (1<<0)
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354
/**
 * struct perf_open_properties - for validated properties given to open a stream
 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 * @single_context: Whether a single or all gpu contexts should be monitored
 * @ctx_handle: A gem ctx handle for use with @single_context
 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 * @oa_format: An OA unit HW report format
 * @oa_periodic: Whether to enable periodic OA unit sampling
 * @oa_period_exponent: The OA unit sampling period is derived from this
 *
 * As read_properties_unlocked() enumerates and validates the properties given
 * to open a stream of metrics the configuration is built up in the structure
 * which starts out zero initialized.
 */
355 356 357 358 359
struct perf_open_properties {
	u32 sample_flags;

	u64 single_context:1;
	u64 ctx_handle;
360 361 362 363 364 365 366 367

	/* OA sampling state */
	int metrics_set;
	int oa_format;
	bool oa_periodic;
	int oa_period_exponent;
};

368 369
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);

370
static void free_oa_config(struct i915_oa_config *oa_config)
371 372 373 374 375 376 377 378 379 380
{
	if (!PTR_ERR(oa_config->flex_regs))
		kfree(oa_config->flex_regs);
	if (!PTR_ERR(oa_config->b_counter_regs))
		kfree(oa_config->b_counter_regs);
	if (!PTR_ERR(oa_config->mux_regs))
		kfree(oa_config->mux_regs);
	kfree(oa_config);
}

381
static void put_oa_config(struct i915_oa_config *oa_config)
382 383 384 385
{
	if (!atomic_dec_and_test(&oa_config->ref_count))
		return;

386
	free_oa_config(oa_config);
387 388
}

389
static int get_oa_config(struct i915_perf *perf,
390 391 392 393 394 395
			 int metrics_set,
			 struct i915_oa_config **out_config)
{
	int ret;

	if (metrics_set == 1) {
396 397
		*out_config = &perf->test_config;
		atomic_inc(&perf->test_config.ref_count);
398 399 400
		return 0;
	}

401
	ret = mutex_lock_interruptible(&perf->metrics_lock);
402 403 404
	if (ret)
		return ret;

405
	*out_config = idr_find(&perf->metrics_idr, metrics_set);
406 407 408 409 410
	if (!*out_config)
		ret = -EINVAL;
	else
		atomic_inc(&(*out_config)->ref_count);

411
	mutex_unlock(&perf->metrics_lock);
412 413 414 415

	return ret;
}

416
static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
417
{
418
	struct intel_uncore *uncore = stream->gt->uncore;
419

420
	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
421 422
}

423
static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
424
{
425 426
	struct intel_uncore *uncore = stream->gt->uncore;
	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
427 428 429 430

	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
}

431
/**
432
 * oa_buffer_check_unlocked - check for data and update tail ptr state
433
 * @stream: i915 stream instance
434
 *
435 436 437
 * This is either called via fops (for blocking reads in user ctx) or the poll
 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 * if there is data available for userspace to read.
438
 *
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
 * This function is central to providing a workaround for the OA unit tail
 * pointer having a race with respect to what data is visible to the CPU.
 * It is responsible for reading tail pointers from the hardware and giving
 * the pointers time to 'age' before they are made available for reading.
 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 *
 * Besides returning true when there is data available to read() this function
 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
 * and .aged_tail_idx state used for reading.
 *
 * Note: It's safe to read OA config state here unlocked, assuming that this is
 * only called while the stream is enabled, while the global OA configuration
 * can't be modified.
 *
 * Returns: %true if the OA buffer contains data, else %false
454
 */
455
static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
456
{
457
	int report_size = stream->oa_buffer.format_size;
458 459 460 461 462 463 464 465 466
	unsigned long flags;
	unsigned int aged_idx;
	u32 head, hw_tail, aged_tail, aging_tail;
	u64 now;

	/* We have to consider the (unlikely) possibility that read() errors
	 * could result in an OA buffer reset which might reset the head,
	 * tails[] and aged_tail state.
	 */
467
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
468 469 470 471 472

	/* NB: The head we observe here might effectively be a little out of
	 * date (between head and tails[aged_idx].offset if there is currently
	 * a read() in progress.
	 */
473
	head = stream->oa_buffer.head;
474

475 476 477
	aged_idx = stream->oa_buffer.aged_tail_idx;
	aged_tail = stream->oa_buffer.tails[aged_idx].offset;
	aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
478

479
	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
480 481 482 483 484 485 486 487

	/* The tail pointer increases in 64 byte increments,
	 * not in report_size steps...
	 */
	hw_tail &= ~(report_size - 1);

	now = ktime_get_mono_fast_ns();

488 489 490 491 492 493 494 495 496 497 498
	/* Update the aged tail
	 *
	 * Flip the tail pointer available for read()s once the aging tail is
	 * old enough to trust that the corresponding data will be visible to
	 * the CPU...
	 *
	 * Do this before updating the aging pointer in case we may be able to
	 * immediately start aging a new pointer too (if new data has become
	 * available) without needing to wait for a later hrtimer callback.
	 */
	if (aging_tail != INVALID_TAIL_PTR &&
499
	    ((now - stream->oa_buffer.aging_timestamp) >
500
	     OA_TAIL_MARGIN_NSEC)) {
501

502
		aged_idx ^= 1;
503
		stream->oa_buffer.aged_tail_idx = aged_idx;
504 505 506 507

		aged_tail = aging_tail;

		/* Mark that we need a new pointer to start aging... */
508
		stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
509 510 511
		aging_tail = INVALID_TAIL_PTR;
	}

512 513 514 515 516 517 518 519 520 521 522
	/* Update the aging tail
	 *
	 * We throttle aging tail updates until we have a new tail that
	 * represents >= one report more data than is already available for
	 * reading. This ensures there will be enough data for a successful
	 * read once this new pointer has aged and ensures we will give the new
	 * pointer time to age.
	 */
	if (aging_tail == INVALID_TAIL_PTR &&
	    (aged_tail == INVALID_TAIL_PTR ||
	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
523
		struct i915_vma *vma = stream->oa_buffer.vma;
524 525 526 527 528 529 530
		u32 gtt_offset = i915_ggtt_offset(vma);

		/* Be paranoid and do a bounds check on the pointer read back
		 * from hardware, just in case some spurious hardware condition
		 * could put the tail out of bounds...
		 */
		if (hw_tail >= gtt_offset &&
531
		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
532
			stream->oa_buffer.tails[!aged_idx].offset =
533
				aging_tail = hw_tail;
534
			stream->oa_buffer.aging_timestamp = now;
535 536 537 538 539 540
		} else {
			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
				  hw_tail);
		}
	}

541
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
542 543 544

	return aged_tail == INVALID_TAIL_PTR ?
		false : OA_TAKEN(aged_tail, head) >= report_size;
545 546 547
}

/**
548 549 550 551 552 553 554 555 556 557 558 559 560
 * append_oa_status - Appends a status record to a userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @type: The kind of status to report to userspace
 *
 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 * into the userspace read() buffer.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
 */
static int append_oa_status(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    enum drm_i915_perf_record_type type)
{
	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };

	if ((count - *offset) < header.size)
		return -ENOSPC;

	if (copy_to_user(buf + *offset, &header, sizeof(header)))
		return -EFAULT;

	(*offset) += header.size;

	return 0;
}

/**
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
 * append_oa_sample - Copies single OA report into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @report: A single OA report to (optionally) include as part of the sample
 *
 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 * properties when opening a stream, tracked as `stream->sample_flags`. This
 * function copies the requested components of a single sample to the given
 * read() @buf.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
597 598 599 600 601 602 603
 */
static int append_oa_sample(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    const u8 *report)
{
604
	int report_size = stream->oa_buffer.format_size;
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
	struct drm_i915_perf_record_header header;
	u32 sample_flags = stream->sample_flags;

	header.type = DRM_I915_PERF_RECORD_SAMPLE;
	header.pad = 0;
	header.size = stream->sample_size;

	if ((count - *offset) < header.size)
		return -ENOSPC;

	buf += *offset;
	if (copy_to_user(buf, &header, sizeof(header)))
		return -EFAULT;
	buf += sizeof(header);

	if (sample_flags & SAMPLE_OA_REPORT) {
		if (copy_to_user(buf, report, report_size))
			return -EFAULT;
	}

	(*offset) += header.size;

	return 0;
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/**
 * Copies all buffered OA reports into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Notably any error condition resulting in a short read (-%ENOSPC or
 * -%EFAULT) will be returned even though one or more records may
 * have been successfully copied. In this case it's up to the caller
 * to decide if the error should be squashed before returning to
 * userspace.
 *
 * Note: reports are consumed from the head, and appended to the
 * tail, so the tail chases the head?... If you think that's mad
 * and back-to-front you're not alone, but this follows the
 * Gen PRM naming convention.
 *
 * Returns: 0 on success, negative error code on failure.
 */
static int gen8_append_oa_reports(struct i915_perf_stream *stream,
				  char __user *buf,
				  size_t count,
				  size_t *offset)
{
655
	struct intel_uncore *uncore = stream->gt->uncore;
656 657 658
	int report_size = stream->oa_buffer.format_size;
	u8 *oa_buf_base = stream->oa_buffer.vaddr;
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
659
	u32 mask = (OA_BUFFER_SIZE - 1);
660 661 662 663 664 665 666 667 668 669
	size_t start_offset = *offset;
	unsigned long flags;
	unsigned int aged_tail_idx;
	u32 head, tail;
	u32 taken;
	int ret = 0;

	if (WARN_ON(!stream->enabled))
		return -EIO;

670
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
671

672 673 674
	head = stream->oa_buffer.head;
	aged_tail_idx = stream->oa_buffer.aged_tail_idx;
	tail = stream->oa_buffer.tails[aged_tail_idx].offset;
675

676
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

	/*
	 * An invalid tail pointer here means we're still waiting for the poll
	 * hrtimer callback to give us a pointer
	 */
	if (tail == INVALID_TAIL_PTR)
		return -EAGAIN;

	/*
	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
	 * while indexing relative to oa_buf_base.
	 */
	head -= gtt_offset;
	tail -= gtt_offset;

	/*
	 * An out of bounds or misaligned head or tail pointer implies a driver
	 * bug since we validate + align the tail pointers we read from the
	 * hardware and we are in full control of the head pointer which should
	 * only be incremented by multiples of the report size (notably also
	 * all a power of two).
	 */
699 700
	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
		      tail > OA_BUFFER_SIZE || tail % report_size,
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
		      head, tail))
		return -EIO;


	for (/* none */;
	     (taken = OA_TAKEN(tail, head));
	     head = (head + report_size) & mask) {
		u8 *report = oa_buf_base + head;
		u32 *report32 = (void *)report;
		u32 ctx_id;
		u32 reason;

		/*
		 * All the report sizes factor neatly into the buffer
		 * size so we never expect to see a report split
		 * between the beginning and end of the buffer.
		 *
		 * Given the initial alignment check a misalignment
		 * here would imply a driver bug that would result
		 * in an overrun.
		 */
723
		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
			break;
		}

		/*
		 * The reason field includes flags identifying what
		 * triggered this specific report (mostly timer
		 * triggered or e.g. due to a context switch).
		 *
		 * This field is never expected to be zero so we can
		 * check that the report isn't invalid before copying
		 * it to userspace...
		 */
		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
			  OAREPORT_REASON_MASK);
		if (reason == 0) {
740
			if (__ratelimit(&stream->perf->spurious_report_rs))
741 742 743 744
				DRM_NOTE("Skipping spurious, invalid OA report\n");
			continue;
		}

745
		ctx_id = report32[2] & stream->specific_ctx_id_mask;
746 747 748 749 750 751 752 753 754

		/*
		 * Squash whatever is in the CTX_ID field if it's marked as
		 * invalid to be sure we avoid false-positive, single-context
		 * filtering below...
		 *
		 * Note: that we don't clear the valid_ctx_bit so userspace can
		 * understand that the ID has been squashed by the kernel.
		 */
755
		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit))
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
			ctx_id = report32[2] = INVALID_CTX_ID;

