skbuff.h 99.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 *	Definitions for the 'struct sk_buff' memory handlers.
 *
 *	Authors:
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 */

#ifndef _LINUX_SKBUFF_H
#define _LINUX_SKBUFF_H

#include <linux/kernel.h>
18
#include <linux/kmemcheck.h>
L
Linus Torvalds 已提交
19 20
#include <linux/compiler.h>
#include <linux/time.h>
21
#include <linux/bug.h>
L
Linus Torvalds 已提交
22
#include <linux/cache.h>
E
Eric Dumazet 已提交
23
#include <linux/rbtree.h>
24
#include <linux/socket.h>
L
Linus Torvalds 已提交
25

A
Arun Sharma 已提交
26
#include <linux/atomic.h>
L
Linus Torvalds 已提交
27 28 29
#include <asm/types.h>
#include <linux/spinlock.h>
#include <linux/net.h>
30
#include <linux/textsearch.h>
L
Linus Torvalds 已提交
31
#include <net/checksum.h>
32
#include <linux/rcupdate.h>
33
#include <linux/hrtimer.h>
34
#include <linux/dma-mapping.h>
35
#include <linux/netdev_features.h>
36
#include <linux/sched.h>
37
#include <net/flow_dissector.h>
38
#include <linux/splice.h>
39
#include <linux/in6.h>
40
#include <net/flow.h>
L
Linus Torvalds 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53
/* A. Checksumming of received packets by device.
 *
 * CHECKSUM_NONE:
 *
 *   Device failed to checksum this packet e.g. due to lack of capabilities.
 *   The packet contains full (though not verified) checksum in packet but
 *   not in skb->csum. Thus, skb->csum is undefined in this case.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   The hardware you're dealing with doesn't calculate the full checksum
 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 *   if their checksums are okay. skb->csum is still undefined in this case
 *   though. It is a bad option, but, unfortunately, nowadays most vendors do
 *   this. Apparently with the secret goal to sell you new devices, when you
 *   will add new protocol to your host, f.e. IPv6 8)
 *
 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 *     TCP: IPv6 and IPv4.
 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 *       may perform further validation in this case.
 *     GRE: only if the checksum is present in the header.
 *     SCTP: indicates the CRC in SCTP header has been validated.
 *
 *   skb->csum_level indicates the number of consecutive checksums found in
 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 *   and a device is able to verify the checksums for UDP (possibly zero),
 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 *   two. If the device were only able to verify the UDP checksum and not
 *   GRE, either because it doesn't support GRE checksum of because GRE
 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 *   not considered in this case).
77 78 79 80 81 82 83 84 85 86 87 88
 *
 * CHECKSUM_COMPLETE:
 *
 *   This is the most generic way. The device supplied checksum of the _whole_
 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 *   hardware doesn't need to parse L3/L4 headers to implement this.
 *
 *   Note: Even if device supports only some protocols, but is able to produce
 *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 *
 * CHECKSUM_PARTIAL:
 *
89 90
 *   A checksum is set up to be offloaded to a device as described in the
 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
91
 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
92 93 94 95 96 97
 *   on the same host, or it may be set in the input path in GRO or remote
 *   checksum offload. For the purposes of checksum verification, the checksum
 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 *   checksums in the packet are considered verified. Any checksums in the
 *   packet that are after the checksum being offloaded are not considered to
 *   be verified.
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
 *
 * B. Checksumming on output.
 *
 * CHECKSUM_NONE:
 *
 *   The skb was already checksummed by the protocol, or a checksum is not
 *   required.
 *
 * CHECKSUM_PARTIAL:
 *
 *   The device is required to checksum the packet as seen by hard_start_xmit()
 *   from skb->csum_start up to the end, and to record/write the checksum at
 *   offset skb->csum_start + skb->csum_offset.
 *
 *   The device must show its capabilities in dev->features, set up at device
 *   setup time, e.g. netdev_features.h:
 *
 *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
 *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
 *			  IPv4. Sigh. Vendors like this way for an unknown reason.
 *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
 *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
 *	NETIF_F_...     - Well, you get the picture.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   Normally, the device will do per protocol specific checksumming. Protocol
 *   implementations that do not want the NIC to perform the checksum
 *   calculation should use this flag in their outgoing skbs.
 *
 *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
 *			   offload. Correspondingly, the FCoE protocol driver
 *			   stack should use CHECKSUM_UNNECESSARY.
 *
 * Any questions? No questions, good.		--ANK
 */

135
/* Don't change this without changing skb_csum_unnecessary! */
136 137 138 139
#define CHECKSUM_NONE		0
#define CHECKSUM_UNNECESSARY	1
#define CHECKSUM_COMPLETE	2
#define CHECKSUM_PARTIAL	3
L
Linus Torvalds 已提交
140

141 142 143
/* Maximum value in skb->csum_level */
#define SKB_MAX_CSUM_LEVEL	3

144
#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
145
#define SKB_WITH_OVERHEAD(X)	\
146
	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
147 148
#define SKB_MAX_ORDER(X, ORDER) \
	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
L
Linus Torvalds 已提交
149 150 151
#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))

E
Eric Dumazet 已提交
152 153 154 155 156
/* return minimum truesize of one skb containing X bytes of data */
#define SKB_TRUESIZE(X) ((X) +						\
			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))

L
Linus Torvalds 已提交
157
struct net_device;
158
struct scatterlist;
J
Jens Axboe 已提交
159
struct pipe_inode_info;
H
Herbert Xu 已提交
160
struct iov_iter;
161
struct napi_struct;
L
Linus Torvalds 已提交
162

163
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
L
Linus Torvalds 已提交
164 165 166
struct nf_conntrack {
	atomic_t use;
};
167
#endif
L
Linus Torvalds 已提交
168

169
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
170
struct nf_bridge_info {
171
	atomic_t		use;
172 173 174 175
	enum {
		BRNF_PROTO_UNCHANGED,
		BRNF_PROTO_8021Q,
		BRNF_PROTO_PPPOE
176
	} orig_proto:8;
177 178 179
	u8			pkt_otherhost:1;
	u8			in_prerouting:1;
	u8			bridged_dnat:1;
180
	__u16			frag_max_size;
181
	struct net_device	*physindev;
182
	union {
183
		/* prerouting: detect dnat in orig/reply direction */
184 185
		__be32          ipv4_daddr;
		struct in6_addr ipv6_daddr;
186 187 188 189 190 191 192 193 194

		/* after prerouting + nat detected: store original source
		 * mac since neigh resolution overwrites it, only used while
		 * skb is out in neigh layer.
		 */
		char neigh_header[8];

		/* always valid & non-NULL from FORWARD on, for physdev match */
		struct net_device *physoutdev;
195
	};
L
Linus Torvalds 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209
};
#endif

struct sk_buff_head {
	/* These two members must be first. */
	struct sk_buff	*next;
	struct sk_buff	*prev;

	__u32		qlen;
	spinlock_t	lock;
};

struct sk_buff;

210 211 212 213 214 215
/* To allow 64K frame to be packed as single skb without frag_list we
 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 * buffers which do not start on a page boundary.
 *
 * Since GRO uses frags we allocate at least 16 regardless of page
 * size.
216
 */
217
#if (65536/PAGE_SIZE + 1) < 16
218
#define MAX_SKB_FRAGS 16UL
219
#else
220
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
221
#endif
L
Linus Torvalds 已提交
222 223 224 225

typedef struct skb_frag_struct skb_frag_t;

struct skb_frag_struct {
226 227 228
	struct {
		struct page *p;
	} page;
229
#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
230 231
	__u32 page_offset;
	__u32 size;
232 233 234 235
#else
	__u16 page_offset;
	__u16 size;
#endif
L
Linus Torvalds 已提交
236 237
};

E
Eric Dumazet 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
{
	return frag->size;
}

static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
{
	frag->size = size;
}

static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
{
	frag->size += delta;
}

static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
{
	frag->size -= delta;
}

258 259 260
#define HAVE_HW_TIME_STAMP

/**
261
 * struct skb_shared_hwtstamps - hardware time stamps
262 263 264 265
 * @hwtstamp:	hardware time stamp transformed into duration
 *		since arbitrary point in time
 *
 * Software time stamps generated by ktime_get_real() are stored in
266
 * skb->tstamp.
267 268 269 270 271 272 273 274 275 276 277
 *
 * hwtstamps can only be compared against other hwtstamps from
 * the same device.
 *
 * This structure is attached to packets as part of the
 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 */
struct skb_shared_hwtstamps {
	ktime_t	hwtstamp;
};

278 279 280 281 282
/* Definitions for tx_flags in struct skb_shared_info */
enum {
	/* generate hardware time stamp */
	SKBTX_HW_TSTAMP = 1 << 0,

283
	/* generate software time stamp when queueing packet to NIC */
284 285 286 287 288
	SKBTX_SW_TSTAMP = 1 << 1,

	/* device driver is going to provide hardware time stamp */
	SKBTX_IN_PROGRESS = 1 << 2,

289
	/* device driver supports TX zero-copy buffers */
E
Eric Dumazet 已提交
290
	SKBTX_DEV_ZEROCOPY = 1 << 3,
291 292

	/* generate wifi status information (where possible) */
E
Eric Dumazet 已提交
293
	SKBTX_WIFI_STATUS = 1 << 4,
294 295 296 297 298 299 300

	/* This indicates at least one fragment might be overwritten
	 * (as in vmsplice(), sendfile() ...)
	 * If we need to compute a TX checksum, we'll need to copy
	 * all frags to avoid possible bad checksum
	 */
	SKBTX_SHARED_FRAG = 1 << 5,
301 302 303

	/* generate software time stamp when entering packet scheduling */
	SKBTX_SCHED_TSTAMP = 1 << 6,
304 305 306

	/* generate software timestamp on peer data acknowledgment */
	SKBTX_ACK_TSTAMP = 1 << 7,
307 308
};

309 310 311
#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
				 SKBTX_SCHED_TSTAMP | \
				 SKBTX_ACK_TSTAMP)
312 313
#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)

314 315 316
/*
 * The callback notifies userspace to release buffers when skb DMA is done in
 * lower device, the skb last reference should be 0 when calling this.
317 318
 * The zerocopy_success argument is true if zero copy transmit occurred,
 * false on data copy or out of memory error caused by data copy attempt.
319 320
 * The ctx field is used to track device context.
 * The desc field is used to track userspace buffer index.
321 322
 */
struct ubuf_info {
323
	void (*callback)(struct ubuf_info *, bool zerocopy_success);
324
	void *ctx;
325
	unsigned long desc;
326 327
};

L
Linus Torvalds 已提交
328 329 330 331
/* This data is invariant across clones and lives at
 * the end of the header data, ie. at skb->end.
 */
struct skb_shared_info {
332 333
	unsigned char	nr_frags;
	__u8		tx_flags;
334 335 336 337
	unsigned short	gso_size;
	/* Warning: this field is not always filled in (UFO)! */
	unsigned short	gso_segs;
	unsigned short  gso_type;
L
Linus Torvalds 已提交
338
	struct sk_buff	*frag_list;
339
	struct skb_shared_hwtstamps hwtstamps;
340
	u32		tskey;
341
	__be32          ip6_frag_id;
E
Eric Dumazet 已提交
342 343 344 345 346 347

	/*
	 * Warning : all fields before dataref are cleared in __alloc_skb()
	 */
	atomic_t	dataref;

J
Johann Baudy 已提交
348 349 350
	/* Intermediate layers must ensure that destructor_arg
	 * remains valid until skb destructor */
	void *		destructor_arg;
351

352 353
	/* must be last field, see pskb_expand_head() */
	skb_frag_t	frags[MAX_SKB_FRAGS];
L
Linus Torvalds 已提交
354 355 356 357
};

/* We divide dataref into two halves.  The higher 16 bits hold references
 * to the payload part of skb->data.  The lower 16 bits hold references to
358 359
 * the entire skb->data.  A clone of a headerless skb holds the length of
 * the header in skb->hdr_len.
L
Linus Torvalds 已提交
360 361 362 363 364 365 366 367 368 369
 *
 * All users must obey the rule that the skb->data reference count must be
 * greater than or equal to the payload reference count.
 *
 * Holding a reference to the payload part means that the user does not
 * care about modifications to the header part of skb->data.
 */
#define SKB_DATAREF_SHIFT 16
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)

