skbuff.h 141.3 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *	Definitions for the 'struct sk_buff' memory handlers.
 *
 *	Authors:
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
 */

#ifndef _LINUX_SKBUFF_H
#define _LINUX_SKBUFF_H

#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/time.h>
16
#include <linux/bug.h>
17
#include <linux/bvec.h>
L
Linus Torvalds 已提交
18
#include <linux/cache.h>
E
Eric Dumazet 已提交
19
#include <linux/rbtree.h>
20
#include <linux/socket.h>
21
#include <linux/refcount.h>
L
Linus Torvalds 已提交
22

A
Arun Sharma 已提交
23
#include <linux/atomic.h>
L
Linus Torvalds 已提交
24 25 26
#include <asm/types.h>
#include <linux/spinlock.h>
#include <linux/net.h>
27
#include <linux/textsearch.h>
L
Linus Torvalds 已提交
28
#include <net/checksum.h>
29
#include <linux/rcupdate.h>
30
#include <linux/hrtimer.h>
31
#include <linux/dma-mapping.h>
32
#include <linux/netdev_features.h>
33
#include <linux/sched.h>
34
#include <linux/sched/clock.h>
35
#include <net/flow_dissector.h>
36
#include <linux/splice.h>
37
#include <linux/in6.h>
38
#include <linux/if_packet.h>
39
#include <linux/llist.h>
40
#include <net/flow.h>
41
#include <net/page_pool.h>
42 43 44
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
#include <linux/netfilter/nf_conntrack_common.h>
#endif
L
Linus Torvalds 已提交
45

46 47 48 49 50 51
/* The interface for checksum offload between the stack and networking drivers
 * is as follows...
 *
 * A. IP checksum related features
 *
 * Drivers advertise checksum offload capabilities in the features of a device.
52 53
 * From the stack's point of view these are capabilities offered by the driver.
 * A driver typically only advertises features that it is capable of offloading
54 55 56 57 58 59 60 61 62 63 64 65 66 67
 * to its device.
 *
 * The checksum related features are:
 *
 *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
 *			  IP (one's complement) checksum for any combination
 *			  of protocols or protocol layering. The checksum is
 *			  computed and set in a packet per the CHECKSUM_PARTIAL
 *			  interface (see below).
 *
 *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
 *			  TCP or UDP packets over IPv4. These are specifically
 *			  unencapsulated packets of the form IPv4|TCP or
 *			  IPv4|UDP where the Protocol field in the IPv4 header
68
 *			  is TCP or UDP. The IPv4 header may contain IP options.
69 70 71 72 73 74 75
 *			  This feature cannot be set in features for a device
 *			  with NETIF_F_HW_CSUM also set. This feature is being
 *			  DEPRECATED (see below).
 *
 *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
 *			  TCP or UDP packets over IPv6. These are specifically
 *			  unencapsulated packets of the form IPv6|TCP or
M
Miaohe Lin 已提交
76
 *			  IPv6|UDP where the Next Header field in the IPv6
77 78 79 80 81 82 83
 *			  header is either TCP or UDP. IPv6 extension headers
 *			  are not supported with this feature. This feature
 *			  cannot be set in features for a device with
 *			  NETIF_F_HW_CSUM also set. This feature is being
 *			  DEPRECATED (see below).
 *
 *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
84
 *			 This flag is only used to disable the RX checksum
85 86 87 88 89
 *			 feature for a device. The stack will accept receive
 *			 checksum indication in packets received on a device
 *			 regardless of whether NETIF_F_RXCSUM is set.
 *
 * B. Checksumming of received packets by device. Indication of checksum
90
 *    verification is set in skb->ip_summed. Possible values are:
91 92 93
 *
 * CHECKSUM_NONE:
 *
94
 *   Device did not checksum this packet e.g. due to lack of capabilities.
95 96 97 98 99 100 101
 *   The packet contains full (though not verified) checksum in packet but
 *   not in skb->csum. Thus, skb->csum is undefined in this case.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   The hardware you're dealing with doesn't calculate the full checksum
 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
102 103
 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 *   if their checksums are okay. skb->csum is still undefined in this case
104 105
 *   though. A driver or device must never modify the checksum field in the
 *   packet even if checksum is verified.
106 107 108 109 110 111 112 113
 *
 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 *     TCP: IPv6 and IPv4.
 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 *       may perform further validation in this case.
 *     GRE: only if the checksum is present in the header.
 *     SCTP: indicates the CRC in SCTP header has been validated.
114
 *     FCOE: indicates the CRC in FC frame has been validated.
115 116 117 118 119
 *
 *   skb->csum_level indicates the number of consecutive checksums found in
 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 *   and a device is able to verify the checksums for UDP (possibly zero),
120
 *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
121
 *   two. If the device were only able to verify the UDP checksum and not
122
 *   GRE, either because it doesn't support GRE checksum or because GRE
123 124
 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 *   not considered in this case).
125 126 127 128
 *
 * CHECKSUM_COMPLETE:
 *
 *   This is the most generic way. The device supplied checksum of the _whole_
129
 *   packet as seen by netif_rx() and fills in skb->csum. This means the
130 131
 *   hardware doesn't need to parse L3/L4 headers to implement this.
 *
132 133 134 135
 *   Notes:
 *   - Even if device supports only some protocols, but is able to produce
 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
136 137 138
 *
 * CHECKSUM_PARTIAL:
 *
139 140
 *   A checksum is set up to be offloaded to a device as described in the
 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
141
 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
142 143 144 145 146 147
 *   on the same host, or it may be set in the input path in GRO or remote
 *   checksum offload. For the purposes of checksum verification, the checksum
 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 *   checksums in the packet are considered verified. Any checksums in the
 *   packet that are after the checksum being offloaded are not considered to
 *   be verified.
148
 *
149 150
 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 *    in the skb->ip_summed for a packet. Values are:
151 152 153
 *
 * CHECKSUM_PARTIAL:
 *
154
 *   The driver is required to checksum the packet as seen by hard_start_xmit()
155
 *   from skb->csum_start up to the end, and to record/write the checksum at
156 157
 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 *   csum_start and csum_offset values are valid values given the length and
158 159
 *   offset of the packet, but it should not attempt to validate that the
 *   checksum refers to a legitimate transport layer checksum -- it is the
160 161 162 163 164 165 166 167 168 169
 *   purview of the stack to validate that csum_start and csum_offset are set
 *   correctly.
 *
 *   When the stack requests checksum offload for a packet, the driver MUST
 *   ensure that the checksum is set correctly. A driver can either offload the
 *   checksum calculation to the device, or call skb_checksum_help (in the case
 *   that the device does not support offload for a particular checksum).
 *
 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
170 171 172 173 174
 *   checksum offload capability.
 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 *   on network device checksumming capabilities: if a packet does not match
 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 *   csum_not_inet, see item D.) is called to resolve the checksum.
175
 *
176
 * CHECKSUM_NONE:
177
 *
178 179
 *   The skb was already checksummed by the protocol, or a checksum is not
 *   required.
180 181 182
 *
 * CHECKSUM_UNNECESSARY:
 *
183
 *   This has the same meaning as CHECKSUM_NONE for checksum offload on
184
 *   output.
185
 *
186 187
 * CHECKSUM_COMPLETE:
 *   Not used in checksum output. If a driver observes a packet with this value
188
 *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
189 190 191 192 193
 *
 * D. Non-IP checksum (CRC) offloads
 *
 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 *     offloading the SCTP CRC in a packet. To perform this offload the stack
194
 *     will set csum_start and csum_offset accordingly, set ip_summed to
195 196 197 198 199 200
 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 *     must verify which offload is configured for a packet by testing the
 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
201 202 203 204
 *
 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
205 206
 *     accordingly. Note that there is no indication in the skbuff that the
 *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
207
 *     both IP checksum offload and FCOE CRC offload must verify which offload
208
 *     is configured for a packet, presumably by inspecting packet headers.
209 210 211 212 213 214 215
 *
 * E. Checksumming on output with GSO.
 *
 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 * part of the GSO operation is implied. If a checksum is being offloaded
216 217 218
 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
 * csum_offset are set to refer to the outermost checksum being offloaded
 * (two offloaded checksums are possible with UDP encapsulation).
219 220
 */

221
/* Don't change this without changing skb_csum_unnecessary! */
222 223 224 225
#define CHECKSUM_NONE		0
#define CHECKSUM_UNNECESSARY	1
#define CHECKSUM_COMPLETE	2
#define CHECKSUM_PARTIAL	3
L
Linus Torvalds 已提交
226

227 228 229
/* Maximum value in skb->csum_level */
#define SKB_MAX_CSUM_LEVEL	3

230
#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
231
#define SKB_WITH_OVERHEAD(X)	\
232
	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
233 234
#define SKB_MAX_ORDER(X, ORDER) \
	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
L
Linus Torvalds 已提交
235 236 237
#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))

E
Eric Dumazet 已提交
238 239 240 241 242
/* return minimum truesize of one skb containing X bytes of data */
#define SKB_TRUESIZE(X) ((X) +						\
			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))

243
struct ahash_request;
L
Linus Torvalds 已提交
244
struct net_device;
245
struct scatterlist;
J
Jens Axboe 已提交
246
struct pipe_inode_info;
H
Herbert Xu 已提交
247
struct iov_iter;
248
struct napi_struct;
249 250
struct bpf_prog;
union bpf_attr;
251
struct skb_ext;
L
Linus Torvalds 已提交
252

253
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
254
struct nf_bridge_info {
255 256 257 258
	enum {
		BRNF_PROTO_UNCHANGED,
		BRNF_PROTO_8021Q,
		BRNF_PROTO_PPPOE
259
	} orig_proto:8;
260 261 262
	u8			pkt_otherhost:1;
	u8			in_prerouting:1;
	u8			bridged_dnat:1;
263
	__u16			frag_max_size;
264
	struct net_device	*physindev;
265 266 267

	/* always valid & non-NULL from FORWARD on, for physdev match */
	struct net_device	*physoutdev;
268
	union {
269
		/* prerouting: detect dnat in orig/reply direction */
270 271
		__be32          ipv4_daddr;
		struct in6_addr ipv6_daddr;
272 273 274 275 276 277

		/* after prerouting + nat detected: store original source
		 * mac since neigh resolution overwrites it, only used while
		 * skb is out in neigh layer.
		 */
		char neigh_header[8];
278
	};
L
Linus Torvalds 已提交
279 280 281
};
#endif

282 283 284 285 286 287 288
#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
/* Chain in tc_skb_ext will be used to share the tc chain with
 * ovs recirc_id. It will be set to the current chain by tc
 * and read by ovs to recirc_id.
 */
struct tc_skb_ext {
	__u32 chain;
289
	__u16 mru;
290
	__u16 zone;
291 292 293
	u8 post_ct:1;
	u8 post_ct_snat:1;
	u8 post_ct_dnat:1;
294 295 296
};
#endif

L
Linus Torvalds 已提交
297
struct sk_buff_head {
298 299 300 301 302
	/* These two members must be first to match sk_buff. */
	struct_group_tagged(sk_buff_list, list,
		struct sk_buff	*next;
		struct sk_buff	*prev;
	);
L
Linus Torvalds 已提交
303 304 305 306 307 308 309

	__u32		qlen;
	spinlock_t	lock;
};

struct sk_buff;

310 311 312 313 314 315 316
/* The reason of skb drop, which is used in kfree_skb_reason().
 * en...maybe they should be splited by group?
 *
 * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
 * used to translate the reason to string.
 */
enum skb_drop_reason {
317 318 319 320 321 322
	SKB_DROP_REASON_NOT_SPECIFIED,	/* drop reason is not specified */
	SKB_DROP_REASON_NO_SOCKET,	/* socket not found */
	SKB_DROP_REASON_PKT_TOO_SMALL,	/* packet size is too small */
	SKB_DROP_REASON_TCP_CSUM,	/* TCP checksum error */
	SKB_DROP_REASON_SOCKET_FILTER,	/* dropped by socket filter */
	SKB_DROP_REASON_UDP_CSUM,	/* UDP checksum error */
323
	SKB_DROP_REASON_NETFILTER_DROP,	/* dropped by netfilter */
324 325 326 327 328 329 330 331 332
	SKB_DROP_REASON_OTHERHOST,	/* packet don't belong to current
					 * host (interface is in promisc
					 * mode)
					 */
	SKB_DROP_REASON_IP_CSUM,	/* IP checksum error */
	SKB_DROP_REASON_IP_INHDR,	/* there is something wrong with
					 * IP header (see
					 * IPSTATS_MIB_INHDRERRORS)
					 */
333 334 335 336 337 338 339 340 341
	SKB_DROP_REASON_IP_RPFILTER,	/* IP rpfilter validate failed.
					 * see the document for rp_filter
					 * in ip-sysctl.rst for more
					 * information
					 */
	SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2
						  * is multicast, but L3 is
						  * unicast.
						  */
342 343
	SKB_DROP_REASON_XFRM_POLICY,	/* xfrm policy check failed */
	SKB_DROP_REASON_IP_NOPROTO,	/* no support for IP protocol */
344 345 346 347 348
	SKB_DROP_REASON_SOCKET_RCVBUFF,	/* socket receive buff is full */
	SKB_DROP_REASON_PROTO_MEM,	/* proto memory limition, such as
					 * udp packet drop out of
					 * udp_memory_allocated.
					 */
349 350 351 352 353 354 355 356 357 358 359 360
	SKB_DROP_REASON_TCP_MD5NOTFOUND,	/* no MD5 hash and one
						 * expected, corresponding
						 * to LINUX_MIB_TCPMD5NOTFOUND
						 */
	SKB_DROP_REASON_TCP_MD5UNEXPECTED,	/* MD5 hash and we're not
						 * expecting one, corresponding
						 * to LINUX_MIB_TCPMD5UNEXPECTED
						 */
	SKB_DROP_REASON_TCP_MD5FAILURE,	/* MD5 hash and its wrong,
					 * corresponding to
					 * LINUX_MIB_TCPMD5FAILURE
					 */
361 362 363 364
	SKB_DROP_REASON_SOCKET_BACKLOG,	/* failed to add skb to socket
					 * backlog (see
					 * LINUX_MIB_TCPBACKLOGDROP)
					 */
365
	SKB_DROP_REASON_TCP_FLAGS,	/* TCP flags invalid */
366 367 368 369 370 371 372 373 374 375 376 377 378
	SKB_DROP_REASON_TCP_ZEROWINDOW,	/* TCP receive window size is zero,
					 * see LINUX_MIB_TCPZEROWINDOWDROP
					 */
	SKB_DROP_REASON_TCP_OLD_DATA,	/* the TCP data reveived is already
					 * received before (spurious retrans
					 * may happened), see
					 * LINUX_MIB_DELAYEDACKLOST
					 */
	SKB_DROP_REASON_TCP_OVERWINDOW,	/* the TCP data is out of window,
					 * the seq of the first byte exceed
					 * the right edges of receive
					 * window
					 */
379 380 381 382
	SKB_DROP_REASON_TCP_OFOMERGE,	/* the data of skb is already in
					 * the ofo queue, corresponding to
					 * LINUX_MIB_TCPOFOMERGE
					 */
383 384 385 386 387 388 389 390 391
	SKB_DROP_REASON_IP_OUTNOROUTES,	/* route lookup failed */
	SKB_DROP_REASON_BPF_CGROUP_EGRESS,	/* dropped by
						 * BPF_PROG_TYPE_CGROUP_SKB
						 * eBPF program
						 */
	SKB_DROP_REASON_IPV6DISABLED,	/* IPv6 is disabled on the device */
	SKB_DROP_REASON_NEIGH_CREATEFAIL,	/* failed to create neigh
						 * entry
						 */
392 393 394 395 396
	SKB_DROP_REASON_NEIGH_FAILED,	/* neigh entry in failed state */
	SKB_DROP_REASON_NEIGH_QUEUEFULL,	/* arp_queue for neigh
						 * entry is full
						 */
	SKB_DROP_REASON_NEIGH_DEAD,	/* neigh entry is dead */
397
	SKB_DROP_REASON_TC_EGRESS,	/* dropped in TC egress HOOK */
398 399 400 401
	SKB_DROP_REASON_QDISC_DROP,	/* dropped by qdisc when packet
					 * outputting (failed to enqueue to
					 * current qdisc)
					 */
402 403 404 405 406 407
	SKB_DROP_REASON_CPU_BACKLOG,	/* failed to enqueue the skb to
					 * the per CPU backlog queue. This
					 * can be caused by backlog queue
					 * full (see netdev_max_backlog in
					 * net.rst) or RPS flow limit
					 */
408
	SKB_DROP_REASON_XDP,		/* dropped by XDP in input path */
409
	SKB_DROP_REASON_TC_INGRESS,	/* dropped in TC ingress HOOK */
410 411 412 413 414
	SKB_DROP_REASON_PTYPE_ABSENT,	/* not packet_type found to handle
					 * the skb. For an etner packet,
					 * this means that L3 protocol is
					 * not supported
					 */
415 416 417
	SKB_DROP_REASON_MAX,
};

418 419 420 421 422 423
/* To allow 64K frame to be packed as single skb without frag_list we
 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 * buffers which do not start on a page boundary.
 *
 * Since GRO uses frags we allocate at least 16 regardless of page
 * size.
424
 */
425
#if (65536/PAGE_SIZE + 1) < 16
426
#define MAX_SKB_FRAGS 16UL
427
#else
428
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
429
#endif
H
Hans Westgaard Ry 已提交
430
extern int sysctl_max_skb_frags;
L
Linus Torvalds 已提交
431

432 433 434 435 436
/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 * segment using its current segmentation instead.
 */
#define GSO_BY_FRAGS	0xFFFF

437
typedef struct bio_vec skb_frag_t;
L
Linus Torvalds 已提交
438

439
/**
440
 * skb_frag_size() - Returns the size of a skb fragment
441 442
 * @frag: skb fragment
 */
E
Eric Dumazet 已提交
443 444
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
{
445
	return frag->bv_len;
E
Eric Dumazet 已提交
446 447
}