		/*
		 * NB: For Gen 8 the OA unit no longer supports clock gating
		 * off for a specific context and the kernel can't securely
		 * stop the counters from updating as system-wide / global
		 * values.
		 *
		 * Automatic reports now include a context ID so reports can be
		 * filtered on the cpu but it's not worth trying to
		 * automatically subtract/hide counter progress for other
		 * contexts while filtering since we can't stop userspace
		 * issuing MI_REPORT_PERF_COUNT commands which would still
		 * provide a side-band view of the real values.
		 *
		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
		 * to normalize counters for a single filtered context then it
		 * needs be forwarded bookend context-switch reports so that it
		 * can track switches in between MI_REPORT_PERF_COUNT commands
		 * and can itself subtract/ignore the progress of counters
		 * associated with other contexts. Note that the hardware
		 * automatically triggers reports when switching to a new
		 * context which are tagged with the ID of the newly active
		 * context. To avoid the complexity (and likely fragility) of
		 * reading ahead while parsing reports to try and minimize
		 * forwarding redundant context switch reports (i.e. between
		 * other, unrelated contexts) we simply elect to forward them
		 * all.
		 *
		 * We don't rely solely on the reason field to identify context
		 * switches since it's not-uncommon for periodic samples to
		 * identify a switch before any 'context switch' report.
		 */
789
		if (!stream->perf->exclusive_stream->ctx ||
790 791
		    stream->specific_ctx_id == ctx_id ||
		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
792 793 794 795 796 797
		    reason & OAREPORT_REASON_CTX_SWITCH) {

			/*
			 * While filtering for a single context we avoid
			 * leaking the IDs of other contexts.
			 */
798
			if (stream->perf->exclusive_stream->ctx &&
799
			    stream->specific_ctx_id != ctx_id) {
800 801 802 803 804 805 806 807
				report32[2] = INVALID_CTX_ID;
			}

			ret = append_oa_sample(stream, buf, count, offset,
					       report);
			if (ret)
				break;

808
			stream->oa_buffer.last_ctx_id = ctx_id;
809 810 811 812 813 814 815 816 817 818 819 820 821
		}

		/*
		 * The above reason field sanity check is based on
		 * the assumption that the OA buffer is initially
		 * zeroed and we reset the field after copying so the
		 * check is still meaningful once old reports start
		 * being overwritten.
		 */
		report32[0] = 0;
	}

	if (start_offset != *offset) {
822
		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
823 824 825 826 827 828 829

		/*
		 * We removed the gtt_offset for the copy loop above, indexing
		 * relative to oa_buf_base so put back here...
		 */
		head += gtt_offset;

830 831
		intel_uncore_write(uncore, GEN8_OAHEADPTR,
				   head & GEN8_OAHEADPTR_MASK);
832
		stream->oa_buffer.head = head;
833

834
		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	}

	return ret;
}

/**
 * gen8_oa_read - copy status records then buffered OA reports
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Checks OA unit status registers and if necessary appends corresponding
 * status records for userspace (such as for a buffer full condition) and then
 * initiate appending any buffered OA reports.
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * NB: some data may be successfully copied to the userspace buffer
 * even if an error is returned, and this is reflected in the
 * updated @offset.
 *
 * Returns: zero on success or a negative error code
 */
static int gen8_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
865
	struct intel_uncore *uncore = stream->gt->uncore;
866 867 868
	u32 oastatus;
	int ret;

869
	if (WARN_ON(!stream->oa_buffer.vaddr))
870 871
		return -EIO;

872
	oastatus = intel_uncore_read(uncore, GEN8_OASTATUS);
873 874 875 876 877 878 879 880 881

	/*
	 * We treat OABUFFER_OVERFLOW as a significant error:
	 *
	 * Although theoretically we could handle this more gracefully
	 * sometimes, some Gens don't correctly suppress certain
	 * automatically triggered reports in this condition and so we
	 * have to assume that old reports are now being trampled
	 * over.
882 883 884 885 886
	 *
	 * Considering how we don't currently give userspace control
	 * over the OA buffer size and always configure a large 16MB
	 * buffer, then a buffer overflow does anyway likely indicate
	 * that something has gone quite badly wrong.
887 888 889 890 891 892 893 894
	 */
	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
		if (ret)
			return ret;

		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
895
			  stream->period_exponent);
896

897 898
		stream->perf->ops.oa_disable(stream);
		stream->perf->ops.oa_enable(stream);
899 900 901 902 903

		/*
		 * Note: .oa_enable() is expected to re-init the oabuffer and
		 * reset GEN8_OASTATUS for us
		 */
904
		oastatus = intel_uncore_read(uncore, GEN8_OASTATUS);
905 906 907 908 909 910 911
	}

	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
		if (ret)
			return ret;
912 913
		intel_uncore_write(uncore, GEN8_OASTATUS,
				   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
914 915 916 917 918
	}

	return gen8_append_oa_reports(stream, buf, count, offset);
}

919 920 921 922 923 924 925
/**
 * Copies all buffered OA reports into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
926 927
 * Notably any error condition resulting in a short read (-%ENOSPC or
 * -%EFAULT) will be returned even though one or more records may
928 929 930 931 932
 * have been successfully copied. In this case it's up to the caller
 * to decide if the error should be squashed before returning to
 * userspace.
 *
 * Note: reports are consumed from the head, and appended to the
933
 * tail, so the tail chases the head?... If you think that's mad
934 935
 * and back-to-front you're not alone, but this follows the
 * Gen PRM naming convention.
936 937
 *
 * Returns: 0 on success, negative error code on failure.
938 939 940 941
 */
static int gen7_append_oa_reports(struct i915_perf_stream *stream,
				  char __user *buf,
				  size_t count,
942
				  size_t *offset)
943
{
944
	struct intel_uncore *uncore = stream->gt->uncore;
945 946 947
	int report_size = stream->oa_buffer.format_size;
	u8 *oa_buf_base = stream->oa_buffer.vaddr;
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
948
	u32 mask = (OA_BUFFER_SIZE - 1);
949
	size_t start_offset = *offset;
950 951 952
	unsigned long flags;
	unsigned int aged_tail_idx;
	u32 head, tail;
953 954 955 956 957 958
	u32 taken;
	int ret = 0;

	if (WARN_ON(!stream->enabled))
		return -EIO;

959
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
960

961 962 963
	head = stream->oa_buffer.head;
	aged_tail_idx = stream->oa_buffer.aged_tail_idx;
	tail = stream->oa_buffer.tails[aged_tail_idx].offset;
964

965
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
966

967 968
	/* An invalid tail pointer here means we're still waiting for the poll
	 * hrtimer callback to give us a pointer
969
	 */
970 971
	if (tail == INVALID_TAIL_PTR)
		return -EAGAIN;
972

973 974
	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
	 * while indexing relative to oa_buf_base.
975
	 */
976 977
	head -= gtt_offset;
	tail -= gtt_offset;
978

979 980 981 982 983
	/* An out of bounds or misaligned head or tail pointer implies a driver
	 * bug since we validate + align the tail pointers we read from the
	 * hardware and we are in full control of the head pointer which should
	 * only be incremented by multiples of the report size (notably also
	 * all a power of two).
984
	 */
985 986
	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
		      tail > OA_BUFFER_SIZE || tail % report_size,
987 988 989
		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
		      head, tail))
		return -EIO;
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005


	for (/* none */;
	     (taken = OA_TAKEN(tail, head));
	     head = (head + report_size) & mask) {
		u8 *report = oa_buf_base + head;
		u32 *report32 = (void *)report;

		/* All the report sizes factor neatly into the buffer
		 * size so we never expect to see a report split
		 * between the beginning and end of the buffer.
		 *
		 * Given the initial alignment check a misalignment
		 * here would imply a driver bug that would result
		 * in an overrun.
		 */
1006
		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
			break;
		}

		/* The report-ID field for periodic samples includes
		 * some undocumented flags related to what triggered
		 * the report and is never expected to be zero so we
		 * can check that the report isn't invalid before
		 * copying it to userspace...
		 */
		if (report32[0] == 0) {
1018
			if (__ratelimit(&stream->perf->spurious_report_rs))
1019
				DRM_NOTE("Skipping spurious, invalid OA report\n");
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
			continue;
		}

		ret = append_oa_sample(stream, buf, count, offset, report);
		if (ret)
			break;

		/* The above report-id field sanity check is based on
		 * the assumption that the OA buffer is initially
		 * zeroed and we reset the field after copying so the
		 * check is still meaningful once old reports start
		 * being overwritten.
		 */
		report32[0] = 0;
	}

1036
	if (start_offset != *offset) {
1037
		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1038

1039 1040 1041 1042 1043
		/* We removed the gtt_offset for the copy loop above, indexing
		 * relative to oa_buf_base so put back here...
		 */
		head += gtt_offset;

1044 1045 1046
		intel_uncore_write(uncore, GEN7_OASTATUS2,
				   (head & GEN7_OASTATUS2_HEAD_MASK) |
				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1047
		stream->oa_buffer.head = head;
1048

1049
		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1050
	}
1051 1052 1053 1054

	return ret;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/**
 * gen7_oa_read - copy status records then buffered OA reports
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Checks Gen 7 specific OA unit status registers and if necessary appends
 * corresponding status records for userspace (such as for a buffer full
 * condition) and then initiate appending any buffered OA reports.
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
1071 1072 1073 1074 1075
static int gen7_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
1076
	struct intel_uncore *uncore = stream->gt->uncore;
1077 1078 1079
	u32 oastatus1;
	int ret;

1080
	if (WARN_ON(!stream->oa_buffer.vaddr))
1081 1082
		return -EIO;

1083
	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1084 1085 1086 1087 1088 1089

	/* XXX: On Haswell we don't have a safe way to clear oastatus1
	 * bits while the OA unit is enabled (while the tail pointer
	 * may be updated asynchronously) so we ignore status bits
	 * that have already been reported to userspace.
	 */
1090
	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

	/* We treat OABUFFER_OVERFLOW as a significant error:
	 *
	 * - The status can be interpreted to mean that the buffer is
	 *   currently full (with a higher precedence than OA_TAKEN()
	 *   which will start to report a near-empty buffer after an
	 *   overflow) but it's awkward that we can't clear the status
	 *   on Haswell, so without a reset we won't be able to catch
	 *   the state again.
	 *
	 * - Since it also implies the HW has started overwriting old
	 *   reports it may also affect our sanity checks for invalid
	 *   reports when copying to userspace that assume new reports
	 *   are being written to cleared memory.
	 *
	 * - In the future we may want to introduce a flight recorder
	 *   mode where the driver will automatically maintain a safe
	 *   guard band between head/tail, avoiding this overflow
	 *   condition, but we avoid the added driver complexity for
	 *   now.
	 */
	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
		if (ret)
			return ret;

1118
		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1119
			  stream->period_exponent);
1120

1121 1122
		stream->perf->ops.oa_disable(stream);
		stream->perf->ops.oa_enable(stream);
1123

1124
		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1125 1126 1127 1128 1129 1130 1131
	}

	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
		if (ret)
			return ret;
1132
		stream->perf->gen7_latched_oastatus1 |=
1133 1134 1135
			GEN7_OASTATUS1_REPORT_LOST;
	}

1136
	return gen7_append_oa_reports(stream, buf, count, offset);
1137 1138
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/**
 * i915_oa_wait_unlocked - handles blocking IO until OA data available
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Called when userspace tries to read() from a blocking stream FD opened
 * for OA metrics. It waits until the hrtimer callback finds a non-empty
 * OA buffer and wakes us.
 *
 * Note: it's acceptable to have this return with some false positives
 * since any subsequent read handling will return -EAGAIN if there isn't
 * really data ready for userspace yet.
 *
 * Returns: zero on success or a negative error code
 */
1153 1154 1155
static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
{
	/* We would wait indefinitely if periodic sampling is not enabled */
1156
	if (!stream->periodic)
1157 1158
		return -EIO;

1159 1160
	return wait_event_interruptible(stream->poll_wq,
					oa_buffer_check_unlocked(stream));
1161 1162
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/**
 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
 * @stream: An i915-perf stream opened for OA metrics
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream opened for OA metrics,
 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
 * when it sees data ready to read in the circular OA buffer.
 */
1173 1174 1175 1176
static void i915_oa_poll_wait(struct i915_perf_stream *stream,
			      struct file *file,
			      poll_table *wait)
{
1177
	poll_wait(file, &stream->poll_wq, wait);
1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/**
 * i915_oa_read - just calls through to &i915_oa_ops->read
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
1192 1193 1194 1195 1196
static int i915_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
1197
	return stream->perf->ops.read(stream, buf, count, offset);
1198 1199
}

1200
static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1201
{
1202
	struct i915_gem_engines_iter it;
1203
	struct i915_gem_context *ctx = stream->ctx;
1204
	struct intel_context *ce;
1205
	int err;
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
		if (ce->engine->class != RENDER_CLASS)
			continue;

		/*
		 * As the ID is the gtt offset of the context's vma we
		 * pin the vma to ensure the ID remains fixed.
		 */
		err = intel_context_pin(ce);
		if (err == 0) {
1217
			stream->pinned_ctx = ce;
1218 1219
			break;
		}
1220
	}
1221
	i915_gem_context_unlock_engines(ctx);
1222