370 371

enum {
372 373 374
	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
375 376
};

377 378
enum {
	SKB_GSO_TCPV4 = 1 << 0,
H
Herbert Xu 已提交
379
	SKB_GSO_UDP = 1 << 1,
380 381 382

	/* This indicates the skb is from an untrusted source. */
	SKB_GSO_DODGY = 1 << 2,
M
Michael Chan 已提交
383 384

	/* This indicates the tcp segment has CWR set. */
H
Herbert Xu 已提交
385 386 387
	SKB_GSO_TCP_ECN = 1 << 3,

	SKB_GSO_TCPV6 = 1 << 4,
388 389

	SKB_GSO_FCOE = 1 << 5,
390 391

	SKB_GSO_GRE = 1 << 6,
392

393
	SKB_GSO_GRE_CSUM = 1 << 7,
S
Simon Horman 已提交
394

395
	SKB_GSO_IPIP = 1 << 8,
E
Eric Dumazet 已提交
396

397
	SKB_GSO_SIT = 1 << 9,
E
Eric Dumazet 已提交
398

399
	SKB_GSO_UDP_TUNNEL = 1 << 10,
400 401

	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
T
Tom Herbert 已提交
402

P
Pravin B Shelar 已提交
403
	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
404 405
};

406 407 408 409 410 411 412 413 414 415
#if BITS_PER_LONG > 32
#define NET_SKBUFF_DATA_USES_OFFSET 1
#endif

#ifdef NET_SKBUFF_DATA_USES_OFFSET
typedef unsigned int sk_buff_data_t;
#else
typedef unsigned char *sk_buff_data_t;
#endif

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/**
 * struct skb_mstamp - multi resolution time stamps
 * @stamp_us: timestamp in us resolution
 * @stamp_jiffies: timestamp in jiffies
 */
struct skb_mstamp {
	union {
		u64		v64;
		struct {
			u32	stamp_us;
			u32	stamp_jiffies;
		};
	};
};

/**
 * skb_mstamp_get - get current timestamp
 * @cl: place to store timestamps
 */
static inline void skb_mstamp_get(struct skb_mstamp *cl)
{
	u64 val = local_clock();

	do_div(val, NSEC_PER_USEC);
	cl->stamp_us = (u32)val;
	cl->stamp_jiffies = (u32)jiffies;
}

/**
 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
 * @t1: pointer to newest sample
 * @t0: pointer to oldest sample
 */
static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
				      const struct skb_mstamp *t0)
{
	s32 delta_us = t1->stamp_us - t0->stamp_us;
	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;

	/* If delta_us is negative, this might be because interval is too big,
	 * or local_clock() drift is too big : fallback using jiffies.
	 */
	if (delta_us <= 0 ||
	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))

		delta_us = jiffies_to_usecs(delta_jiffies);

	return delta_us;
}


L
Linus Torvalds 已提交
467 468 469 470
/** 
 *	struct sk_buff - socket buffer
 *	@next: Next buffer in list
 *	@prev: Previous buffer in list
471
 *	@tstamp: Time we arrived/left
E
Eric Dumazet 已提交
472
 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
473
 *	@sk: Socket we are owned by
L
Linus Torvalds 已提交
474
 *	@dev: Device we arrived on/are leaving by
475
 *	@cb: Control buffer. Free for use by every layer. Put private vars here
E
Eric Dumazet 已提交
476
 *	@_skb_refdst: destination entry (with norefcount bit)
477
 *	@sp: the security path, used for xfrm
L
Linus Torvalds 已提交
478 479 480
 *	@len: Length of actual data
 *	@data_len: Data length
 *	@mac_len: Length of link layer header
481
 *	@hdr_len: writable header length of cloned skb
482 483 484
 *	@csum: Checksum (must include start/offset pair)
 *	@csum_start: Offset from skb->head where checksumming should start
 *	@csum_offset: Offset from csum_start where checksum should be stored
485
 *	@priority: Packet queueing priority
W
WANG Cong 已提交
486
 *	@ignore_df: allow local fragmentation
L
Linus Torvalds 已提交
487
 *	@cloned: Head may be cloned (check refcnt to be sure)
488
 *	@ip_summed: Driver fed us an IP checksum
L
Linus Torvalds 已提交
489
 *	@nohdr: Payload reference only, must not modify header
490
 *	@nfctinfo: Relationship of this skb to the connection
L
Linus Torvalds 已提交
491
 *	@pkt_type: Packet class
492 493
 *	@fclone: skbuff clone status
 *	@ipvs_property: skbuff is owned by ipvs
494 495
 *	@peeked: this packet has been seen already, so stats have been
 *		done for it, don't do them again
496
 *	@nf_trace: netfilter packet trace flag
497 498 499
 *	@protocol: Packet protocol from driver
 *	@destructor: Destruct function
 *	@nfct: Associated connection, if any
L
Linus Torvalds 已提交
500
 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
501
 *	@skb_iif: ifindex of device we arrived on
L
Linus Torvalds 已提交
502 503
 *	@tc_index: Traffic control index
 *	@tc_verd: traffic control verdict
504
 *	@hash: the packet hash
505
 *	@queue_mapping: Queue mapping for multiqueue devices
506
 *	@xmit_more: More SKBs are pending for this queue
507
 *	@ndisc_nodetype: router type (from link layer)
508
 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
509
 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
510
 *		ports.
511
 *	@sw_hash: indicates hash was computed in software stack
512 513
 *	@wifi_acked_valid: wifi_acked was set
 *	@wifi_acked: whether frame was acked on wifi or not
514
 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
E
Eliezer Tamir 已提交
515
  *	@napi_id: id of the NAPI struct this skb came from
516
 *	@secmark: security marking
517
 *	@offload_fwd_mark: fwding offload mark
518
 *	@mark: Generic packet mark
519
 *	@vlan_proto: vlan encapsulation protocol
520
 *	@vlan_tci: vlan tag control information
S
Simon Horman 已提交
521
 *	@inner_protocol: Protocol (encapsulation)
522 523
 *	@inner_transport_header: Inner transport layer header (encapsulation)
 *	@inner_network_header: Network layer header (encapsulation)
524
 *	@inner_mac_header: Link layer header (encapsulation)
525 526 527 528 529 530 531 532 533
 *	@transport_header: Transport layer header
 *	@network_header: Network layer header
 *	@mac_header: Link layer header
 *	@tail: Tail pointer
 *	@end: End pointer
 *	@head: Head of buffer
 *	@data: Data head pointer
 *	@truesize: Buffer size
 *	@users: User count - see {datagram,tcp}.c
L
Linus Torvalds 已提交
534 535 536
 */

struct sk_buff {
537
	union {
E
Eric Dumazet 已提交
538 539 540 541 542 543 544 545 546 547 548
		struct {
			/* These two members must be first. */
			struct sk_buff		*next;
			struct sk_buff		*prev;

			union {
				ktime_t		tstamp;
				struct skb_mstamp skb_mstamp;
			};
		};
		struct rb_node	rbnode; /* used in netem & tcp stack */
549
	};
550
	struct sock		*sk;
L
Linus Torvalds 已提交
551 552 553 554 555 556 557 558
	struct net_device	*dev;

	/*
	 * This is the control buffer. It is free to use for every
	 * layer. Please put your private variables there. If you
	 * want to keep them across layers you have to do a skb_clone()
	 * first. This is owned by whoever has the skb queued ATM.
	 */
559
	char			cb[48] __aligned(8);
L
Linus Torvalds 已提交
560

E
Eric Dumazet 已提交
561
	unsigned long		_skb_refdst;
562
	void			(*destructor)(struct sk_buff *skb);
563 564
#ifdef CONFIG_XFRM
	struct	sec_path	*sp;
565 566 567 568
#endif
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
	struct nf_conntrack	*nfct;
#endif
569
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
570
	struct nf_bridge_info	*nf_bridge;
571
#endif
L
Linus Torvalds 已提交
572
	unsigned int		len,
573 574 575
				data_len;
	__u16			mac_len,
				hdr_len;
576 577 578 579

	/* Following fields are _not_ copied in __copy_skb_header()
	 * Note that queue_mapping is here mostly to fill a hole.
	 */
580
	kmemcheck_bitfield_begin(flags1);
581 582
	__u16			queue_mapping;
	__u8			cloned:1,
583
				nohdr:1,
584
				fclone:2,
585
				peeked:1,
586 587 588
				head_frag:1,
				xmit_more:1;
	/* one bit hole */
589
	kmemcheck_bitfield_end(flags1);
590

591 592 593
	/* fields enclosed in headers_start/headers_end are copied
	 * using a single memcpy() in __copy_skb_header()
	 */
594
	/* private: */
595
	__u32			headers_start[0];
596
	/* public: */
597

598 599 600 601 602
/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX	(7 << 5)
#else
#define PKT_TYPE_MAX	7
L
Linus Torvalds 已提交
603
#endif
604
#define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
605

606
	__u8			__pkt_type_offset[0];
607
	__u8			pkt_type:3;
608
	__u8			pfmemalloc:1;
609 610 611 612 613
	__u8			ignore_df:1;
	__u8			nfctinfo:3;

	__u8			nf_trace:1;
	__u8			ip_summed:2;
614
	__u8			ooo_okay:1;
615
	__u8			l4_hash:1;
616
	__u8			sw_hash:1;
617 618
	__u8			wifi_acked_valid:1;
	__u8			wifi_acked:1;
619

620
	__u8			no_fcs:1;
621
	/* Indicates the inner headers are valid in the skbuff. */
622
	__u8			encapsulation:1;
623
	__u8			encap_hdr_csum:1;
624
	__u8			csum_valid:1;
625
	__u8			csum_complete_sw:1;
626 627
	__u8			csum_level:2;
	__u8			csum_bad:1;
628

629 630 631 632
#ifdef CONFIG_IPV6_NDISC_NODETYPE
	__u8			ndisc_nodetype:2;
#endif
	__u8			ipvs_property:1;
T
Tom Herbert 已提交
633
	__u8			inner_protocol_type:1;
634 635
	__u8			remcsum_offload:1;
	/* 3 or 5 bit hole */
636 637 638 639 640 641 642

#ifdef CONFIG_NET_SCHED
	__u16			tc_index;	/* traffic control index */
#ifdef CONFIG_NET_CLS_ACT
	__u16			tc_verd;	/* traffic control verdict */
#endif
#endif
643

644 645 646 647 648 649 650 651 652 653 654 655
	union {
		__wsum		csum;
		struct {
			__u16	csum_start;
			__u16	csum_offset;
		};
	};
	__u32			priority;
	int			skb_iif;
	__u32			hash;
	__be16			vlan_proto;
	__u16			vlan_tci;
E
Eric Dumazet 已提交
656 657 658 659 660
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
	union {
		unsigned int	napi_id;
		unsigned int	sender_cpu;
	};
661
#endif
662
	union {
663
#ifdef CONFIG_NETWORK_SECMARK
664 665 666 667
		__u32		secmark;
#endif
#ifdef CONFIG_NET_SWITCHDEV
		__u32		offload_fwd_mark;
668
#endif
669 670
	};

671 672
	union {
		__u32		mark;
E
Eric Dumazet 已提交
673
		__u32		reserved_tailroom;
674
	};
L
Linus Torvalds 已提交
675

T
Tom Herbert 已提交
676 677 678 679 680
	union {
		__be16		inner_protocol;
		__u8		inner_ipproto;
	};

681 682 683
	__u16			inner_transport_header;
	__u16			inner_network_header;
	__u16			inner_mac_header;
684 685

	__be16			protocol;
686 687 688
	__u16			transport_header;
	__u16			network_header;
	__u16			mac_header;
689

690
	/* private: */
691
	__u32			headers_end[0];
692
	/* public: */
693

L
Linus Torvalds 已提交
694
	/* These elements must be at the end, see alloc_skb() for details.  */
695
	sk_buff_data_t		tail;
696
	sk_buff_data_t		end;
L
Linus Torvalds 已提交
697
	unsigned char		*head,
698
				*data;
699 700
	unsigned int		truesize;
	atomic_t		users;
L
Linus Torvalds 已提交
701 702 703 704 705 706 707 708 709
};