448
/**
449
 * skb_frag_size_set() - Sets the size of a skb fragment
450 451 452
 * @frag: skb fragment
 * @size: size of fragment
 */
E
Eric Dumazet 已提交
453 454
static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
{
455
	frag->bv_len = size;
E
Eric Dumazet 已提交
456 457
}

458
/**
459
 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
460 461 462
 * @frag: skb fragment
 * @delta: value to add
 */
E
Eric Dumazet 已提交
463 464
static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
{
465
	frag->bv_len += delta;
E
Eric Dumazet 已提交
466 467
}

468
/**
469
 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
470 471 472
 * @frag: skb fragment
 * @delta: value to subtract
 */
E
Eric Dumazet 已提交
473 474
static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
{
475
	frag->bv_len -= delta;
E
Eric Dumazet 已提交
476 477
}

478 479 480 481
/**
 * skb_frag_must_loop - Test if %p is a high memory page
 * @p: fragment's page
 */
482 483 484
static inline bool skb_frag_must_loop(struct page *p)
{
#if defined(CONFIG_HIGHMEM)
485
	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
486 487 488 489 490 491 492 493 494
		return true;
#endif
	return false;
}

/**
 *	skb_frag_foreach_page - loop over pages in a fragment
 *
 *	@f:		skb frag to operate on
495
 *	@f_off:		offset from start of f->bv_page
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
 *	@f_len:		length from f_off to loop over
 *	@p:		(temp var) current page
 *	@p_off:		(temp var) offset from start of current page,
 *	                           non-zero only on first page.
 *	@p_len:		(temp var) length in current page,
 *				   < PAGE_SIZE only on first and last page.
 *	@copied:	(temp var) length so far, excluding current p_len.
 *
 *	A fragment can hold a compound page, in which case per-page
 *	operations, notably kmap_atomic, must be called for each
 *	regular page.
 */
#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
	     p_off = (f_off) & (PAGE_SIZE - 1),				\
	     p_len = skb_frag_must_loop(p) ?				\
	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
	     copied = 0;						\
	     copied < f_len;						\
	     copied += p_len, p++, p_off = 0,				\
	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\

518 519 520
#define HAVE_HW_TIME_STAMP

/**
521
 * struct skb_shared_hwtstamps - hardware time stamps
522 523 524 525
 * @hwtstamp:	hardware time stamp transformed into duration
 *		since arbitrary point in time
 *
 * Software time stamps generated by ktime_get_real() are stored in
526
 * skb->tstamp.
527 528 529 530 531 532 533 534 535 536 537
 *
 * hwtstamps can only be compared against other hwtstamps from
 * the same device.
 *
 * This structure is attached to packets as part of the
 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 */
struct skb_shared_hwtstamps {
	ktime_t	hwtstamp;
};

538 539 540 541 542
/* Definitions for tx_flags in struct skb_shared_info */
enum {
	/* generate hardware time stamp */
	SKBTX_HW_TSTAMP = 1 << 0,

543
	/* generate software time stamp when queueing packet to NIC */
544 545 546 547 548
	SKBTX_SW_TSTAMP = 1 << 1,

	/* device driver is going to provide hardware time stamp */
	SKBTX_IN_PROGRESS = 1 << 2,

549
	/* generate wifi status information (where possible) */
E
Eric Dumazet 已提交
550
	SKBTX_WIFI_STATUS = 1 << 4,
551

552 553
	/* generate software time stamp when entering packet scheduling */
	SKBTX_SCHED_TSTAMP = 1 << 6,
554 555
};

556
#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
557
				 SKBTX_SCHED_TSTAMP)
558 559
#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)

560 561 562 563 564 565 566 567 568 569 570
/* Definitions for flags in struct skb_shared_info */
enum {
	/* use zcopy routines */
	SKBFL_ZEROCOPY_ENABLE = BIT(0),

	/* This indicates at least one fragment might be overwritten
	 * (as in vmsplice(), sendfile() ...)
	 * If we need to compute a TX checksum, we'll need to copy
	 * all frags to avoid possible bad checksum
	 */
	SKBFL_SHARED_FRAG = BIT(1),
571 572 573 574 575

	/* segment contains only zerocopy data and should not be
	 * charged to the kernel memory.
	 */
	SKBFL_PURE_ZEROCOPY = BIT(2),
576 577 578
};

#define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
579
#define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
580

581 582 583
/*
 * The callback notifies userspace to release buffers when skb DMA is done in
 * lower device, the skb last reference should be 0 when calling this.
584 585
 * The zerocopy_success argument is true if zero copy transmit occurred,
 * false on data copy or out of memory error caused by data copy attempt.
586 587
 * The ctx field is used to track device context.
 * The desc field is used to track userspace buffer index.
588 589
 */
struct ubuf_info {
590 591
	void (*callback)(struct sk_buff *, struct ubuf_info *,
			 bool zerocopy_success);
592 593 594 595 596 597 598 599 600 601 602 603
	union {
		struct {
			unsigned long desc;
			void *ctx;
		};
		struct {
			u32 id;
			u16 len;
			u16 zerocopy:1;
			u32 bytelen;
		};
	};
604
	refcount_t refcnt;
605
	u8 flags;
606 607 608 609 610

	struct mmpin {
		struct user_struct *user;
		unsigned int num_pg;
	} mmp;
611 612
};

W
Willem de Bruijn 已提交
613 614
#define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))

615 616 617
int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
void mm_unaccount_pinned_pages(struct mmpin *mmp);

618 619 620
struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
				       struct ubuf_info *uarg);
W
Willem de Bruijn 已提交
621

622
void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
W
Willem de Bruijn 已提交
623

624 625
void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
			   bool success);
W
Willem de Bruijn 已提交
626

W
Willem de Bruijn 已提交
627
int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
W
Willem de Bruijn 已提交
628 629 630 631
int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
			     struct msghdr *msg, int len,
			     struct ubuf_info *uarg);

L
Linus Torvalds 已提交
632 633 634 635
/* This data is invariant across clones and lives at
 * the end of the header data, ie. at skb->end.
 */
struct skb_shared_info {
636
	__u8		flags;
637 638
	__u8		meta_len;
	__u8		nr_frags;
639
	__u8		tx_flags;
640 641 642
	unsigned short	gso_size;
	/* Warning: this field is not always filled in (UFO)! */
	unsigned short	gso_segs;
L
Linus Torvalds 已提交
643
	struct sk_buff	*frag_list;
644
	struct skb_shared_hwtstamps hwtstamps;
645
	unsigned int	gso_type;
646
	u32		tskey;
E
Eric Dumazet 已提交
647 648 649 650 651

	/*
	 * Warning : all fields before dataref are cleared in __alloc_skb()
	 */
	atomic_t	dataref;
652
	unsigned int	xdp_frags_size;
E
Eric Dumazet 已提交
653

J
Johann Baudy 已提交
654 655 656
	/* Intermediate layers must ensure that destructor_arg
	 * remains valid until skb destructor */
	void *		destructor_arg;
657

658 659
	/* must be last field, see pskb_expand_head() */
	skb_frag_t	frags[MAX_SKB_FRAGS];
L
Linus Torvalds 已提交
660 661 662 663
};

/* We divide dataref into two halves.  The higher 16 bits hold references
 * to the payload part of skb->data.  The lower 16 bits hold references to
664 665
 * the entire skb->data.  A clone of a headerless skb holds the length of
 * the header in skb->hdr_len.
L
Linus Torvalds 已提交
666 667 668 669 670 671 672 673 674 675
 *
 * All users must obey the rule that the skb->data reference count must be
 * greater than or equal to the payload reference count.
 *
 * Holding a reference to the payload part means that the user does not
 * care about modifications to the header part of skb->data.
 */
#define SKB_DATAREF_SHIFT 16
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)

676 677

enum {
678 679 680
	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
681 682
};

683 684
enum {
	SKB_GSO_TCPV4 = 1 << 0,
685 686

	/* This indicates the skb is from an untrusted source. */
687
	SKB_GSO_DODGY = 1 << 1,
M
Michael Chan 已提交
688 689

	/* This indicates the tcp segment has CWR set. */
690
	SKB_GSO_TCP_ECN = 1 << 2,
H
Herbert Xu 已提交
691

692
	SKB_GSO_TCP_FIXEDID = 1 << 3,
693

694
	SKB_GSO_TCPV6 = 1 << 4,
695

696
	SKB_GSO_FCOE = 1 << 5,
697

698
	SKB_GSO_GRE = 1 << 6,
S
Simon Horman 已提交
699

700
	SKB_GSO_GRE_CSUM = 1 << 7,
E
Eric Dumazet 已提交
701

702
	SKB_GSO_IPXIP4 = 1 << 8,
E
Eric Dumazet 已提交
703

704
	SKB_GSO_IPXIP6 = 1 << 9,
705

706
	SKB_GSO_UDP_TUNNEL = 1 << 10,
T
Tom Herbert 已提交
707

708
	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
709

710
	SKB_GSO_PARTIAL = 1 << 12,
711

712
	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
M
Marcelo Ricardo Leitner 已提交
713

714
	SKB_GSO_SCTP = 1 << 14,
S
Steffen Klassert 已提交
715

716
	SKB_GSO_ESP = 1 << 15,
717 718

	SKB_GSO_UDP = 1 << 16,
W
Willem de Bruijn 已提交
719 720

	SKB_GSO_UDP_L4 = 1 << 17,
721 722

	SKB_GSO_FRAGLIST = 1 << 18,
723 724
};

725 726 727 728 729 730 731 732 733 734
#if BITS_PER_LONG > 32
#define NET_SKBUFF_DATA_USES_OFFSET 1
#endif

#ifdef NET_SKBUFF_DATA_USES_OFFSET
typedef unsigned int sk_buff_data_t;
#else
typedef unsigned char *sk_buff_data_t;
#endif

735
/**
L
Linus Torvalds 已提交
736 737 738
 *	struct sk_buff - socket buffer
 *	@next: Next buffer in list
 *	@prev: Previous buffer in list
739
 *	@tstamp: Time we arrived/left
740 741
 *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
 *		for retransmit timer
E
Eric Dumazet 已提交
742
 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
743
 *	@list: queue head
744
 *	@ll_node: anchor in an llist (eg socket defer_list)
745
 *	@sk: Socket we are owned by
746 747
 *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
 *		fragmentation management
L
Linus Torvalds 已提交
748
 *	@dev: Device we arrived on/are leaving by
749
 *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
750
 *	@cb: Control buffer. Free for use by every layer. Put private vars here
E
Eric Dumazet 已提交
751
 *	@_skb_refdst: destination entry (with norefcount bit)
752
 *	@sp: the security path, used for xfrm
L
Linus Torvalds 已提交
753 754 755
 *	@len: Length of actual data
 *	@data_len: Data length
 *	@mac_len: Length of link layer header
756
 *	@hdr_len: writable header length of cloned skb
757 758 759
 *	@csum: Checksum (must include start/offset pair)
 *	@csum_start: Offset from skb->head where checksumming should start
 *	@csum_offset: Offset from csum_start where checksum should be stored
760
 *	@priority: Packet queueing priority
W
WANG Cong 已提交
761
 *	@ignore_df: allow local fragmentation
L
Linus Torvalds 已提交
762
 *	@cloned: Head may be cloned (check refcnt to be sure)
763
 *	@ip_summed: Driver fed us an IP checksum
L
Linus Torvalds 已提交
764 765
 *	@nohdr: Payload reference only, must not modify header
 *	@pkt_type: Packet class
766 767
 *	@fclone: skbuff clone status
 *	@ipvs_property: skbuff is owned by ipvs
768 769 770
 *	@inner_protocol_type: whether the inner protocol is
 *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
 *	@remcsum_offload: remote checksum offload is enabled
771 772
 *	@offload_fwd_mark: Packet was L2-forwarded in hardware
 *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
773
 *	@tc_skip_classify: do not classify packet. set by IFB device
774
 *	@tc_at_ingress: used within tc_classify to distinguish in/egress
775 776
 *	@redirected: packet was redirected by packet classifier
 *	@from_ingress: packet was redirected from the ingress path
L
Lukas Wunner 已提交
777
 *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
778 779
 *	@peeked: this packet has been seen already, so stats have been
 *		done for it, don't do them again
780
 *	@nf_trace: netfilter packet trace flag
781 782
 *	@protocol: Packet protocol from driver
 *	@destructor: Destruct function
783
 *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
784
 *	@_sk_redir: socket redirection information for skmsg
785
 *	@_nfct: Associated connection, if any (with nfctinfo bits)
L
Linus Torvalds 已提交
786
 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
787
 *	@skb_iif: ifindex of device we arrived on
L
Linus Torvalds 已提交
788
 *	@tc_index: Traffic control index
789
 *	@hash: the packet hash
790
 *	@queue_mapping: Queue mapping for multiqueue devices
791 792
 *	@head_frag: skb was allocated from page fragments,
 *		not allocated by kmalloc() or vmalloc().
793
 *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
794 795
 *	@pp_recycle: mark the packet for recycling instead of freeing (implies
 *		page_pool support on driver)
796
 *	@active_extensions: active extensions (skb_ext_id types)
797
 *	@ndisc_nodetype: router type (from link layer)
798
 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
799
 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
800
 *		ports.
801
 *	@sw_hash: indicates hash was computed in software stack
802 803
 *	@wifi_acked_valid: wifi_acked was set
 *	@wifi_acked: whether frame was acked on wifi or not
804
 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
805 806 807
 *	@encapsulation: indicates the inner headers in the skbuff are valid
 *	@encap_hdr_csum: software checksum is needed
 *	@csum_valid: checksum is already valid
808
 *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
809 810 811 812
 *	@csum_complete_sw: checksum was completed by software
 *	@csum_level: indicates the number of consecutive checksums found in
 *		the packet minus one that have been verified as
 *		CHECKSUM_UNNECESSARY (max 3)
813
 *	@dst_pending_confirm: need to confirm neighbour
814
 *	@decrypted: Decrypted SKB
815
 *	@slow_gro: state present at GRO time, slower prepare step required
816 817 818 819
 *	@mono_delivery_time: When set, skb->tstamp has the
 *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
 *		skb->tstamp has the (rcv) timestamp at ingress and
 *		delivery_time at egress.
820
 *	@napi_id: id of the NAPI struct this skb came from
821
 *	@sender_cpu: (aka @napi_id) source CPU in XPS
822
 *	@secmark: security marking
823
 *	@mark: Generic packet mark
824 825 826
 *	@reserved_tailroom: (aka @mark) number of bytes of free space available
 *		at the tail of an sk_buff
 *	@vlan_present: VLAN tag is present
827
 *	@vlan_proto: vlan encapsulation protocol
828
 *	@vlan_tci: vlan tag control information
S
Simon Horman 已提交
829
 *	@inner_protocol: Protocol (encapsulation)
830 831
 *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
 *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
832 833
 *	@inner_transport_header: Inner transport layer header (encapsulation)
 *	@inner_network_header: Network layer header (encapsulation)
834
 *	@inner_mac_header: Link layer header (encapsulation)
835 836 837
 *	@transport_header: Transport layer header
 *	@network_header: Network layer header
 *	@mac_header: Link layer header
838
 *	@kcov_handle: KCOV remote handle for remote coverage collection
839 840 841 842 843 844
 *	@tail: Tail pointer
 *	@end: End pointer
 *	@head: Head of buffer
 *	@data: Data head pointer
 *	@truesize: Buffer size
 *	@users: User count - see {datagram,tcp}.c
845
 *	@extensions: allocated extensions, valid if active_extensions is nonzero
L
Linus Torvalds 已提交
846 847 848
 */

struct sk_buff {
849
	union {
E
Eric Dumazet 已提交
850
		struct {
851
			/* These two members must be first to match sk_buff_head. */
E
Eric Dumazet 已提交
852 853 854 855
			struct sk_buff		*next;
			struct sk_buff		*prev;

			union {
E
Eric Dumazet 已提交
856 857 858 859 860 861
				struct net_device	*dev;
				/* Some protocols might use this space to store information,
				 * while device pointer would be NULL.
				 * UDP receive path is one user.
				 */
				unsigned long		dev_scratch;
E
Eric Dumazet 已提交
862 863
			};
		};
864
		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
865
		struct list_head	list;
866
		struct llist_node	ll_node;
867
	};
868 869 870 871 872

	union {
		struct sock		*sk;
		int			ip_defrag_offset;
	};
L
Linus Torvalds 已提交
873

874
	union {
E
Eric Dumazet 已提交
875
		ktime_t		tstamp;
876
		u64		skb_mstamp_ns; /* earliest departure time */
877
	};
L
Linus Torvalds 已提交
878 879 880 881 882 883
	/*
	 * This is the control buffer. It is free to use for every
	 * layer. Please put your private variables there. If you
	 * want to keep them across layers you have to do a skb_clone()
	 * first. This is owned by whoever has the skb queued ATM.
	 */
884
	char			cb[48] __aligned(8);
L
Linus Torvalds 已提交
885

886 887 888 889 890 891
	union {
		struct {
			unsigned long	_skb_refdst;
			void		(*destructor)(struct sk_buff *skb);
		};
		struct list_head	tcp_tsorted_anchor;
892 893 894
#ifdef CONFIG_NET_SOCK_MSG
		unsigned long		_sk_redir;
#endif
895 896
	};

897
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
898
	unsigned long		 _nfct;
899
#endif
L
Linus Torvalds 已提交
900
	unsigned int		len,
901 902 903
				data_len;
	__u16			mac_len,
				hdr_len;
904 905 906 907 908

	/* Following fields are _not_ copied in __copy_skb_header()
	 * Note that queue_mapping is here mostly to fill a hole.
	 */
	__u16			queue_mapping;
909 910 911 912 913 914 915

/* if you move cloned around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define CLONED_MASK	(1 << 7)
#else
#define CLONED_MASK	1
#endif
916
#define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
917

918
	/* private: */
919
	__u8			__cloned_offset[0];
920
	/* public: */
921
	__u8			cloned:1,
922
				nohdr:1,
923
				fclone:2,
924
				peeked:1,
925
				head_frag:1,
926 927
				pfmemalloc:1,
				pp_recycle:1; /* page_pool recycle indicator */
928 929 930
#ifdef CONFIG_SKB_EXTENSIONS
	__u8			active_extensions;
#endif
931