1223
	return stream->pinned_ctx;
1224 1225
}

1226 1227 1228 1229 1230
/**
 * oa_get_render_ctx_id - determine and hold ctx hw id
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Determine the render context hw id, and ensure it remains fixed for the
1231 1232
 * lifetime of the stream. This ensures that we don't have to worry about
 * updating the context ID in OACONTROL on the fly.
1233 1234
 *
 * Returns: zero on success or a negative error code
1235 1236 1237
 */
static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
{
1238
	struct intel_context *ce;
1239

1240
	ce = oa_pin_context(stream);
1241 1242
	if (IS_ERR(ce))
		return PTR_ERR(ce);
1243

1244
	switch (INTEL_GEN(ce->engine->i915)) {
1245
	case 7: {
1246
		/*
1247 1248
		 * On Haswell we don't do any post processing of the reports
		 * and don't need to use the mask.
1249
		 */
1250 1251
		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
		stream->specific_ctx_id_mask = 0;
1252 1253
		break;
	}
1254

1255 1256 1257
	case 8:
	case 9:
	case 10:
1258
		if (USES_GUC_SUBMISSION(ce->engine->i915)) {
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
			/*
			 * When using GuC, the context descriptor we write in
			 * i915 is read by GuC and rewritten before it's
			 * actually written into the hardware. The LRCA is
			 * what is put into the context id field of the
			 * context descriptor by GuC. Because it's aligned to
			 * a page, the lower 12bits are always at 0 and
			 * dropped by GuC. They won't be part of the context
			 * ID in the OA reports, so squash those lower bits.
			 */
1269
			stream->specific_ctx_id =
1270
				lower_32_bits(ce->lrc_desc) >> 12;
1271

1272 1273 1274 1275
			/*
			 * GuC uses the top bit to signal proxy submission, so
			 * ignore that bit.
			 */
1276
			stream->specific_ctx_id_mask =
1277 1278
				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
		} else {
1279
			stream->specific_ctx_id_mask =
1280
				(1U << GEN8_CTX_ID_WIDTH) - 1;
C
Chris Wilson 已提交
1281
			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1282 1283 1284
		}
		break;

1285 1286
	case 11:
	case 12: {
1287
		stream->specific_ctx_id_mask =
C
Chris Wilson 已提交
1288 1289
			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
		stream->specific_ctx_id = stream->specific_ctx_id_mask;
1290 1291 1292 1293
		break;
	}

	default:
1294
		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1295
	}
1296

C
Chris Wilson 已提交
1297 1298
	ce->tag = stream->specific_ctx_id_mask;

1299
	DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1300 1301
			 stream->specific_ctx_id,
			 stream->specific_ctx_id_mask);
1302

1303
	return 0;
1304 1305
}

1306 1307 1308 1309 1310 1311 1312
/**
 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
 * @stream: An i915-perf stream opened for OA metrics
 *
 * In case anything needed doing to ensure the context HW ID would remain valid
 * for the lifetime of the stream, then that can be undone here.
 */
1313 1314
static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
{
1315
	struct intel_context *ce;
1316

1317
	ce = fetch_and_zero(&stream->pinned_ctx);
C
Chris Wilson 已提交
1318 1319
	if (ce) {
		ce->tag = 0; /* recomputed on next submission after parking */
1320
		intel_context_unpin(ce);
C
Chris Wilson 已提交
1321 1322 1323 1324
	}

	stream->specific_ctx_id = INVALID_CTX_ID;
	stream->specific_ctx_id_mask = 0;
1325 1326 1327
}

static void
1328
free_oa_buffer(struct i915_perf_stream *stream)
1329
{
1330
	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1331
				   I915_VMA_RELEASE_MAP);
1332

1333
	stream->oa_buffer.vaddr = NULL;
1334 1335 1336 1337
}

static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
{
1338
	struct i915_perf *perf = stream->perf;
1339

1340
	BUG_ON(stream != perf->exclusive_stream);
1341

1342
	/*
1343 1344
	 * Unset exclusive_stream first, it will be checked while disabling
	 * the metric set on gen8+.
1345
	 */
1346 1347 1348 1349
	mutex_lock(&perf->i915->drm.struct_mutex);
	perf->exclusive_stream = NULL;
	perf->ops.disable_metric_set(stream);
	mutex_unlock(&perf->i915->drm.struct_mutex);
1350

1351
	free_oa_buffer(stream);
1352

1353 1354
	intel_uncore_forcewake_put(stream->gt->uncore, FORCEWAKE_ALL);
	intel_runtime_pm_put(stream->gt->uncore->rpm, stream->wakeref);
1355 1356 1357 1358

	if (stream->ctx)
		oa_put_render_ctx_id(stream);

1359
	put_oa_config(stream->oa_config);
1360

1361
	if (perf->spurious_report_rs.missed) {
1362
		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1363
			 perf->spurious_report_rs.missed);
1364
	}
1365 1366
}

1367
static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1368
{
1369
	struct intel_uncore *uncore = stream->gt->uncore;
1370
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1371 1372
	unsigned long flags;

1373
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1374 1375 1376 1377

	/* Pre-DevBDW: OABUFFER must be set with counters off,
	 * before OASTATUS1, but after OASTATUS2
	 */
1378 1379
	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1380
	stream->oa_buffer.head = gtt_offset;
1381

1382
	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1383

1384 1385
	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
			   gtt_offset | OABUFFER_SIZE_16M);
1386

1387
	/* Mark that we need updated tail pointers to read from... */
1388 1389
	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1390

1391
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1392

1393 1394 1395 1396
	/* On Haswell we have to track which OASTATUS1 flags we've
	 * already seen since they can't be cleared while periodic
	 * sampling is enabled.
	 */
1397
	stream->perf->gen7_latched_oastatus1 = 0;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

	/* NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen7_append_oa_reports() that looks at the
	 * report-id field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
1410
	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1411 1412 1413 1414

	/* Maybe make ->pollin per-stream state if we support multiple
	 * concurrent streams in the future.
	 */
1415
	stream->pollin = false;
1416 1417
}

1418
static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1419
{
1420
	struct intel_uncore *uncore = stream->gt->uncore;
1421
	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1422 1423
	unsigned long flags;

1424
	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1425

1426 1427
	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1428
	stream->oa_buffer.head = gtt_offset;
1429

1430
	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1431 1432 1433 1434 1435 1436 1437 1438 1439

	/*
	 * PRM says:
	 *
	 *  "This MMIO must be set before the OATAILPTR
	 *  register and after the OAHEADPTR register. This is
	 *  to enable proper functionality of the overflow
	 *  bit."
	 */
1440
	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1441
		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1442
	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1443 1444

	/* Mark that we need updated tail pointers to read from... */
1445 1446
	stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
	stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1447 1448 1449 1450 1451 1452

	/*
	 * Reset state used to recognise context switches, affecting which
	 * reports we will forward to userspace while filtering for a single
	 * context.
	 */
1453
	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1454

1455
	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

	/*
	 * NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen8_append_oa_reports() that looks at the
	 * reason field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
1469
	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1470 1471 1472 1473 1474

	/*
	 * Maybe make ->pollin per-stream state if we support multiple
	 * concurrent streams in the future.
	 */
1475
	stream->pollin = false;
1476 1477
}

1478
static int alloc_oa_buffer(struct i915_perf_stream *stream)
1479 1480 1481 1482 1483
{
	struct drm_i915_gem_object *bo;
	struct i915_vma *vma;
	int ret;

1484
	if (WARN_ON(stream->oa_buffer.vma))
1485 1486
		return -ENODEV;

1487 1488 1489
	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);

1490
	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1491 1492
	if (IS_ERR(bo)) {
		DRM_ERROR("Failed to allocate OA buffer\n");
1493
		return PTR_ERR(bo);
1494 1495
	}

1496
	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1497 1498 1499 1500 1501 1502 1503

	/* PreHSW required 512K alignment, HSW requires 16M */
	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}
1504
	stream->oa_buffer.vma = vma;
1505

1506
	stream->oa_buffer.vaddr =
1507
		i915_gem_object_pin_map(bo, I915_MAP_WB);
1508 1509
	if (IS_ERR(stream->oa_buffer.vaddr)) {
		ret = PTR_ERR(stream->oa_buffer.vaddr);
1510 1511 1512
		goto err_unpin;
	}

1513
	DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1514 1515
			 i915_ggtt_offset(stream->oa_buffer.vma),
			 stream->oa_buffer.vaddr);
1516

1517
	return 0;
1518 1519 1520 1521 1522 1523 1524

err_unpin:
	__i915_vma_unpin(vma);

err_unref:
	i915_gem_object_put(bo);

1525 1526
	stream->oa_buffer.vaddr = NULL;
	stream->oa_buffer.vma = NULL;
1527 1528 1529 1530

	return ret;
}

1531
static void config_oa_regs(struct intel_uncore *uncore,
1532
			   const struct i915_oa_reg *regs,
1533
			   u32 n_regs)
1534
{
1535
	u32 i;
1536 1537 1538 1539

	for (i = 0; i < n_regs; i++) {
		const struct i915_oa_reg *reg = regs + i;

1540
		intel_uncore_write(uncore, reg->addr, reg->value);
1541 1542 1543
	}
}

1544
static void delay_after_mux(void)
1545
{
1546 1547
	/*
	 * It apparently takes a fairly long time for a new MUX
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	 * configuration to be be applied after these register writes.
	 * This delay duration was derived empirically based on the
	 * render_basic config but hopefully it covers the maximum
	 * configuration latency.
	 *
	 * As a fallback, the checks in _append_oa_reports() to skip
	 * invalid OA reports do also seem to work to discard reports
	 * generated before this config has completed - albeit not
	 * silently.
	 *
	 * Unfortunately this is essentially a magic number, since we
	 * don't currently know of a reliable mechanism for predicting
	 * how long the MUX config will take to apply and besides
	 * seeing invalid reports we don't know of a reliable way to
	 * explicitly check that the MUX config has landed.
	 *
	 * It's even possible we've miss characterized the underlying
	 * problem - it just seems like the simplest explanation why
	 * a delay at this location would mitigate any invalid reports.
	 */
	usleep_range(15000, 20000);
1569 1570 1571 1572
}

static int hsw_enable_metric_set(struct i915_perf_stream *stream)
{
1573
	struct intel_uncore *uncore = stream->gt->uncore;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	const struct i915_oa_config *oa_config = stream->oa_config;

	/*
	 * PRM:
	 *
	 * OA unit is using “crclk” for its functionality. When trunk
	 * level clock gating takes place, OA clock would be gated,
	 * unable to count the events from non-render clock domain.
	 * Render clock gating must be disabled when OA is enabled to
	 * count the events from non-render domain. Unit level clock
	 * gating for RCS should also be disabled.
	 */
1586 1587 1588 1589
	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
1590

1591
	config_oa_regs(uncore, oa_config->mux_regs, oa_config->mux_regs_len);
1592
	delay_after_mux();
1593

1594
	config_oa_regs(uncore, oa_config->b_counter_regs,
1595
		       oa_config->b_counter_regs_len);
1596 1597 1598 1599

	return 0;
}

1600
static void hsw_disable_metric_set(struct i915_perf_stream *stream)
1601
{
1602
	struct intel_uncore *uncore = stream->gt->uncore;
1603

1604 1605 1606 1607
	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
1608

1609
	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
1610 1611
}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
			      i915_reg_t reg)
{
	u32 mmio = i915_mmio_reg_offset(reg);
	int i;

	/*
	 * This arbitrary default will select the 'EU FPU0 Pipeline
	 * Active' event. In the future it's anticipated that there
	 * will be an explicit 'No Event' we can select, but not yet...
	 */
	if (!oa_config)
		return 0;

	for (i = 0; i < oa_config->flex_regs_len; i++) {
		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
			return oa_config->flex_regs[i].value;
	}

	return 0;
}
1633 1634 1635 1636 1637 1638 1639
/*
 * NB: It must always remain pointer safe to run this even if the OA unit
 * has been disabled.
 *
 * It's fine to put out-of-date values into these per-context registers
 * in the case that the OA unit has been disabled.
 */
1640
static void
1641 1642
gen8_update_reg_state_unlocked(const struct intel_context *ce,
			       const struct i915_perf_stream *stream)
1643
{
1644 1645
	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
1646
	/* The MMIO offsets for Flex EU registers aren't contiguous */
1647 1648 1649 1650 1651 1652 1653 1654
	i915_reg_t flex_regs[] = {
		EU_PERF_CNTL0,
		EU_PERF_CNTL1,
		EU_PERF_CNTL2,
		EU_PERF_CNTL3,
		EU_PERF_CNTL4,
		EU_PERF_CNTL5,
		EU_PERF_CNTL6,
1655
	};
1656
	u32 *reg_state = ce->lrc_reg_state;
1657 1658
	int i;