#ifdef __KERNEL__
/*
 *	Handling routines are only of interest to the kernel
 */
#include <linux/slab.h>


710 711
#define SKB_ALLOC_FCLONE	0x01
#define SKB_ALLOC_RX		0x02
712
#define SKB_ALLOC_NAPI		0x04
713 714 715 716 717 718 719

/* Returns true if the skb was allocated from PFMEMALLOC reserves */
static inline bool skb_pfmemalloc(const struct sk_buff *skb)
{
	return unlikely(skb->pfmemalloc);
}

E
Eric Dumazet 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732
/*
 * skb might have a dst pointer attached, refcounted or not.
 * _skb_refdst low order bit is set if refcount was _not_ taken
 */
#define SKB_DST_NOREF	1UL
#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)

/**
 * skb_dst - returns skb dst_entry
 * @skb: buffer
 *
 * Returns skb dst_entry, regardless of reference taken or not.
 */
E
Eric Dumazet 已提交
733 734
static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
735 736 737 738 739 740 741
	/* If refdst was not refcounted, check we still are in a 
	 * rcu_read_lock section
	 */
	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
		!rcu_read_lock_held() &&
		!rcu_read_lock_bh_held());
	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
E
Eric Dumazet 已提交
742 743
}

E
Eric Dumazet 已提交
744 745 746 747 748 749 750 751
/**
 * skb_dst_set - sets skb dst
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was taken on dst and should
 * be released by skb_dst_drop()
 */
E
Eric Dumazet 已提交
752 753
static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
{
E
Eric Dumazet 已提交
754 755 756
	skb->_skb_refdst = (unsigned long)dst;
}

757 758 759 760 761 762 763 764 765 766 767 768
/**
 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was not taken on dst.
 * If dst entry is cached, we do not take reference and dst_release
 * will be avoided by refdst_drop. If dst entry is not cached, we take
 * reference, so that last dst_release can destroy the dst immediately.
 */
static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
{
769 770
	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
771
}
E
Eric Dumazet 已提交
772 773

/**
L
Lucas De Marchi 已提交
774
 * skb_dst_is_noref - Test if skb dst isn't refcounted
E
Eric Dumazet 已提交
775 776 777 778 779
 * @skb: buffer
 */
static inline bool skb_dst_is_noref(const struct sk_buff *skb)
{
	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
E
Eric Dumazet 已提交
780 781
}

E
Eric Dumazet 已提交
782 783
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
784
	return (struct rtable *)skb_dst(skb);
E
Eric Dumazet 已提交
785 786
}

787 788 789 790 791
void kfree_skb(struct sk_buff *skb);
void kfree_skb_list(struct sk_buff *segs);
void skb_tx_error(struct sk_buff *skb);
void consume_skb(struct sk_buff *skb);
void  __kfree_skb(struct sk_buff *skb);
792
extern struct kmem_cache *skbuff_head_cache;
E
Eric Dumazet 已提交
793

794 795 796
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
		      bool *fragstolen, int *delta_truesize);
E
Eric Dumazet 已提交
797

798 799
struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
			    int node);
E
Eric Dumazet 已提交
800
struct sk_buff *__build_skb(void *data, unsigned int frag_size);
801
struct sk_buff *build_skb(void *data, unsigned int frag_size);
802
static inline struct sk_buff *alloc_skb(unsigned int size,
A
Al Viro 已提交
803
					gfp_t priority)
804
{
E
Eric Dumazet 已提交
805
	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
806 807
}

808 809 810 811 812 813
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
				     unsigned long data_len,
				     int max_page_order,
				     int *errcode,
				     gfp_t gfp_mask);

814 815 816 817 818 819 820 821 822 823 824 825 826 827
/* Layout of fast clones : [skb1][skb2][fclone_ref] */
struct sk_buff_fclones {
	struct sk_buff	skb1;

	struct sk_buff	skb2;

	atomic_t	fclone_ref;
};

/**
 *	skb_fclone_busy - check if fclone is busy
 *	@skb: buffer
 *
 * Returns true is skb is a fast clone, and its clone is not freed.
828 829
 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 * so we also check that this didnt happen.
830
 */
831 832
static inline bool skb_fclone_busy(const struct sock *sk,
				   const struct sk_buff *skb)
833 834 835 836 837 838
{
	const struct sk_buff_fclones *fclones;

	fclones = container_of(skb, struct sk_buff_fclones, skb1);

	return skb->fclone == SKB_FCLONE_ORIG &&
839
	       atomic_read(&fclones->fclone_ref) > 1 &&
840
	       fclones->skb2.sk == sk;
841 842
}

843
static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
A
Al Viro 已提交
844
					       gfp_t priority)
845
{
846
	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
847 848
}

849
struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
850 851 852 853 854
static inline struct sk_buff *alloc_skb_head(gfp_t priority)
{
	return __alloc_skb_head(priority, -1);
}

855 856 857 858
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
859 860 861 862 863 864 865
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
				   gfp_t gfp_mask, bool fclone);
static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
					  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
}
866 867 868 869 870 871

int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
				     unsigned int headroom);
struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
				int newtailroom, gfp_t priority);
872 873
int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
			int offset, int len);
874 875 876 877
int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
		 int len);
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
int skb_pad(struct sk_buff *skb, int pad);
878
#define dev_kfree_skb(a)	consume_skb(a)
L
Linus Torvalds 已提交
879

880 881 882 883
int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
			    int getfrag(void *from, char *to, int offset,
					int len, int odd, struct sk_buff *skb),
			    void *from, int length);
884

885 886 887
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
			 int offset, size_t size);

E
Eric Dumazet 已提交
888
struct skb_seq_state {
889 890 891 892 893 894 895 896 897
	__u32		lower_offset;
	__u32		upper_offset;
	__u32		frag_idx;
	__u32		stepped_offset;
	struct sk_buff	*root_skb;
	struct sk_buff	*cur_skb;
	__u8		*frag_data;
};

898 899 900 901 902
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
			  unsigned int to, struct skb_seq_state *st);
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
			  struct skb_seq_state *st);
void skb_abort_seq_read(struct skb_seq_state *st);
903

904
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
905
			   unsigned int to, struct ts_config *config);
906

T
Tom Herbert 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
/*
 * Packet hash types specify the type of hash in skb_set_hash.
 *
 * Hash types refer to the protocol layer addresses which are used to
 * construct a packet's hash. The hashes are used to differentiate or identify
 * flows of the protocol layer for the hash type. Hash types are either
 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
 *
 * Properties of hashes:
 *
 * 1) Two packets in different flows have different hash values
 * 2) Two packets in the same flow should have the same hash value
 *
 * A hash at a higher layer is considered to be more specific. A driver should
 * set the most specific hash possible.
 *
 * A driver cannot indicate a more specific hash than the layer at which a hash
 * was computed. For instance an L3 hash cannot be set as an L4 hash.
 *
 * A driver may indicate a hash level which is less specific than the
 * actual layer the hash was computed on. For instance, a hash computed
 * at L4 may be considered an L3 hash. This should only be done if the
 * driver can't unambiguously determine that the HW computed the hash at
 * the higher layer. Note that the "should" in the second property above
 * permits this.
 */
enum pkt_hash_types {
	PKT_HASH_TYPE_NONE,	/* Undefined type */
	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
};

940
static inline void skb_clear_hash(struct sk_buff *skb)
T
Tom Herbert 已提交
941
{
942
	skb->hash = 0;
943
	skb->sw_hash = 0;
944 945 946 947 948 949 950 951 952 953 954 955 956 957
	skb->l4_hash = 0;
}

static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
{
	if (!skb->l4_hash)
		skb_clear_hash(skb);
}

static inline void
__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
{
	skb->l4_hash = is_l4;
	skb->sw_hash = is_sw;
958
	skb->hash = hash;
T
Tom Herbert 已提交
959 960
}

961 962 963 964 965 966 967 968 969 970 971 972 973
static inline void
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
{
	/* Used by drivers to set hash from HW */
	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
}

static inline void
__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
{
	__skb_set_hash(skb, hash, true, is_l4);
}

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
void __skb_get_hash(struct sk_buff *skb);
u32 skb_get_poff(const struct sk_buff *skb);
u32 __skb_get_poff(const struct sk_buff *skb, void *data,
		   const struct flow_keys *keys, int hlen);
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
			    void *data, int hlen_proto);

static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
					int thoff, u8 ip_proto)
{
	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
}

void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
			     const struct flow_dissector_key *key,
			     unsigned int key_count);

bool __skb_flow_dissect(const struct sk_buff *skb,
			struct flow_dissector *flow_dissector,
			void *target_container,
994 995
			void *data, __be16 proto, int nhoff, int hlen,
			unsigned int flags);
996 997 998

static inline bool skb_flow_dissect(const struct sk_buff *skb,
				    struct flow_dissector *flow_dissector,
999
				    void *target_container, unsigned int flags)
1000 1001
{
	return __skb_flow_dissect(skb, flow_dissector, target_container,
1002
				  NULL, 0, 0, 0, flags);
1003 1004 1005
}

static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1006 1007
					      struct flow_keys *flow,
					      unsigned int flags)
1008 1009 1010
{
	memset(flow, 0, sizeof(*flow));
	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1011
				  NULL, 0, 0, 0, flags);
1012 1013 1014 1015
}

static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
						  void *data, __be16 proto,
1016 1017
						  int nhoff, int hlen,
						  unsigned int flags)
1018 1019 1020
{
	memset(flow, 0, sizeof(*flow));
	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1021
				  data, proto, nhoff, hlen, flags);
1022 1023
}

1024
static inline __u32 skb_get_hash(struct sk_buff *skb)
1025
{
1026
	if (!skb->l4_hash && !skb->sw_hash)
1027
		__skb_get_hash(skb);
1028

1029
	return skb->hash;
1030 1031
}

1032
__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1033

1034
static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1035
{
1036 1037
	if (!skb->l4_hash && !skb->sw_hash) {
		struct flow_keys keys;
1038
		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1039

1040
		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1041
	}
1042 1043 1044 1045

	return skb->hash;
}

1046
__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1047

1048
static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1049
{
1050 1051
	if (!skb->l4_hash && !skb->sw_hash) {
		struct flow_keys keys;
1052
		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1053

1054
		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1055
	}
1056 1057 1058 1059

	return skb->hash;
}

T
Tom Herbert 已提交
1060 1061
__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);

T
Tom Herbert 已提交
1062 1063
static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
{
1064
	return skb->hash;
T
Tom Herbert 已提交
1065 1066
}

1067 1068
static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
{
1069
	to->hash = from->hash;
1070
	to->sw_hash = from->sw_hash;
1071
	to->l4_hash = from->l4_hash;
1072 1073
};

1074 1075 1076 1077 1078 1079 1080
static inline void skb_sender_cpu_clear(struct sk_buff *skb)
{
#ifdef CONFIG_XPS
	skb->sender_cpu = 0;
#endif
}

1081 1082 1083 1084 1085
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->end;
}
1086 1087 1088 1089 1090

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end;
}
1091 1092 1093 1094 1095
#else
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->end;
}
1096 1097 1098 1099 1100

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end - skb->head;
}
1101 1102
#endif

L
Linus Torvalds 已提交
1103
/* Internal */
1104
#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
L
Linus Torvalds 已提交
1105

1106 1107 1108 1109 1110
static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
{
	return &skb_shinfo(skb)->hwtstamps;
}

L
Linus Torvalds 已提交
1111 1112 1113 1114 1115 1116 1117 1118
/**
 *	skb_queue_empty - check if a queue is empty
 *	@list: queue head
 *
 *	Returns true if the queue is empty, false otherwise.
 */
static inline int skb_queue_empty(const struct sk_buff_head *list)
{
1119
	return list->next == (const struct sk_buff *) list;
L
Linus Torvalds 已提交
1120 1121
}

D
David S. Miller 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
/**
 *	skb_queue_is_last - check if skb is the last entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the last buffer on the list.
 */
static inline bool skb_queue_is_last(const struct sk_buff_head *list,
				     const struct sk_buff *skb)
{
1132
	return skb->next == (const struct sk_buff *) list;
D
David S. Miller 已提交
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/**
 *	skb_queue_is_first - check if skb is the first entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the first buffer on the list.
 */
static inline bool skb_queue_is_first(const struct sk_buff_head *list,
				      const struct sk_buff *skb)
{
1145
	return skb->prev == (const struct sk_buff *) list;
1146 1147
}

