skbuff.h 97.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 *	Definitions for the 'struct sk_buff' memory handlers.
 *
 *	Authors:
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 */

#ifndef _LINUX_SKBUFF_H
#define _LINUX_SKBUFF_H

#include <linux/kernel.h>
18
#include <linux/kmemcheck.h>
L
Linus Torvalds 已提交
19 20
#include <linux/compiler.h>
#include <linux/time.h>
21
#include <linux/bug.h>
L
Linus Torvalds 已提交
22
#include <linux/cache.h>
E
Eric Dumazet 已提交
23
#include <linux/rbtree.h>
24
#include <linux/socket.h>
L
Linus Torvalds 已提交
25

A
Arun Sharma 已提交
26
#include <linux/atomic.h>
L
Linus Torvalds 已提交
27 28 29
#include <asm/types.h>
#include <linux/spinlock.h>
#include <linux/net.h>
30
#include <linux/textsearch.h>
L
Linus Torvalds 已提交
31
#include <net/checksum.h>
32
#include <linux/rcupdate.h>
33
#include <linux/hrtimer.h>
34
#include <linux/dma-mapping.h>
35
#include <linux/netdev_features.h>
36
#include <linux/sched.h>
37
#include <net/flow_dissector.h>
38
#include <linux/splice.h>
L
Linus Torvalds 已提交
39

40 41 42 43 44 45 46 47 48 49 50 51
/* A. Checksumming of received packets by device.
 *
 * CHECKSUM_NONE:
 *
 *   Device failed to checksum this packet e.g. due to lack of capabilities.
 *   The packet contains full (though not verified) checksum in packet but
 *   not in skb->csum. Thus, skb->csum is undefined in this case.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   The hardware you're dealing with doesn't calculate the full checksum
 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 *   if their checksums are okay. skb->csum is still undefined in this case
 *   though. It is a bad option, but, unfortunately, nowadays most vendors do
 *   this. Apparently with the secret goal to sell you new devices, when you
 *   will add new protocol to your host, f.e. IPv6 8)
 *
 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 *     TCP: IPv6 and IPv4.
 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 *       may perform further validation in this case.
 *     GRE: only if the checksum is present in the header.
 *     SCTP: indicates the CRC in SCTP header has been validated.
 *
 *   skb->csum_level indicates the number of consecutive checksums found in
 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 *   and a device is able to verify the checksums for UDP (possibly zero),
 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 *   two. If the device were only able to verify the UDP checksum and not
 *   GRE, either because it doesn't support GRE checksum of because GRE
 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 *   not considered in this case).
75 76 77 78 79 80 81 82 83 84 85 86
 *
 * CHECKSUM_COMPLETE:
 *
 *   This is the most generic way. The device supplied checksum of the _whole_
 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 *   hardware doesn't need to parse L3/L4 headers to implement this.
 *
 *   Note: Even if device supports only some protocols, but is able to produce
 *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 *
 * CHECKSUM_PARTIAL:
 *
87 88
 *   A checksum is set up to be offloaded to a device as described in the
 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
89
 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
90 91 92 93 94 95
 *   on the same host, or it may be set in the input path in GRO or remote
 *   checksum offload. For the purposes of checksum verification, the checksum
 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 *   checksums in the packet are considered verified. Any checksums in the
 *   packet that are after the checksum being offloaded are not considered to
 *   be verified.
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 *
 * B. Checksumming on output.
 *
 * CHECKSUM_NONE:
 *
 *   The skb was already checksummed by the protocol, or a checksum is not
 *   required.
 *
 * CHECKSUM_PARTIAL:
 *
 *   The device is required to checksum the packet as seen by hard_start_xmit()
 *   from skb->csum_start up to the end, and to record/write the checksum at
 *   offset skb->csum_start + skb->csum_offset.
 *
 *   The device must show its capabilities in dev->features, set up at device
 *   setup time, e.g. netdev_features.h:
 *
 *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
 *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
 *			  IPv4. Sigh. Vendors like this way for an unknown reason.
 *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
 *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
 *	NETIF_F_...     - Well, you get the picture.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   Normally, the device will do per protocol specific checksumming. Protocol
 *   implementations that do not want the NIC to perform the checksum
 *   calculation should use this flag in their outgoing skbs.
 *
 *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
 *			   offload. Correspondingly, the FCoE protocol driver
 *			   stack should use CHECKSUM_UNNECESSARY.
 *
 * Any questions? No questions, good.		--ANK
 */