1659
	reg_state[ctx_oactxctrl + 1] =
1660 1661
		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1662
		GEN8_OA_COUNTER_RESUME;
1663

1664 1665 1666
	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
		reg_state[ctx_flexeu0 + i * 2 + 1] =
			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
1667

1668 1669
	reg_state[CTX_R_PWR_CLK_STATE] =
		intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu);
1670 1671
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
struct flex {
	i915_reg_t reg;
	u32 offset;
	u32 value;
};

static int
gen8_store_flex(struct i915_request *rq,
		struct intel_context *ce,
		const struct flex *flex, unsigned int count)
{
	u32 offset;
	u32 *cs;

	cs = intel_ring_begin(rq, 4 * count);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
	do {
		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1693
		*cs++ = offset + flex->offset * sizeof(u32);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
		*cs++ = 0;
		*cs++ = flex->value;
	} while (flex++, --count);

	intel_ring_advance(rq, cs);

	return 0;
}

static int
gen8_load_flex(struct i915_request *rq,
	       struct intel_context *ce,
	       const struct flex *flex, unsigned int count)
{
	u32 *cs;

	GEM_BUG_ON(!count || count > 63);

	cs = intel_ring_begin(rq, 2 * count + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*cs++ = i915_mmio_reg_offset(flex->reg);
		*cs++ = flex->value;
	} while (flex++, --count);
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen8_modify_context(struct intel_context *ce,
			       const struct flex *flex, unsigned int count)
{
	struct i915_request *rq;
	int err;

	lockdep_assert_held(&ce->pin_mutex);

	rq = i915_request_create(ce->engine->kernel_context);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	/* Serialise with the remote context */
	err = intel_context_prepare_remote_request(ce, rq);
	if (err == 0)
		err = gen8_store_flex(rq, ce, flex, count);

	i915_request_add(rq);
	return err;
}

static int gen8_modify_self(struct intel_context *ce,
			    const struct flex *flex, unsigned int count)
{
	struct i915_request *rq;
	int err;

	rq = i915_request_create(ce);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	err = gen8_load_flex(rq, ce, flex, count);

	i915_request_add(rq);
	return err;
}

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
static int gen8_configure_context(struct i915_gem_context *ctx,
				  struct flex *flex, unsigned int count)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;
	int err = 0;

	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
		GEM_BUG_ON(ce == ce->engine->kernel_context);

		if (ce->engine->class != RENDER_CLASS)
			continue;

		err = intel_context_lock_pinned(ce);
		if (err)
			break;

		flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);

		/* Otherwise OA settings will be set upon first use */
		if (intel_context_is_pinned(ce))
			err = gen8_modify_context(ce, flex, count);

		intel_context_unlock_pinned(ce);
		if (err)
			break;
	}
	i915_gem_context_unlock_engines(ctx);

	return err;
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
/*
 * Manages updating the per-context aspects of the OA stream
 * configuration across all contexts.
 *
 * The awkward consideration here is that OACTXCONTROL controls the
 * exponent for periodic sampling which is primarily used for system
 * wide profiling where we'd like a consistent sampling period even in
 * the face of context switches.
 *
 * Our approach of updating the register state context (as opposed to
 * say using a workaround batch buffer) ensures that the hardware
 * won't automatically reload an out-of-date timer exponent even
 * transiently before a WA BB could be parsed.
 *
 * This function needs to:
 * - Ensure the currently running context's per-context OA state is
 *   updated
 * - Ensure that all existing contexts will have the correct per-context
 *   OA state if they are scheduled for use.
 * - Ensure any new contexts will be initialized with the correct
 *   per-context OA state.
 *
 * Note: it's only the RCS/Render context that has any OA state.
 */
1821
static int gen8_configure_all_contexts(struct i915_perf_stream *stream,
1822
				       const struct i915_oa_config *oa_config)
1823
{
1824
	struct drm_i915_private *i915 = stream->perf->i915;
1825
	/* The MMIO offsets for Flex EU registers aren't contiguous */
1826
	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
1827
#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
1828 1829 1830 1831 1832 1833 1834
	struct flex regs[] = {
		{
			GEN8_R_PWR_CLK_STATE,
			CTX_R_PWR_CLK_STATE,
		},
		{
			GEN8_OACTXCONTROL,
1835
			stream->perf->ctx_oactxctrl_offset + 1,
1836 1837
			((stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
			 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
			 GEN8_OA_COUNTER_RESUME)
		},
		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
	};
#undef ctx_flexeuN
	struct intel_engine_cs *engine;
1850 1851
	struct i915_gem_context *ctx, *cn;
	int i, err;
1852

1853 1854 1855 1856
	for (i = 2; i < ARRAY_SIZE(regs); i++)
		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);

	lockdep_assert_held(&i915->drm.struct_mutex);
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

	/*
	 * The OA register config is setup through the context image. This image
	 * might be written to by the GPU on context switch (in particular on
	 * lite-restore). This means we can't safely update a context's image,
	 * if this context is scheduled/submitted to run on the GPU.
	 *
	 * We could emit the OA register config through the batch buffer but
	 * this might leave small interval of time where the OA unit is
	 * configured at an invalid sampling period.
	 *
1868 1869 1870 1871 1872
	 * Note that since we emit all requests from a single ring, there
	 * is still an implicit global barrier here that may cause a high
	 * priority context to wait for an otherwise independent low priority
	 * context. Contexts idle at the time of reconfiguration are not
	 * trapped behind the barrier.
1873
	 */
1874 1875
	spin_lock(&i915->gem.contexts.lock);
	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
1876 1877 1878
		if (ctx == i915->kernel_context)
			continue;

1879 1880 1881 1882 1883
		if (!kref_get_unless_zero(&ctx->ref))
			continue;

		spin_unlock(&i915->gem.contexts.lock);

1884
		err = gen8_configure_context(ctx, regs, ARRAY_SIZE(regs));
1885 1886
		if (err) {
			i915_gem_context_put(ctx);
1887
			return err;
1888 1889 1890 1891 1892
		}

		spin_lock(&i915->gem.contexts.lock);
		list_safe_reset_next(ctx, cn, link);
		i915_gem_context_put(ctx);
1893
	}
1894
	spin_unlock(&i915->gem.contexts.lock);
1895

1896
	/*
1897 1898 1899
	 * After updating all other contexts, we need to modify ourselves.
	 * If we don't modify the kernel_context, we do not get events while
	 * idle.
1900
	 */
1901
	for_each_uabi_engine(engine, i915) {
1902
		struct intel_context *ce = engine->kernel_context;
1903

1904 1905 1906 1907 1908 1909 1910 1911 1912
		if (engine->class != RENDER_CLASS)
			continue;

		regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);

		err = gen8_modify_self(ce, regs, ARRAY_SIZE(regs));
		if (err)
			return err;
	}
1913 1914

	return 0;
1915 1916
}

1917
static int gen8_enable_metric_set(struct i915_perf_stream *stream)
1918
{
1919
	struct intel_uncore *uncore = stream->gt->uncore;
1920
	const struct i915_oa_config *oa_config = stream->oa_config;
1921
	int ret;
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

	/*
	 * We disable slice/unslice clock ratio change reports on SKL since
	 * they are too noisy. The HW generates a lot of redundant reports
	 * where the ratio hasn't really changed causing a lot of redundant
	 * work to processes and increasing the chances we'll hit buffer
	 * overruns.
	 *
	 * Although we don't currently use the 'disable overrun' OABUFFER
	 * feature it's worth noting that clock ratio reports have to be
	 * disabled before considering to use that feature since the HW doesn't
	 * correctly block these reports.
	 *
	 * Currently none of the high-level metrics we have depend on knowing
	 * this ratio to normalize.
	 *
	 * Note: This register is not power context saved and restored, but
	 * that's OK considering that we disable RC6 while the OA unit is
	 * enabled.
	 *
	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
	 * be read back from automatically triggered reports, as part of the
	 * RPT_ID field.
	 */
1946 1947 1948 1949
	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
		intel_uncore_write(uncore, GEN8_OA_DEBUG,
				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1950 1951 1952 1953 1954 1955 1956
	}

	/*
	 * Update all contexts prior writing the mux configurations as we need
	 * to make sure all slices/subslices are ON before writing to NOA
	 * registers.
	 */
1957
	ret = gen8_configure_all_contexts(stream, oa_config);
1958 1959 1960
	if (ret)
		return ret;

1961
	config_oa_regs(uncore, oa_config->mux_regs, oa_config->mux_regs_len);
1962
	delay_after_mux();
1963

1964
	config_oa_regs(uncore, oa_config->b_counter_regs,
1965
		       oa_config->b_counter_regs_len);
1966 1967 1968 1969

	return 0;
}

1970
static void gen8_disable_metric_set(struct i915_perf_stream *stream)
1971
{
1972
	struct intel_uncore *uncore = stream->gt->uncore;
1973

1974
	/* Reset all contexts' slices/subslices configurations. */
1975
	gen8_configure_all_contexts(stream, NULL);
1976

1977
	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
1978 1979
}

1980
static void gen10_disable_metric_set(struct i915_perf_stream *stream)
1981
{
1982
	struct intel_uncore *uncore = stream->gt->uncore;
1983

1984
	/* Reset all contexts' slices/subslices configurations. */
1985
	gen8_configure_all_contexts(stream, NULL);
1986 1987

	/* Make sure we disable noa to save power. */
1988
	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
1989 1990
}

1991
static void gen7_oa_enable(struct i915_perf_stream *stream)
1992
{
1993
	struct intel_uncore *uncore = stream->gt->uncore;
1994
	struct i915_gem_context *ctx = stream->ctx;
1995 1996 1997 1998
	u32 ctx_id = stream->specific_ctx_id;
	bool periodic = stream->periodic;
	u32 period_exponent = stream->period_exponent;
	u32 report_format = stream->oa_buffer.format;
1999

2000 2001 2002 2003 2004 2005 2006 2007 2008
	/*
	 * Reset buf pointers so we don't forward reports from before now.
	 *
	 * Think carefully if considering trying to avoid this, since it
	 * also ensures status flags and the buffer itself are cleared
	 * in error paths, and we have checks for invalid reports based
	 * on the assumption that certain fields are written to zeroed
	 * memory which this helps maintains.
	 */
2009
	gen7_init_oa_buffer(stream);
2010

2011 2012 2013 2014 2015 2016 2017 2018
	intel_uncore_write(uncore, GEN7_OACONTROL,
			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
			   (period_exponent <<
			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
			   GEN7_OACONTROL_ENABLE);
2019 2020
}

2021
static void gen8_oa_enable(struct i915_perf_stream *stream)
2022
{
2023
	struct intel_uncore *uncore = stream->gt->uncore;
2024
	u32 report_format = stream->oa_buffer.format;
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

	/*
	 * Reset buf pointers so we don't forward reports from before now.
	 *
	 * Think carefully if considering trying to avoid this, since it
	 * also ensures status flags and the buffer itself are cleared
	 * in error paths, and we have checks for invalid reports based
	 * on the assumption that certain fields are written to zeroed
	 * memory which this helps maintains.
	 */
2035
	gen8_init_oa_buffer(stream);
2036 2037 2038 2039 2040 2041

	/*
	 * Note: we don't rely on the hardware to perform single context
	 * filtering and instead filter on the cpu based on the context-id
	 * field of reports
	 */
2042 2043 2044
	intel_uncore_write(uncore, GEN8_OACONTROL,
			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
			   GEN8_OA_COUNTER_ENABLE);
2045 2046
}

2047 2048 2049 2050 2051 2052 2053 2054 2055
/**
 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * [Re]enables hardware periodic sampling according to the period configured
 * when opening the stream. This also starts a hrtimer that will periodically
 * check for data in the circular OA buffer for notifying userspace (e.g.
 * during a read() or poll()).
 */
2056 2057
static void i915_oa_stream_enable(struct i915_perf_stream *stream)
{
2058
	stream->perf->ops.oa_enable(stream);
2059

2060 2061
	if (stream->periodic)
		hrtimer_start(&stream->poll_check_timer,
2062 2063 2064 2065
			      ns_to_ktime(POLL_PERIOD),
			      HRTIMER_MODE_REL_PINNED);
}

2066
static void gen7_oa_disable(struct i915_perf_stream *stream)
2067
{
2068
	struct intel_uncore *uncore = stream->gt->uncore;
2069

2070 2071
	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
	if (intel_wait_for_register(uncore,
2072 2073 2074
				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
				    50))
		DRM_ERROR("wait for OA to be disabled timed out\n");
2075 2076
}

2077
static void gen8_oa_disable(struct i915_perf_stream *stream)
2078
{
2079
	struct intel_uncore *uncore = stream->gt->uncore;
2080