D
David S. Miller 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/**
 *	skb_queue_next - return the next packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the next packet in @list after @skb.  It is only valid to
 *	call this if skb_queue_is_last() evaluates to false.
 */
static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_last(list, skb));
	return skb->next;
}

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
/**
 *	skb_queue_prev - return the prev packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the prev packet in @list before @skb.  It is only valid to
 *	call this if skb_queue_is_first() evaluates to false.
 */
static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_first(list, skb));
	return skb->prev;
}

L
Linus Torvalds 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/**
 *	skb_get - reference buffer
 *	@skb: buffer to reference
 *
 *	Makes another reference to a socket buffer and returns a pointer
 *	to the buffer.
 */
static inline struct sk_buff *skb_get(struct sk_buff *skb)
{
	atomic_inc(&skb->users);
	return skb;
}

/*
 * If users == 1, we are the only owner and are can avoid redundant
 * atomic change.
 */

/**
 *	skb_cloned - is the buffer a clone
 *	@skb: buffer to check
 *
 *	Returns true if the buffer was generated with skb_clone() and is
 *	one of multiple shared copies of the buffer. Cloned buffers are
 *	shared data so must not be written to under normal circumstances.
 */
static inline int skb_cloned(const struct sk_buff *skb)
{
	return skb->cloned &&
	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
	might_sleep_if(pri & __GFP_WAIT);

	if (skb_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

L
Linus Torvalds 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/**
 *	skb_header_cloned - is the header a clone
 *	@skb: buffer to check
 *
 *	Returns true if modifying the header part of the buffer requires
 *	the data to be copied.
 */
static inline int skb_header_cloned(const struct sk_buff *skb)
{
	int dataref;

	if (!skb->cloned)
		return 0;

	dataref = atomic_read(&skb_shinfo(skb)->dataref);
	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
	return dataref != 1;
}

/**
 *	skb_header_release - release reference to header
 *	@skb: buffer to operate on
 *
 *	Drop a reference to the header part of the buffer.  This is done
 *	by acquiring a payload reference.  You must not read from the header
 *	part of skb->data after this.
1252
 *	Note : Check if you can use __skb_header_release() instead.
L
Linus Torvalds 已提交
1253 1254 1255 1256 1257 1258 1259 1260
 */
static inline void skb_header_release(struct sk_buff *skb)
{
	BUG_ON(skb->nohdr);
	skb->nohdr = 1;
	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
/**
 *	__skb_header_release - release reference to header
 *	@skb: buffer to operate on
 *
 *	Variant of skb_header_release() assuming skb is private to caller.
 *	We can avoid one atomic operation.
 */
static inline void __skb_header_release(struct sk_buff *skb)
{
	skb->nohdr = 1;
	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
}


L
Linus Torvalds 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
/**
 *	skb_shared - is the buffer shared
 *	@skb: buffer to check
 *
 *	Returns true if more than one person has a reference to this
 *	buffer.
 */
static inline int skb_shared(const struct sk_buff *skb)
{
	return atomic_read(&skb->users) != 1;
}

/**
 *	skb_share_check - check if buffer is shared and if so clone it
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the buffer is shared the buffer is cloned and the old copy
 *	drops a reference. A new clone with a single reference is returned.
 *	If the buffer is not shared the original buffer is returned. When
 *	being called from interrupt status or with spinlocks held pri must
 *	be GFP_ATOMIC.
 *
 *	NULL is returned on a memory allocation failure.
 */
1300
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
L
Linus Torvalds 已提交
1301 1302 1303 1304
{
	might_sleep_if(pri & __GFP_WAIT);
	if (skb_shared(skb)) {
		struct sk_buff *nskb = skb_clone(skb, pri);
1305 1306 1307 1308 1309

		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		skb = nskb;
	}
	return skb;
}

/*
 *	Copy shared buffers into a new sk_buff. We effectively do COW on
 *	packets to handle cases where we have a local reader and forward
 *	and a couple of other messy ones. The normal one is tcpdumping
 *	a packet thats being forwarded.
 */

/**
 *	skb_unshare - make a copy of a shared buffer
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the socket buffer is a clone then this function creates a new
 *	copy of the data, drops a reference count on the old copy and returns
 *	the new copy with the reference count at 1. If the buffer is not a clone
 *	the original buffer is returned. When called with a spinlock held or
 *	from interrupt state @pri must be %GFP_ATOMIC
 *
 *	%NULL is returned on a memory allocation failure.
 */
1335
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
A
Al Viro 已提交
1336
					  gfp_t pri)
L
Linus Torvalds 已提交
1337 1338 1339 1340
{
	might_sleep_if(pri & __GFP_WAIT);
	if (skb_cloned(skb)) {
		struct sk_buff *nskb = skb_copy(skb, pri);
1341 1342 1343 1344 1345 1346

		/* Free our shared copy */
		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1347 1348 1349 1350 1351 1352
		skb = nskb;
	}
	return skb;
}

/**
1353
 *	skb_peek - peek at the head of an &sk_buff_head
L
Linus Torvalds 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the head element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1365
static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1366
{
1367 1368 1369 1370 1371
	struct sk_buff *skb = list_->next;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;
L
Linus Torvalds 已提交
1372 1373
}

P
Pavel Emelyanov 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
/**
 *	skb_peek_next - peek skb following the given one from a queue
 *	@skb: skb to start from
 *	@list_: list to peek at
 *
 *	Returns %NULL when the end of the list is met or a pointer to the
 *	next element. The reference count is not incremented and the
 *	reference is therefore volatile. Use with caution.
 */
static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
		const struct sk_buff_head *list_)
{
	struct sk_buff *next = skb->next;
1387

P
Pavel Emelyanov 已提交
1388 1389 1390 1391 1392
	if (next == (struct sk_buff *)list_)
		next = NULL;
	return next;
}

L
Linus Torvalds 已提交
1393
/**
1394
 *	skb_peek_tail - peek at the tail of an &sk_buff_head
L
Linus Torvalds 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the tail element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1406
static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1407
{
1408 1409 1410 1411 1412 1413
	struct sk_buff *skb = list_->prev;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;

L
Linus Torvalds 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
}

/**
 *	skb_queue_len	- get queue length
 *	@list_: list to measure
 *
 *	Return the length of an &sk_buff queue.
 */
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
{
	return list_->qlen;
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/**
 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 *	@list: queue to initialize
 *
 *	This initializes only the list and queue length aspects of
 *	an sk_buff_head object.  This allows to initialize the list
 *	aspects of an sk_buff_head without reinitializing things like
 *	the spinlock.  It can also be used for on-stack sk_buff_head
 *	objects where the spinlock is known to not be used.
 */
static inline void __skb_queue_head_init(struct sk_buff_head *list)
{
	list->prev = list->next = (struct sk_buff *)list;
	list->qlen = 0;
}

1443 1444 1445 1446 1447 1448 1449 1450
/*
 * This function creates a split out lock class for each invocation;
 * this is needed for now since a whole lot of users of the skb-queue
 * infrastructure in drivers have different locking usage (in hardirq)
 * than the networking core (in softirq only). In the long run either the
 * network layer or drivers should need annotation to consolidate the
 * main types of usage into 3 classes.
 */
L
Linus Torvalds 已提交
1451 1452 1453
static inline void skb_queue_head_init(struct sk_buff_head *list)
{
	spin_lock_init(&list->lock);
1454
	__skb_queue_head_init(list);
L
Linus Torvalds 已提交
1455 1456
}

1457 1458 1459 1460 1461 1462 1463
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
		struct lock_class_key *class)
{
	skb_queue_head_init(list);
	lockdep_set_class(&list->lock, class);
}

L
Linus Torvalds 已提交
1464
/*
1465
 *	Insert an sk_buff on a list.
L
Linus Torvalds 已提交
1466 1467 1468 1469
 *
 *	The "__skb_xxxx()" functions are the non-atomic ones that
 *	can only be called with interrupts disabled.
 */
1470 1471
void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1472 1473 1474 1475 1476 1477 1478 1479 1480
static inline void __skb_insert(struct sk_buff *newsk,
				struct sk_buff *prev, struct sk_buff *next,
				struct sk_buff_head *list)
{
	newsk->next = next;
	newsk->prev = prev;
	next->prev  = prev->next = newsk;
	list->qlen++;
}
L
Linus Torvalds 已提交
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static inline void __skb_queue_splice(const struct sk_buff_head *list,
				      struct sk_buff *prev,
				      struct sk_buff *next)
{
	struct sk_buff *first = list->next;
	struct sk_buff *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 *	skb_queue_splice - join two skb lists, this is designed for stacks
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice(const struct sk_buff_head *list,
				    struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1506
		head->qlen += list->qlen;
1507 1508 1509 1510
	}
}

/**
E
Eric Dumazet 已提交
1511
 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_init(struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1522
		head->qlen += list->qlen;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		__skb_queue_head_init(list);
	}
}

/**
 *	skb_queue_splice_tail - join two skb lists, each list being a queue
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1537
		head->qlen += list->qlen;
1538 1539 1540 1541
	}
}

/**
E
Eric Dumazet 已提交
1542
 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	Each of the lists is a queue.
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
					      struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1554
		head->qlen += list->qlen;
1555 1556 1557 1558
		__skb_queue_head_init(list);
	}
}

L
Linus Torvalds 已提交
1559
/**
1560
 *	__skb_queue_after - queue a buffer at the list head
L
Linus Torvalds 已提交
1561
 *	@list: list to use
1562
 *	@prev: place after this buffer
L
Linus Torvalds 已提交
1563 1564
 *	@newsk: buffer to queue
 *
1565
 *	Queue a buffer int the middle of a list. This function takes no locks
L
Linus Torvalds 已提交
1566 1567 1568 1569
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1570 1571 1572
static inline void __skb_queue_after(struct sk_buff_head *list,
				     struct sk_buff *prev,
				     struct sk_buff *newsk)
L
Linus Torvalds 已提交
1573
{
1574
	__skb_insert(newsk, prev, prev->next, list);
L
Linus Torvalds 已提交
1575 1576
}

1577 1578
void skb_append(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1579

1580 1581 1582 1583 1584 1585 1586
static inline void __skb_queue_before(struct sk_buff_head *list,
				      struct sk_buff *next,
				      struct sk_buff *newsk)
{
	__skb_insert(newsk, next->prev, next, list);
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
/**
 *	__skb_queue_head - queue a buffer at the list head
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the start of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1597
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1598 1599 1600 1601 1602 1603
static inline void __skb_queue_head(struct sk_buff_head *list,
				    struct sk_buff *newsk)
{
	__skb_queue_after(list, (struct sk_buff *)list, newsk);
}

L
Linus Torvalds 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
/**
 *	__skb_queue_tail - queue a buffer at the list tail
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the end of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1614
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
L
Linus Torvalds 已提交
1615 1616 1617
static inline void __skb_queue_tail(struct sk_buff_head *list,
				   struct sk_buff *newsk)
{
1618
	__skb_queue_before(list, (struct sk_buff *)list, newsk);
L
Linus Torvalds 已提交
1619 1620 1621 1622 1623 1624
}

/*
 * remove sk_buff from list. _Must_ be called atomically, and with
 * the list known..
 */
1625
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
	struct sk_buff *next, *prev;

	list->qlen--;
	next	   = skb->next;
	prev	   = skb->prev;
	skb->next  = skb->prev = NULL;
	next->prev = prev;
	prev->next = next;
}

1638 1639 1640 1641 1642 1643 1644 1645
/**
 *	__skb_dequeue - remove from the head of the queue
 *	@list: list to dequeue from
 *
 *	Remove the head of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The head item is
 *	returned or %NULL if the list is empty.
 */
1646
struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1647 1648 1649 1650 1651 1652 1653
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662

/**
 *	__skb_dequeue_tail - remove from the tail of the queue
 *	@list: list to dequeue from
 *
 *	Remove the tail of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The tail item is
 *	returned or %NULL if the list is empty.
 */
1663
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
L
Linus Torvalds 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek_tail(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}