932
	/* Fields enclosed in headers group are copied
933 934
	 * using a single memcpy() in __copy_skb_header()
	 */
935
	struct_group(headers,
936

937
	/* private: */
938
	__u8			__pkt_type_offset[0];
939
	/* public: */
940
	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
941 942 943
	__u8			ignore_df:1;
	__u8			nf_trace:1;
	__u8			ip_summed:2;
944
	__u8			ooo_okay:1;
945

946
	__u8			l4_hash:1;
947
	__u8			sw_hash:1;
948 949
	__u8			wifi_acked_valid:1;
	__u8			wifi_acked:1;
950
	__u8			no_fcs:1;
951
	/* Indicates the inner headers are valid in the skbuff. */
952
	__u8			encapsulation:1;
953
	__u8			encap_hdr_csum:1;
954
	__u8			csum_valid:1;
955

956
	/* private: */
M
Michał Mirosław 已提交
957
	__u8			__pkt_vlan_present_offset[0];
958
	/* public: */
959
	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
960
	__u8			csum_complete_sw:1;
961
	__u8			csum_level:2;
962
	__u8			dst_pending_confirm:1;
963
	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
964 965
#ifdef CONFIG_NET_CLS_ACT
	__u8			tc_skip_classify:1;
966
	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
967
#endif
968 969 970
#ifdef CONFIG_IPV6_NDISC_NODETYPE
	__u8			ndisc_nodetype:2;
#endif
971

M
Michał Mirosław 已提交
972
	__u8			ipvs_property:1;
T
Tom Herbert 已提交
973
	__u8			inner_protocol_type:1;
974
	__u8			remcsum_offload:1;
975 976
#ifdef CONFIG_NET_SWITCHDEV
	__u8			offload_fwd_mark:1;
977
	__u8			offload_l3_fwd_mark:1;
978 979
#endif
	__u8			redirected:1;
980
#ifdef CONFIG_NET_REDIRECT
981
	__u8			from_ingress:1;
982
#endif
L
Lukas Wunner 已提交
983 984 985
#ifdef CONFIG_NETFILTER_SKIP_EGRESS
	__u8			nf_skip_egress:1;
#endif
986 987 988
#ifdef CONFIG_TLS_DEVICE
	__u8			decrypted:1;
#endif
989
	__u8			slow_gro:1;
990
	__u8			csum_not_inet:1;
991 992 993 994

#ifdef CONFIG_NET_SCHED
	__u16			tc_index;	/* traffic control index */
#endif
995

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	union {
		__wsum		csum;
		struct {
			__u16	csum_start;
			__u16	csum_offset;
		};
	};
	__u32			priority;
	int			skb_iif;
	__u32			hash;
	__be16			vlan_proto;
	__u16			vlan_tci;
E
Eric Dumazet 已提交
1008 1009 1010 1011 1012
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
	union {
		unsigned int	napi_id;
		unsigned int	sender_cpu;
	};
1013
#endif
1014
#ifdef CONFIG_NETWORK_SECMARK
1015
	__u32		secmark;
1016 1017
#endif

1018 1019
	union {
		__u32		mark;
E
Eric Dumazet 已提交
1020
		__u32		reserved_tailroom;
1021
	};
L
Linus Torvalds 已提交
1022

T
Tom Herbert 已提交
1023 1024 1025 1026 1027
	union {
		__be16		inner_protocol;
		__u8		inner_ipproto;
	};

1028 1029 1030
	__u16			inner_transport_header;
	__u16			inner_network_header;
	__u16			inner_mac_header;
1031 1032

	__be16			protocol;
1033 1034 1035
	__u16			transport_header;
	__u16			network_header;
	__u16			mac_header;
1036

1037 1038 1039 1040
#ifdef CONFIG_KCOV
	u64			kcov_handle;
#endif

1041
	); /* end headers group */
1042

L
Linus Torvalds 已提交
1043
	/* These elements must be at the end, see alloc_skb() for details.  */
1044
	sk_buff_data_t		tail;
1045
	sk_buff_data_t		end;
L
Linus Torvalds 已提交
1046
	unsigned char		*head,
1047
				*data;
1048
	unsigned int		truesize;
1049
	refcount_t		users;
1050 1051 1052 1053 1054

#ifdef CONFIG_SKB_EXTENSIONS
	/* only useable after checking ->active_extensions != 0 */
	struct skb_ext		*extensions;
#endif
L
Linus Torvalds 已提交
1055 1056
};

1057 1058 1059 1060 1061 1062 1063 1064
/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX	(7 << 5)
#else
#define PKT_TYPE_MAX	7
#endif
#define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)

1065 1066 1067
/* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
 * around, you also must adapt these constants.
 */
1068 1069
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_VLAN_PRESENT_BIT	7
1070 1071
#define TC_AT_INGRESS_MASK		(1 << 0)
#define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1072 1073
#else
#define PKT_VLAN_PRESENT_BIT	0
1074 1075
#define TC_AT_INGRESS_MASK		(1 << 7)
#define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1076 1077 1078
#endif
#define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)

L
Linus Torvalds 已提交
1079 1080 1081 1082 1083
#ifdef __KERNEL__
/*
 *	Handling routines are only of interest to the kernel
 */

1084 1085
#define SKB_ALLOC_FCLONE	0x01
#define SKB_ALLOC_RX		0x02
1086
#define SKB_ALLOC_NAPI		0x04
1087

1088 1089 1090 1091
/**
 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
 * @skb: buffer
 */
1092 1093 1094 1095 1096
static inline bool skb_pfmemalloc(const struct sk_buff *skb)
{
	return unlikely(skb->pfmemalloc);
}

E
Eric Dumazet 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/*
 * skb might have a dst pointer attached, refcounted or not.
 * _skb_refdst low order bit is set if refcount was _not_ taken
 */
#define SKB_DST_NOREF	1UL
#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)

/**
 * skb_dst - returns skb dst_entry
 * @skb: buffer
 *
 * Returns skb dst_entry, regardless of reference taken or not.
 */
E
Eric Dumazet 已提交
1110 1111
static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
{
1112
	/* If refdst was not refcounted, check we still are in a
E
Eric Dumazet 已提交
1113 1114 1115 1116 1117 1118
	 * rcu_read_lock section
	 */
	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
		!rcu_read_lock_held() &&
		!rcu_read_lock_bh_held());
	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
E
Eric Dumazet 已提交
1119 1120
}

E
Eric Dumazet 已提交
1121 1122 1123 1124 1125 1126 1127 1128
/**
 * skb_dst_set - sets skb dst
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was taken on dst and should
 * be released by skb_dst_drop()
 */
E
Eric Dumazet 已提交
1129 1130
static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
{
1131
	skb->slow_gro |= !!dst;
E
Eric Dumazet 已提交
1132 1133 1134
	skb->_skb_refdst = (unsigned long)dst;
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/**
 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was not taken on dst.
 * If dst entry is cached, we do not take reference and dst_release
 * will be avoided by refdst_drop. If dst entry is not cached, we take
 * reference, so that last dst_release can destroy the dst immediately.
 */
static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
{
1147
	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1148
	skb->slow_gro |= !!dst;
1149
	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1150
}
E
Eric Dumazet 已提交
1151 1152

/**
L
Lucas De Marchi 已提交
1153
 * skb_dst_is_noref - Test if skb dst isn't refcounted
E
Eric Dumazet 已提交
1154 1155 1156 1157 1158
 * @skb: buffer
 */
static inline bool skb_dst_is_noref(const struct sk_buff *skb)
{
	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
E
Eric Dumazet 已提交
1159 1160
}

1161 1162 1163 1164
/**
 * skb_rtable - Returns the skb &rtable
 * @skb: buffer
 */
E
Eric Dumazet 已提交
1165 1166
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
1167
	return (struct rtable *)skb_dst(skb);
E
Eric Dumazet 已提交
1168 1169
}

1170 1171 1172 1173 1174 1175 1176 1177 1178
/* For mangling skb->pkt_type from user space side from applications
 * such as nft, tc, etc, we only allow a conservative subset of
 * possible pkt_types to be set.
*/
static inline bool skb_pkt_type_ok(u32 ptype)
{
	return ptype <= PACKET_OTHERHOST;
}

1179 1180 1181 1182
/**
 * skb_napi_id - Returns the skb's NAPI id
 * @skb: buffer
 */
1183 1184 1185 1186 1187 1188 1189 1190 1191
static inline unsigned int skb_napi_id(const struct sk_buff *skb)
{
#ifdef CONFIG_NET_RX_BUSY_POLL
	return skb->napi_id;
#else
	return 0;
#endif
}

1192 1193 1194 1195 1196 1197
/**
 * skb_unref - decrement the skb's reference count
 * @skb: buffer
 *
 * Returns true if we can free the skb.
 */
1198 1199 1200 1201
static inline bool skb_unref(struct sk_buff *skb)
{
	if (unlikely(!skb))
		return false;
1202
	if (likely(refcount_read(&skb->users) == 1))
1203
		smp_rmb();
1204
	else if (likely(!refcount_dec_and_test(&skb->users)))
1205 1206 1207 1208 1209
		return false;

	return true;
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);

/**
 *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
 *	@skb: buffer to free
 */
static inline void kfree_skb(struct sk_buff *skb)
{
	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
}

P
Paolo Abeni 已提交
1221
void skb_release_head_state(struct sk_buff *skb);
1222 1223
void kfree_skb_list_reason(struct sk_buff *segs,
			   enum skb_drop_reason reason);
1224
void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1225
void skb_tx_error(struct sk_buff *skb);
1226

1227 1228 1229 1230 1231
static inline void kfree_skb_list(struct sk_buff *segs)
{
	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
}

1232
#ifdef CONFIG_TRACEPOINTS
1233
void consume_skb(struct sk_buff *skb);
1234 1235 1236 1237 1238 1239 1240
#else
static inline void consume_skb(struct sk_buff *skb)
{
	return kfree_skb(skb);
}
#endif

1241
void __consume_stateless_skb(struct sk_buff *skb);
1242
void  __kfree_skb(struct sk_buff *skb);
1243
extern struct kmem_cache *skbuff_head_cache;
E
Eric Dumazet 已提交
1244

1245 1246 1247
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
		      bool *fragstolen, int *delta_truesize);
E
Eric Dumazet 已提交
1248

1249 1250
struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
			    int node);
E
Eric Dumazet 已提交
1251
struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1252
struct sk_buff *build_skb(void *data, unsigned int frag_size);
1253 1254
struct sk_buff *build_skb_around(struct sk_buff *skb,
				 void *data, unsigned int frag_size);
1255

1256 1257
struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);

1258 1259 1260 1261 1262 1263 1264
/**
 * alloc_skb - allocate a network buffer
 * @size: size to allocate
 * @priority: allocation mask
 *
 * This function is a convenient wrapper around __alloc_skb().
 */
1265
static inline struct sk_buff *alloc_skb(unsigned int size,
A
Al Viro 已提交
1266
					gfp_t priority)
1267
{
E
Eric Dumazet 已提交
1268
	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1269 1270
}

1271 1272 1273 1274 1275
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
				     unsigned long data_len,
				     int max_page_order,
				     int *errcode,
				     gfp_t gfp_mask);
1276
struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1277

1278 1279 1280 1281 1282 1283
/* Layout of fast clones : [skb1][skb2][fclone_ref] */
struct sk_buff_fclones {
	struct sk_buff	skb1;

	struct sk_buff	skb2;

1284
	refcount_t	fclone_ref;
1285 1286 1287 1288
};

/**
 *	skb_fclone_busy - check if fclone is busy
1289
 *	@sk: socket
1290 1291
 *	@skb: buffer
 *
M
Masanari Iida 已提交
1292
 * Returns true if skb is a fast clone, and its clone is not freed.
1293 1294
 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 * so we also check that this didnt happen.
1295
 */
1296 1297
static inline bool skb_fclone_busy(const struct sock *sk,
				   const struct sk_buff *skb)
1298 1299 1300 1301 1302 1303
{
	const struct sk_buff_fclones *fclones;

	fclones = container_of(skb, struct sk_buff_fclones, skb1);

	return skb->fclone == SKB_FCLONE_ORIG &&
1304
	       refcount_read(&fclones->fclone_ref) > 1 &&
1305
	       READ_ONCE(fclones->skb2.sk) == sk;
1306 1307
}

1308 1309 1310 1311 1312 1313 1314
/**
 * alloc_skb_fclone - allocate a network buffer from fclone cache
 * @size: size to allocate
 * @priority: allocation mask
 *
 * This function is a convenient wrapper around __alloc_skb().
 */
1315
static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
A
Al Viro 已提交
1316
					       gfp_t priority)
1317
{
1318
	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1319 1320
}

1321
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1322
void skb_headers_offset_update(struct sk_buff *skb, int off);
1323 1324
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1325
void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1326
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1327 1328 1329 1330 1331 1332 1333
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
				   gfp_t gfp_mask, bool fclone);
static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
					  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
}
1334 1335 1336 1337

int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
				     unsigned int headroom);
1338
struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1339 1340
struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
				int newtailroom, gfp_t priority);
1341 1342 1343 1344
int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
				     int offset, int len);
int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
			      int offset, int len);
1345
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);

/**
 *	skb_pad			-	zero pad the tail of an skb
 *	@skb: buffer to pad
 *	@pad: space to pad
 *
 *	Ensure that a buffer is followed by a padding area that is zero
 *	filled. Used by network drivers which may DMA or transfer data
 *	beyond the buffer end onto the wire.
 *
 *	May return error in out of memory cases. The skb is freed on error.
 */
static inline int skb_pad(struct sk_buff *skb, int pad)
{
	return __skb_pad(skb, pad, true);
}
1363
#define dev_kfree_skb(a)	consume_skb(a)
L
Linus Torvalds 已提交
1364

1365 1366 1367
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
			 int offset, size_t size);

E
Eric Dumazet 已提交
1368
struct skb_seq_state {
1369 1370 1371 1372 1373 1374 1375
	__u32		lower_offset;
	__u32		upper_offset;
	__u32		frag_idx;
	__u32		stepped_offset;
	struct sk_buff	*root_skb;
	struct sk_buff	*cur_skb;
	__u8		*frag_data;
1376
	__u32		frag_off;
1377 1378
};

1379 1380 1381 1382 1383
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
			  unsigned int to, struct skb_seq_state *st);
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
			  struct skb_seq_state *st);
void skb_abort_seq_read(struct skb_seq_state *st);
1384

1385
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1386
			   unsigned int to, struct ts_config *config);
1387

T
Tom Herbert 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
/*
 * Packet hash types specify the type of hash in skb_set_hash.
 *
 * Hash types refer to the protocol layer addresses which are used to
 * construct a packet's hash. The hashes are used to differentiate or identify
 * flows of the protocol layer for the hash type. Hash types are either
 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
 *
 * Properties of hashes:
 *
 * 1) Two packets in different flows have different hash values
 * 2) Two packets in the same flow should have the same hash value
 *
 * A hash at a higher layer is considered to be more specific. A driver should
 * set the most specific hash possible.
 *
 * A driver cannot indicate a more specific hash than the layer at which a hash
 * was computed. For instance an L3 hash cannot be set as an L4 hash.
 *
 * A driver may indicate a hash level which is less specific than the
 * actual layer the hash was computed on. For instance, a hash computed
 * at L4 may be considered an L3 hash. This should only be done if the
 * driver can't unambiguously determine that the HW computed the hash at
 * the higher layer. Note that the "should" in the second property above
 * permits this.
 */
enum pkt_hash_types {
	PKT_HASH_TYPE_NONE,	/* Undefined type */
	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
};

1421
static inline void skb_clear_hash(struct sk_buff *skb)
T
Tom Herbert 已提交
1422
{
1423
	skb->hash = 0;
1424
	skb->sw_hash = 0;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	skb->l4_hash = 0;
}

static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
{
	if (!skb->l4_hash)
		skb_clear_hash(skb);
}

static inline void
__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
{
	skb->l4_hash = is_l4;
	skb->sw_hash = is_sw;
1439
	skb->hash = hash;
T
Tom Herbert 已提交
1440 1441
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
static inline void
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
{
	/* Used by drivers to set hash from HW */
	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
}

static inline void
__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
{
	__skb_set_hash(skb, hash, true, is_l4);
}

1455
void __skb_get_hash(struct sk_buff *skb);
1456
u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1457
u32 skb_get_poff(const struct sk_buff *skb);
1458
u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1459
		   const struct flow_keys_basic *keys, int hlen);
1460
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1461
			    const void *data, int hlen_proto);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
					int thoff, u8 ip_proto)
{
	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
}

void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
			     const struct flow_dissector_key *key,
			     unsigned int key_count);

1473 1474
struct bpf_flow_dissector;
bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1475
		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1476

1477 1478
bool __skb_flow_dissect(const struct net *net,
			const struct sk_buff *skb,
1479
			struct flow_dissector *flow_dissector,
1480 1481
			void *target_container, const void *data,
			__be16 proto, int nhoff, int hlen, unsigned int flags);
1482 1483 1484

static inline bool skb_flow_dissect(const struct sk_buff *skb,
				    struct flow_dissector *flow_dissector,
1485
				    void *target_container, unsigned int flags)
1486
{
1487 1488
	return __skb_flow_dissect(NULL, skb, flow_dissector,
				  target_container, NULL, 0, 0, 0, flags);
1489 1490 1491
}

static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1492 1493
					      struct flow_keys *flow,
					      unsigned int flags)
1494 1495
{
	memset(flow, 0, sizeof(*flow));
1496 1497
	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
				  flow, NULL, 0, 0, 0, flags);
1498 1499
}

1500
static inline bool
1501 1502
skb_flow_dissect_flow_keys_basic(const struct net *net,
				 const struct sk_buff *skb,
1503 1504 1505
				 struct flow_keys_basic *flow,
				 const void *data, __be16 proto,
				 int nhoff, int hlen, unsigned int flags)
1506 1507
{
	memset(flow, 0, sizeof(*flow));
1508
	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1509
				  data, proto, nhoff, hlen, flags);
1510 1511
}