2081 2082
	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
	if (intel_wait_for_register(uncore,
2083 2084 2085
				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
				    50))
		DRM_ERROR("wait for OA to be disabled timed out\n");
2086 2087
}

2088 2089 2090 2091 2092 2093 2094 2095
/**
 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * Stops the OA unit from periodically writing counter reports into the
 * circular OA buffer. This also stops the hrtimer that periodically checks for
 * data in the circular OA buffer, for notifying userspace.
 */
2096 2097
static void i915_oa_stream_disable(struct i915_perf_stream *stream)
{
2098
	stream->perf->ops.oa_disable(stream);
2099

2100 2101
	if (stream->periodic)
		hrtimer_cancel(&stream->poll_check_timer);
2102 2103 2104 2105 2106 2107 2108 2109 2110
}

static const struct i915_perf_stream_ops i915_oa_stream_ops = {
	.destroy = i915_oa_stream_destroy,
	.enable = i915_oa_stream_enable,
	.disable = i915_oa_stream_disable,
	.wait_unlocked = i915_oa_wait_unlocked,
	.poll_wait = i915_oa_poll_wait,
	.read = i915_oa_read,
2111 2112
};

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/**
 * i915_oa_stream_init - validate combined props for OA stream and init
 * @stream: An i915 perf stream
 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
 * @props: The property state that configures stream (individually validated)
 *
 * While read_properties_unlocked() validates properties in isolation it
 * doesn't ensure that the combination necessarily makes sense.
 *
 * At this point it has been determined that userspace wants a stream of
 * OA metrics, but still we need to further validate the combined
 * properties are OK.
 *
 * If the configuration makes sense then we can allocate memory for
 * a circular OA buffer and apply the requested metric set configuration.
 *
 * Returns: zero on success or a negative error code.
 */
2131 2132 2133 2134
static int i915_oa_stream_init(struct i915_perf_stream *stream,
			       struct drm_i915_perf_open_param *param,
			       struct perf_open_properties *props)
{
2135
	struct i915_perf *perf = stream->perf;
2136 2137 2138
	int format_size;
	int ret;

2139 2140 2141 2142
	/* If the sysfs metrics/ directory wasn't registered for some
	 * reason then don't let userspace try their luck with config
	 * IDs
	 */
2143
	if (!perf->metrics_kobj) {
2144
		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2145 2146 2147
		return -EINVAL;
	}

2148
	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2149
		DRM_DEBUG("Only OA report sampling supported\n");
2150 2151 2152
		return -EINVAL;
	}

2153
	if (!perf->ops.enable_metric_set) {
2154
		DRM_DEBUG("OA unit not supported\n");
2155 2156 2157 2158 2159 2160 2161
		return -ENODEV;
	}

	/* To avoid the complexity of having to accurately filter
	 * counter reports and marshal to the appropriate client
	 * we currently only allow exclusive access
	 */
2162
	if (perf->exclusive_stream) {
2163
		DRM_DEBUG("OA unit already in use\n");
2164 2165 2166 2167
		return -EBUSY;
	}

	if (!props->oa_format) {
2168
		DRM_DEBUG("OA report format not specified\n");
2169 2170 2171 2172 2173
		return -EINVAL;
	}

	stream->sample_size = sizeof(struct drm_i915_perf_record_header);

2174
	format_size = perf->oa_formats[props->oa_format].size;
2175 2176 2177 2178

	stream->sample_flags |= SAMPLE_OA_REPORT;
	stream->sample_size += format_size;

2179 2180
	stream->oa_buffer.format_size = format_size;
	if (WARN_ON(stream->oa_buffer.format_size == 0))
2181 2182
		return -EINVAL;

2183
	stream->oa_buffer.format =
2184
		perf->oa_formats[props->oa_format].format;
2185

2186 2187 2188
	stream->periodic = props->oa_periodic;
	if (stream->periodic)
		stream->period_exponent = props->oa_period_exponent;
2189 2190 2191

	if (stream->ctx) {
		ret = oa_get_render_ctx_id(stream);
2192 2193
		if (ret) {
			DRM_DEBUG("Invalid context id to filter with\n");
2194
			return ret;
2195
		}
2196 2197
	}

2198
	ret = get_oa_config(perf, props->metrics_set, &stream->oa_config);
2199 2200
	if (ret) {
		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2201
		goto err_config;
2202
	}
2203

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	/* PRM - observability performance counters:
	 *
	 *   OACONTROL, performance counter enable, note:
	 *
	 *   "When this bit is set, in order to have coherent counts,
	 *   RC6 power state and trunk clock gating must be disabled.
	 *   This can be achieved by programming MMIO registers as
	 *   0xA094=0 and 0xA090[31]=1"
	 *
	 *   In our case we are expecting that taking pm + FORCEWAKE
	 *   references will effectively disable RC6.
	 */
2216 2217
	stream->wakeref = intel_runtime_pm_get(stream->gt->uncore->rpm);
	intel_uncore_forcewake_get(stream->gt->uncore, FORCEWAKE_ALL);
2218

2219
	ret = alloc_oa_buffer(stream);
2220 2221 2222
	if (ret)
		goto err_oa_buf_alloc;

2223
	ret = i915_mutex_lock_interruptible(&stream->perf->i915->drm);
2224 2225 2226
	if (ret)
		goto err_lock;

2227
	stream->ops = &i915_oa_stream_ops;
2228
	perf->exclusive_stream = stream;
2229

2230
	ret = perf->ops.enable_metric_set(stream);
2231 2232
	if (ret) {
		DRM_DEBUG("Unable to enable metric set\n");
2233
		goto err_enable;
2234
	}
2235

2236
	mutex_unlock(&stream->perf->i915->drm.struct_mutex);
2237

2238 2239 2240 2241 2242 2243
	hrtimer_init(&stream->poll_check_timer,
		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	stream->poll_check_timer.function = oa_poll_check_timer_cb;
	init_waitqueue_head(&stream->poll_wq);
	spin_lock_init(&stream->oa_buffer.ptr_lock);

2244 2245
	return 0;

2246
err_enable:
2247 2248 2249
	perf->exclusive_stream = NULL;
	perf->ops.disable_metric_set(stream);
	mutex_unlock(&stream->perf->i915->drm.struct_mutex);
2250

2251
err_lock:
2252
	free_oa_buffer(stream);
2253 2254

err_oa_buf_alloc:
2255
	put_oa_config(stream->oa_config);
2256

2257 2258
	intel_uncore_forcewake_put(stream->gt->uncore, FORCEWAKE_ALL);
	intel_runtime_pm_put(stream->gt->uncore->rpm, stream->wakeref);
2259 2260

err_config:
2261 2262 2263 2264 2265 2266
	if (stream->ctx)
		oa_put_render_ctx_id(stream);

	return ret;
}

2267 2268
void i915_oa_init_reg_state(const struct intel_context *ce,
			    const struct intel_engine_cs *engine)
2269
{
2270
	struct i915_perf_stream *stream;
2271

2272 2273 2274
	/* perf.exclusive_stream serialised by gen8_configure_all_contexts() */
	lockdep_assert_held(&ce->pin_mutex);

2275
	if (engine->class != RENDER_CLASS)
2276 2277
		return;

2278
	stream = engine->i915->perf.exclusive_stream;
2279
	if (stream)
2280
		gen8_update_reg_state_unlocked(ce, stream);
2281 2282
}

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
/**
 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
 * @stream: An i915 perf stream
 * @file: An i915 perf stream file
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @ppos: (inout) file seek position (unused)
 *
 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
 * ensure that if we've successfully copied any data then reporting that takes
 * precedence over any internal error status, so the data isn't lost.
 *
 * For example ret will be -ENOSPC whenever there is more buffered data than
 * can be copied to userspace, but that's only interesting if we weren't able
 * to copy some data because it implies the userspace buffer is too small to
 * receive a single record (and we never split records).
 *
 * Another case with ret == -EFAULT is more of a grey area since it would seem
 * like bad form for userspace to ask us to overrun its buffer, but the user
 * knows best:
 *
 *   http://yarchive.net/comp/linux/partial_reads_writes.html
 *
 * Returns: The number of bytes copied or a negative error code on failure.
 */
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
				     struct file *file,
				     char __user *buf,
				     size_t count,
				     loff_t *ppos)
{
	/* Note we keep the offset (aka bytes read) separate from any
	 * error status so that the final check for whether we return
	 * the bytes read with a higher precedence than any error (see
	 * comment below) doesn't need to be handled/duplicated in
	 * stream->ops->read() implementations.
	 */
	size_t offset = 0;
	int ret = stream->ops->read(stream, buf, count, &offset);

	return offset ?: (ret ?: -EAGAIN);
}

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
/**
 * i915_perf_read - handles read() FOP for i915 perf stream FDs
 * @file: An i915 perf stream file
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @ppos: (inout) file seek position (unused)
 *
 * The entry point for handling a read() on a stream file descriptor from
 * userspace. Most of the work is left to the i915_perf_read_locked() and
 * &i915_perf_stream_ops->read but to save having stream implementations (of
 * which we might have multiple later) we handle blocking read here.
 *
 * We can also consistently treat trying to read from a disabled stream
 * as an IO error so implementations can assume the stream is enabled
 * while reading.
 *
 * Returns: The number of bytes copied or a negative error code on failure.
 */
2344 2345 2346 2347 2348 2349
static ssize_t i915_perf_read(struct file *file,
			      char __user *buf,
			      size_t count,
			      loff_t *ppos)
{
	struct i915_perf_stream *stream = file->private_data;
2350
	struct i915_perf *perf = stream->perf;
2351 2352
	ssize_t ret;

2353 2354 2355 2356 2357 2358 2359
	/* To ensure it's handled consistently we simply treat all reads of a
	 * disabled stream as an error. In particular it might otherwise lead
	 * to a deadlock for blocking file descriptors...
	 */
	if (!stream->enabled)
		return -EIO;

2360
	if (!(file->f_flags & O_NONBLOCK)) {
2361 2362 2363 2364 2365 2366
		/* There's the small chance of false positives from
		 * stream->ops->wait_unlocked.
		 *
		 * E.g. with single context filtering since we only wait until
		 * oabuffer has >= 1 report we don't immediately know whether
		 * any reports really belong to the current context
2367 2368 2369 2370 2371 2372
		 */
		do {
			ret = stream->ops->wait_unlocked(stream);
			if (ret)
				return ret;

2373
			mutex_lock(&perf->lock);
2374 2375
			ret = i915_perf_read_locked(stream, file,
						    buf, count, ppos);
2376
			mutex_unlock(&perf->lock);
2377 2378
		} while (ret == -EAGAIN);
	} else {
2379
		mutex_lock(&perf->lock);
2380
		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2381
		mutex_unlock(&perf->lock);
2382 2383
	}

2384
	/* We allow the poll checking to sometimes report false positive EPOLLIN
2385 2386
	 * events where we might actually report EAGAIN on read() if there's
	 * not really any data available. In this situation though we don't
2387
	 * want to enter a busy loop between poll() reporting a EPOLLIN event
2388 2389
	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
	 * effectively ensures we back off until the next hrtimer callback
2390
	 * before reporting another EPOLLIN event.
2391 2392
	 */
	if (ret >= 0 || ret == -EAGAIN) {
2393 2394 2395
		/* Maybe make ->pollin per-stream state if we support multiple
		 * concurrent streams in the future.
		 */
2396
		stream->pollin = false;
2397 2398
	}

2399 2400 2401
	return ret;
}

2402 2403
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
{
2404 2405
	struct i915_perf_stream *stream =
		container_of(hrtimer, typeof(*stream), poll_check_timer);
2406

2407 2408 2409
	if (oa_buffer_check_unlocked(stream)) {
		stream->pollin = true;
		wake_up(&stream->poll_wq);
2410 2411 2412 2413 2414 2415 2416
	}

	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));

	return HRTIMER_RESTART;
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
/**
 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
 * @stream: An i915 perf stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this calls through to
 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
 * will be woken for new stream data.
 *
2427
 * Note: The &perf->lock mutex has been taken to serialize
2428 2429 2430 2431
 * with any non-file-operation driver hooks.
 *
 * Returns: any poll events that are ready without sleeping
 */
2432 2433 2434
static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
				      struct file *file,
				      poll_table *wait)
2435
{
2436
	__poll_t events = 0;
2437 2438 2439

	stream->ops->poll_wait(stream, file, wait);

2440 2441 2442 2443 2444 2445
	/* Note: we don't explicitly check whether there's something to read
	 * here since this path may be very hot depending on what else
	 * userspace is polling, or on the timeout in use. We rely solely on
	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
	 * samples to read.
	 */
2446
	if (stream->pollin)
2447
		events |= EPOLLIN;
2448