133
/* Don't change this without changing skb_csum_unnecessary! */
134 135 136 137
#define CHECKSUM_NONE		0
#define CHECKSUM_UNNECESSARY	1
#define CHECKSUM_COMPLETE	2
#define CHECKSUM_PARTIAL	3
L
Linus Torvalds 已提交
138

139 140 141
/* Maximum value in skb->csum_level */
#define SKB_MAX_CSUM_LEVEL	3

142
#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
143
#define SKB_WITH_OVERHEAD(X)	\
144
	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
145 146
#define SKB_MAX_ORDER(X, ORDER) \
	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
L
Linus Torvalds 已提交
147 148 149
#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))

E
Eric Dumazet 已提交
150 151 152 153 154
/* return minimum truesize of one skb containing X bytes of data */
#define SKB_TRUESIZE(X) ((X) +						\
			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))

L
Linus Torvalds 已提交
155
struct net_device;
156
struct scatterlist;
J
Jens Axboe 已提交
157
struct pipe_inode_info;
H
Herbert Xu 已提交
158
struct iov_iter;
159
struct napi_struct;
L
Linus Torvalds 已提交
160

161
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
L
Linus Torvalds 已提交
162 163 164
struct nf_conntrack {
	atomic_t use;
};
165
#endif
L
Linus Torvalds 已提交
166

167
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
168
struct nf_bridge_info {
169
	atomic_t		use;
170 171 172 173
	enum {
		BRNF_PROTO_UNCHANGED,
		BRNF_PROTO_8021Q,
		BRNF_PROTO_PPPOE
174
	} orig_proto:8;
175
	bool			pkt_otherhost;
176 177
	unsigned int		mask;
	struct net_device	*physindev;
178 179 180 181
	union {
		struct net_device *physoutdev;
		char neigh_header[8];
	};
182
	__be32			ipv4_daddr;
L
Linus Torvalds 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
};
#endif

struct sk_buff_head {
	/* These two members must be first. */
	struct sk_buff	*next;
	struct sk_buff	*prev;

	__u32		qlen;
	spinlock_t	lock;
};

struct sk_buff;

197 198 199 200 201 202
/* To allow 64K frame to be packed as single skb without frag_list we
 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 * buffers which do not start on a page boundary.
 *
 * Since GRO uses frags we allocate at least 16 regardless of page
 * size.
203
 */
204
#if (65536/PAGE_SIZE + 1) < 16
205
#define MAX_SKB_FRAGS 16UL
206
#else
207
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
208
#endif
L
Linus Torvalds 已提交
209 210 211 212

typedef struct skb_frag_struct skb_frag_t;

struct skb_frag_struct {
213 214 215
	struct {
		struct page *p;
	} page;
216
#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
217 218
	__u32 page_offset;
	__u32 size;
219 220 221 222
#else
	__u16 page_offset;
	__u16 size;
#endif
L
Linus Torvalds 已提交
223 224
};

E
Eric Dumazet 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
{
	return frag->size;
}

static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
{
	frag->size = size;
}

static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
{
	frag->size += delta;
}

static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
{
	frag->size -= delta;
}

245 246 247
#define HAVE_HW_TIME_STAMP

/**
248
 * struct skb_shared_hwtstamps - hardware time stamps
249 250 251 252
 * @hwtstamp:	hardware time stamp transformed into duration
 *		since arbitrary point in time
 *
 * Software time stamps generated by ktime_get_real() are stored in
253
 * skb->tstamp.
254 255 256 257 258 259 260 261 262 263 264
 *
 * hwtstamps can only be compared against other hwtstamps from
 * the same device.
 *
 * This structure is attached to packets as part of the
 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 */
struct skb_shared_hwtstamps {
	ktime_t	hwtstamp;
};