1512 1513 1514 1515
void skb_flow_dissect_meta(const struct sk_buff *skb,
			   struct flow_dissector *flow_dissector,
			   void *target_container);

1516
/* Gets a skb connection tracking info, ctinfo map should be a
1517
 * map of mapsize to translate enum ip_conntrack_info states
1518 1519 1520 1521 1522 1523
 * to user states.
 */
void
skb_flow_dissect_ct(const struct sk_buff *skb,
		    struct flow_dissector *flow_dissector,
		    void *target_container,
1524
		    u16 *ctinfo_map, size_t mapsize,
1525
		    bool post_ct, u16 zone);
1526 1527 1528 1529 1530
void
skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
			     struct flow_dissector *flow_dissector,
			     void *target_container);

1531 1532 1533 1534
void skb_flow_dissect_hash(const struct sk_buff *skb,
			   struct flow_dissector *flow_dissector,
			   void *target_container);

1535
static inline __u32 skb_get_hash(struct sk_buff *skb)
1536
{
1537
	if (!skb->l4_hash && !skb->sw_hash)
1538
		__skb_get_hash(skb);
1539

1540
	return skb->hash;
1541 1542
}

1543
static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1544
{
1545 1546
	if (!skb->l4_hash && !skb->sw_hash) {
		struct flow_keys keys;
1547
		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1548

1549
		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1550
	}
1551 1552 1553 1554

	return skb->hash;
}

1555 1556
__u32 skb_get_hash_perturb(const struct sk_buff *skb,
			   const siphash_key_t *perturb);
T
Tom Herbert 已提交
1557

T
Tom Herbert 已提交
1558 1559
static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
{
1560
	return skb->hash;
T
Tom Herbert 已提交
1561 1562
}

1563 1564
static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
{
1565
	to->hash = from->hash;
1566
	to->sw_hash = from->sw_hash;
1567
	to->l4_hash = from->l4_hash;
1568 1569
};

1570 1571 1572 1573 1574 1575 1576 1577
static inline void skb_copy_decrypted(struct sk_buff *to,
				      const struct sk_buff *from)
{
#ifdef CONFIG_TLS_DEVICE
	to->decrypted = from->decrypted;
#endif
}

1578 1579 1580 1581 1582
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->end;
}
1583 1584 1585 1586 1587

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end;
}
1588 1589 1590 1591 1592

static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
{
	skb->end = offset;
}
1593 1594 1595 1596 1597
#else
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->end;
}
1598 1599 1600 1601 1602

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end - skb->head;
}
1603 1604 1605 1606 1607

static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
{
	skb->end = skb->head + offset;
}
1608 1609
#endif

L
Linus Torvalds 已提交
1610
/* Internal */
1611
#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
L
Linus Torvalds 已提交
1612

1613 1614 1615 1616 1617
static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
{
	return &skb_shinfo(skb)->hwtstamps;
}

W
Willem de Bruijn 已提交
1618 1619
static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
{
1620
	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
W
Willem de Bruijn 已提交
1621 1622 1623 1624

	return is_zcopy ? skb_uarg(skb) : NULL;
}

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
static inline bool skb_zcopy_pure(const struct sk_buff *skb)
{
	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
}

static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
				       const struct sk_buff *skb2)
{
	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
}

1636
static inline void net_zcopy_get(struct ubuf_info *uarg)
1637 1638 1639 1640
{
	refcount_inc(&uarg->refcnt);
}

1641 1642 1643 1644 1645 1646
static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
{
	skb_shinfo(skb)->destructor_arg = uarg;
	skb_shinfo(skb)->flags |= uarg->flags;
}

1647 1648
static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
				 bool *have_ref)
W
Willem de Bruijn 已提交
1649 1650
{
	if (skb && uarg && !skb_zcopy(skb)) {
1651 1652 1653
		if (unlikely(have_ref && *have_ref))
			*have_ref = false;
		else
1654
			net_zcopy_get(uarg);
1655
		skb_zcopy_init(skb, uarg);
W
Willem de Bruijn 已提交
1656 1657 1658
	}
}

1659 1660 1661
static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
{
	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1662
	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
}

static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
{
	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
}

static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
{
	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
}

1675
static inline void net_zcopy_put(struct ubuf_info *uarg)
1676 1677
{
	if (uarg)
1678
		uarg->callback(NULL, uarg, true);
1679 1680
}

1681
static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1682 1683
{
	if (uarg) {
1684 1685
		if (uarg->callback == msg_zerocopy_callback)
			msg_zerocopy_put_abort(uarg, have_uref);
1686
		else if (have_uref)
1687
			net_zcopy_put(uarg);
1688 1689 1690
	}
}

W
Willem de Bruijn 已提交
1691
/* Release a reference on a zerocopy structure */
1692
static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
W
Willem de Bruijn 已提交
1693 1694 1695 1696
{
	struct ubuf_info *uarg = skb_zcopy(skb);

	if (uarg) {
1697 1698
		if (!skb_zcopy_is_nouarg(skb))
			uarg->callback(skb, uarg, zerocopy_success);
1699

1700
		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
W
Willem de Bruijn 已提交
1701 1702 1703
	}
}

1704 1705 1706 1707 1708
static inline void skb_mark_not_on_list(struct sk_buff *skb)
{
	skb->next = NULL;
}

1709
/* Iterate through singly-linked GSO fragments of an skb. */
1710 1711 1712
#define skb_list_walk_safe(first, skb, next_skb)                               \
	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1713

1714 1715 1716 1717 1718 1719
static inline void skb_list_del_init(struct sk_buff *skb)
{
	__list_del_entry(&skb->list);
	skb_mark_not_on_list(skb);
}

L
Linus Torvalds 已提交
1720 1721 1722 1723 1724 1725 1726 1727
/**
 *	skb_queue_empty - check if a queue is empty
 *	@list: queue head
 *
 *	Returns true if the queue is empty, false otherwise.
 */
static inline int skb_queue_empty(const struct sk_buff_head *list)
{
1728
	return list->next == (const struct sk_buff *) list;
L
Linus Torvalds 已提交
1729 1730
}

E
Eric Dumazet 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
/**
 *	skb_queue_empty_lockless - check if a queue is empty
 *	@list: queue head
 *
 *	Returns true if the queue is empty, false otherwise.
 *	This variant can be used in lockless contexts.
 */
static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
{
	return READ_ONCE(list->next) == (const struct sk_buff *) list;
}


D
David S. Miller 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
/**
 *	skb_queue_is_last - check if skb is the last entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the last buffer on the list.
 */
static inline bool skb_queue_is_last(const struct sk_buff_head *list,
				     const struct sk_buff *skb)
{
1754
	return skb->next == (const struct sk_buff *) list;
D
David S. Miller 已提交
1755 1756
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
/**
 *	skb_queue_is_first - check if skb is the first entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the first buffer on the list.
 */
static inline bool skb_queue_is_first(const struct sk_buff_head *list,
				      const struct sk_buff *skb)
{
1767
	return skb->prev == (const struct sk_buff *) list;
1768 1769
}

D
David S. Miller 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/**
 *	skb_queue_next - return the next packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the next packet in @list after @skb.  It is only valid to
 *	call this if skb_queue_is_last() evaluates to false.
 */
static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_last(list, skb));
	return skb->next;
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
/**
 *	skb_queue_prev - return the prev packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the prev packet in @list before @skb.  It is only valid to
 *	call this if skb_queue_is_first() evaluates to false.
 */
static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_first(list, skb));
	return skb->prev;
}

L
Linus Torvalds 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814
/**
 *	skb_get - reference buffer
 *	@skb: buffer to reference
 *
 *	Makes another reference to a socket buffer and returns a pointer
 *	to the buffer.
 */
static inline struct sk_buff *skb_get(struct sk_buff *skb)
{
1815
	refcount_inc(&skb->users);
L
Linus Torvalds 已提交
1816 1817 1818 1819
	return skb;
}

/*
1820
 * If users == 1, we are the only owner and can avoid redundant atomic changes.
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
 */

/**
 *	skb_cloned - is the buffer a clone
 *	@skb: buffer to check
 *
 *	Returns true if the buffer was generated with skb_clone() and is
 *	one of multiple shared copies of the buffer. Cloned buffers are
 *	shared data so must not be written to under normal circumstances.
 */
static inline int skb_cloned(const struct sk_buff *skb)
{
	return skb->cloned &&
	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
}

1837 1838
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
1839
	might_sleep_if(gfpflags_allow_blocking(pri));
1840 1841 1842 1843 1844 1845 1846

	if (skb_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

1847 1848 1849 1850 1851 1852 1853
/* This variant of skb_unclone() makes sure skb->truesize
 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
 *
 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
 * when various debugging features are in place.
 */
int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1854 1855 1856 1857
static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
{
	might_sleep_if(gfpflags_allow_blocking(pri));

1858 1859
	if (skb_cloned(skb))
		return __skb_unclone_keeptruesize(skb, pri);
1860 1861 1862
	return 0;
}

L
Linus Torvalds 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
/**
 *	skb_header_cloned - is the header a clone
 *	@skb: buffer to check
 *
 *	Returns true if modifying the header part of the buffer requires
 *	the data to be copied.
 */
static inline int skb_header_cloned(const struct sk_buff *skb)
{
	int dataref;

	if (!skb->cloned)
		return 0;

	dataref = atomic_read(&skb_shinfo(skb)->dataref);
	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
	return dataref != 1;
}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
{
	might_sleep_if(gfpflags_allow_blocking(pri));

	if (skb_header_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
/**
 *	__skb_header_release - release reference to header
 *	@skb: buffer to operate on
 */
static inline void __skb_header_release(struct sk_buff *skb)
{
	skb->nohdr = 1;
	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
}


L
Linus Torvalds 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911
/**
 *	skb_shared - is the buffer shared
 *	@skb: buffer to check
 *
 *	Returns true if more than one person has a reference to this
 *	buffer.
 */
static inline int skb_shared(const struct sk_buff *skb)
{
1912
	return refcount_read(&skb->users) != 1;
L
Linus Torvalds 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
}

/**
 *	skb_share_check - check if buffer is shared and if so clone it
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the buffer is shared the buffer is cloned and the old copy
 *	drops a reference. A new clone with a single reference is returned.
 *	If the buffer is not shared the original buffer is returned. When
 *	being called from interrupt status or with spinlocks held pri must
 *	be GFP_ATOMIC.
 *
 *	NULL is returned on a memory allocation failure.
 */
1928
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
L
Linus Torvalds 已提交
1929
{
1930
	might_sleep_if(gfpflags_allow_blocking(pri));
L
Linus Torvalds 已提交
1931 1932
	if (skb_shared(skb)) {
		struct sk_buff *nskb = skb_clone(skb, pri);
1933 1934 1935 1936 1937

		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		skb = nskb;
	}
	return skb;
}

/*
 *	Copy shared buffers into a new sk_buff. We effectively do COW on
 *	packets to handle cases where we have a local reader and forward
 *	and a couple of other messy ones. The normal one is tcpdumping
 *	a packet thats being forwarded.
 */

/**
 *	skb_unshare - make a copy of a shared buffer
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the socket buffer is a clone then this function creates a new
 *	copy of the data, drops a reference count on the old copy and returns
 *	the new copy with the reference count at 1. If the buffer is not a clone
 *	the original buffer is returned. When called with a spinlock held or
 *	from interrupt state @pri must be %GFP_ATOMIC
 *
 *	%NULL is returned on a memory allocation failure.
 */
1963
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
A
Al Viro 已提交
1964
					  gfp_t pri)
L
Linus Torvalds 已提交
1965
{
1966
	might_sleep_if(gfpflags_allow_blocking(pri));
L
Linus Torvalds 已提交
1967 1968
	if (skb_cloned(skb)) {
		struct sk_buff *nskb = skb_copy(skb, pri);
1969 1970 1971 1972 1973 1974

		/* Free our shared copy */
		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1975 1976 1977 1978 1979 1980
		skb = nskb;
	}
	return skb;
}

/**
1981
 *	skb_peek - peek at the head of an &sk_buff_head
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the head element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1993
static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1994
{
1995 1996 1997 1998 1999
	struct sk_buff *skb = list_->next;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;
L
Linus Torvalds 已提交
2000 2001
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
/**
 *	__skb_peek - peek at the head of a non-empty &sk_buff_head
 *	@list_: list to peek at
 *
 *	Like skb_peek(), but the caller knows that the list is not empty.
 */
static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
{
	return list_->next;
}

P
Pavel Emelyanov 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/**
 *	skb_peek_next - peek skb following the given one from a queue
 *	@skb: skb to start from
 *	@list_: list to peek at
 *
 *	Returns %NULL when the end of the list is met or a pointer to the
 *	next element. The reference count is not incremented and the
 *	reference is therefore volatile. Use with caution.
 */
static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
		const struct sk_buff_head *list_)
{
	struct sk_buff *next = skb->next;
2026

P
Pavel Emelyanov 已提交
2027 2028 2029 2030 2031
	if (next == (struct sk_buff *)list_)
		next = NULL;
	return next;
}

L
Linus Torvalds 已提交
2032
/**
2033
 *	skb_peek_tail - peek at the tail of an &sk_buff_head
L
Linus Torvalds 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the tail element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
2045
static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
2046
{
2047
	struct sk_buff *skb = READ_ONCE(list_->prev);
2048 2049 2050 2051 2052

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;

L
Linus Torvalds 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
}

/**
 *	skb_queue_len	- get queue length
 *	@list_: list to measure
 *
 *	Return the length of an &sk_buff queue.
 */
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
{
	return list_->qlen;
}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
/**
 *	skb_queue_len_lockless	- get queue length
 *	@list_: list to measure
 *
 *	Return the length of an &sk_buff queue.
 *	This variant can be used in lockless contexts.
 */
static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
{
	return READ_ONCE(list_->qlen);
}

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
/**
 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 *	@list: queue to initialize
 *
 *	This initializes only the list and queue length aspects of
 *	an sk_buff_head object.  This allows to initialize the list
 *	aspects of an sk_buff_head without reinitializing things like
 *	the spinlock.  It can also be used for on-stack sk_buff_head
 *	objects where the spinlock is known to not be used.
 */
static inline void __skb_queue_head_init(struct sk_buff_head *list)
{
	list->prev = list->next = (struct sk_buff *)list;
	list->qlen = 0;
}

2094 2095 2096 2097 2098 2099 2100 2101
/*
 * This function creates a split out lock class for each invocation;
 * this is needed for now since a whole lot of users of the skb-queue
 * infrastructure in drivers have different locking usage (in hardirq)
 * than the networking core (in softirq only). In the long run either the
 * network layer or drivers should need annotation to consolidate the
 * main types of usage into 3 classes.
 */
L
Linus Torvalds 已提交
2102 2103 2104
static inline void skb_queue_head_init(struct sk_buff_head *list)
{
	spin_lock_init(&list->lock);
2105
	__skb_queue_head_init(list);
L
Linus Torvalds 已提交
2106 2107
}

2108 2109 2110 2111 2112 2113 2114
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
		struct lock_class_key *class)
{
	skb_queue_head_init(list);
	lockdep_set_class(&list->lock, class);
}

L
Linus Torvalds 已提交
2115
/*
2116
 *	Insert an sk_buff on a list.
L
Linus Torvalds 已提交
2117 2118 2119 2120
 *
 *	The "__skb_xxxx()" functions are the non-atomic ones that
 *	can only be called with interrupts disabled.
 */
2121 2122 2123 2124
static inline void __skb_insert(struct sk_buff *newsk,
				struct sk_buff *prev, struct sk_buff *next,
				struct sk_buff_head *list)
{
2125 2126 2127
	/* See skb_queue_empty_lockless() and skb_peek_tail()
	 * for the opposite READ_ONCE()
	 */
E
Eric Dumazet 已提交
2128 2129
	WRITE_ONCE(newsk->next, next);
	WRITE_ONCE(newsk->prev, prev);
2130 2131
	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2132
	WRITE_ONCE(list->qlen, list->qlen + 1);
2133
}
L
Linus Torvalds 已提交
2134

2135 2136 2137 2138 2139 2140 2141
static inline void __skb_queue_splice(const struct sk_buff_head *list,
				      struct sk_buff *prev,
				      struct sk_buff *next)
{
	struct sk_buff *first = list->next;
	struct sk_buff *last = list->prev;

E
Eric Dumazet 已提交
2142 2143
	WRITE_ONCE(first->prev, prev);
	WRITE_ONCE(prev->next, first);
2144

E
Eric Dumazet 已提交
2145 2146
	WRITE_ONCE(last->next, next);
	WRITE_ONCE(next->prev, last);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
}

/**
 *	skb_queue_splice - join two skb lists, this is designed for stacks
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice(const struct sk_buff_head *list,
				    struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2159
		head->qlen += list->qlen;
2160 2161 2162 2163
	}
}

/**
E
Eric Dumazet 已提交
2164
 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_init(struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2175
		head->qlen += list->qlen;
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
		__skb_queue_head_init(list);
	}
}

/**
 *	skb_queue_splice_tail - join two skb lists, each list being a queue
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2190
		head->qlen += list->qlen;
2191 2192 2193 2194
	}
}

/**
E
Eric Dumazet 已提交
2195
 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	Each of the lists is a queue.
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
					      struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2207
		head->qlen += list->qlen;
2208 2209 2210 2211
		__skb_queue_head_init(list);
	}
}

L
Linus Torvalds 已提交
2212
/**
2213
 *	__skb_queue_after - queue a buffer at the list head
L
Linus Torvalds 已提交
2214
 *	@list: list to use
2215
 *	@prev: place after this buffer
L
Linus Torvalds 已提交
2216 2217
 *	@newsk: buffer to queue
 *
2218
 *	Queue a buffer int the middle of a list. This function takes no locks
L
Linus Torvalds 已提交
2219 2220 2221 2222
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
2223 2224 2225
static inline void __skb_queue_after(struct sk_buff_head *list,
				     struct sk_buff *prev,
				     struct sk_buff *newsk)
L
Linus Torvalds 已提交
2226
{
2227
	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
L
Linus Torvalds 已提交
2228 2229
}