2449
	return events;
2450 2451
}

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
/**
 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this ensures
 * poll_wait() gets called with a wait queue that will be woken for new stream
 * data.
 *
 * Note: Implementation deferred to i915_perf_poll_locked()
 *
 * Returns: any poll events that are ready without sleeping
 */
2465
static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2466 2467
{
	struct i915_perf_stream *stream = file->private_data;
2468
	struct i915_perf *perf = stream->perf;
2469
	__poll_t ret;
2470

2471 2472 2473
	mutex_lock(&perf->lock);
	ret = i915_perf_poll_locked(stream, file, wait);
	mutex_unlock(&perf->lock);
2474 2475 2476 2477

	return ret;
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
/**
 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
 * @stream: A disabled i915 perf stream
 *
 * [Re]enables the associated capture of data for this stream.
 *
 * If a stream was previously enabled then there's currently no intention
 * to provide userspace any guarantee about the preservation of previously
 * buffered data.
 */
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
static void i915_perf_enable_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		return;

	/* Allow stream->ops->enable() to refer to this */
	stream->enabled = true;

	if (stream->ops->enable)
		stream->ops->enable(stream);
}

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
/**
 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
 * @stream: An enabled i915 perf stream
 *
 * Disables the associated capture of data for this stream.
 *
 * The intention is that disabling an re-enabling a stream will ideally be
 * cheaper than destroying and re-opening a stream with the same configuration,
 * though there are no formal guarantees about what state or buffered data
 * must be retained between disabling and re-enabling a stream.
 *
 * Note: while a stream is disabled it's considered an error for userspace
 * to attempt to read from the stream (-EIO).
 */
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
static void i915_perf_disable_locked(struct i915_perf_stream *stream)
{
	if (!stream->enabled)
		return;

	/* Allow stream->ops->disable() to refer to this */
	stream->enabled = false;

	if (stream->ops->disable)
		stream->ops->disable(stream);
}

2526 2527 2528 2529 2530 2531
/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @stream: An i915 perf stream
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
2532
 * Note: The &perf->lock mutex has been taken to serialize
2533 2534 2535 2536 2537
 * with any non-file-operation driver hooks.
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
				   unsigned int cmd,
				   unsigned long arg)
{
	switch (cmd) {
	case I915_PERF_IOCTL_ENABLE:
		i915_perf_enable_locked(stream);
		return 0;
	case I915_PERF_IOCTL_DISABLE:
		i915_perf_disable_locked(stream);
		return 0;
	}

	return -EINVAL;
}

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @file: An i915 perf stream file
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
 * Implementation deferred to i915_perf_ioctl_locked().
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
2565 2566 2567 2568 2569
static long i915_perf_ioctl(struct file *file,
			    unsigned int cmd,
			    unsigned long arg)
{
	struct i915_perf_stream *stream = file->private_data;
2570
	struct i915_perf *perf = stream->perf;
2571 2572
	long ret;

2573
	mutex_lock(&perf->lock);
2574
	ret = i915_perf_ioctl_locked(stream, cmd, arg);
2575
	mutex_unlock(&perf->lock);
2576 2577 2578 2579

	return ret;
}

2580 2581 2582 2583 2584 2585 2586
/**
 * i915_perf_destroy_locked - destroy an i915 perf stream
 * @stream: An i915 perf stream
 *
 * Frees all resources associated with the given i915 perf @stream, disabling
 * any associated data capture in the process.
 *
2587
 * Note: The &perf->lock mutex has been taken to serialize
2588 2589
 * with any non-file-operation driver hooks.
 */
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		i915_perf_disable_locked(stream);

	if (stream->ops->destroy)
		stream->ops->destroy(stream);

	list_del(&stream->link);

2600
	if (stream->ctx)
2601
		i915_gem_context_put(stream->ctx);
2602 2603 2604 2605

	kfree(stream);
}

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
/**
 * i915_perf_release - handles userspace close() of a stream file
 * @inode: anonymous inode associated with file
 * @file: An i915 perf stream file
 *
 * Cleans up any resources associated with an open i915 perf stream file.
 *
 * NB: close() can't really fail from the userspace point of view.
 *
 * Returns: zero on success or a negative error code.
 */
2617 2618 2619
static int i915_perf_release(struct inode *inode, struct file *file)
{
	struct i915_perf_stream *stream = file->private_data;
2620
	struct i915_perf *perf = stream->perf;
2621

2622
	mutex_lock(&perf->lock);
2623
	i915_perf_destroy_locked(stream);
2624
	mutex_unlock(&perf->lock);
2625

2626
	/* Release the reference the perf stream kept on the driver. */
2627
	drm_dev_put(&perf->i915->drm);
2628

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	return 0;
}


static const struct file_operations fops = {
	.owner		= THIS_MODULE,
	.llseek		= no_llseek,
	.release	= i915_perf_release,
	.poll		= i915_perf_poll,
	.read		= i915_perf_read,
	.unlocked_ioctl	= i915_perf_ioctl,
2640 2641 2642 2643
	/* Our ioctl have no arguments, so it's safe to use the same function
	 * to handle 32bits compatibility.
	 */
	.compat_ioctl   = i915_perf_ioctl,
2644 2645 2646
};


2647 2648
/**
 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2649
 * @perf: i915 perf instance
2650 2651 2652 2653 2654 2655 2656
 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
 * @props: individually validated u64 property value pairs
 * @file: drm file
 *
 * See i915_perf_ioctl_open() for interface details.
 *
 * Implements further stream config validation and stream initialization on
2657
 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
 * taken to serialize with any non-file-operation driver hooks.
 *
 * Note: at this point the @props have only been validated in isolation and
 * it's still necessary to validate that the combination of properties makes
 * sense.
 *
 * In the case where userspace is interested in OA unit metrics then further
 * config validation and stream initialization details will be handled by
 * i915_oa_stream_init(). The code here should only validate config state that
 * will be relevant to all stream types / backends.
 *
 * Returns: zero on success or a negative error code.
 */
2671
static int
2672
i915_perf_open_ioctl_locked(struct i915_perf *perf,
2673 2674 2675 2676 2677 2678 2679
			    struct drm_i915_perf_open_param *param,
			    struct perf_open_properties *props,
			    struct drm_file *file)
{
	struct i915_gem_context *specific_ctx = NULL;
	struct i915_perf_stream *stream = NULL;
	unsigned long f_flags = 0;
2680
	bool privileged_op = true;
2681 2682 2683 2684 2685 2686 2687
	int stream_fd;
	int ret;

	if (props->single_context) {
		u32 ctx_handle = props->ctx_handle;
		struct drm_i915_file_private *file_priv = file->driver_priv;

2688 2689 2690 2691 2692
		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
		if (!specific_ctx) {
			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
				  ctx_handle);
			ret = -ENOENT;
2693 2694 2695 2696
			goto err;
		}
	}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	/*
	 * On Haswell the OA unit supports clock gating off for a specific
	 * context and in this mode there's no visibility of metrics for the
	 * rest of the system, which we consider acceptable for a
	 * non-privileged client.
	 *
	 * For Gen8+ the OA unit no longer supports clock gating off for a
	 * specific context and the kernel can't securely stop the counters
	 * from updating as system-wide / global values. Even though we can
	 * filter reports based on the included context ID we can't block
	 * clients from seeing the raw / global counter values via
	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
	 * enable the OA unit by default.
	 */
2711
	if (IS_HASWELL(perf->i915) && specific_ctx)
2712 2713
		privileged_op = false;

2714 2715 2716 2717 2718
	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
	 * we check a dev.i915.perf_stream_paranoid sysctl option
	 * to determine if it's ok to access system wide OA counters
	 * without CAP_SYS_ADMIN privileges.
	 */
2719
	if (privileged_op &&
2720
	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2721
		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
		ret = -EACCES;
		goto err_ctx;
	}

	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
	if (!stream) {
		ret = -ENOMEM;
		goto err_ctx;
	}

2732 2733
	stream->perf = perf;
	stream->gt = &perf->i915->gt;
2734 2735
	stream->ctx = specific_ctx;

2736 2737 2738 2739 2740 2741 2742
	ret = i915_oa_stream_init(stream, param, props);
	if (ret)
		goto err_alloc;

	/* we avoid simply assigning stream->sample_flags = props->sample_flags
	 * to have _stream_init check the combination of sample flags more
	 * thoroughly, but still this is the expected result at this point.
2743
	 */
2744 2745
	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
		ret = -ENODEV;
2746
		goto err_flags;
2747
	}
2748

2749
	list_add(&stream->link, &perf->streams);
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;
	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
		f_flags |= O_NONBLOCK;

	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
	if (stream_fd < 0) {
		ret = stream_fd;
		goto err_open;
	}

	if (!(param->flags & I915_PERF_FLAG_DISABLED))
		i915_perf_enable_locked(stream);

2765 2766 2767
	/* Take a reference on the driver that will be kept with stream_fd
	 * until its release.
	 */
2768
	drm_dev_get(&perf->i915->drm);
2769

2770 2771 2772 2773
	return stream_fd;

err_open:
	list_del(&stream->link);
2774
err_flags:
2775 2776 2777 2778 2779
	if (stream->ops->destroy)
		stream->ops->destroy(stream);
err_alloc:
	kfree(stream);
err_ctx:
2780
	if (specific_ctx)
2781
		i915_gem_context_put(specific_ctx);
2782 2783 2784 2785
err:
	return ret;
}

2786
static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
2787
{
2788
	return div64_u64(1000000000ULL * (2ULL << exponent),
2789
			 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz);
2790 2791
}

2792 2793
/**
 * read_properties_unlocked - validate + copy userspace stream open properties
2794
 * @perf: i915 perf instance
2795 2796 2797
 * @uprops: The array of u64 key value pairs given by userspace
 * @n_props: The number of key value pairs expected in @uprops
 * @props: The stream configuration built up while validating properties
2798 2799 2800 2801
 *
 * Note this function only validates properties in isolation it doesn't
 * validate that the combination of properties makes sense or that all
 * properties necessary for a particular kind of stream have been set.
2802 2803 2804 2805
 *
 * Note that there currently aren't any ordering requirements for properties so
 * we shouldn't validate or assume anything about ordering here. This doesn't
 * rule out defining new properties with ordering requirements in the future.
2806
 */
2807
static int read_properties_unlocked(struct i915_perf *perf,
2808 2809 2810 2811 2812
				    u64 __user *uprops,
				    u32 n_props,
				    struct perf_open_properties *props)
{
	u64 __user *uprop = uprops;
2813
	u32 i;
2814 2815 2816 2817

	memset(props, 0, sizeof(struct perf_open_properties));

	if (!n_props) {
2818
		DRM_DEBUG("No i915 perf properties given\n");
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
		return -EINVAL;
	}

	/* Considering that ID = 0 is reserved and assuming that we don't
	 * (currently) expect any configurations to ever specify duplicate
	 * values for a particular property ID then the last _PROP_MAX value is
	 * one greater than the maximum number of properties we expect to get
	 * from userspace.
	 */
	if (n_props >= DRM_I915_PERF_PROP_MAX) {
2829
		DRM_DEBUG("More i915 perf properties specified than exist\n");
2830 2831 2832 2833
		return -EINVAL;
	}

	for (i = 0; i < n_props; i++) {
2834
		u64 oa_period, oa_freq_hz;
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		u64 id, value;
		int ret;

		ret = get_user(id, uprop);
		if (ret)
			return ret;

		ret = get_user(value, uprop + 1);
		if (ret)
			return ret;

2846 2847 2848 2849 2850
		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
			DRM_DEBUG("Unknown i915 perf property ID\n");
			return -EINVAL;
		}

2851 2852 2853 2854 2855
		switch ((enum drm_i915_perf_property_id)id) {
		case DRM_I915_PERF_PROP_CTX_HANDLE:
			props->single_context = 1;
			props->ctx_handle = value;
			break;
2856
		case DRM_I915_PERF_PROP_SAMPLE_OA:
2857 2858
			if (value)
				props->sample_flags |= SAMPLE_OA_REPORT;
2859 2860
			break;
		case DRM_I915_PERF_PROP_OA_METRICS_SET:
2861
			if (value == 0) {
2862
				DRM_DEBUG("Unknown OA metric set ID\n");
2863 2864 2865 2866 2867 2868
				return -EINVAL;
			}
			props->metrics_set = value;
			break;
		case DRM_I915_PERF_PROP_OA_FORMAT:
			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2869 2870
				DRM_DEBUG("Out-of-range OA report format %llu\n",
					  value);
2871 2872
				return -EINVAL;
			}
2873
			if (!perf->oa_formats[value].size) {
2874 2875
				DRM_DEBUG("Unsupported OA report format %llu\n",
					  value);
2876 2877 2878 2879 2880 2881
				return -EINVAL;
			}
			props->oa_format = value;
			break;
		case DRM_I915_PERF_PROP_OA_EXPONENT:
			if (value > OA_EXPONENT_MAX) {
2882 2883
				DRM_DEBUG("OA timer exponent too high (> %u)\n",
					 OA_EXPONENT_MAX);
2884 2885 2886
				return -EINVAL;
			}