1673
static inline bool skb_is_nonlinear(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
{
	return skb->data_len;
}

static inline unsigned int skb_headlen(const struct sk_buff *skb)
{
	return skb->len - skb->data_len;
}

static inline int skb_pagelen(const struct sk_buff *skb)
{
	int i, len = 0;

	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
E
Eric Dumazet 已提交
1688
		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
L
Linus Torvalds 已提交
1689 1690 1691
	return len + skb_headlen(skb);
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/**
 * __skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * Initialises the @i'th fragment of @skb to point to &size bytes at
 * offset @off within @page.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
					struct page *page, int off, int size)
L
Linus Torvalds 已提交
1707 1708 1709
{
	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

1710
	/*
1711 1712 1713
	 * Propagate page pfmemalloc to the skb if we can. The problem is
	 * that not all callers have unique ownership of the page but rely
	 * on page_is_pfmemalloc doing the right thing(tm).
1714
	 */
1715
	frag->page.p		  = page;
L
Linus Torvalds 已提交
1716
	frag->page_offset	  = off;
E
Eric Dumazet 已提交
1717
	skb_frag_size_set(frag, size);
1718 1719

	page = compound_head(page);
1720
	if (page_is_pfmemalloc(page))
1721
		skb->pfmemalloc	= true;
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
}

/**
 * skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
M
Mathias Krause 已提交
1733
 * @skb to point to @size bytes at offset @off within @page. In
1734 1735 1736 1737 1738 1739 1740 1741
 * addition updates @skb such that @i is the last fragment.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
				      struct page *page, int off, int size)
{
	__skb_fill_page_desc(skb, i, page, off, size);
L
Linus Torvalds 已提交
1742 1743 1744
	skb_shinfo(skb)->nr_frags = i + 1;
}

1745 1746
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
		     int size, unsigned int truesize);
P
Peter Zijlstra 已提交
1747

J
Jason Wang 已提交
1748 1749 1750
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
			  unsigned int truesize);

L
Linus Torvalds 已提交
1751
#define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1752
#define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
L
Linus Torvalds 已提交
1753 1754
#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data - skb->head;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb_reset_tail_pointer(skb);
	skb->tail += offset;
}
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
#else /* NET_SKBUFF_DATA_USES_OFFSET */
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb->tail = skb->data + offset;
}
1787

1788 1789
#endif /* NET_SKBUFF_DATA_USES_OFFSET */

L
Linus Torvalds 已提交
1790 1791 1792
/*
 *	Add data to an sk_buff
 */
M
Mathias Krause 已提交
1793
unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1794
unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1795 1796
static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
{
1797
	unsigned char *tmp = skb_tail_pointer(skb);
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802 1803
	SKB_LINEAR_ASSERT(skb);
	skb->tail += len;
	skb->len  += len;
	return tmp;
}

1804
unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1805 1806 1807 1808 1809 1810 1811
static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
{
	skb->data -= len;
	skb->len  += len;
	return skb->data;
}

1812
unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1813 1814 1815 1816 1817 1818 1819
static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
{
	skb->len -= len;
	BUG_ON(skb->len < skb->data_len);
	return skb->data += len;
}

1820 1821 1822 1823 1824
static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
}

1825
unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
L
Linus Torvalds 已提交
1826 1827 1828 1829

static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
{
	if (len > skb_headlen(skb) &&
G
Gerrit Renker 已提交
1830
	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
L
Linus Torvalds 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
		return NULL;
	skb->len -= len;
	return skb->data += len;
}

static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
}

static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
{
	if (likely(len <= skb_headlen(skb)))
		return 1;
	if (unlikely(len > skb->len))
		return 0;
G
Gerrit Renker 已提交
1847
	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852 1853 1854 1855
}

/**
 *	skb_headroom - bytes at buffer head
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the head of an &sk_buff.
 */
1856
static inline unsigned int skb_headroom(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
{
	return skb->data - skb->head;
}

/**
 *	skb_tailroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 */
static inline int skb_tailroom(const struct sk_buff *skb)
{
1869
	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
L
Linus Torvalds 已提交
1870 1871
}

1872 1873 1874 1875 1876 1877 1878 1879 1880
/**
 *	skb_availroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 *	allocated by sk_stream_alloc()
 */
static inline int skb_availroom(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
1881 1882 1883 1884
	if (skb_is_nonlinear(skb))
		return 0;

	return skb->end - skb->tail - skb->reserved_tailroom;
1885 1886
}

L
Linus Torvalds 已提交
1887 1888 1889 1890 1891 1892 1893 1894
/**
 *	skb_reserve - adjust headroom
 *	@skb: buffer to alter
 *	@len: bytes to move
 *
 *	Increase the headroom of an empty &sk_buff by reducing the tail
 *	room. This is only allowed for an empty buffer.
 */
1895
static inline void skb_reserve(struct sk_buff *skb, int len)
L
Linus Torvalds 已提交
1896 1897 1898 1899 1900
{
	skb->data += len;
	skb->tail += len;
}

T
Tom Herbert 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
#define ENCAP_TYPE_ETHER	0
#define ENCAP_TYPE_IPPROTO	1

static inline void skb_set_inner_protocol(struct sk_buff *skb,
					  __be16 protocol)
{
	skb->inner_protocol = protocol;
	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
}

static inline void skb_set_inner_ipproto(struct sk_buff *skb,
					 __u8 ipproto)
{
	skb->inner_ipproto = ipproto;
	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
}

1918 1919
static inline void skb_reset_inner_headers(struct sk_buff *skb)
{
1920
	skb->inner_mac_header = skb->mac_header;
1921 1922 1923 1924
	skb->inner_network_header = skb->network_header;
	skb->inner_transport_header = skb->transport_header;
}

1925 1926 1927 1928 1929
static inline void skb_reset_mac_len(struct sk_buff *skb)
{
	skb->mac_len = skb->network_header - skb->mac_header;
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
static inline unsigned char *skb_inner_transport_header(const struct sk_buff
							*skb)
{
	return skb->head + skb->inner_transport_header;
}

static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
{
	skb->inner_transport_header = skb->data - skb->head;
}

static inline void skb_set_inner_transport_header(struct sk_buff *skb,
						   const int offset)
{
	skb_reset_inner_transport_header(skb);
	skb->inner_transport_header += offset;
}

static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_network_header;
}

static inline void skb_reset_inner_network_header(struct sk_buff *skb)
{
	skb->inner_network_header = skb->data - skb->head;
}

static inline void skb_set_inner_network_header(struct sk_buff *skb,
						const int offset)
{
	skb_reset_inner_network_header(skb);
	skb->inner_network_header += offset;
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_mac_header;
}

static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
{
	skb->inner_mac_header = skb->data - skb->head;
}

static inline void skb_set_inner_mac_header(struct sk_buff *skb,
					    const int offset)
{
	skb_reset_inner_mac_header(skb);
	skb->inner_mac_header += offset;
}
1981 1982
static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
{
C
Cong Wang 已提交
1983
	return skb->transport_header != (typeof(skb->transport_header))~0U;
1984 1985
}

1986 1987
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
1988
	return skb->head + skb->transport_header;
1989 1990
}

1991 1992
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
1993
	skb->transport_header = skb->data - skb->head;
1994 1995
}

1996 1997 1998
static inline void skb_set_transport_header(struct sk_buff *skb,
					    const int offset)
{
1999 2000
	skb_reset_transport_header(skb);
	skb->transport_header += offset;
2001 2002
}

2003 2004
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
2005
	return skb->head + skb->network_header;
2006 2007
}

2008 2009
static inline void skb_reset_network_header(struct sk_buff *skb)
{
2010
	skb->network_header = skb->data - skb->head;
2011 2012
}

2013 2014
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
2015 2016
	skb_reset_network_header(skb);
	skb->network_header += offset;
2017 2018
}

2019
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2020
{
2021
	return skb->head + skb->mac_header;
2022 2023
}

2024
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2025
{
C
Cong Wang 已提交
2026
	return skb->mac_header != (typeof(skb->mac_header))~0U;
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
}

static inline void skb_reset_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->data - skb->head;
}

static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
	skb_reset_mac_header(skb);
	skb->mac_header += offset;
}

2040 2041 2042 2043 2044
static inline void skb_pop_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->network_header;
}

2045 2046 2047 2048 2049 2050 2051
static inline void skb_probe_transport_header(struct sk_buff *skb,
					      const int offset_hint)
{
	struct flow_keys keys;

	if (skb_transport_header_was_set(skb))
		return;
2052
	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2053
		skb_set_transport_header(skb, keys.control.thoff);
2054 2055 2056 2057
	else
		skb_set_transport_header(skb, offset_hint);
}

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
static inline void skb_mac_header_rebuild(struct sk_buff *skb)
{
	if (skb_mac_header_was_set(skb)) {
		const unsigned char *old_mac = skb_mac_header(skb);

		skb_set_mac_header(skb, -skb->mac_len);
		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
	}
}

2068 2069 2070 2071 2072
static inline int skb_checksum_start_offset(const struct sk_buff *skb)
{
	return skb->csum_start - skb_headroom(skb);
}

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
static inline int skb_transport_offset(const struct sk_buff *skb)
{
	return skb_transport_header(skb) - skb->data;
}

static inline u32 skb_network_header_len(const struct sk_buff *skb)
{
	return skb->transport_header - skb->network_header;
}

2083 2084 2085 2086 2087
static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
{
	return skb->inner_transport_header - skb->inner_network_header;
}

2088 2089 2090 2091
static inline int skb_network_offset(const struct sk_buff *skb)
{
	return skb_network_header(skb) - skb->data;
}
2092

2093 2094 2095 2096 2097
static inline int skb_inner_network_offset(const struct sk_buff *skb)
{
	return skb_inner_network_header(skb) - skb->data;
}

2098 2099 2100 2101 2102
static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
{
	return pskb_may_pull(skb, skb_network_offset(skb) + len);
}

L
Linus Torvalds 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
/*
 * CPUs often take a performance hit when accessing unaligned memory
 * locations. The actual performance hit varies, it can be small if the
 * hardware handles it or large if we have to take an exception and fix it
 * in software.
 *
 * Since an ethernet header is 14 bytes network drivers often end up with
 * the IP header at an unaligned offset. The IP header can be aligned by
 * shifting the start of the packet by 2 bytes. Drivers should do this
 * with:
 *
2114
 * skb_reserve(skb, NET_IP_ALIGN);
L
Linus Torvalds 已提交
2115 2116 2117 2118
 *
 * The downside to this alignment of the IP header is that the DMA is now
 * unaligned. On some architectures the cost of an unaligned DMA is high
 * and this cost outweighs the gains made by aligning the IP header.
2119
 *
L
Linus Torvalds 已提交
2120 2121 2122 2123 2124 2125 2126
 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
 * to be overridden.
 */
#ifndef NET_IP_ALIGN
#define NET_IP_ALIGN	2
#endif

2127 2128 2129 2130
/*
 * The networking layer reserves some headroom in skb data (via
 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
 * the header has to grow. In the default case, if the header has to grow
2131
 * 32 bytes or less we avoid the reallocation.
2132 2133 2134 2135 2136 2137 2138
 *
 * Unfortunately this headroom changes the DMA alignment of the resulting
 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
 * on some architectures. An architecture can override this value,
 * perhaps setting it to a cacheline in size (since that will maintain
 * cacheline alignment of the DMA). It must be a power of 2.
 *
2139
 * Various parts of the networking layer expect at least 32 bytes of
2140
 * headroom, you should not reduce this.
2141 2142 2143 2144
 *
 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
 * to reduce average number of cache lines per packet.
 * get_rps_cpus() for example only access one 64 bytes aligned block :
2145
 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2146 2147
 */
#ifndef NET_SKB_PAD
2148
#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2149 2150
#endif

2151
int ___pskb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2152 2153 2154

static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
{
2155
	if (unlikely(skb_is_nonlinear(skb))) {
2156 2157 2158
		WARN_ON(1);
		return;
	}
2159 2160
	skb->len = len;
	skb_set_tail_pointer(skb, len);
L
Linus Torvalds 已提交
2161 2162
}