2230 2231
void skb_append(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
2232

2233 2234 2235 2236
static inline void __skb_queue_before(struct sk_buff_head *list,
				      struct sk_buff *next,
				      struct sk_buff *newsk)
{
2237
	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2238 2239
}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
/**
 *	__skb_queue_head - queue a buffer at the list head
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the start of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
static inline void __skb_queue_head(struct sk_buff_head *list,
				    struct sk_buff *newsk)
{
	__skb_queue_after(list, (struct sk_buff *)list, newsk);
}
2255
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2256

L
Linus Torvalds 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
/**
 *	__skb_queue_tail - queue a buffer at the list tail
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the end of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
static inline void __skb_queue_tail(struct sk_buff_head *list,
				   struct sk_buff *newsk)
{
2270
	__skb_queue_before(list, (struct sk_buff *)list, newsk);
L
Linus Torvalds 已提交
2271
}
2272
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
L
Linus Torvalds 已提交
2273 2274 2275 2276 2277

/*
 * remove sk_buff from list. _Must_ be called atomically, and with
 * the list known..
 */
2278
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
L
Linus Torvalds 已提交
2279 2280 2281 2282
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
	struct sk_buff *next, *prev;

2283
	WRITE_ONCE(list->qlen, list->qlen - 1);
L
Linus Torvalds 已提交
2284 2285 2286
	next	   = skb->next;
	prev	   = skb->prev;
	skb->next  = skb->prev = NULL;
E
Eric Dumazet 已提交
2287 2288
	WRITE_ONCE(next->prev, prev);
	WRITE_ONCE(prev->next, next);
L
Linus Torvalds 已提交
2289 2290
}

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
/**
 *	__skb_dequeue - remove from the head of the queue
 *	@list: list to dequeue from
 *
 *	Remove the head of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The head item is
 *	returned or %NULL if the list is empty.
 */
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}
2306
struct sk_buff *skb_dequeue(struct sk_buff_head *list);
L
Linus Torvalds 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

/**
 *	__skb_dequeue_tail - remove from the tail of the queue
 *	@list: list to dequeue from
 *
 *	Remove the tail of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The tail item is
 *	returned or %NULL if the list is empty.
 */
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek_tail(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}
2323
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
L
Linus Torvalds 已提交
2324 2325


2326
static inline bool skb_is_nonlinear(const struct sk_buff *skb)
L
Linus Torvalds 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335
{
	return skb->data_len;
}

static inline unsigned int skb_headlen(const struct sk_buff *skb)
{
	return skb->len - skb->data_len;
}

2336
static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
L
Linus Torvalds 已提交
2337
{
2338
	unsigned int i, len = 0;
L
Linus Torvalds 已提交
2339

2340
	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
E
Eric Dumazet 已提交
2341
		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2342 2343 2344 2345 2346 2347
	return len;
}

static inline unsigned int skb_pagelen(const struct sk_buff *skb)
{
	return skb_headlen(skb) + __skb_pagelen(skb);
L
Linus Torvalds 已提交
2348 2349
}

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
/**
 * __skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * Initialises the @i'th fragment of @skb to point to &size bytes at
 * offset @off within @page.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
					struct page *page, int off, int size)
L
Linus Torvalds 已提交
2365 2366 2367
{
	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

2368
	/*
2369 2370 2371
	 * Propagate page pfmemalloc to the skb if we can. The problem is
	 * that not all callers have unique ownership of the page but rely
	 * on page_is_pfmemalloc doing the right thing(tm).
2372
	 */
2373
	frag->bv_page		  = page;
2374
	frag->bv_offset		  = off;
E
Eric Dumazet 已提交
2375
	skb_frag_size_set(frag, size);
2376 2377

	page = compound_head(page);
2378
	if (page_is_pfmemalloc(page))
2379
		skb->pfmemalloc	= true;
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
}

/**
 * skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
M
Mathias Krause 已提交
2391
 * @skb to point to @size bytes at offset @off within @page. In
2392 2393 2394 2395 2396 2397 2398 2399
 * addition updates @skb such that @i is the last fragment.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
				      struct page *page, int off, int size)
{
	__skb_fill_page_desc(skb, i, page, off, size);
L
Linus Torvalds 已提交
2400 2401 2402
	skb_shinfo(skb)->nr_frags = i + 1;
}

2403 2404
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
		     int size, unsigned int truesize);
P
Peter Zijlstra 已提交
2405

J
Jason Wang 已提交
2406 2407 2408
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
			  unsigned int truesize);

L
Linus Torvalds 已提交
2409 2410
#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data - skb->head;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb_reset_tail_pointer(skb);
	skb->tail += offset;
}
2427

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
#else /* NET_SKBUFF_DATA_USES_OFFSET */
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb->tail = skb->data + offset;
}
2443

2444 2445
#endif /* NET_SKBUFF_DATA_USES_OFFSET */

L
Linus Torvalds 已提交
2446 2447 2448
/*
 *	Add data to an sk_buff
 */
2449 2450 2451
void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
void *skb_put(struct sk_buff *skb, unsigned int len);
static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2452
{
2453
	void *tmp = skb_tail_pointer(skb);
L
Linus Torvalds 已提交
2454 2455 2456 2457 2458 2459
	SKB_LINEAR_ASSERT(skb);
	skb->tail += len;
	skb->len  += len;
	return tmp;
}

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
{
	void *tmp = __skb_put(skb, len);

	memset(tmp, 0, len);
	return tmp;
}

static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
				   unsigned int len)
{
	void *tmp = __skb_put(skb, len);

	memcpy(tmp, data, len);
	return tmp;
}

static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
{
	*(u8 *)__skb_put(skb, 1) = val;
}

2482
static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2483
{
2484
	void *tmp = skb_put(skb, len);
2485 2486 2487 2488 2489 2490

	memset(tmp, 0, len);

	return tmp;
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
static inline void *skb_put_data(struct sk_buff *skb, const void *data,
				 unsigned int len)
{
	void *tmp = skb_put(skb, len);

	memcpy(tmp, data, len);

	return tmp;
}

2501 2502 2503 2504 2505
static inline void skb_put_u8(struct sk_buff *skb, u8 val)
{
	*(u8 *)skb_put(skb, 1) = val;
}

2506 2507
void *skb_push(struct sk_buff *skb, unsigned int len);
static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2508 2509 2510 2511 2512 2513
{
	skb->data -= len;
	skb->len  += len;
	return skb->data;
}

2514 2515
void *skb_pull(struct sk_buff *skb, unsigned int len);
static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2516 2517 2518 2519 2520 2521
{
	skb->len -= len;
	BUG_ON(skb->len < skb->data_len);
	return skb->data += len;
}

2522
static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2523 2524 2525 2526
{
	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
}

2527 2528
void *skb_pull_data(struct sk_buff *skb, size_t len);

2529
void *__pskb_pull_tail(struct sk_buff *skb, int delta);
L
Linus Torvalds 已提交
2530

2531
static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2532 2533
{
	if (len > skb_headlen(skb) &&
G
Gerrit Renker 已提交
2534
	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
L
Linus Torvalds 已提交
2535 2536 2537 2538 2539
		return NULL;
	skb->len -= len;
	return skb->data += len;
}

2540
static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2541 2542 2543 2544
{
	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
}

2545
static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2546 2547
{
	if (likely(len <= skb_headlen(skb)))
2548
		return true;
L
Linus Torvalds 已提交
2549
	if (unlikely(len > skb->len))
2550
		return false;
G
Gerrit Renker 已提交
2551
	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
L
Linus Torvalds 已提交
2552 2553
}

2554 2555
void skb_condense(struct sk_buff *skb);

L
Linus Torvalds 已提交
2556 2557 2558 2559 2560 2561
/**
 *	skb_headroom - bytes at buffer head
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the head of an &sk_buff.
 */
2562
static inline unsigned int skb_headroom(const struct sk_buff *skb)
L
Linus Torvalds 已提交
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
{
	return skb->data - skb->head;
}

/**
 *	skb_tailroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 */
static inline int skb_tailroom(const struct sk_buff *skb)
{
2575
	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
L
Linus Torvalds 已提交
2576 2577
}

2578 2579 2580 2581 2582 2583 2584 2585 2586
/**
 *	skb_availroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 *	allocated by sk_stream_alloc()
 */
static inline int skb_availroom(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2587 2588 2589 2590
	if (skb_is_nonlinear(skb))
		return 0;

	return skb->end - skb->tail - skb->reserved_tailroom;
2591 2592
}

L
Linus Torvalds 已提交
2593 2594 2595 2596 2597 2598 2599 2600
/**
 *	skb_reserve - adjust headroom
 *	@skb: buffer to alter
 *	@len: bytes to move
 *
 *	Increase the headroom of an empty &sk_buff by reducing the tail
 *	room. This is only allowed for an empty buffer.
 */
2601
static inline void skb_reserve(struct sk_buff *skb, int len)
L
Linus Torvalds 已提交
2602 2603 2604 2605 2606
{
	skb->data += len;
	skb->tail += len;
}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
/**
 *	skb_tailroom_reserve - adjust reserved_tailroom
 *	@skb: buffer to alter
 *	@mtu: maximum amount of headlen permitted
 *	@needed_tailroom: minimum amount of reserved_tailroom
 *
 *	Set reserved_tailroom so that headlen can be as large as possible but
 *	not larger than mtu and tailroom cannot be smaller than
 *	needed_tailroom.
 *	The required headroom should already have been reserved before using
 *	this function.
 */
static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
					unsigned int needed_tailroom)
{
	SKB_LINEAR_ASSERT(skb);
	if (mtu < skb_tailroom(skb) - needed_tailroom)
		/* use at most mtu */
		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
	else
		/* use up to all available space */
		skb->reserved_tailroom = needed_tailroom;
}

T
Tom Herbert 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
#define ENCAP_TYPE_ETHER	0
#define ENCAP_TYPE_IPPROTO	1

static inline void skb_set_inner_protocol(struct sk_buff *skb,
					  __be16 protocol)
{
	skb->inner_protocol = protocol;
	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
}

static inline void skb_set_inner_ipproto(struct sk_buff *skb,
					 __u8 ipproto)
{
	skb->inner_ipproto = ipproto;
	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
}

2648 2649
static inline void skb_reset_inner_headers(struct sk_buff *skb)
{
2650
	skb->inner_mac_header = skb->mac_header;
2651 2652 2653 2654
	skb->inner_network_header = skb->network_header;
	skb->inner_transport_header = skb->transport_header;
}

2655 2656 2657 2658 2659
static inline void skb_reset_mac_len(struct sk_buff *skb)
{
	skb->mac_len = skb->network_header - skb->mac_header;
}

2660 2661 2662 2663 2664 2665
static inline unsigned char *skb_inner_transport_header(const struct sk_buff
							*skb)
{
	return skb->head + skb->inner_transport_header;
}

2666 2667 2668 2669 2670
static inline int skb_inner_transport_offset(const struct sk_buff *skb)
{
	return skb_inner_transport_header(skb) - skb->data;
}

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
{
	skb->inner_transport_header = skb->data - skb->head;
}

static inline void skb_set_inner_transport_header(struct sk_buff *skb,
						   const int offset)
{
	skb_reset_inner_transport_header(skb);
	skb->inner_transport_header += offset;
}

static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_network_header;
}

static inline void skb_reset_inner_network_header(struct sk_buff *skb)
{
	skb->inner_network_header = skb->data - skb->head;
}

static inline void skb_set_inner_network_header(struct sk_buff *skb,
						const int offset)
{
	skb_reset_inner_network_header(skb);
	skb->inner_network_header += offset;
}

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_mac_header;
}

static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
{
	skb->inner_mac_header = skb->data - skb->head;
}

static inline void skb_set_inner_mac_header(struct sk_buff *skb,
					    const int offset)
{
	skb_reset_inner_mac_header(skb);
	skb->inner_mac_header += offset;
}
2716 2717
static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
{
C
Cong Wang 已提交
2718
	return skb->transport_header != (typeof(skb->transport_header))~0U;
2719 2720
}

2721 2722
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
2723
	return skb->head + skb->transport_header;
2724 2725
}

2726 2727
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
2728
	skb->transport_header = skb->data - skb->head;
2729 2730
}

2731 2732 2733
static inline void skb_set_transport_header(struct sk_buff *skb,
					    const int offset)
{
2734 2735
	skb_reset_transport_header(skb);
	skb->transport_header += offset;
2736 2737
}

2738 2739
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
2740
	return skb->head + skb->network_header;
2741 2742
}

2743 2744
static inline void skb_reset_network_header(struct sk_buff *skb)
{
2745
	skb->network_header = skb->data - skb->head;
2746 2747
}

2748 2749
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
2750 2751
	skb_reset_network_header(skb);
	skb->network_header += offset;
2752 2753
}

2754
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2755
{
2756
	return skb->head + skb->mac_header;
2757 2758
}

2759 2760 2761 2762 2763
static inline int skb_mac_offset(const struct sk_buff *skb)
{
	return skb_mac_header(skb) - skb->data;
}

2764 2765 2766 2767 2768
static inline u32 skb_mac_header_len(const struct sk_buff *skb)
{
	return skb->network_header - skb->mac_header;
}

2769
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2770
{
C
Cong Wang 已提交
2771
	return skb->mac_header != (typeof(skb->mac_header))~0U;
2772 2773
}

2774 2775 2776 2777 2778
static inline void skb_unset_mac_header(struct sk_buff *skb)
{
	skb->mac_header = (typeof(skb->mac_header))~0U;
}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
static inline void skb_reset_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->data - skb->head;
}

static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
	skb_reset_mac_header(skb);
	skb->mac_header += offset;
}

2790 2791 2792 2793 2794
static inline void skb_pop_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->network_header;
}

2795
static inline void skb_probe_transport_header(struct sk_buff *skb)
2796
{
2797
	struct flow_keys_basic keys;
2798 2799 2800

	if (skb_transport_header_was_set(skb))
		return;
2801

2802 2803
	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
					     NULL, 0, 0, 0, 0))
2804
		skb_set_transport_header(skb, keys.control.thoff);
2805 2806
}

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
static inline void skb_mac_header_rebuild(struct sk_buff *skb)
{
	if (skb_mac_header_was_set(skb)) {
		const unsigned char *old_mac = skb_mac_header(skb);

		skb_set_mac_header(skb, -skb->mac_len);
		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
	}
}

2817 2818 2819 2820 2821
static inline int skb_checksum_start_offset(const struct sk_buff *skb)
{
	return skb->csum_start - skb_headroom(skb);
}

2822 2823 2824 2825 2826
static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
{
	return skb->head + skb->csum_start;
}

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
static inline int skb_transport_offset(const struct sk_buff *skb)
{
	return skb_transport_header(skb) - skb->data;
}

static inline u32 skb_network_header_len(const struct sk_buff *skb)
{
	return skb->transport_header - skb->network_header;
}

2837 2838 2839 2840 2841
static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
{
	return skb->inner_transport_header - skb->inner_network_header;
}

2842 2843 2844 2845
static inline int skb_network_offset(const struct sk_buff *skb)
{
	return skb_network_header(skb) - skb->data;
}
2846

2847 2848 2849 2850 2851
static inline int skb_inner_network_offset(const struct sk_buff *skb)
{
	return skb_inner_network_header(skb) - skb->data;
}

2852 2853 2854 2855 2856
static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
{
	return pskb_may_pull(skb, skb_network_offset(skb) + len);
}

L
Linus Torvalds 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
/*
 * CPUs often take a performance hit when accessing unaligned memory
 * locations. The actual performance hit varies, it can be small if the
 * hardware handles it or large if we have to take an exception and fix it
 * in software.
 *
 * Since an ethernet header is 14 bytes network drivers often end up with
 * the IP header at an unaligned offset. The IP header can be aligned by
 * shifting the start of the packet by 2 bytes. Drivers should do this
 * with:
 *
2868
 * skb_reserve(skb, NET_IP_ALIGN);
L
Linus Torvalds 已提交
2869 2870 2871 2872
 *
 * The downside to this alignment of the IP header is that the DMA is now
 * unaligned. On some architectures the cost of an unaligned DMA is high
 * and this cost outweighs the gains made by aligning the IP header.
2873
 *
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878 2879 2880
 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
 * to be overridden.
 */
#ifndef NET_IP_ALIGN
#define NET_IP_ALIGN	2
#endif

2881 2882 2883 2884
/*
 * The networking layer reserves some headroom in skb data (via
 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
 * the header has to grow. In the default case, if the header has to grow
2885
 * 32 bytes or less we avoid the reallocation.
2886 2887 2888 2889 2890 2891 2892
 *
 * Unfortunately this headroom changes the DMA alignment of the resulting
 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
 * on some architectures. An architecture can override this value,
 * perhaps setting it to a cacheline in size (since that will maintain
 * cacheline alignment of the DMA). It must be a power of 2.
 *
2893
 * Various parts of the networking layer expect at least 32 bytes of
2894
 * headroom, you should not reduce this.
2895 2896 2897
 *
 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
 * to reduce average number of cache lines per packet.
M
Miaohe Lin 已提交
2898
 * get_rps_cpu() for example only access one 64 bytes aligned block :
2899
 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2900 2901
 */
#ifndef NET_SKB_PAD
2902
#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2903 2904
#endif

2905
int ___pskb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2906

2907
static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2908
{
2909
	if (WARN_ON(skb_is_nonlinear(skb)))
2910
		return;
2911 2912
	skb->len = len;
	skb_set_tail_pointer(skb, len);
L
Linus Torvalds 已提交
2913 2914
}

2915 2916 2917 2918 2919
static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
{
	__skb_set_length(skb, len);
}

2920
void skb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2921 2922 2923

static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
{
2924 2925 2926 2927
	if (skb->data_len)
		return ___pskb_trim(skb, len);
	__skb_trim(skb, len);
	return 0;
L
Linus Torvalds 已提交
2928 2929 2930 2931 2932 2933 2934
}

static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
{
	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
}