2887
			/* Theoretically we can program the OA unit to sample
2888 2889 2890
			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
			 * for BXT. We don't allow such high sampling
			 * frequencies by default unless root.
2891
			 */
2892

2893
			BUILD_BUG_ON(sizeof(oa_period) != 8);
2894
			oa_period = oa_exponent_to_ns(perf, value);
2895 2896 2897 2898 2899 2900

			/* This check is primarily to ensure that oa_period <=
			 * UINT32_MAX (before passing to do_div which only
			 * accepts a u32 denominator), but we can also skip
			 * checking anything < 1Hz which implicitly can't be
			 * limited via an integer oa_max_sample_rate.
2901
			 */
2902 2903 2904 2905 2906 2907 2908 2909 2910
			if (oa_period <= NSEC_PER_SEC) {
				u64 tmp = NSEC_PER_SEC;
				do_div(tmp, oa_period);
				oa_freq_hz = tmp;
			} else
				oa_freq_hz = 0;

			if (oa_freq_hz > i915_oa_max_sample_rate &&
			    !capable(CAP_SYS_ADMIN)) {
2911
				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2912
					  i915_oa_max_sample_rate);
2913 2914 2915 2916 2917 2918
				return -EACCES;
			}

			props->oa_periodic = true;
			props->oa_period_exponent = value;
			break;
2919
		case DRM_I915_PERF_PROP_MAX:
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
			MISSING_CASE(id);
			return -EINVAL;
		}

		uprop += 2;
	}

	return 0;
}

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
/**
 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
 * @dev: drm device
 * @data: ioctl data copied from userspace (unvalidated)
 * @file: drm file
 *
 * Validates the stream open parameters given by userspace including flags
 * and an array of u64 key, value pair properties.
 *
 * Very little is assumed up front about the nature of the stream being
 * opened (for instance we don't assume it's for periodic OA unit metrics). An
 * i915-perf stream is expected to be a suitable interface for other forms of
 * buffered data written by the GPU besides periodic OA metrics.
 *
 * Note we copy the properties from userspace outside of the i915 perf
 * mutex to avoid an awkward lockdep with mmap_sem.
 *
 * Most of the implementation details are handled by
2948
 * i915_perf_open_ioctl_locked() after taking the &perf->lock
2949 2950 2951 2952 2953
 * mutex for serializing with any non-file-operation driver hooks.
 *
 * Return: A newly opened i915 Perf stream file descriptor or negative
 * error code on failure.
 */
2954 2955 2956
int i915_perf_open_ioctl(struct drm_device *dev, void *data,
			 struct drm_file *file)
{
2957
	struct i915_perf *perf = &to_i915(dev)->perf;
2958 2959 2960 2961 2962
	struct drm_i915_perf_open_param *param = data;
	struct perf_open_properties props;
	u32 known_open_flags;
	int ret;

2963
	if (!perf->i915) {
2964
		DRM_DEBUG("i915 perf interface not available for this system\n");
2965 2966 2967 2968 2969 2970 2971
		return -ENOTSUPP;
	}

	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
			   I915_PERF_FLAG_FD_NONBLOCK |
			   I915_PERF_FLAG_DISABLED;
	if (param->flags & ~known_open_flags) {
2972
		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2973 2974 2975
		return -EINVAL;
	}

2976
	ret = read_properties_unlocked(perf,
2977 2978 2979 2980 2981 2982
				       u64_to_user_ptr(param->properties_ptr),
				       param->num_properties,
				       &props);
	if (ret)
		return ret;

2983 2984 2985
	mutex_lock(&perf->lock);
	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
	mutex_unlock(&perf->lock);
2986 2987 2988 2989

	return ret;
}

2990 2991
/**
 * i915_perf_register - exposes i915-perf to userspace
2992
 * @i915: i915 device instance
2993 2994 2995 2996 2997
 *
 * In particular OA metric sets are advertised under a sysfs metrics/
 * directory allowing userspace to enumerate valid IDs that can be
 * used to open an i915-perf stream.
 */
2998
void i915_perf_register(struct drm_i915_private *i915)
2999
{
3000
	struct i915_perf *perf = &i915->perf;
3001 3002
	int ret;

3003
	if (!perf->i915)
3004 3005 3006 3007 3008 3009
		return;

	/* To be sure we're synchronized with an attempted
	 * i915_perf_open_ioctl(); considering that we register after
	 * being exposed to userspace.
	 */
3010
	mutex_lock(&perf->lock);
3011

3012
	perf->metrics_kobj =
3013
		kobject_create_and_add("metrics",
3014 3015
				       &i915->drm.primary->kdev->kobj);
	if (!perf->metrics_kobj)
3016 3017
		goto exit;

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr);

	if (INTEL_GEN(i915) >= 11) {
		i915_perf_load_test_config_icl(i915);
	} else if (IS_CANNONLAKE(i915)) {
		i915_perf_load_test_config_cnl(i915);
	} else if (IS_COFFEELAKE(i915)) {
		if (IS_CFL_GT2(i915))
			i915_perf_load_test_config_cflgt2(i915);
		if (IS_CFL_GT3(i915))
			i915_perf_load_test_config_cflgt3(i915);
	} else if (IS_GEMINILAKE(i915)) {
		i915_perf_load_test_config_glk(i915);
	} else if (IS_KABYLAKE(i915)) {
		if (IS_KBL_GT2(i915))
			i915_perf_load_test_config_kblgt2(i915);
		else if (IS_KBL_GT3(i915))
			i915_perf_load_test_config_kblgt3(i915);
	} else if (IS_BROXTON(i915)) {
		i915_perf_load_test_config_bxt(i915);
	} else if (IS_SKYLAKE(i915)) {
		if (IS_SKL_GT2(i915))
			i915_perf_load_test_config_sklgt2(i915);
		else if (IS_SKL_GT3(i915))
			i915_perf_load_test_config_sklgt3(i915);
		else if (IS_SKL_GT4(i915))
			i915_perf_load_test_config_sklgt4(i915);
	} else if (IS_CHERRYVIEW(i915)) {
		i915_perf_load_test_config_chv(i915);
	} else if (IS_BROADWELL(i915)) {
		i915_perf_load_test_config_bdw(i915);
	} else if (IS_HASWELL(i915)) {
		i915_perf_load_test_config_hsw(i915);
	}

	if (perf->test_config.id == 0)
3054 3055
		goto sysfs_error;

3056 3057
	ret = sysfs_create_group(perf->metrics_kobj,
				 &perf->test_config.sysfs_metric);
3058 3059
	if (ret)
		goto sysfs_error;
3060

3061
	atomic_set(&perf->test_config.ref_count, 1);
3062

3063 3064 3065
	goto exit;

sysfs_error:
3066 3067
	kobject_put(perf->metrics_kobj);
	perf->metrics_kobj = NULL;
3068

3069
exit:
3070
	mutex_unlock(&perf->lock);
3071 3072
}

3073 3074
/**
 * i915_perf_unregister - hide i915-perf from userspace
3075
 * @i915: i915 device instance
3076 3077 3078 3079 3080 3081
 *
 * i915-perf state cleanup is split up into an 'unregister' and
 * 'deinit' phase where the interface is first hidden from
 * userspace by i915_perf_unregister() before cleaning up
 * remaining state in i915_perf_fini().
 */
3082
void i915_perf_unregister(struct drm_i915_private *i915)
3083
{
3084 3085 3086
	struct i915_perf *perf = &i915->perf;

	if (!perf->metrics_kobj)
3087 3088
		return;

3089 3090
	sysfs_remove_group(perf->metrics_kobj,
			   &perf->test_config.sysfs_metric);
3091

3092 3093
	kobject_put(perf->metrics_kobj);
	perf->metrics_kobj = NULL;
3094 3095
}

3096
static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
{
	static const i915_reg_t flex_eu_regs[] = {
		EU_PERF_CNTL0,
		EU_PERF_CNTL1,
		EU_PERF_CNTL2,
		EU_PERF_CNTL3,
		EU_PERF_CNTL4,
		EU_PERF_CNTL5,
		EU_PERF_CNTL6,
	};
	int i;

	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3110
		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3111 3112 3113 3114 3115
			return true;
	}
	return false;
}

3116
static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3117
{
3118 3119 3120 3121 3122 3123
	return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
		addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
		(addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
		 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
		(addr >= i915_mmio_reg_offset(OACEC0_0) &&
		 addr <= i915_mmio_reg_offset(OACEC7_1));
3124 3125
}

3126
static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3127
{
3128 3129 3130 3131 3132 3133 3134
	return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
		(addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
		 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
		(addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
		 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
		(addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
		 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3135 3136
}

3137
static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3138
{
3139
	return gen7_is_valid_mux_addr(perf, addr) ||
3140 3141 3142
		addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
		(addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
		 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3143 3144
}

3145
static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3146
{
3147
	return gen8_is_valid_mux_addr(perf, addr) ||
3148
		addr == i915_mmio_reg_offset(GEN10_NOA_WRITE_HIGH) ||
3149 3150
		(addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
		 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3151 3152
}

3153
static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3154
{
3155
	return gen7_is_valid_mux_addr(perf, addr) ||
3156
		(addr >= 0x25100 && addr <= 0x2FF90) ||
3157 3158 3159
		(addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
		 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
		addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3160 3161
}

3162
static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3163
{
3164
	return gen7_is_valid_mux_addr(perf, addr) ||
3165 3166 3167
		(addr >= 0x182300 && addr <= 0x1823A4);
}

3168
static u32 mask_reg_value(u32 reg, u32 val)
3169 3170 3171 3172 3173
{
	/* HALF_SLICE_CHICKEN2 is programmed with a the
	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
	 * programmed by userspace doesn't change this.
	 */
3174
	if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3175 3176 3177 3178 3179 3180
		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);

	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
	 * indicated by its name and a bunch of selection fields used by OA
	 * configs.
	 */
3181
	if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3182 3183 3184 3185 3186
		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);

	return val;
}

3187 3188
static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
					 u32 __user *regs,
					 u32 n_regs)
{
	struct i915_oa_reg *oa_regs;
	int err;
	u32 i;

	if (!n_regs)
		return NULL;

3199
	if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
		return ERR_PTR(-EFAULT);

	/* No is_valid function means we're not allowing any register to be programmed. */
	GEM_BUG_ON(!is_valid);
	if (!is_valid)
		return ERR_PTR(-EINVAL);

	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
	if (!oa_regs)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < n_regs; i++) {
		u32 addr, value;

		err = get_user(addr, regs);
		if (err)
			goto addr_err;

3218
		if (!is_valid(perf, addr)) {
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
			err = -EINVAL;
			goto addr_err;
		}

		err = get_user(value, regs + 1);
		if (err)
			goto addr_err;

		oa_regs[i].addr = _MMIO(addr);
		oa_regs[i].value = mask_reg_value(addr, value);

		regs += 2;
	}

	return oa_regs;

addr_err:
	kfree(oa_regs);
	return ERR_PTR(err);
}

static ssize_t show_dynamic_id(struct device *dev,
			       struct device_attribute *attr,
			       char *buf)
{
	struct i915_oa_config *oa_config =
		container_of(attr, typeof(*oa_config), sysfs_metric_id);

	return sprintf(buf, "%d\n", oa_config->id);
}

3251
static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3252 3253
					 struct i915_oa_config *oa_config)
{
3254
	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	oa_config->sysfs_metric_id.attr.name = "id";
	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
	oa_config->sysfs_metric_id.show = show_dynamic_id;
	oa_config->sysfs_metric_id.store = NULL;

	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
	oa_config->attrs[1] = NULL;

	oa_config->sysfs_metric.name = oa_config->uuid;
	oa_config->sysfs_metric.attrs = oa_config->attrs;

3266
	return sysfs_create_group(perf->metrics_kobj,
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
				  &oa_config->sysfs_metric);
}

/**
 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
 * @dev: drm device
 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
 *        userspace (unvalidated)
 * @file: drm file
 *
 * Validates the submitted OA register to be saved into a new OA config that
 * can then be used for programming the OA unit and its NOA network.
 *
 * Returns: A new allocated config number to be used with the perf open ioctl
 * or a negative error code on failure.
 */
int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
{
3286
	struct i915_perf *perf = &to_i915(dev)->perf;
3287 3288 3289 3290
	struct drm_i915_perf_oa_config *args = data;
	struct i915_oa_config *oa_config, *tmp;
	int err, id;