2163
void skb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2164 2165 2166

static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
{
2167 2168 2169 2170
	if (skb->data_len)
		return ___pskb_trim(skb, len);
	__skb_trim(skb, len);
	return 0;
L
Linus Torvalds 已提交
2171 2172 2173 2174 2175 2176 2177
}

static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
{
	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
/**
 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
 *	@skb: buffer to alter
 *	@len: new length
 *
 *	This is identical to pskb_trim except that the caller knows that
 *	the skb is not cloned so we should never get an error due to out-
 *	of-memory.
 */
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
{
	int err = pskb_trim(skb, len);
	BUG_ON(err);
}

L
Linus Torvalds 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
/**
 *	skb_orphan - orphan a buffer
 *	@skb: buffer to orphan
 *
 *	If a buffer currently has an owner then we call the owner's
 *	destructor function and make the @skb unowned. The buffer continues
 *	to exist but is no longer charged to its former owner.
 */
static inline void skb_orphan(struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2203
	if (skb->destructor) {
L
Linus Torvalds 已提交
2204
		skb->destructor(skb);
E
Eric Dumazet 已提交
2205 2206
		skb->destructor = NULL;
		skb->sk		= NULL;
2207 2208
	} else {
		BUG_ON(skb->sk);
E
Eric Dumazet 已提交
2209
	}
L
Linus Torvalds 已提交
2210 2211
}

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
/**
 *	skb_orphan_frags - orphan the frags contained in a buffer
 *	@skb: buffer to orphan frags from
 *	@gfp_mask: allocation mask for replacement pages
 *
 *	For each frag in the SKB which needs a destructor (i.e. has an
 *	owner) create a copy of that frag and release the original
 *	page by calling the destructor.
 */
static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
{
	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

L
Linus Torvalds 已提交
2228 2229 2230 2231 2232 2233 2234 2235
/**
 *	__skb_queue_purge - empty a list
 *	@list: list to empty
 *
 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
 *	the list and one reference dropped. This function does not take the
 *	list lock and the caller must hold the relevant locks to use it.
 */
2236
void skb_queue_purge(struct sk_buff_head *list);
L
Linus Torvalds 已提交
2237 2238 2239 2240 2241 2242 2243
static inline void __skb_queue_purge(struct sk_buff_head *list)
{
	struct sk_buff *skb;
	while ((skb = __skb_dequeue(list)) != NULL)
		kfree_skb(skb);
}

2244
void *netdev_alloc_frag(unsigned int fragsz);
L
Linus Torvalds 已提交
2245

2246 2247
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
				   gfp_t gfp_mask);
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

/**
 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
 *	@dev: network device to receive on
 *	@length: length to allocate
 *
 *	Allocate a new &sk_buff and assign it a usage count of one. The
 *	buffer has unspecified headroom built in. Users should allocate
 *	the headroom they think they need without accounting for the
 *	built in space. The built in space is used for optimisations.
 *
 *	%NULL is returned if there is no free memory. Although this function
 *	allocates memory it can be called from an interrupt.
 */
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2263
					       unsigned int length)
2264 2265 2266 2267
{
	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
}

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
/* legacy helper around __netdev_alloc_skb() */
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
					      gfp_t gfp_mask)
{
	return __netdev_alloc_skb(NULL, length, gfp_mask);
}

/* legacy helper around netdev_alloc_skb() */
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
	return netdev_alloc_skb(NULL, length);
}


2282 2283
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length, gfp_t gfp)
2284
{
2285
	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2286 2287 2288 2289 2290 2291

	if (NET_IP_ALIGN && skb)
		skb_reserve(skb, NET_IP_ALIGN);
	return skb;
}

2292 2293 2294 2295 2296 2297
static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length)
{
	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
}

2298 2299 2300 2301 2302
static inline void skb_free_frag(void *addr)
{
	__free_page_frag(addr);
}

2303
void *napi_alloc_frag(unsigned int fragsz);
2304 2305 2306 2307 2308 2309 2310
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
				 unsigned int length, gfp_t gfp_mask);
static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
					     unsigned int length)
{
	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
}
2311

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
/**
 * __dev_alloc_pages - allocate page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 * @order: size of the allocation
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
*/
static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
					     unsigned int order)
{
	/* This piece of code contains several assumptions.
	 * 1.  This is for device Rx, therefor a cold page is preferred.
	 * 2.  The expectation is the user wants a compound page.
	 * 3.  If requesting a order 0 page it will not be compound
	 *     due to the check to see if order has a value in prep_new_page
	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
	 *     code in gfp_to_alloc_flags that should be enforcing this.
	 */
	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;

	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
}

static inline struct page *dev_alloc_pages(unsigned int order)
{
	return __dev_alloc_pages(GFP_ATOMIC, order);
}

/**
 * __dev_alloc_page - allocate a page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
 */
static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
{
	return __dev_alloc_pages(gfp_mask, 0);
}

static inline struct page *dev_alloc_page(void)
{
	return __dev_alloc_page(GFP_ATOMIC);
}

2360 2361 2362 2363 2364 2365 2366 2367
/**
 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
 *	@page: The page that was allocated from skb_alloc_page
 *	@skb: The skb that may need pfmemalloc set
 */
static inline void skb_propagate_pfmemalloc(struct page *page,
					     struct sk_buff *skb)
{
2368
	if (page_is_pfmemalloc(page))
2369 2370 2371
		skb->pfmemalloc = true;
}

2372
/**
2373
 * skb_frag_page - retrieve the page referred to by a paged fragment
2374 2375 2376 2377 2378 2379
 * @frag: the paged fragment
 *
 * Returns the &struct page associated with @frag.
 */
static inline struct page *skb_frag_page(const skb_frag_t *frag)
{
2380
	return frag->page.p;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
}

/**
 * __skb_frag_ref - take an addition reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Takes an additional reference on the paged fragment @frag.
 */
static inline void __skb_frag_ref(skb_frag_t *frag)
{
	get_page(skb_frag_page(frag));
}

/**
 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset.
 *
 * Takes an additional reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_ref(struct sk_buff *skb, int f)
{
	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
}

/**
 * __skb_frag_unref - release a reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Releases a reference on the paged fragment @frag.
 */
static inline void __skb_frag_unref(skb_frag_t *frag)
{
	put_page(skb_frag_page(frag));
}

/**
 * skb_frag_unref - release a reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset
 *
 * Releases a reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_unref(struct sk_buff *skb, int f)
{
	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
}

/**
 * skb_frag_address - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. The page must already
 * be mapped.
 */
static inline void *skb_frag_address(const skb_frag_t *frag)
{
	return page_address(skb_frag_page(frag)) + frag->page_offset;
}

/**
 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. Checks that the page
 * is mapped and returns %NULL otherwise.
 */
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
{
	void *ptr = page_address(skb_frag_page(frag));
	if (unlikely(!ptr))
		return NULL;

	return ptr + frag->page_offset;
}

/**
 * __skb_frag_set_page - sets the page contained in a paged fragment
 * @frag: the paged fragment
 * @page: the page to set
 *
 * Sets the fragment @frag to contain @page.
 */
static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
{
2466
	frag->page.p = page;
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
}

/**
 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
 * @skb: the buffer
 * @f: the fragment offset
 * @page: the page to set
 *
 * Sets the @f'th fragment of @skb to contain @page.
 */
static inline void skb_frag_set_page(struct sk_buff *skb, int f,
				     struct page *page)
{
	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
}

E
Eric Dumazet 已提交
2483 2484
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);

2485 2486
/**
 * skb_frag_dma_map - maps a paged fragment via the DMA API
2487
 * @dev: the device to map the fragment to
2488 2489 2490 2491
 * @frag: the paged fragment to map
 * @offset: the offset within the fragment (starting at the
 *          fragment's own offset)
 * @size: the number of bytes to map
2492
 * @dir: the direction of the mapping (%PCI_DMA_*)
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
 *
 * Maps the page associated with @frag to @device.
 */
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
					  const skb_frag_t *frag,
					  size_t offset, size_t size,
					  enum dma_data_direction dir)
{
	return dma_map_page(dev, skb_frag_page(frag),
			    frag->page_offset + offset, size, dir);
}

E
Eric Dumazet 已提交
2505 2506 2507 2508 2509 2510
static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
					gfp_t gfp_mask)
{
	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
}

2511 2512 2513 2514 2515 2516 2517 2518

static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
						  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
}


2519 2520 2521 2522 2523 2524 2525 2526
/**
 *	skb_clone_writable - is the header of a clone writable
 *	@skb: buffer to check
 *	@len: length up to which to write
 *
 *	Returns true if modifying the header part of the cloned buffer
 *	does not requires the data to be copied.
 */
2527
static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2528 2529 2530 2531 2532
{
	return !skb_header_cloned(skb) &&
	       skb_headroom(skb) + len <= skb->hdr_len;
}

H
Herbert Xu 已提交
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
			    int cloned)
{
	int delta = 0;

	if (headroom > skb_headroom(skb))
		delta = headroom - skb_headroom(skb);

	if (delta || cloned)
		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
					GFP_ATOMIC);
	return 0;
}

L
Linus Torvalds 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
/**
 *	skb_cow - copy header of skb when it is required
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	If the skb passed lacks sufficient headroom or its data part
 *	is shared, data is reallocated. If reallocation fails, an error
 *	is returned and original skb is not changed.
 *
 *	The result is skb with writable area skb->head...skb->tail
 *	and at least @headroom of space at head.
 */
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
{
H
Herbert Xu 已提交
2561 2562
	return __skb_cow(skb, headroom, skb_cloned(skb));
}
L
Linus Torvalds 已提交
2563

H
Herbert Xu 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
/**
 *	skb_cow_head - skb_cow but only making the head writable
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	This function is identical to skb_cow except that we replace the
 *	skb_cloned check by skb_header_cloned.  It should be used when
 *	you only need to push on some header and do not need to modify
 *	the data.
 */
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
{
	return __skb_cow(skb, headroom, skb_header_cloned(skb));
L
Linus Torvalds 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585
}

/**
 *	skb_padto	- pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
2586 2587
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
L
Linus Torvalds 已提交
2588
 */
2589
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2590 2591 2592
{
	unsigned int size = skb->len;
	if (likely(size >= len))
2593
		return 0;
G
Gerrit Renker 已提交
2594
	return skb_pad(skb, len - size);
L
Linus Torvalds 已提交
2595 2596
}

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
/**
 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
 */
static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
{
	unsigned int size = skb->len;

	if (unlikely(size < len)) {
		len -= size;
		if (skb_pad(skb, len))
			return -ENOMEM;
		__skb_put(skb, len);
	}
	return 0;
}

L
Linus Torvalds 已提交
2620
static inline int skb_add_data(struct sk_buff *skb,
2621
			       struct iov_iter *from, int copy)
L
Linus Torvalds 已提交
2622 2623 2624 2625
{
	const int off = skb->len;

	if (skb->ip_summed == CHECKSUM_NONE) {
2626 2627 2628
		__wsum csum = 0;
		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
					    &csum, from) == copy) {
L
Linus Torvalds 已提交
2629 2630 2631
			skb->csum = csum_block_add(skb->csum, csum, off);
			return 0;
		}
2632
	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
L
Linus Torvalds 已提交
2633 2634 2635 2636 2637 2638
		return 0;

	__skb_trim(skb, off);
	return -EFAULT;
}

2639 2640
static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
				    const struct page *page, int off)
L
Linus Torvalds 已提交
2641 2642
{
	if (i) {
E
Eric Dumazet 已提交
2643
		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
L
Linus Torvalds 已提交
2644

2645
		return page == skb_frag_page(frag) &&
E
Eric Dumazet 已提交
2646
		       off == frag->page_offset + skb_frag_size(frag);
L
Linus Torvalds 已提交
2647
	}
2648
	return false;
L
Linus Torvalds 已提交
2649 2650
}

H
Herbert Xu 已提交
2651 2652 2653 2654 2655
static inline int __skb_linearize(struct sk_buff *skb)
{
	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
}

L
Linus Torvalds 已提交
2656 2657 2658 2659 2660 2661 2662
/**
 *	skb_linearize - convert paged skb to linear one
 *	@skb: buffer to linarize
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
H
Herbert Xu 已提交
2663 2664 2665 2666 2667
static inline int skb_linearize(struct sk_buff *skb)
{
	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
}

2668 2669 2670 2671 2672 2673 2674 2675 2676
/**
 * skb_has_shared_frag - can any frag be overwritten
 * @skb: buffer to test
 *
 * Return true if the skb has at least one frag that might be modified
 * by an external entity (as in vmsplice()/sendfile())
 */
static inline bool skb_has_shared_frag(const struct sk_buff *skb)
{
2677 2678
	return skb_is_nonlinear(skb) &&
	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2679 2680
}