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
/**
 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
 *	@skb: buffer to alter
 *	@len: new length
 *
 *	This is identical to pskb_trim except that the caller knows that
 *	the skb is not cloned so we should never get an error due to out-
 *	of-memory.
 */
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
{
	int err = pskb_trim(skb, len);
	BUG_ON(err);
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
{
	unsigned int diff = len - skb->len;

	if (skb_tailroom(skb) < diff) {
		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
					   GFP_ATOMIC);
		if (ret)
			return ret;
	}
	__skb_set_length(skb, len);
	return 0;
}

L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
/**
 *	skb_orphan - orphan a buffer
 *	@skb: buffer to orphan
 *
 *	If a buffer currently has an owner then we call the owner's
 *	destructor function and make the @skb unowned. The buffer continues
 *	to exist but is no longer charged to its former owner.
 */
static inline void skb_orphan(struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2974
	if (skb->destructor) {
L
Linus Torvalds 已提交
2975
		skb->destructor(skb);
E
Eric Dumazet 已提交
2976 2977
		skb->destructor = NULL;
		skb->sk		= NULL;
2978 2979
	} else {
		BUG_ON(skb->sk);
E
Eric Dumazet 已提交
2980
	}
L
Linus Torvalds 已提交
2981 2982
}

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
/**
 *	skb_orphan_frags - orphan the frags contained in a buffer
 *	@skb: buffer to orphan frags from
 *	@gfp_mask: allocation mask for replacement pages
 *
 *	For each frag in the SKB which needs a destructor (i.e. has an
 *	owner) create a copy of that frag and release the original
 *	page by calling the destructor.
 */
static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
{
W
Willem de Bruijn 已提交
2994 2995
	if (likely(!skb_zcopy(skb)))
		return 0;
2996
	if (!skb_zcopy_is_nouarg(skb) &&
2997
	    skb_uarg(skb)->callback == msg_zerocopy_callback)
W
Willem de Bruijn 已提交
2998 2999 3000 3001 3002 3003 3004 3005
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
{
	if (likely(!skb_zcopy(skb)))
3006 3007 3008 3009
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

L
Linus Torvalds 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
/**
 *	__skb_queue_purge - empty a list
 *	@list: list to empty
 *
 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
 *	the list and one reference dropped. This function does not take the
 *	list lock and the caller must hold the relevant locks to use it.
 */
static inline void __skb_queue_purge(struct sk_buff_head *list)
{
	struct sk_buff *skb;
	while ((skb = __skb_dequeue(list)) != NULL)
		kfree_skb(skb);
}
3024
void skb_queue_purge(struct sk_buff_head *list);
L
Linus Torvalds 已提交
3025

3026
unsigned int skb_rbtree_purge(struct rb_root *root);
3027

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);

/**
 * netdev_alloc_frag - allocate a page fragment
 * @fragsz: fragment size
 *
 * Allocates a frag from a page for receive buffer.
 * Uses GFP_ATOMIC allocations.
 */
static inline void *netdev_alloc_frag(unsigned int fragsz)
{
	return __netdev_alloc_frag_align(fragsz, ~0u);
}

static inline void *netdev_alloc_frag_align(unsigned int fragsz,
					    unsigned int align)
{
	WARN_ON_ONCE(!is_power_of_2(align));
	return __netdev_alloc_frag_align(fragsz, -align);
}
L
Linus Torvalds 已提交
3048

3049 3050
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
				   gfp_t gfp_mask);
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

/**
 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
 *	@dev: network device to receive on
 *	@length: length to allocate
 *
 *	Allocate a new &sk_buff and assign it a usage count of one. The
 *	buffer has unspecified headroom built in. Users should allocate
 *	the headroom they think they need without accounting for the
 *	built in space. The built in space is used for optimisations.
 *
 *	%NULL is returned if there is no free memory. Although this function
 *	allocates memory it can be called from an interrupt.
 */
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3066
					       unsigned int length)
3067 3068 3069 3070
{
	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
/* legacy helper around __netdev_alloc_skb() */
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
					      gfp_t gfp_mask)
{
	return __netdev_alloc_skb(NULL, length, gfp_mask);
}

/* legacy helper around netdev_alloc_skb() */
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
	return netdev_alloc_skb(NULL, length);
}


3085 3086
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length, gfp_t gfp)
3087
{
3088
	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3089 3090 3091 3092 3093 3094

	if (NET_IP_ALIGN && skb)
		skb_reserve(skb, NET_IP_ALIGN);
	return skb;
}

3095 3096 3097 3098 3099 3100
static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length)
{
	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
}

3101 3102
static inline void skb_free_frag(void *addr)
{
3103
	page_frag_free(addr);
3104 3105
}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);

static inline void *napi_alloc_frag(unsigned int fragsz)
{
	return __napi_alloc_frag_align(fragsz, ~0u);
}

static inline void *napi_alloc_frag_align(unsigned int fragsz,
					  unsigned int align)
{
	WARN_ON_ONCE(!is_power_of_2(align));
	return __napi_alloc_frag_align(fragsz, -align);
}

3120 3121 3122 3123 3124 3125 3126
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
				 unsigned int length, gfp_t gfp_mask);
static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
					     unsigned int length)
{
	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
}
3127 3128
void napi_consume_skb(struct sk_buff *skb, int budget);

3129
void napi_skb_free_stolen_head(struct sk_buff *skb);
3130
void __kfree_skb_defer(struct sk_buff *skb);
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
/**
 * __dev_alloc_pages - allocate page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 * @order: size of the allocation
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
*/
static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
					     unsigned int order)
{
	/* This piece of code contains several assumptions.
	 * 1.  This is for device Rx, therefor a cold page is preferred.
	 * 2.  The expectation is the user wants a compound page.
	 * 3.  If requesting a order 0 page it will not be compound
	 *     due to the check to see if order has a value in prep_new_page
	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
	 *     code in gfp_to_alloc_flags that should be enforcing this.
	 */
M
Mel Gorman 已提交
3152
	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3153 3154 3155 3156 3157 3158

	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
}

static inline struct page *dev_alloc_pages(unsigned int order)
{
3159
	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
}

/**
 * __dev_alloc_page - allocate a page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
 */
static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
{
	return __dev_alloc_pages(gfp_mask, 0);
}

static inline struct page *dev_alloc_page(void)
{
3177
	return dev_alloc_pages(0);
3178 3179
}

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
/**
 * dev_page_is_reusable - check whether a page can be reused for network Rx
 * @page: the page to test
 *
 * A page shouldn't be considered for reusing/recycling if it was allocated
 * under memory pressure or at a distant memory node.
 *
 * Returns false if this page should be returned to page allocator, true
 * otherwise.
 */
static inline bool dev_page_is_reusable(const struct page *page)
{
	return likely(page_to_nid(page) == numa_mem_id() &&
		      !page_is_pfmemalloc(page));
}

3196 3197 3198 3199 3200
/**
 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
 *	@page: The page that was allocated from skb_alloc_page
 *	@skb: The skb that may need pfmemalloc set
 */
3201 3202
static inline void skb_propagate_pfmemalloc(const struct page *page,
					    struct sk_buff *skb)
3203
{
3204
	if (page_is_pfmemalloc(page))
3205 3206 3207
		skb->pfmemalloc = true;
}

3208 3209 3210 3211 3212 3213
/**
 * skb_frag_off() - Returns the offset of a skb fragment
 * @frag: the paged fragment
 */
static inline unsigned int skb_frag_off(const skb_frag_t *frag)
{
3214
	return frag->bv_offset;
3215 3216 3217 3218 3219 3220 3221 3222 3223
}

/**
 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
 * @frag: skb fragment
 * @delta: value to add
 */
static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
{
3224
	frag->bv_offset += delta;
3225 3226 3227 3228 3229 3230 3231 3232 3233
}

/**
 * skb_frag_off_set() - Sets the offset of a skb fragment
 * @frag: skb fragment
 * @offset: offset of fragment
 */
static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
{
3234
	frag->bv_offset = offset;
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
}

/**
 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
 * @fragto: skb fragment where offset is set
 * @fragfrom: skb fragment offset is copied from
 */
static inline void skb_frag_off_copy(skb_frag_t *fragto,
				     const skb_frag_t *fragfrom)
{
3245
	fragto->bv_offset = fragfrom->bv_offset;
3246 3247
}

3248
/**
3249
 * skb_frag_page - retrieve the page referred to by a paged fragment
3250 3251 3252 3253 3254 3255
 * @frag: the paged fragment
 *
 * Returns the &struct page associated with @frag.
 */
static inline struct page *skb_frag_page(const skb_frag_t *frag)
{
3256
	return frag->bv_page;
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
}

/**
 * __skb_frag_ref - take an addition reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Takes an additional reference on the paged fragment @frag.
 */
static inline void __skb_frag_ref(skb_frag_t *frag)
{
	get_page(skb_frag_page(frag));
}

/**
 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset.
 *
 * Takes an additional reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_ref(struct sk_buff *skb, int f)
{
	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
}

/**
 * __skb_frag_unref - release a reference on a paged fragment.
 * @frag: the paged fragment
3285
 * @recycle: recycle the page if allocated via page_pool
3286
 *
3287 3288
 * Releases a reference on the paged fragment @frag
 * or recycles the page via the page_pool API.
3289
 */
3290
static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3291
{
3292 3293 3294 3295 3296 3297 3298
	struct page *page = skb_frag_page(frag);

#ifdef CONFIG_PAGE_POOL
	if (recycle && page_pool_return_skb_page(page))
		return;
#endif
	put_page(page);
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
}

/**
 * skb_frag_unref - release a reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset
 *
 * Releases a reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_unref(struct sk_buff *skb, int f)
{
3310
	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
}

/**
 * skb_frag_address - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. The page must already
 * be mapped.
 */
static inline void *skb_frag_address(const skb_frag_t *frag)
{
3322
	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
}

/**
 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. Checks that the page
 * is mapped and returns %NULL otherwise.
 */
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
{
	void *ptr = page_address(skb_frag_page(frag));
	if (unlikely(!ptr))
		return NULL;

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	return ptr + skb_frag_off(frag);
}

/**
 * skb_frag_page_copy() - sets the page in a fragment from another fragment
 * @fragto: skb fragment where page is set
 * @fragfrom: skb fragment page is copied from
 */
static inline void skb_frag_page_copy(skb_frag_t *fragto,
				      const skb_frag_t *fragfrom)
{
	fragto->bv_page = fragfrom->bv_page;
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
}

/**
 * __skb_frag_set_page - sets the page contained in a paged fragment
 * @frag: the paged fragment
 * @page: the page to set
 *
 * Sets the fragment @frag to contain @page.
 */
static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
{
3361
	frag->bv_page = page;
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
}

/**
 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
 * @skb: the buffer
 * @f: the fragment offset
 * @page: the page to set
 *
 * Sets the @f'th fragment of @skb to contain @page.
 */
static inline void skb_frag_set_page(struct sk_buff *skb, int f,
				     struct page *page)
{
	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
}

E
Eric Dumazet 已提交
3378 3379
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);

3380 3381
/**
 * skb_frag_dma_map - maps a paged fragment via the DMA API
3382
 * @dev: the device to map the fragment to
3383 3384 3385 3386
 * @frag: the paged fragment to map
 * @offset: the offset within the fragment (starting at the
 *          fragment's own offset)
 * @size: the number of bytes to map
3387
 * @dir: the direction of the mapping (``PCI_DMA_*``)
3388 3389 3390 3391 3392 3393 3394 3395 3396
 *
 * Maps the page associated with @frag to @device.
 */
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
					  const skb_frag_t *frag,
					  size_t offset, size_t size,
					  enum dma_data_direction dir)
{
	return dma_map_page(dev, skb_frag_page(frag),
3397
			    skb_frag_off(frag) + offset, size, dir);
3398 3399
}

E
Eric Dumazet 已提交
3400 3401 3402 3403 3404 3405
static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
					gfp_t gfp_mask)
{
	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
}

3406 3407 3408 3409 3410 3411 3412 3413

static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
						  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
}


3414 3415 3416 3417 3418 3419 3420 3421
/**
 *	skb_clone_writable - is the header of a clone writable
 *	@skb: buffer to check
 *	@len: length up to which to write
 *
 *	Returns true if modifying the header part of the cloned buffer
 *	does not requires the data to be copied.
 */
3422
static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3423 3424 3425 3426 3427
{
	return !skb_header_cloned(skb) &&
	       skb_headroom(skb) + len <= skb->hdr_len;
}

3428 3429 3430 3431 3432 3433 3434
static inline int skb_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
}

H
Herbert Xu 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
			    int cloned)
{
	int delta = 0;

	if (headroom > skb_headroom(skb))
		delta = headroom - skb_headroom(skb);

	if (delta || cloned)
		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
					GFP_ATOMIC);
	return 0;
}

L
Linus Torvalds 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
/**
 *	skb_cow - copy header of skb when it is required
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	If the skb passed lacks sufficient headroom or its data part
 *	is shared, data is reallocated. If reallocation fails, an error
 *	is returned and original skb is not changed.
 *
 *	The result is skb with writable area skb->head...skb->tail
 *	and at least @headroom of space at head.
 */
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
{
H
Herbert Xu 已提交
3463 3464
	return __skb_cow(skb, headroom, skb_cloned(skb));
}
L
Linus Torvalds 已提交
3465

H
Herbert Xu 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
/**
 *	skb_cow_head - skb_cow but only making the head writable
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	This function is identical to skb_cow except that we replace the
 *	skb_cloned check by skb_header_cloned.  It should be used when
 *	you only need to push on some header and do not need to modify
 *	the data.
 */
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
{
	return __skb_cow(skb, headroom, skb_header_cloned(skb));
L
Linus Torvalds 已提交
3479 3480 3481 3482 3483 3484 3485 3486 3487
}

/**
 *	skb_padto	- pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
3488 3489
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
L
Linus Torvalds 已提交
3490
 */
3491
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
3492 3493 3494
{
	unsigned int size = skb->len;
	if (likely(size >= len))
3495
		return 0;
G
Gerrit Renker 已提交
3496
	return skb_pad(skb, len - size);
L
Linus Torvalds 已提交
3497 3498
}

3499
/**
3500
 *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3501 3502
 *	@skb: buffer to pad
 *	@len: minimal length
3503
 *	@free_on_error: free buffer on error
3504 3505 3506 3507
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
 *	is untouched. Otherwise it is extended. Returns zero on
3508
 *	success. The skb is freed on error if @free_on_error is true.
3509
 */
3510 3511 3512
static inline int __must_check __skb_put_padto(struct sk_buff *skb,
					       unsigned int len,
					       bool free_on_error)
3513 3514 3515 3516 3517
{
	unsigned int size = skb->len;

	if (unlikely(size < len)) {
		len -= size;
3518
		if (__skb_pad(skb, len, free_on_error))
3519 3520 3521 3522 3523 3524
			return -ENOMEM;
		__skb_put(skb, len);
	}
	return 0;
}

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
/**
 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
 */
3535
static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3536 3537 3538 3539
{
	return __skb_put_padto(skb, len, true);
}

L
Linus Torvalds 已提交
3540
static inline int skb_add_data(struct sk_buff *skb,
3541
			       struct iov_iter *from, int copy)
L
Linus Torvalds 已提交
3542 3543 3544 3545
{
	const int off = skb->len;

	if (skb->ip_summed == CHECKSUM_NONE) {
3546
		__wsum csum = 0;
3547 3548
		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
					         &csum, from)) {
L
Linus Torvalds 已提交
3549 3550 3551
			skb->csum = csum_block_add(skb->csum, csum, off);
			return 0;
		}
3552
	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
L
Linus Torvalds 已提交
3553 3554 3555 3556 3557 3558
		return 0;

	__skb_trim(skb, off);
	return -EFAULT;
}

3559 3560
static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
				    const struct page *page, int off)
L
Linus Torvalds 已提交
3561
{
W
Willem de Bruijn 已提交
3562 3563
	if (skb_zcopy(skb))
		return false;
L
Linus Torvalds 已提交
3564
	if (i) {
3565
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
L
Linus Torvalds 已提交
3566

3567
		return page == skb_frag_page(frag) &&
3568
		       off == skb_frag_off(frag) + skb_frag_size(frag);
L
Linus Torvalds 已提交
3569
	}
3570
	return false;
L
Linus Torvalds 已提交
3571 3572
}

H
Herbert Xu 已提交
3573 3574 3575 3576 3577
static inline int __skb_linearize(struct sk_buff *skb)
{
	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
}

L
Linus Torvalds 已提交
3578 3579 3580 3581 3582 3583 3584
/**
 *	skb_linearize - convert paged skb to linear one
 *	@skb: buffer to linarize
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
H
Herbert Xu 已提交
3585 3586 3587 3588 3589
static inline int skb_linearize(struct sk_buff *skb)
{
	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
}

3590 3591 3592 3593 3594 3595 3596 3597 3598
/**
 * skb_has_shared_frag - can any frag be overwritten
 * @skb: buffer to test
 *
 * Return true if the skb has at least one frag that might be modified
 * by an external entity (as in vmsplice()/sendfile())
 */
static inline bool skb_has_shared_frag(const struct sk_buff *skb)
{
3599
	return skb_is_nonlinear(skb) &&
3600
	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3601 3602
}

H
Herbert Xu 已提交
3603 3604 3605 3606 3607 3608 3609 3610
/**
 *	skb_linearize_cow - make sure skb is linear and writable
 *	@skb: buffer to process
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
static inline int skb_linearize_cow(struct sk_buff *skb)
L
Linus Torvalds 已提交
3611
{
H
Herbert Xu 已提交
3612 3613
	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
	       __skb_linearize(skb) : 0;
L
Linus Torvalds 已提交
3614 3615
}

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
static __always_inline void
__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
		     unsigned int off)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->csum = csum_block_sub(skb->csum,
					   csum_partial(start, len, 0), off);
	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) < 0)
		skb->ip_summed = CHECKSUM_NONE;
}