265 266 267 268 269
/* Definitions for tx_flags in struct skb_shared_info */
enum {
	/* generate hardware time stamp */
	SKBTX_HW_TSTAMP = 1 << 0,

270
	/* generate software time stamp when queueing packet to NIC */
271 272 273 274 275
	SKBTX_SW_TSTAMP = 1 << 1,

	/* device driver is going to provide hardware time stamp */
	SKBTX_IN_PROGRESS = 1 << 2,

276
	/* device driver supports TX zero-copy buffers */
E
Eric Dumazet 已提交
277
	SKBTX_DEV_ZEROCOPY = 1 << 3,
278 279

	/* generate wifi status information (where possible) */
E
Eric Dumazet 已提交
280
	SKBTX_WIFI_STATUS = 1 << 4,
281 282 283 284 285 286 287

	/* This indicates at least one fragment might be overwritten
	 * (as in vmsplice(), sendfile() ...)
	 * If we need to compute a TX checksum, we'll need to copy
	 * all frags to avoid possible bad checksum
	 */
	SKBTX_SHARED_FRAG = 1 << 5,
288 289 290

	/* generate software time stamp when entering packet scheduling */
	SKBTX_SCHED_TSTAMP = 1 << 6,
291 292 293

	/* generate software timestamp on peer data acknowledgment */
	SKBTX_ACK_TSTAMP = 1 << 7,
294 295
};

296 297 298
#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
				 SKBTX_SCHED_TSTAMP | \
				 SKBTX_ACK_TSTAMP)
299 300
#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)

301 302 303
/*
 * The callback notifies userspace to release buffers when skb DMA is done in
 * lower device, the skb last reference should be 0 when calling this.
304 305
 * The zerocopy_success argument is true if zero copy transmit occurred,
 * false on data copy or out of memory error caused by data copy attempt.
306 307
 * The ctx field is used to track device context.
 * The desc field is used to track userspace buffer index.
308 309
 */
struct ubuf_info {
310
	void (*callback)(struct ubuf_info *, bool zerocopy_success);
311
	void *ctx;
312
	unsigned long desc;
313 314
};

L
Linus Torvalds 已提交
315 316 317 318
/* This data is invariant across clones and lives at
 * the end of the header data, ie. at skb->end.
 */
struct skb_shared_info {
319 320
	unsigned char	nr_frags;
	__u8		tx_flags;
321 322 323 324
	unsigned short	gso_size;
	/* Warning: this field is not always filled in (UFO)! */
	unsigned short	gso_segs;
	unsigned short  gso_type;
L
Linus Torvalds 已提交
325
	struct sk_buff	*frag_list;
326
	struct skb_shared_hwtstamps hwtstamps;
327
	u32		tskey;
328
	__be32          ip6_frag_id;
E
Eric Dumazet 已提交
329 330 331 332 333 334

	/*
	 * Warning : all fields before dataref are cleared in __alloc_skb()
	 */
	atomic_t	dataref;

J
Johann Baudy 已提交
335 336 337
	/* Intermediate layers must ensure that destructor_arg
	 * remains valid until skb destructor */
	void *		destructor_arg;
338

339 340
	/* must be last field, see pskb_expand_head() */
	skb_frag_t	frags[MAX_SKB_FRAGS];
L
Linus Torvalds 已提交
341 342 343 344
};

/* We divide dataref into two halves.  The higher 16 bits hold references
 * to the payload part of skb->data.  The lower 16 bits hold references to
345 346
 * the entire skb->data.  A clone of a headerless skb holds the length of
 * the header in skb->hdr_len.
L
Linus Torvalds 已提交
347 348 349 350 351 352 353 354 355 356
 *
 * All users must obey the rule that the skb->data reference count must be
 * greater than or equal to the payload reference count.
 *
 * Holding a reference to the payload part means that the user does not
 * care about modifications to the header part of skb->data.
 */
#define SKB_DATAREF_SHIFT 16
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)

357 358

enum {
359 360 361
	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
362 363
};

364 365
enum {
	SKB_GSO_TCPV4 = 1 << 0,
H
Herbert Xu 已提交
366
	SKB_GSO_UDP = 1 << 1,
367 368 369