3291
	if (!perf->i915) {
3292 3293 3294 3295
		DRM_DEBUG("i915 perf interface not available for this system\n");
		return -ENOTSUPP;
	}

3296
	if (!perf->metrics_kobj) {
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
		return -EINVAL;
	}

	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
		return -EACCES;
	}

	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
		DRM_DEBUG("No OA registers given\n");
		return -EINVAL;
	}

	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
	if (!oa_config) {
		DRM_DEBUG("Failed to allocate memory for the OA config\n");
		return -ENOMEM;
	}

	atomic_set(&oa_config->ref_count, 1);

	if (!uuid_is_valid(args->uuid)) {
		DRM_DEBUG("Invalid uuid format for OA config\n");
		err = -EINVAL;
		goto reg_err;
	}

	/* Last character in oa_config->uuid will be 0 because oa_config is
	 * kzalloc.
	 */
	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));

	oa_config->mux_regs_len = args->n_mux_regs;
	oa_config->mux_regs =
3334 3335
		alloc_oa_regs(perf,
			      perf->ops.is_valid_mux_reg,
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
			      u64_to_user_ptr(args->mux_regs_ptr),
			      args->n_mux_regs);

	if (IS_ERR(oa_config->mux_regs)) {
		DRM_DEBUG("Failed to create OA config for mux_regs\n");
		err = PTR_ERR(oa_config->mux_regs);
		goto reg_err;
	}

	oa_config->b_counter_regs_len = args->n_boolean_regs;
	oa_config->b_counter_regs =
3347 3348
		alloc_oa_regs(perf,
			      perf->ops.is_valid_b_counter_reg,
3349 3350 3351 3352 3353 3354 3355 3356 3357
			      u64_to_user_ptr(args->boolean_regs_ptr),
			      args->n_boolean_regs);

	if (IS_ERR(oa_config->b_counter_regs)) {
		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
		err = PTR_ERR(oa_config->b_counter_regs);
		goto reg_err;
	}

3358
	if (INTEL_GEN(perf->i915) < 8) {
3359 3360 3361 3362 3363 3364 3365
		if (args->n_flex_regs != 0) {
			err = -EINVAL;
			goto reg_err;
		}
	} else {
		oa_config->flex_regs_len = args->n_flex_regs;
		oa_config->flex_regs =
3366 3367
			alloc_oa_regs(perf,
				      perf->ops.is_valid_flex_reg,
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
				      u64_to_user_ptr(args->flex_regs_ptr),
				      args->n_flex_regs);

		if (IS_ERR(oa_config->flex_regs)) {
			DRM_DEBUG("Failed to create OA config for flex_regs\n");
			err = PTR_ERR(oa_config->flex_regs);
			goto reg_err;
		}
	}

3378
	err = mutex_lock_interruptible(&perf->metrics_lock);
3379 3380 3381 3382 3383 3384
	if (err)
		goto reg_err;

	/* We shouldn't have too many configs, so this iteration shouldn't be
	 * too costly.
	 */
3385
	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
3386 3387 3388 3389 3390 3391 3392
		if (!strcmp(tmp->uuid, oa_config->uuid)) {
			DRM_DEBUG("OA config already exists with this uuid\n");
			err = -EADDRINUSE;
			goto sysfs_err;
		}
	}

3393
	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
3394 3395 3396 3397 3398 3399
	if (err) {
		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
		goto sysfs_err;
	}

	/* Config id 0 is invalid, id 1 for kernel stored test config. */
3400
	oa_config->id = idr_alloc(&perf->metrics_idr,
3401 3402 3403 3404 3405 3406 3407 3408
				  oa_config, 2,
				  0, GFP_KERNEL);
	if (oa_config->id < 0) {
		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
		err = oa_config->id;
		goto sysfs_err;
	}

3409
	mutex_unlock(&perf->metrics_lock);
3410

3411 3412
	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);

3413 3414 3415
	return oa_config->id;

sysfs_err:
3416
	mutex_unlock(&perf->metrics_lock);
3417
reg_err:
3418
	put_oa_config(oa_config);
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	DRM_DEBUG("Failed to add new OA config\n");
	return err;
}

/**
 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
 * @dev: drm device
 * @data: ioctl data (pointer to u64 integer) copied from userspace
 * @file: drm file
 *
 * Configs can be removed while being used, the will stop appearing in sysfs
 * and their content will be freed when the stream using the config is closed.
 *
 * Returns: 0 on success or a negative error code on failure.
 */
int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
				  struct drm_file *file)
{
3437
	struct i915_perf *perf = &to_i915(dev)->perf;
3438 3439 3440 3441
	u64 *arg = data;
	struct i915_oa_config *oa_config;
	int ret;

3442
	if (!perf->i915) {
3443 3444 3445 3446 3447 3448 3449 3450 3451
		DRM_DEBUG("i915 perf interface not available for this system\n");
		return -ENOTSUPP;
	}

	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
		return -EACCES;
	}

3452
	ret = mutex_lock_interruptible(&perf->metrics_lock);
3453 3454 3455
	if (ret)
		goto lock_err;

3456
	oa_config = idr_find(&perf->metrics_idr, *arg);
3457 3458 3459 3460 3461 3462 3463 3464
	if (!oa_config) {
		DRM_DEBUG("Failed to remove unknown OA config\n");
		ret = -ENOENT;
		goto config_err;
	}

	GEM_BUG_ON(*arg != oa_config->id);

3465
	sysfs_remove_group(perf->metrics_kobj,
3466 3467
			   &oa_config->sysfs_metric);

3468
	idr_remove(&perf->metrics_idr, *arg);
3469 3470 3471

	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);

3472
	put_oa_config(oa_config);
3473 3474

config_err:
3475
	mutex_unlock(&perf->metrics_lock);
3476 3477 3478 3479
lock_err:
	return ret;
}

3480 3481 3482 3483 3484 3485 3486
static struct ctl_table oa_table[] = {
	{
	 .procname = "perf_stream_paranoid",
	 .data = &i915_perf_stream_paranoid,
	 .maxlen = sizeof(i915_perf_stream_paranoid),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
3487 3488
	 .extra1 = SYSCTL_ZERO,
	 .extra2 = SYSCTL_ONE,
3489
	 },
3490 3491 3492 3493 3494 3495
	{
	 .procname = "oa_max_sample_rate",
	 .data = &i915_oa_max_sample_rate,
	 .maxlen = sizeof(i915_oa_max_sample_rate),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
3496
	 .extra1 = SYSCTL_ZERO,
3497 3498
	 .extra2 = &oa_sample_rate_hard_limit,
	 },
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
	{}
};

static struct ctl_table i915_root[] = {
	{
	 .procname = "i915",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = oa_table,
	 },
	{}
};

static struct ctl_table dev_root[] = {
	{
	 .procname = "dev",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = i915_root,
	 },
	{}
};

3522 3523
/**
 * i915_perf_init - initialize i915-perf state on module load
3524
 * @i915: i915 device instance
3525 3526 3527 3528 3529 3530
 *
 * Initializes i915-perf state without exposing anything to userspace.
 *
 * Note: i915-perf initialization is split into an 'init' and 'register'
 * phase with the i915_perf_register() exposing state to userspace.
 */
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
void i915_perf_init(struct drm_i915_private *i915)
{
	struct i915_perf *perf = &i915->perf;

	/* XXX const struct i915_perf_ops! */

	if (IS_HASWELL(i915)) {
		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
		perf->ops.is_valid_flex_reg = NULL;
		perf->ops.enable_metric_set = hsw_enable_metric_set;
		perf->ops.disable_metric_set = hsw_disable_metric_set;
		perf->ops.oa_enable = gen7_oa_enable;
		perf->ops.oa_disable = gen7_oa_disable;
		perf->ops.read = gen7_oa_read;
		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;

		perf->oa_formats = hsw_oa_formats;
	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
3550 3551 3552 3553 3554 3555
		/* Note: that although we could theoretically also support the
		 * legacy ringbuffer mode on BDW (and earlier iterations of
		 * this driver, before upstreaming did this) it didn't seem
		 * worth the complexity to maintain now that BDW+ enable
		 * execlist mode by default.
		 */
3556
		perf->oa_formats = gen8_plus_oa_formats;
3557

3558 3559 3560 3561
		perf->ops.oa_enable = gen8_oa_enable;
		perf->ops.oa_disable = gen8_oa_disable;
		perf->ops.read = gen8_oa_read;
		perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3562

3563 3564
		if (IS_GEN_RANGE(i915, 8, 9)) {
			perf->ops.is_valid_b_counter_reg =
3565
				gen7_is_valid_b_counter_addr;
3566
			perf->ops.is_valid_mux_reg =
3567
				gen8_is_valid_mux_addr;
3568
			perf->ops.is_valid_flex_reg =
3569
				gen8_is_valid_flex_addr;
3570

3571 3572
			if (IS_CHERRYVIEW(i915)) {
				perf->ops.is_valid_mux_reg =
3573 3574
					chv_is_valid_mux_addr;
			}
3575

3576 3577
			perf->ops.enable_metric_set = gen8_enable_metric_set;
			perf->ops.disable_metric_set = gen8_disable_metric_set;
3578

3579 3580 3581
			if (IS_GEN(i915, 8)) {
				perf->ctx_oactxctrl_offset = 0x120;
				perf->ctx_flexeu0_offset = 0x2ce;
3582

3583
				perf->gen8_valid_ctx_bit = BIT(25);
3584
			} else {
3585 3586
				perf->ctx_oactxctrl_offset = 0x128;
				perf->ctx_flexeu0_offset = 0x3de;
3587

3588
				perf->gen8_valid_ctx_bit = BIT(16);
3589
			}
3590 3591
		} else if (IS_GEN_RANGE(i915, 10, 11)) {
			perf->ops.is_valid_b_counter_reg =
3592
				gen7_is_valid_b_counter_addr;
3593
			perf->ops.is_valid_mux_reg =
3594
				gen10_is_valid_mux_addr;
3595
			perf->ops.is_valid_flex_reg =
3596 3597
				gen8_is_valid_flex_addr;

3598 3599
			perf->ops.enable_metric_set = gen8_enable_metric_set;
			perf->ops.disable_metric_set = gen10_disable_metric_set;
3600

3601 3602 3603
			if (IS_GEN(i915, 10)) {
				perf->ctx_oactxctrl_offset = 0x128;
				perf->ctx_flexeu0_offset = 0x3de;
3604
			} else {
3605 3606
				perf->ctx_oactxctrl_offset = 0x124;
				perf->ctx_flexeu0_offset = 0x78e;
3607
			}
3608
			perf->gen8_valid_ctx_bit = BIT(16);
3609 3610
		}
	}
3611

3612 3613 3614
	if (perf->ops.enable_metric_set) {
		INIT_LIST_HEAD(&perf->streams);
		mutex_init(&perf->lock);
3615

3616
		oa_sample_rate_hard_limit = 1000 *
3617 3618
			(RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2);
		perf->sysctl_header = register_sysctl_table(dev_root);
3619

3620 3621
		mutex_init(&perf->metrics_lock);
		idr_init(&perf->metrics_idr);
3622

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		/* We set up some ratelimit state to potentially throttle any
		 * _NOTES about spurious, invalid OA reports which we don't
		 * forward to userspace.
		 *
		 * We print a _NOTE about any throttling when closing the
		 * stream instead of waiting until driver _fini which no one
		 * would ever see.
		 *
		 * Using the same limiting factors as printk_ratelimit()
		 */
3633
		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
3634 3635 3636 3637
		/* Since we use a DRM_NOTE for spurious reports it would be
		 * inconsistent to let __ratelimit() automatically print a
		 * warning for throttling.
		 */
3638
		ratelimit_set_flags(&perf->spurious_report_rs,
3639 3640
				    RATELIMIT_MSG_ON_RELEASE);

3641
		perf->i915 = i915;
3642
	}
3643 3644
}

3645 3646
static int destroy_config(int id, void *p, void *data)
{
3647
	put_oa_config(p);
3648 3649 3650
	return 0;
}

3651 3652
/**
 * i915_perf_fini - Counter part to i915_perf_init()
3653
 * @i915: i915 device instance
3654
 */
3655
void i915_perf_fini(struct drm_i915_private *i915)
3656
{
3657
	struct i915_perf *perf = &i915->perf;
3658

3659 3660
	if (!perf->i915)
		return;
3661

3662 3663
	idr_for_each(&perf->metrics_idr, destroy_config, perf);
	idr_destroy(&perf->metrics_idr);
3664

3665
	unregister_sysctl_table(perf->sysctl_header);
3666

3667 3668
	memset(&perf->ops, 0, sizeof(perf->ops));
	perf->i915 = NULL;
3669
}