L
Linus Torvalds 已提交
3628 3629 3630 3631 3632 3633 3634
/**
 *	skb_postpull_rcsum - update checksum for received skb after pull
 *	@skb: buffer to update
 *	@start: start of data before pull
 *	@len: length of data pulled
 *
 *	After doing a pull on a received packet, you need to call this to
3635 3636
 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
 *	CHECKSUM_NONE so that it can be recomputed from scratch.
L
Linus Torvalds 已提交
3637 3638
 */
static inline void skb_postpull_rcsum(struct sk_buff *skb,
3639
				      const void *start, unsigned int len)
L
Linus Torvalds 已提交
3640
{
E
Eric Dumazet 已提交
3641
	if (skb->ip_summed == CHECKSUM_COMPLETE)
E
Eric Dumazet 已提交
3642 3643
		skb->csum = wsum_negate(csum_partial(start, len,
						     wsum_negate(skb->csum)));
E
Eric Dumazet 已提交
3644 3645 3646
	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) < 0)
		skb->ip_summed = CHECKSUM_NONE;
L
Linus Torvalds 已提交
3647 3648
}

3649 3650 3651 3652 3653 3654 3655 3656
static __always_inline void
__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
		     unsigned int off)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->csum = csum_block_add(skb->csum,
					   csum_partial(start, len, 0), off);
}
3657

3658 3659 3660 3661 3662 3663 3664 3665 3666
/**
 *	skb_postpush_rcsum - update checksum for received skb after push
 *	@skb: buffer to update
 *	@start: start of data after push
 *	@len: length of data pushed
 *
 *	After doing a push on a received packet, you need to call this to
 *	update the CHECKSUM_COMPLETE checksum.
 */
3667 3668 3669
static inline void skb_postpush_rcsum(struct sk_buff *skb,
				      const void *start, unsigned int len)
{
3670
	__skb_postpush_rcsum(skb, start, len, 0);
3671 3672
}

3673
void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3674

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
/**
 *	skb_push_rcsum - push skb and update receive checksum
 *	@skb: buffer to update
 *	@len: length of data pulled
 *
 *	This function performs an skb_push on the packet and updates
 *	the CHECKSUM_COMPLETE checksum.  It should be used on
 *	receive path processing instead of skb_push unless you know
 *	that the checksum difference is zero (e.g., a valid IP header)
 *	or you are setting ip_summed to CHECKSUM_NONE.
 */
3686
static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3687 3688 3689 3690 3691 3692
{
	skb_push(skb, len);
	skb_postpush_rcsum(skb, skb->data, len);
	return skb->data;
}

3693
int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3694 3695 3696 3697 3698 3699 3700
/**
 *	pskb_trim_rcsum - trim received skb and update checksum
 *	@skb: buffer to trim
 *	@len: new length
 *
 *	This is exactly the same as pskb_trim except that it ensures the
 *	checksum of received packets are still valid after the operation.
3701
 *	It can change skb pointers.
3702 3703 3704 3705 3706 3707
 */

static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (likely(len >= skb->len))
		return 0;
3708
	return pskb_trim_rcsum_slow(skb, len);
3709 3710
}

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	__skb_trim(skb, len);
	return 0;
}

static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __skb_grow(skb, len);
}

3726 3727 3728 3729 3730 3731
#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
#define skb_rb_first(root) rb_to_skb(rb_first(root))
#define skb_rb_last(root)  rb_to_skb(rb_last(root))
#define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
#define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))

L
Linus Torvalds 已提交
3732 3733
#define skb_queue_walk(queue, skb) \
		for (skb = (queue)->next;					\
3734
		     skb != (struct sk_buff *)(queue);				\
L
Linus Torvalds 已提交
3735 3736
		     skb = skb->next)

3737 3738 3739 3740 3741
#define skb_queue_walk_safe(queue, skb, tmp)					\
		for (skb = (queue)->next, tmp = skb->next;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

3742
#define skb_queue_walk_from(queue, skb)						\
3743
		for (; skb != (struct sk_buff *)(queue);			\
3744 3745
		     skb = skb->next)

3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
#define skb_rbtree_walk(skb, root)						\
		for (skb = skb_rb_first(root); skb != NULL;			\
		     skb = skb_rb_next(skb))

#define skb_rbtree_walk_from(skb)						\
		for (; skb != NULL;						\
		     skb = skb_rb_next(skb))

#define skb_rbtree_walk_from_safe(skb, tmp)					\
		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
		     skb = tmp)

3758 3759 3760 3761 3762
#define skb_queue_walk_from_safe(queue, skb, tmp)				\
		for (tmp = skb->next;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

3763 3764
#define skb_queue_reverse_walk(queue, skb) \
		for (skb = (queue)->prev;					\
3765
		     skb != (struct sk_buff *)(queue);				\
3766 3767
		     skb = skb->prev)

3768 3769 3770 3771 3772 3773 3774 3775 3776
#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
		for (skb = (queue)->prev, tmp = skb->prev;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)

#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
		for (tmp = skb->prev;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)
L
Linus Torvalds 已提交
3777

3778
static inline bool skb_has_frag_list(const struct sk_buff *skb)
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
{
	return skb_shinfo(skb)->frag_list != NULL;
}

static inline void skb_frag_list_init(struct sk_buff *skb)
{
	skb_shinfo(skb)->frag_list = NULL;
}

#define skb_walk_frags(skb, iter)	\
	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)

3791

3792 3793
int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
				int *err, long *timeo_p,
3794
				const struct sk_buff *skb);
3795 3796 3797
struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
					  struct sk_buff_head *queue,
					  unsigned int flags,
3798
					  int *off, int *err,
3799
					  struct sk_buff **last);
3800 3801
struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
					struct sk_buff_head *queue,
3802
					unsigned int flags, int *off, int *err,
3803
					struct sk_buff **last);
3804 3805
struct sk_buff *__skb_recv_datagram(struct sock *sk,
				    struct sk_buff_head *sk_queue,
3806
				    unsigned int flags, int *off, int *err);
3807 3808
struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
				  int *err);
3809 3810
__poll_t datagram_poll(struct file *file, struct socket *sock,
			   struct poll_table_struct *wait);
A
Al Viro 已提交
3811 3812
int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
			   struct iov_iter *to, int size);
3813 3814 3815
static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
					struct msghdr *msg, int size)
{
3816
	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3817
}
3818 3819
int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
				   struct msghdr *msg);
3820 3821 3822
int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
			   struct iov_iter *to, int len,
			   struct ahash_request *hash);
3823 3824 3825
int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
				 struct iov_iter *from, int len);
int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3826
void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3827 3828 3829 3830 3831 3832
void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
static inline void skb_free_datagram_locked(struct sock *sk,
					    struct sk_buff *skb)
{
	__skb_free_datagram_locked(sk, skb, 0);
}
3833 3834 3835 3836
int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3837
			      int len);
3838
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3839
		    struct pipe_inode_info *pipe, unsigned int len,
A
Al Viro 已提交
3840
		    unsigned int flags);
3841 3842
int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
			 int len);
3843
int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3844
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3845
unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3846 3847
int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
		 int len, int hlen);
3848 3849 3850
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3851
bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3852
bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3853
struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3854 3855
struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
				 unsigned int offset);
3856
struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3857
int skb_ensure_writable(struct sk_buff *skb, int write_len);
3858
int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3859 3860
int skb_vlan_pop(struct sk_buff *skb);
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3861 3862 3863
int skb_eth_pop(struct sk_buff *skb);
int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
		 const unsigned char *src);
3864
int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3865
		  int mac_len, bool ethernet);
3866 3867
int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
		 bool ethernet);
3868
int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3869
int skb_mpls_dec_ttl(struct sk_buff *skb);
3870 3871
struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
			     gfp_t gfp);
3872

A
Al Viro 已提交
3873 3874
static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
{
3875
	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
A
Al Viro 已提交
3876 3877
}

A
Al Viro 已提交
3878 3879
static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
{
3880
	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
A
Al Viro 已提交
3881 3882
}

3883 3884 3885 3886 3887
struct skb_checksum_ops {
	__wsum (*update)(const void *mem, int len, __wsum wsum);
	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
};

3888 3889
extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;

3890 3891 3892 3893 3894
__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
		      __wsum csum, const struct skb_checksum_ops *ops);
__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
		    __wsum csum);

3895
static inline void * __must_check
3896 3897
__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
		     const void *data, int hlen, void *buffer)
L
Linus Torvalds 已提交
3898
{
3899
	if (likely(hlen - offset >= len))
3900
		return (void *)data + offset;
L
Linus Torvalds 已提交
3901

3902
	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
L
Linus Torvalds 已提交
3903 3904 3905 3906 3907
		return NULL;

	return buffer;
}

3908 3909
static inline void * __must_check
skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3910 3911 3912 3913 3914
{
	return __skb_header_pointer(skb, offset, len, skb->data,
				    skb_headlen(skb), buffer);
}

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
/**
 *	skb_needs_linearize - check if we need to linearize a given skb
 *			      depending on the given device features.
 *	@skb: socket buffer to check
 *	@features: net device features
 *
 *	Returns true if either:
 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
 *	2. skb is fragmented and the device does not support SG.
 */
static inline bool skb_needs_linearize(struct sk_buff *skb,
				       netdev_features_t features)
{
	return skb_is_nonlinear(skb) &&
	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
}

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
					     void *to,
					     const unsigned int len)
{
	memcpy(to, skb->data, len);
}

static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
						    const int offset, void *to,
						    const unsigned int len)
{
	memcpy(to, skb->data + offset, len);
}

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
					   const void *from,
					   const unsigned int len)
{
	memcpy(skb->data, from, len);
}

static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
						  const int offset,
						  const void *from,
						  const unsigned int len)
{
	memcpy(skb->data + offset, from, len);
}

3962
void skb_init(void);
L
Linus Torvalds 已提交
3963

3964 3965 3966 3967 3968
static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
{
	return skb->tstamp;
}

3969 3970 3971
/**
 *	skb_get_timestamp - get timestamp from a skb
 *	@skb: skb to get stamp from
3972
 *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3973 3974 3975 3976 3977
 *
 *	Timestamps are stored in the skb as offsets to a base timestamp.
 *	This function converts the offset back to a struct timeval and stores
 *	it in stamp.
 */
3978
static inline void skb_get_timestamp(const struct sk_buff *skb,
3979
				     struct __kernel_old_timeval *stamp)
3980
{
3981
	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3982 3983
}

3984 3985 3986 3987 3988 3989 3990 3991 3992
static inline void skb_get_new_timestamp(const struct sk_buff *skb,
					 struct __kernel_sock_timeval *stamp)
{
	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);

	stamp->tv_sec = ts.tv_sec;
	stamp->tv_usec = ts.tv_nsec / 1000;
}

3993
static inline void skb_get_timestampns(const struct sk_buff *skb,
3994
				       struct __kernel_old_timespec *stamp)
3995
{
3996 3997 3998 3999
	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);

	stamp->tv_sec = ts.tv_sec;
	stamp->tv_nsec = ts.tv_nsec;
4000 4001
}

4002 4003 4004 4005 4006 4007 4008 4009 4010
static inline void skb_get_new_timestampns(const struct sk_buff *skb,
					   struct __kernel_timespec *stamp)
{
	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);

	stamp->tv_sec = ts.tv_sec;
	stamp->tv_nsec = ts.tv_nsec;
}

4011
static inline void __net_timestamp(struct sk_buff *skb)
4012
{
4013
	skb->tstamp = ktime_get_real();
4014
	skb->mono_delivery_time = 0;
4015 4016
}

4017 4018 4019 4020 4021
static inline ktime_t net_timedelta(ktime_t t)
{
	return ktime_sub(ktime_get_real(), t);
}

4022 4023 4024 4025
static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
					 bool mono)
{
	skb->tstamp = kt;
4026
	skb->mono_delivery_time = kt && mono;
4027 4028
}

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);

/* It is used in the ingress path to clear the delivery_time.
 * If needed, set the skb->tstamp to the (rcv) timestamp.
 */
static inline void skb_clear_delivery_time(struct sk_buff *skb)
{
	if (skb->mono_delivery_time) {
		skb->mono_delivery_time = 0;
		if (static_branch_unlikely(&netstamp_needed_key))
			skb->tstamp = ktime_get_real();
		else
			skb->tstamp = 0;
	}
}

4045 4046 4047 4048 4049 4050 4051 4052
static inline void skb_clear_tstamp(struct sk_buff *skb)
{
	if (skb->mono_delivery_time)
		return;

	skb->tstamp = 0;
}

4053 4054 4055 4056 4057 4058 4059 4060
static inline ktime_t skb_tstamp(const struct sk_buff *skb)
{
	if (skb->mono_delivery_time)
		return 0;

	return skb->tstamp;
}

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
{
	if (!skb->mono_delivery_time && skb->tstamp)
		return skb->tstamp;

	if (static_branch_unlikely(&netstamp_needed_key) || cond)
		return ktime_get_real();

	return 0;
}

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
static inline u8 skb_metadata_len(const struct sk_buff *skb)
{
	return skb_shinfo(skb)->meta_len;
}

static inline void *skb_metadata_end(const struct sk_buff *skb)
{
	return skb_mac_header(skb);
}

static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
					  const struct sk_buff *skb_b,
					  u8 meta_len)
{
	const void *a = skb_metadata_end(skb_a);
	const void *b = skb_metadata_end(skb_b);
	/* Using more efficient varaiant than plain call to memcmp(). */
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
	u64 diffs = 0;

	switch (meta_len) {
#define __it(x, op) (x -= sizeof(u##op))
#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
	case 32: diffs |= __it_diff(a, b, 64);
4096
		fallthrough;
4097
	case 24: diffs |= __it_diff(a, b, 64);
4098
		fallthrough;
4099
	case 16: diffs |= __it_diff(a, b, 64);
4100
		fallthrough;
4101 4102 4103
	case  8: diffs |= __it_diff(a, b, 64);
		break;
	case 28: diffs |= __it_diff(a, b, 64);
4104
		fallthrough;
4105
	case 20: diffs |= __it_diff(a, b, 64);
4106
		fallthrough;
4107
	case 12: diffs |= __it_diff(a, b, 64);
4108
		fallthrough;
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	case  4: diffs |= __it_diff(a, b, 32);
		break;
	}
	return diffs;
#else
	return memcmp(a - meta_len, b - meta_len, meta_len);
#endif
}

static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
					const struct sk_buff *skb_b)
{
	u8 len_a = skb_metadata_len(skb_a);
	u8 len_b = skb_metadata_len(skb_b);

	if (!(len_a | len_b))
		return false;

	return len_a != len_b ?
	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
}

static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
{
	skb_shinfo(skb)->meta_len = meta_len;
}

static inline void skb_metadata_clear(struct sk_buff *skb)
{
	skb_metadata_set(skb, 0);
}

4141 4142
struct sk_buff *skb_clone_sk(struct sk_buff *skb);

4143 4144
#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING

4145 4146
void skb_clone_tx_timestamp(struct sk_buff *skb);
bool skb_defer_rx_timestamp(struct sk_buff *skb);
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163

#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */

static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
{
}

static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
{
	return false;
}

#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */

/**
 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
 *
4164 4165
 * PHY drivers may accept clones of transmitted packets for
 * timestamping via their phy_driver.txtstamp method. These drivers
4166 4167
 * must call this function to return the skb back to the stack with a
 * timestamp.
4168
 *
4169
 * @skb: clone of the original outgoing packet
4170
 * @hwtstamps: hardware time stamps
4171 4172 4173 4174 4175
 *
 */
void skb_complete_tx_timestamp(struct sk_buff *skb,
			       struct skb_shared_hwtstamps *hwtstamps);

4176
void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4177 4178 4179
		     struct skb_shared_hwtstamps *hwtstamps,
		     struct sock *sk, int tstype);

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
/**
 * skb_tstamp_tx - queue clone of skb with send time stamps
 * @orig_skb:	the original outgoing packet
 * @hwtstamps:	hardware time stamps, may be NULL if not available
 *
 * If the skb has a socket associated, then this function clones the
 * skb (thus sharing the actual data and optional structures), stores
 * the optional hardware time stamping information (if non NULL) or
 * generates a software time stamp (otherwise), then queues the clone
 * to the error queue of the socket.  Errors are silently ignored.
 */
4191 4192
void skb_tstamp_tx(struct sk_buff *orig_skb,
		   struct skb_shared_hwtstamps *hwtstamps);
4193

4194 4195 4196 4197
/**
 * skb_tx_timestamp() - Driver hook for transmit timestamping
 *
 * Ethernet MAC Drivers should call this function in their hard_xmit()
4198
 * function immediately before giving the sk_buff to the MAC hardware.
4199
 *
4200 4201 4202 4203
 * Specifically, one should make absolutely sure that this function is
 * called before TX completion of this packet can trigger.  Otherwise
 * the packet could potentially already be freed.
 *
4204 4205 4206 4207
 * @skb: A socket buffer.
 */
static inline void skb_tx_timestamp(struct sk_buff *skb)
{
4208
	skb_clone_tx_timestamp(skb);
4209 4210
	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
		skb_tstamp_tx(skb, NULL);
4211 4212
}

4213 4214 4215 4216 4217 4218 4219 4220 4221
/**
 * skb_complete_wifi_ack - deliver skb with wifi status
 *
 * @skb: the original outgoing packet
 * @acked: ack status
 *
 */
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);

4222 4223
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
__sum16 __skb_checksum_complete(struct sk_buff *skb);
4224

4225 4226
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
{
4227 4228 4229 4230
	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
		skb->csum_valid ||
		(skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) >= 0));
4231 4232
}

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
/**
 *	skb_checksum_complete - Calculate checksum of an entire packet
 *	@skb: packet to process
 *
 *	This function calculates the checksum over the entire packet plus
 *	the value of skb->csum.  The latter can be used to supply the
 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
 *	checksum.
 *
 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
 *	this function can be used to verify that checksum on received
 *	packets.  In that case the function should return zero if the
 *	checksum is correct.  In particular, this function will return zero
 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
 *	hardware has already verified the correctness of the checksum.
 */
4249
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4250
{
4251 4252
	return skb_csum_unnecessary(skb) ?
	       0 : __skb_checksum_complete(skb);
4253 4254
}