H
Herbert Xu 已提交
2681 2682 2683 2684 2685 2686 2687 2688
/**
 *	skb_linearize_cow - make sure skb is linear and writable
 *	@skb: buffer to process
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
static inline int skb_linearize_cow(struct sk_buff *skb)
L
Linus Torvalds 已提交
2689
{
H
Herbert Xu 已提交
2690 2691
	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
	       __skb_linearize(skb) : 0;
L
Linus Torvalds 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700
}

/**
 *	skb_postpull_rcsum - update checksum for received skb after pull
 *	@skb: buffer to update
 *	@start: start of data before pull
 *	@len: length of data pulled
 *
 *	After doing a pull on a received packet, you need to call this to
2701 2702
 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
 *	CHECKSUM_NONE so that it can be recomputed from scratch.
L
Linus Torvalds 已提交
2703 2704 2705
 */

static inline void skb_postpull_rcsum(struct sk_buff *skb,
2706
				      const void *start, unsigned int len)
L
Linus Torvalds 已提交
2707
{
2708
	if (skb->ip_summed == CHECKSUM_COMPLETE)
L
Linus Torvalds 已提交
2709 2710 2711
		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
}

2712 2713
unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
/**
 *	pskb_trim_rcsum - trim received skb and update checksum
 *	@skb: buffer to trim
 *	@len: new length
 *
 *	This is exactly the same as pskb_trim except that it ensures the
 *	checksum of received packets are still valid after the operation.
 */

static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (likely(len >= skb->len))
		return 0;
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __pskb_trim(skb, len);
}

L
Linus Torvalds 已提交
2732 2733
#define skb_queue_walk(queue, skb) \
		for (skb = (queue)->next;					\
2734
		     skb != (struct sk_buff *)(queue);				\
L
Linus Torvalds 已提交
2735 2736
		     skb = skb->next)

2737 2738 2739 2740 2741
#define skb_queue_walk_safe(queue, skb, tmp)					\
		for (skb = (queue)->next, tmp = skb->next;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

2742
#define skb_queue_walk_from(queue, skb)						\
2743
		for (; skb != (struct sk_buff *)(queue);			\
2744 2745 2746 2747 2748 2749 2750
		     skb = skb->next)

#define skb_queue_walk_from_safe(queue, skb, tmp)				\
		for (tmp = skb->next;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

2751 2752
#define skb_queue_reverse_walk(queue, skb) \
		for (skb = (queue)->prev;					\
2753
		     skb != (struct sk_buff *)(queue);				\
2754 2755
		     skb = skb->prev)

2756 2757 2758 2759 2760 2761 2762 2763 2764
#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
		for (skb = (queue)->prev, tmp = skb->prev;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)

#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
		for (tmp = skb->prev;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)
L
Linus Torvalds 已提交
2765

2766
static inline bool skb_has_frag_list(const struct sk_buff *skb)
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
{
	return skb_shinfo(skb)->frag_list != NULL;
}

static inline void skb_frag_list_init(struct sk_buff *skb)
{
	skb_shinfo(skb)->frag_list = NULL;
}

#define skb_walk_frags(skb, iter)	\
	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)

2779 2780 2781 2782 2783 2784
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
				    int *peeked, int *off, int *err);
struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
				  int *err);
unsigned int datagram_poll(struct file *file, struct socket *sock,
			   struct poll_table_struct *wait);
A
Al Viro 已提交
2785 2786
int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
			   struct iov_iter *to, int size);
2787 2788 2789
static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
					struct msghdr *msg, int size)
{
2790
	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2791
}
2792 2793
int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
				   struct msghdr *msg);
2794 2795 2796
int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
				 struct iov_iter *from, int len);
int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2797 2798 2799 2800 2801 2802 2803
void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
			      int len, __wsum csum);
2804 2805 2806 2807
ssize_t skb_socket_splice(struct sock *sk,
			  struct pipe_inode_info *pipe,
			  struct splice_pipe_desc *spd);
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2808
		    struct pipe_inode_info *pipe, unsigned int len,
2809 2810 2811 2812
		    unsigned int flags,
		    ssize_t (*splice_cb)(struct sock *,
					 struct pipe_inode_info *,
					 struct splice_pipe_desc *));
2813
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2814
unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2815 2816
int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
		 int len, int hlen);
2817 2818 2819
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2820
unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2821
struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2822
struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2823
int skb_ensure_writable(struct sk_buff *skb, int write_len);
2824 2825
int skb_vlan_pop(struct sk_buff *skb);
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2826

A
Al Viro 已提交
2827 2828
static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
{
2829
	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
A
Al Viro 已提交
2830 2831
}

A
Al Viro 已提交
2832 2833
static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
{
2834
	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
A
Al Viro 已提交
2835 2836
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
struct skb_checksum_ops {
	__wsum (*update)(const void *mem, int len, __wsum wsum);
	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
};

__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
		      __wsum csum, const struct skb_checksum_ops *ops);
__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
		    __wsum csum);

2847 2848 2849
static inline void * __must_check
__skb_header_pointer(const struct sk_buff *skb, int offset,
		     int len, void *data, int hlen, void *buffer)
L
Linus Torvalds 已提交
2850
{
2851
	if (hlen - offset >= len)
2852
		return data + offset;
L
Linus Torvalds 已提交
2853

2854 2855
	if (!skb ||
	    skb_copy_bits(skb, offset, buffer, len) < 0)
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860
		return NULL;

	return buffer;
}

2861 2862
static inline void * __must_check
skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
2863 2864 2865 2866 2867
{
	return __skb_header_pointer(skb, offset, len, skb->data,
				    skb_headlen(skb), buffer);
}

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
/**
 *	skb_needs_linearize - check if we need to linearize a given skb
 *			      depending on the given device features.
 *	@skb: socket buffer to check
 *	@features: net device features
 *
 *	Returns true if either:
 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
 *	2. skb is fragmented and the device does not support SG.
 */
static inline bool skb_needs_linearize(struct sk_buff *skb,
				       netdev_features_t features)
{
	return skb_is_nonlinear(skb) &&
	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
}

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
					     void *to,
					     const unsigned int len)
{
	memcpy(to, skb->data, len);
}

static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
						    const int offset, void *to,
						    const unsigned int len)
{
	memcpy(to, skb->data + offset, len);
}

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
					   const void *from,
					   const unsigned int len)
{
	memcpy(skb->data, from, len);
}

static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
						  const int offset,
						  const void *from,
						  const unsigned int len)
{
	memcpy(skb->data + offset, from, len);
}

2915
void skb_init(void);
L
Linus Torvalds 已提交
2916

2917 2918 2919 2920 2921
static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
{
	return skb->tstamp;
}

2922 2923 2924 2925 2926 2927 2928 2929 2930
/**
 *	skb_get_timestamp - get timestamp from a skb
 *	@skb: skb to get stamp from
 *	@stamp: pointer to struct timeval to store stamp in
 *
 *	Timestamps are stored in the skb as offsets to a base timestamp.
 *	This function converts the offset back to a struct timeval and stores
 *	it in stamp.
 */
2931 2932
static inline void skb_get_timestamp(const struct sk_buff *skb,
				     struct timeval *stamp)
2933
{
2934
	*stamp = ktime_to_timeval(skb->tstamp);
2935 2936
}

2937 2938 2939 2940 2941 2942
static inline void skb_get_timestampns(const struct sk_buff *skb,
				       struct timespec *stamp)
{
	*stamp = ktime_to_timespec(skb->tstamp);
}

2943
static inline void __net_timestamp(struct sk_buff *skb)
2944
{
2945
	skb->tstamp = ktime_get_real();
2946 2947
}

2948 2949 2950 2951 2952
static inline ktime_t net_timedelta(ktime_t t)
{
	return ktime_sub(ktime_get_real(), t);
}

2953 2954 2955 2956
static inline ktime_t net_invalid_timestamp(void)
{
	return ktime_set(0, 0);
}
2957

2958 2959
struct sk_buff *skb_clone_sk(struct sk_buff *skb);

2960 2961
#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING

2962 2963
void skb_clone_tx_timestamp(struct sk_buff *skb);
bool skb_defer_rx_timestamp(struct sk_buff *skb);
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980

#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */

static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
{
}

static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
{
	return false;
}

#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */

/**
 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
 *
2981 2982
 * PHY drivers may accept clones of transmitted packets for
 * timestamping via their phy_driver.txtstamp method. These drivers
2983 2984
 * must call this function to return the skb back to the stack with a
 * timestamp.
2985
 *
2986
 * @skb: clone of the the original outgoing packet
2987
 * @hwtstamps: hardware time stamps
2988 2989 2990 2991 2992
 *
 */
void skb_complete_tx_timestamp(struct sk_buff *skb,
			       struct skb_shared_hwtstamps *hwtstamps);

2993 2994 2995 2996
void __skb_tstamp_tx(struct sk_buff *orig_skb,
		     struct skb_shared_hwtstamps *hwtstamps,
		     struct sock *sk, int tstype);

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
/**
 * skb_tstamp_tx - queue clone of skb with send time stamps
 * @orig_skb:	the original outgoing packet
 * @hwtstamps:	hardware time stamps, may be NULL if not available
 *
 * If the skb has a socket associated, then this function clones the
 * skb (thus sharing the actual data and optional structures), stores
 * the optional hardware time stamping information (if non NULL) or
 * generates a software time stamp (otherwise), then queues the clone
 * to the error queue of the socket.  Errors are silently ignored.
 */
3008 3009
void skb_tstamp_tx(struct sk_buff *orig_skb,
		   struct skb_shared_hwtstamps *hwtstamps);
3010

3011 3012
static inline void sw_tx_timestamp(struct sk_buff *skb)
{
3013 3014
	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3015 3016 3017 3018 3019 3020 3021
		skb_tstamp_tx(skb, NULL);
}

/**
 * skb_tx_timestamp() - Driver hook for transmit timestamping
 *
 * Ethernet MAC Drivers should call this function in their hard_xmit()
3022
 * function immediately before giving the sk_buff to the MAC hardware.
3023
 *
3024 3025 3026 3027
 * Specifically, one should make absolutely sure that this function is
 * called before TX completion of this packet can trigger.  Otherwise
 * the packet could potentially already be freed.
 *
3028 3029 3030 3031
 * @skb: A socket buffer.
 */
static inline void skb_tx_timestamp(struct sk_buff *skb)
{
3032
	skb_clone_tx_timestamp(skb);
3033 3034 3035
	sw_tx_timestamp(skb);
}

3036 3037 3038 3039 3040 3041 3042 3043 3044
/**
 * skb_complete_wifi_ack - deliver skb with wifi status
 *
 * @skb: the original outgoing packet
 * @acked: ack status
 *
 */
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);

3045 3046
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
__sum16 __skb_checksum_complete(struct sk_buff *skb);
3047

3048 3049
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
{
3050 3051 3052 3053
	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
		skb->csum_valid ||
		(skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) >= 0));
3054 3055
}

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
/**
 *	skb_checksum_complete - Calculate checksum of an entire packet
 *	@skb: packet to process
 *
 *	This function calculates the checksum over the entire packet plus
 *	the value of skb->csum.  The latter can be used to supply the
 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
 *	checksum.
 *
 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
 *	this function can be used to verify that checksum on received
 *	packets.  In that case the function should return zero if the
 *	checksum is correct.  In particular, this function will return zero
 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
 *	hardware has already verified the correctness of the checksum.
 */
3072
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3073
{
3074 3075
	return skb_csum_unnecessary(skb) ?
	       0 : __skb_checksum_complete(skb);
3076 3077
}

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level == 0)
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->csum_level--;
	}
}

static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
			skb->csum_level++;
	} else if (skb->ip_summed == CHECKSUM_NONE) {
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		skb->csum_level = 0;
	}
}

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
{
	/* Mark current checksum as bad (typically called from GRO
	 * path). In the case that ip_summed is CHECKSUM_NONE
	 * this must be the first checksum encountered in the packet.
	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
	 * checksum after the last one validated. For UDP, a zero
	 * checksum can not be marked as bad.
	 */

	if (skb->ip_summed == CHECKSUM_NONE ||
	    skb->ip_summed == CHECKSUM_UNNECESSARY)
		skb->csum_bad = 1;
}