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level == 0)
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->csum_level--;
	}
}

static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
			skb->csum_level++;
	} else if (skb->ip_summed == CHECKSUM_NONE) {
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		skb->csum_level = 0;
	}
}

4276 4277 4278 4279 4280 4281 4282 4283
static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		skb->ip_summed = CHECKSUM_NONE;
		skb->csum_level = 0;
	}
}

4284 4285 4286 4287 4288 4289 4290 4291 4292
/* Check if we need to perform checksum complete validation.
 *
 * Returns true if checksum complete is needed, false otherwise
 * (either checksum is unnecessary or zero checksum is allowed).
 */
static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
						  bool zero_okay,
						  __sum16 check)
{
4293 4294
	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
		skb->csum_valid = 1;
4295
		__skb_decr_checksum_unnecessary(skb);
4296 4297 4298 4299 4300 4301
		return false;
	}

	return true;
}

4302
/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4303 4304 4305 4306
 * in checksum_init.
 */
#define CHECKSUM_BREAK 76

4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
/* Unset checksum-complete
 *
 * Unset checksum complete can be done when packet is being modified
 * (uncompressed for instance) and checksum-complete value is
 * invalidated.
 */
static inline void skb_checksum_complete_unset(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
/* Validate (init) checksum based on checksum complete.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
 *	checksum is stored in skb->csum for use in __skb_checksum_complete
 *   non-zero: value of invalid checksum
 *
 */
static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
						       bool complete,
						       __wsum psum)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE) {
		if (!csum_fold(csum_add(psum, skb->csum))) {
4334
			skb->csum_valid = 1;
4335 4336 4337 4338 4339 4340
			return 0;
		}
	}

	skb->csum = psum;

4341 4342 4343 4344 4345 4346 4347
	if (complete || skb->len <= CHECKSUM_BREAK) {
		__sum16 csum;

		csum = __skb_checksum_complete(skb);
		skb->csum_valid = !csum;
		return csum;
	}
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

	return 0;
}

static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
{
	return 0;
}

/* Perform checksum validate (init). Note that this is a macro since we only
 * want to calculate the pseudo header which is an input function if necessary.
 * First we try to validate without any computation (checksum unnecessary) and
 * then calculate based on checksum complete calling the function to compute
 * pseudo header.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete
 *   non-zero: value of invalid checksum
 */
#define __skb_checksum_validate(skb, proto, complete,			\
				zero_okay, check, compute_pseudo)	\
({									\
	__sum16 __ret = 0;						\
4371
	skb->csum_valid = 0;						\
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
		__ret = __skb_checksum_validate_complete(skb,		\
				complete, compute_pseudo(skb, proto));	\
	__ret;								\
})

#define skb_checksum_init(skb, proto, compute_pseudo)			\
	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)

#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)

#define skb_checksum_validate(skb, proto, compute_pseudo)		\
	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)

#define skb_checksum_validate_zero_check(skb, proto, check,		\
					 compute_pseudo)		\
4389
	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4390 4391 4392 4393

#define skb_checksum_simple_validate(skb)				\
	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)

4394 4395
static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
{
4396
	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4397 4398
}

4399
static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4400 4401 4402 4403 4404
{
	skb->csum = ~pseudo;
	skb->ip_summed = CHECKSUM_COMPLETE;
}

4405
#define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4406 4407
do {									\
	if (__skb_checksum_convert_check(skb))				\
4408
		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4409 4410
} while (0)

4411 4412 4413 4414 4415 4416 4417 4418
static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
					      u16 start, u16 offset)
{
	skb->ip_summed = CHECKSUM_PARTIAL;
	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
	skb->csum_offset = offset - start;
}

4419 4420 4421 4422 4423 4424
/* Update skbuf and packet to reflect the remote checksum offload operation.
 * When called, ptr indicates the starting point for skb->csum when
 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
 */
static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4425
				       int start, int offset, bool nopartial)
4426 4427 4428
{
	__wsum delta;

4429 4430 4431 4432 4433
	if (!nopartial) {
		skb_remcsum_adjust_partial(skb, ptr, start, offset);
		return;
	}

4434
	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
		__skb_checksum_complete(skb);
		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
	}

	delta = remcsum_adjust(ptr, skb->csum, start, offset);

	/* Adjust skb->csum since we changed the packet */
	skb->csum = csum_add(skb->csum, delta);
}

4445 4446 4447
static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4448
	return (void *)(skb->_nfct & NFCT_PTRMASK);
4449 4450 4451 4452 4453
#else
	return NULL;
#endif
}

4454
static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
L
Linus Torvalds 已提交
4455
{
4456 4457 4458 4459 4460
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
	return skb->_nfct;
#else
	return 0UL;
#endif
L
Linus Torvalds 已提交
4461
}
4462 4463

static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
L
Linus Torvalds 已提交
4464
{
4465
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4466
	skb->slow_gro |= !!nfct;
4467
	skb->_nfct = nfct;
4468
#endif
4469
}
4470 4471 4472 4473 4474

#ifdef CONFIG_SKB_EXTENSIONS
enum skb_ext_id {
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
	SKB_EXT_BRIDGE_NF,
4475 4476 4477
#endif
#ifdef CONFIG_XFRM
	SKB_EXT_SEC_PATH,
4478 4479 4480
#endif
#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
	TC_SKB_EXT,
4481 4482 4483
#endif
#if IS_ENABLED(CONFIG_MPTCP)
	SKB_EXT_MPTCP,
J
Jeremy Kerr 已提交
4484 4485 4486
#endif
#if IS_ENABLED(CONFIG_MCTP_FLOWS)
	SKB_EXT_MCTP,
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
#endif
	SKB_EXT_NUM, /* must be last */
};

/**
 *	struct skb_ext - sk_buff extensions
 *	@refcnt: 1 on allocation, deallocated on 0
 *	@offset: offset to add to @data to obtain extension address
 *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
 *	@data: start of extension data, variable sized
 *
 *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
 *	to use 'u8' types while allowing up to 2kb worth of extension data.
 */
struct skb_ext {
	refcount_t refcnt;
	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
	u8 chunks;		/* same */
4505
	char data[] __aligned(8);
4506 4507
};

4508
struct skb_ext *__skb_ext_alloc(gfp_t flags);
4509 4510
void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
		    struct skb_ext *ext);
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
void __skb_ext_put(struct skb_ext *ext);

static inline void skb_ext_put(struct sk_buff *skb)
{
	if (skb->active_extensions)
		__skb_ext_put(skb->extensions);
}

static inline void __skb_ext_copy(struct sk_buff *dst,
				  const struct sk_buff *src)
{
	dst->active_extensions = src->active_extensions;

	if (src->active_extensions) {
		struct skb_ext *ext = src->extensions;

		refcount_inc(&ext->refcnt);
		dst->extensions = ext;
	}
}

static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
{
	skb_ext_put(dst);
	__skb_ext_copy(dst, src);
}

static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
{
	return !!ext->offset[i];
}

static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
{
	return skb->active_extensions & (1 << id);
}

static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
{
	if (skb_ext_exist(skb, id))
		__skb_ext_del(skb, id);
}

static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
{
	if (skb_ext_exist(skb, id)) {
		struct skb_ext *ext = skb->extensions;

		return (void *)ext + (ext->offset[id] << 3);
	}

	return NULL;
}
4566 4567 4568 4569 4570 4571 4572 4573

static inline void skb_ext_reset(struct sk_buff *skb)
{
	if (unlikely(skb->active_extensions)) {
		__skb_ext_put(skb->extensions);
		skb->active_extensions = 0;
	}
}
4574 4575 4576 4577 4578

static inline bool skb_has_extensions(struct sk_buff *skb)
{
	return unlikely(skb->active_extensions);
}
4579 4580
#else
static inline void skb_ext_put(struct sk_buff *skb) {}
4581
static inline void skb_ext_reset(struct sk_buff *skb) {}
4582 4583 4584
static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4585
static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4586 4587
#endif /* CONFIG_SKB_EXTENSIONS */

4588
static inline void nf_reset_ct(struct sk_buff *skb)
4589
{
4590
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4591 4592
	nf_conntrack_put(skb_nfct(skb));
	skb->_nfct = 0;
4593
#endif
4594 4595
}

4596 4597
static inline void nf_reset_trace(struct sk_buff *skb)
{
4598
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
G
Gao feng 已提交
4599 4600
	skb->nf_trace = 0;
#endif
4601 4602
}

4603 4604 4605 4606 4607 4608 4609
static inline void ipvs_reset(struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_IP_VS)
	skb->ipvs_property = 0;
#endif
}

4610
/* Note: This doesn't put any conntrack info in dst. */
4611 4612
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
			     bool copy)
4613
{
4614
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4615 4616
	dst->_nfct = src->_nfct;
	nf_conntrack_get(skb_nfct(src));
4617
#endif
4618
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4619 4620
	if (copy)
		dst->nf_trace = src->nf_trace;
4621
#endif
4622 4623
}

4624 4625 4626
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4627
	nf_conntrack_put(skb_nfct(dst));
4628
#endif
4629
	dst->slow_gro = src->slow_gro;
4630
	__nf_copy(dst, src, true);
4631 4632
}

4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
#ifdef CONFIG_NETWORK_SECMARK
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{
	to->secmark = from->secmark;
}

static inline void skb_init_secmark(struct sk_buff *skb)
{
	skb->secmark = 0;
}
#else
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{ }

static inline void skb_init_secmark(struct sk_buff *skb)
{ }
#endif

4651 4652 4653
static inline int secpath_exists(const struct sk_buff *skb)
{
#ifdef CONFIG_XFRM
4654
	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4655 4656 4657 4658 4659
#else
	return 0;
#endif
}

4660 4661 4662
static inline bool skb_irq_freeable(const struct sk_buff *skb)
{
	return !skb->destructor &&
4663
		!secpath_exists(skb) &&
4664
		!skb_nfct(skb) &&
4665 4666 4667 4668
		!skb->_skb_refdst &&
		!skb_has_frag_list(skb);
}

4669 4670 4671 4672 4673
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
{
	skb->queue_mapping = queue_mapping;
}

4674
static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4675 4676 4677 4678
{
	return skb->queue_mapping;
}

4679 4680 4681 4682 4683
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
{
	to->queue_mapping = from->queue_mapping;
}

4684 4685 4686 4687 4688
static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
{
	skb->queue_mapping = rx_queue + 1;
}

4689
static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4690 4691 4692 4693
{
	return skb->queue_mapping - 1;
}

4694
static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4695
{
E
Eric Dumazet 已提交
4696
	return skb->queue_mapping != 0;
4697 4698
}

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
{
	skb->dst_pending_confirm = val;
}

static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
{
	return skb->dst_pending_confirm != 0;
}

4709
static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4710
{
4711
#ifdef CONFIG_XFRM
4712
	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4713 4714 4715
#else
	return NULL;
#endif
4716
}
4717

4718 4719 4720
/* Keeps track of mac header offset relative to skb->head.
 * It is useful for TSO of Tunneling protocol. e.g. GRE.
 * For non-tunnel skb it points to skb_mac_header() and for
4721 4722 4723
 * tunnel skb it points to outer mac header.
 * Keeps track of level of encapsulation of network headers.
 */
4724
struct skb_gso_cb {
4725 4726 4727 4728
	union {
		int	mac_offset;
		int	data_offset;
	};
4729
	int	encap_level;
4730
	__wsum	csum;
4731
	__u16	csum_start;
4732
};
C
Cambda Zhu 已提交
4733 4734
#define SKB_GSO_CB_OFFSET	32
#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4735 4736 4737 4738 4739 4740 4741

static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
{
	return (skb_mac_header(inner_skb) - inner_skb->head) -
		SKB_GSO_CB(inner_skb)->mac_offset;
}

4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
{
	int new_headroom, headroom;
	int ret;

	headroom = skb_headroom(skb);
	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
	if (ret)
		return ret;

	new_headroom = skb_headroom(skb);
	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
	return 0;
}

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
{
	/* Do not update partial checksums if remote checksum is enabled. */
	if (skb->remcsum_offload)
		return;

	SKB_GSO_CB(skb)->csum = res;
	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
}

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
/* Compute the checksum for a gso segment. First compute the checksum value
 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
 * then add in skb->csum (checksum from csum_start to end of packet).
 * skb->csum and csum_start are then updated to reflect the checksum of the
 * resultant packet starting from the transport header-- the resultant checksum
 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
 * header.
 */
static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
{
4777 4778 4779
	unsigned char *csum_start = skb_transport_header(skb);
	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
	__wsum partial = SKB_GSO_CB(skb)->csum;
4780

4781 4782
	SKB_GSO_CB(skb)->csum = res;
	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4783

4784
	return csum_fold(csum_partial(csum_start, plen, partial));
4785 4786
}

4787
static inline bool skb_is_gso(const struct sk_buff *skb)
H
Herbert Xu 已提交
4788 4789 4790 4791
{
	return skb_shinfo(skb)->gso_size;
}

4792
/* Note: Should be called only if skb_is_gso(skb) is true */
4793
static inline bool skb_is_gso_v6(const struct sk_buff *skb)
B
Brice Goglin 已提交
4794 4795 4796 4797
{
	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
}

4798 4799 4800 4801 4802 4803
/* Note: Should be called only if skb_is_gso(skb) is true */
static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
{
	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
}

4804
/* Note: Should be called only if skb_is_gso(skb) is true */
4805 4806
static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
{
4807
	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4808 4809
}

4810 4811 4812 4813 4814 4815 4816
static inline void skb_gso_reset(struct sk_buff *skb)
{
	skb_shinfo(skb)->gso_size = 0;
	skb_shinfo(skb)->gso_segs = 0;
	skb_shinfo(skb)->gso_type = 0;
}

4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
					 u16 increment)
{
	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
		return;
	shinfo->gso_size += increment;
}

static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
					 u16 decrement)
{
	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
		return;
	shinfo->gso_size -= decrement;
}

4833
void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4834 4835 4836 4837 4838

static inline bool skb_warn_if_lro(const struct sk_buff *skb)
{
	/* LRO sets gso_size but not gso_type, whereas if GSO is really
	 * wanted then gso_type will be set. */
4839 4840
	const struct skb_shared_info *shinfo = skb_shinfo(skb);

4841 4842
	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
	    unlikely(shinfo->gso_type == 0)) {
4843 4844 4845 4846 4847 4848
		__skb_warn_lro_forwarding(skb);
		return true;
	}
	return false;
}

4849 4850 4851 4852 4853 4854 4855
static inline void skb_forward_csum(struct sk_buff *skb)
{
	/* Unfortunately we don't support this one.  Any brave souls? */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

4856 4857 4858 4859 4860 4861 4862 4863
/**
 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
 * @skb: skb to check
 *
 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
 * use this helper, to document places where we make this assertion.
 */
4864
static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4865 4866 4867 4868 4869 4870
{
#ifdef DEBUG
	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
#endif
}

4871
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4872

P
Paul Durrant 已提交
4873
int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4874 4875 4876
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
				     unsigned int transport_len,
				     __sum16(*skb_chkf)(struct sk_buff *skb));
P
Paul Durrant 已提交
4877

4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
/**
 * skb_head_is_locked - Determine if the skb->head is locked down
 * @skb: skb to check
 *
 * The head on skbs build around a head frag can be removed if they are
 * not cloned.  This function returns true if the skb head is locked down
 * due to either being allocated via kmalloc, or by being a clone with
 * multiple references to the head.
 */
static inline bool skb_head_is_locked(const struct sk_buff *skb)
{
	return !skb->head_frag || skb_cloned(skb);
}
4891

4892 4893 4894
/* Local Checksum Offload.
 * Compute outer checksum based on the assumption that the
 * inner checksum will be offloaded later.
4895
 * See Documentation/networking/checksum-offloads.rst for
4896
 * explanation of how this works.
4897 4898 4899 4900 4901 4902
 * Fill in outer checksum adjustment (e.g. with sum of outer
 * pseudo-header) before calling.
 * Also ensure that inner checksum is in linear data area.
 */
static inline __wsum lco_csum(struct sk_buff *skb)
{
4903 4904 4905
	unsigned char *csum_start = skb_checksum_start(skb);
	unsigned char *l4_hdr = skb_transport_header(skb);
	__wsum partial;
4906 4907

	/* Start with complement of inner checksum adjustment */
4908 4909 4910
	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
						    skb->csum_offset));

4911
	/* Add in checksum of our headers (incl. outer checksum
4912
	 * adjustment filled in by caller) and return result.
4913
	 */
4914
	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4915 4916
}

4917 4918 4919 4920 4921 4922 4923 4924
static inline bool skb_is_redirected(const struct sk_buff *skb)
{
	return skb->redirected;
}

static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
{
	skb->redirected = 1;
4925
#ifdef CONFIG_NET_REDIRECT
4926 4927
	skb->from_ingress = from_ingress;
	if (skb->from_ingress)
4928
		skb_clear_tstamp(skb);
4929 4930 4931 4932 4933 4934 4935 4936
#endif
}

static inline void skb_reset_redirect(struct sk_buff *skb)
{
	skb->redirected = 0;
}

4937 4938 4939 4940 4941
static inline bool skb_csum_is_sctp(struct sk_buff *skb)
{
	return skb->csum_not_inet;
}

4942 4943 4944
static inline void skb_set_kcov_handle(struct sk_buff *skb,
				       const u64 kcov_handle)
{
4945 4946 4947
#ifdef CONFIG_KCOV
	skb->kcov_handle = kcov_handle;
#endif
4948 4949 4950 4951
}

static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
{
4952 4953
#ifdef CONFIG_KCOV
	return skb->kcov_handle;
4954
#else
4955 4956 4957
	return 0;
#endif
}
4958

4959
#ifdef CONFIG_PAGE_POOL
4960
static inline void skb_mark_for_recycle(struct sk_buff *skb)
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
{
	skb->pp_recycle = 1;
}
#endif

static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
{
	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
		return false;
	return page_pool_return_skb_page(virt_to_page(data));
}

L
Linus Torvalds 已提交
4973 4974
#endif	/* __KERNEL__ */
#endif	/* _LINUX_SKBUFF_H */