3114 3115 3116 3117 3118 3119 3120 3121 3122
/* Check if we need to perform checksum complete validation.
 *
 * Returns true if checksum complete is needed, false otherwise
 * (either checksum is unnecessary or zero checksum is allowed).
 */
static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
						  bool zero_okay,
						  __sum16 check)
{
3123 3124
	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
		skb->csum_valid = 1;
3125
		__skb_decr_checksum_unnecessary(skb);
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
		return false;
	}

	return true;
}

/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
 * in checksum_init.
 */
#define CHECKSUM_BREAK 76

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
/* Unset checksum-complete
 *
 * Unset checksum complete can be done when packet is being modified
 * (uncompressed for instance) and checksum-complete value is
 * invalidated.
 */
static inline void skb_checksum_complete_unset(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
/* Validate (init) checksum based on checksum complete.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
 *	checksum is stored in skb->csum for use in __skb_checksum_complete
 *   non-zero: value of invalid checksum
 *
 */
static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
						       bool complete,
						       __wsum psum)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE) {
		if (!csum_fold(csum_add(psum, skb->csum))) {
3164
			skb->csum_valid = 1;
3165 3166
			return 0;
		}
3167 3168
	} else if (skb->csum_bad) {
		/* ip_summed == CHECKSUM_NONE in this case */
E
Eric Dumazet 已提交
3169
		return (__force __sum16)1;
3170 3171 3172 3173
	}

	skb->csum = psum;

3174 3175 3176 3177 3178 3179 3180
	if (complete || skb->len <= CHECKSUM_BREAK) {
		__sum16 csum;

		csum = __skb_checksum_complete(skb);
		skb->csum_valid = !csum;
		return csum;
	}
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

	return 0;
}

static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
{
	return 0;
}

/* Perform checksum validate (init). Note that this is a macro since we only
 * want to calculate the pseudo header which is an input function if necessary.
 * First we try to validate without any computation (checksum unnecessary) and
 * then calculate based on checksum complete calling the function to compute
 * pseudo header.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete
 *   non-zero: value of invalid checksum
 */
#define __skb_checksum_validate(skb, proto, complete,			\
				zero_okay, check, compute_pseudo)	\
({									\
	__sum16 __ret = 0;						\
3204
	skb->csum_valid = 0;						\
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
		__ret = __skb_checksum_validate_complete(skb,		\
				complete, compute_pseudo(skb, proto));	\
	__ret;								\
})

#define skb_checksum_init(skb, proto, compute_pseudo)			\
	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)

#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)

#define skb_checksum_validate(skb, proto, compute_pseudo)		\
	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)

#define skb_checksum_validate_zero_check(skb, proto, check,		\
					 compute_pseudo)		\
3222
	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3223 3224 3225 3226

#define skb_checksum_simple_validate(skb)				\
	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
{
	return (skb->ip_summed == CHECKSUM_NONE &&
		skb->csum_valid && !skb->csum_bad);
}

static inline void __skb_checksum_convert(struct sk_buff *skb,
					  __sum16 check, __wsum pseudo)
{
	skb->csum = ~pseudo;
	skb->ip_summed = CHECKSUM_COMPLETE;
}

#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
do {									\
	if (__skb_checksum_convert_check(skb))				\
		__skb_checksum_convert(skb, check,			\
				       compute_pseudo(skb, proto));	\
} while (0)

3247 3248 3249 3250 3251 3252 3253 3254
static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
					      u16 start, u16 offset)
{
	skb->ip_summed = CHECKSUM_PARTIAL;
	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
	skb->csum_offset = offset - start;
}

3255 3256 3257 3258 3259 3260
/* Update skbuf and packet to reflect the remote checksum offload operation.
 * When called, ptr indicates the starting point for skb->csum when
 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
 */
static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3261
				       int start, int offset, bool nopartial)
3262 3263 3264
{
	__wsum delta;

3265 3266 3267 3268 3269
	if (!nopartial) {
		skb_remcsum_adjust_partial(skb, ptr, start, offset);
		return;
	}

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
		__skb_checksum_complete(skb);
		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
	}

	delta = remcsum_adjust(ptr, skb->csum, start, offset);

	/* Adjust skb->csum since we changed the packet */
	skb->csum = csum_add(skb->csum, delta);
}

3281
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3282
void nf_conntrack_destroy(struct nf_conntrack *nfct);
L
Linus Torvalds 已提交
3283 3284 3285
static inline void nf_conntrack_put(struct nf_conntrack *nfct)
{
	if (nfct && atomic_dec_and_test(&nfct->use))
3286
		nf_conntrack_destroy(nfct);
L
Linus Torvalds 已提交
3287 3288 3289 3290 3291 3292
}
static inline void nf_conntrack_get(struct nf_conntrack *nfct)
{
	if (nfct)
		atomic_inc(&nfct->use);
}
3293
#endif
3294
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
		kfree(nf_bridge);
}
static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge)
		atomic_inc(&nf_bridge->use);
}
#endif /* CONFIG_BRIDGE_NETFILTER */
3306 3307
static inline void nf_reset(struct sk_buff *skb)
{
3308
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3309 3310
	nf_conntrack_put(skb->nfct);
	skb->nfct = NULL;
3311
#endif
3312
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3313 3314 3315 3316 3317
	nf_bridge_put(skb->nf_bridge);
	skb->nf_bridge = NULL;
#endif
}

3318 3319
static inline void nf_reset_trace(struct sk_buff *skb)
{
3320
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
G
Gao feng 已提交
3321 3322
	skb->nf_trace = 0;
#endif
3323 3324
}

3325
/* Note: This doesn't put any conntrack and bridge info in dst. */
3326 3327
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
			     bool copy)
3328
{
3329
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3330 3331
	dst->nfct = src->nfct;
	nf_conntrack_get(src->nfct);
3332 3333
	if (copy)
		dst->nfctinfo = src->nfctinfo;
3334
#endif
3335
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3336 3337 3338
	dst->nf_bridge  = src->nf_bridge;
	nf_bridge_get(src->nf_bridge);
#endif
3339
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3340 3341
	if (copy)
		dst->nf_trace = src->nf_trace;
3342
#endif
3343 3344
}

3345 3346 3347
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3348
	nf_conntrack_put(dst->nfct);
3349
#endif
3350
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3351 3352
	nf_bridge_put(dst->nf_bridge);
#endif
3353
	__nf_copy(dst, src, true);
3354 3355
}

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
#ifdef CONFIG_NETWORK_SECMARK
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{
	to->secmark = from->secmark;
}

static inline void skb_init_secmark(struct sk_buff *skb)
{
	skb->secmark = 0;
}
#else
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{ }

static inline void skb_init_secmark(struct sk_buff *skb)
{ }
#endif

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
static inline bool skb_irq_freeable(const struct sk_buff *skb)
{
	return !skb->destructor &&
#if IS_ENABLED(CONFIG_XFRM)
		!skb->sp &&
#endif
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
		!skb->nfct &&
#endif
		!skb->_skb_refdst &&
		!skb_has_frag_list(skb);
}

3387 3388 3389 3390 3391
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
{
	skb->queue_mapping = queue_mapping;
}

3392
static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3393 3394 3395 3396
{
	return skb->queue_mapping;
}

3397 3398 3399 3400 3401
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
{
	to->queue_mapping = from->queue_mapping;
}

3402 3403 3404 3405 3406
static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
{
	skb->queue_mapping = rx_queue + 1;
}

3407
static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3408 3409 3410 3411
{
	return skb->queue_mapping - 1;
}

3412
static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3413
{
E
Eric Dumazet 已提交
3414
	return skb->queue_mapping != 0;
3415 3416
}

3417 3418
static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
{
3419
#ifdef CONFIG_XFRM
3420 3421 3422 3423
	return skb->sp;
#else
	return NULL;
#endif
3424
}
3425

3426 3427 3428
/* Keeps track of mac header offset relative to skb->head.
 * It is useful for TSO of Tunneling protocol. e.g. GRE.
 * For non-tunnel skb it points to skb_mac_header() and for
3429 3430 3431
 * tunnel skb it points to outer mac header.
 * Keeps track of level of encapsulation of network headers.
 */
3432
struct skb_gso_cb {
3433 3434
	int	mac_offset;
	int	encap_level;
3435
	__u16	csum_start;
3436 3437 3438 3439 3440 3441 3442 3443 3444
};
#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)

static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
{
	return (skb_mac_header(inner_skb) - inner_skb->head) -
		SKB_GSO_CB(inner_skb)->mac_offset;
}

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
{
	int new_headroom, headroom;
	int ret;

	headroom = skb_headroom(skb);
	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
	if (ret)
		return ret;

	new_headroom = skb_headroom(skb);
	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
	return 0;
}

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
/* Compute the checksum for a gso segment. First compute the checksum value
 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
 * then add in skb->csum (checksum from csum_start to end of packet).
 * skb->csum and csum_start are then updated to reflect the checksum of the
 * resultant packet starting from the transport header-- the resultant checksum
 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
 * header.
 */
static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
{
	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
E
Eric Dumazet 已提交
3471 3472
		   skb_transport_offset(skb);
	__wsum partial;
3473

E
Eric Dumazet 已提交
3474
	partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
3475 3476 3477
	skb->csum = res;
	SKB_GSO_CB(skb)->csum_start -= plen;

E
Eric Dumazet 已提交
3478
	return csum_fold(partial);
3479 3480
}

3481
static inline bool skb_is_gso(const struct sk_buff *skb)
H
Herbert Xu 已提交
3482 3483 3484 3485
{
	return skb_shinfo(skb)->gso_size;
}

3486
/* Note: Should be called only if skb_is_gso(skb) is true */
3487
static inline bool skb_is_gso_v6(const struct sk_buff *skb)
B
Brice Goglin 已提交
3488 3489 3490 3491
{
	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
}

3492
void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3493 3494 3495 3496 3497

static inline bool skb_warn_if_lro(const struct sk_buff *skb)
{
	/* LRO sets gso_size but not gso_type, whereas if GSO is really
	 * wanted then gso_type will be set. */
3498 3499
	const struct skb_shared_info *shinfo = skb_shinfo(skb);

3500 3501
	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
	    unlikely(shinfo->gso_type == 0)) {
3502 3503 3504 3505 3506 3507
		__skb_warn_lro_forwarding(skb);
		return true;
	}
	return false;
}

3508 3509 3510 3511 3512 3513 3514
static inline void skb_forward_csum(struct sk_buff *skb)
{
	/* Unfortunately we don't support this one.  Any brave souls? */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3515 3516 3517 3518 3519 3520 3521 3522
/**
 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
 * @skb: skb to check
 *
 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
 * use this helper, to document places where we make this assertion.
 */
3523
static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3524 3525 3526 3527 3528 3529
{
#ifdef DEBUG
	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
#endif
}

3530
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3531

P
Paul Durrant 已提交
3532
int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3533 3534 3535
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
				     unsigned int transport_len,
				     __sum16(*skb_chkf)(struct sk_buff *skb));
P
Paul Durrant 已提交
3536

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
/**
 * skb_head_is_locked - Determine if the skb->head is locked down
 * @skb: skb to check
 *
 * The head on skbs build around a head frag can be removed if they are
 * not cloned.  This function returns true if the skb head is locked down
 * due to either being allocated via kmalloc, or by being a clone with
 * multiple references to the head.
 */
static inline bool skb_head_is_locked(const struct sk_buff *skb)
{
	return !skb->head_frag || skb_cloned(skb);
}
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

/**
 * skb_gso_network_seglen - Return length of individual segments of a gso packet
 *
 * @skb: GSO skb
 *
 * skb_gso_network_seglen is used to determine the real size of the
 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
 *
 * The MAC/L2 header is not accounted for.
 */
static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
{
	unsigned int hdr_len = skb_transport_header(skb) -
			       skb_network_header(skb);
	return hdr_len + skb_gso_transport_seglen(skb);
}
T
Thomas Graf 已提交
3567

L
Linus Torvalds 已提交
3568 3569
#endif	/* __KERNEL__ */
#endif	/* _LINUX_SKBUFF_H */