	/* This indicates the skb is from an untrusted source. */
	SKB_GSO_DODGY = 1 << 2,
M
Michael Chan 已提交
370 371

	/* This indicates the tcp segment has CWR set. */
H
Herbert Xu 已提交
372 373 374
	SKB_GSO_TCP_ECN = 1 << 3,

	SKB_GSO_TCPV6 = 1 << 4,
375 376

	SKB_GSO_FCOE = 1 << 5,
377 378

	SKB_GSO_GRE = 1 << 6,
379

380
	SKB_GSO_GRE_CSUM = 1 << 7,
S
Simon Horman 已提交
381

382
	SKB_GSO_IPIP = 1 << 8,
E
Eric Dumazet 已提交
383

384
	SKB_GSO_SIT = 1 << 9,
E
Eric Dumazet 已提交
385

386
	SKB_GSO_UDP_TUNNEL = 1 << 10,
387 388

	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
T
Tom Herbert 已提交
389

P
Pravin B Shelar 已提交
390
	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
391 392
};

393 394 395 396 397 398 399 400 401 402
#if BITS_PER_LONG > 32
#define NET_SKBUFF_DATA_USES_OFFSET 1
#endif

#ifdef NET_SKBUFF_DATA_USES_OFFSET
typedef unsigned int sk_buff_data_t;
#else
typedef unsigned char *sk_buff_data_t;
#endif

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/**
 * struct skb_mstamp - multi resolution time stamps
 * @stamp_us: timestamp in us resolution
 * @stamp_jiffies: timestamp in jiffies
 */
struct skb_mstamp {
	union {
		u64		v64;
		struct {
			u32	stamp_us;
			u32	stamp_jiffies;
		};
	};
};

/**
 * skb_mstamp_get - get current timestamp
 * @cl: place to store timestamps
 */
static inline void skb_mstamp_get(struct skb_mstamp *cl)
{
	u64 val = local_clock();

	do_div(val, NSEC_PER_USEC);
	cl->stamp_us = (u32)val;
	cl->stamp_jiffies = (u32)jiffies;
}

/**
 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
 * @t1: pointer to newest sample
 * @t0: pointer to oldest sample
 */
static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
				      const struct skb_mstamp *t0)
{
	s32 delta_us = t1->stamp_us - t0->stamp_us;
	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;

	/* If delta_us is negative, this might be because interval is too big,
	 * or local_clock() drift is too big : fallback using jiffies.
	 */
	if (delta_us <= 0 ||
	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))

		delta_us = jiffies_to_usecs(delta_jiffies);

	return delta_us;
}


L
Linus Torvalds 已提交
454 455 456 457
/** 
 *	struct sk_buff - socket buffer
 *	@next: Next buffer in list
 *	@prev: Previous buffer in list
458
 *	@tstamp: Time we arrived/left
E
Eric Dumazet 已提交
459
 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
460
 *	@sk: Socket we are owned by
L
Linus Torvalds 已提交
461
 *	@dev: Device we arrived on/are leaving by
462
 *	@cb: Control buffer. Free for use by every layer. Put private vars here
E
Eric Dumazet 已提交
463
 *	@_skb_refdst: destination entry (with norefcount bit)
464
 *	@sp: the security path, used for xfrm
L
Linus Torvalds 已提交
465 466 467
 *	@len: Length of actual data
 *	@data_len: Data length
 *	@mac_len: Length of link layer header
468
 *	@hdr_len: writable header length of cloned skb
469 470 471
 *	@csum: Checksum (must include start/offset pair)
 *	@csum_start: Offset from skb->head where checksumming should start
 *	@csum_offset: Offset from csum_start where checksum should be stored
472
 *	@priority: Packet queueing priority
W
WANG Cong 已提交
473
 *	@ignore_df: allow local fragmentation
L
Linus Torvalds 已提交
474
 *	@cloned: Head may be cloned (check refcnt to be sure)
475
 *	@ip_summed: Driver fed us an IP checksum
L
Linus Torvalds 已提交
476
 *	@nohdr: Payload reference only, must not modify header
477
 *	@nfctinfo: Relationship of this skb to the connection
L
Linus Torvalds 已提交
478
 *	@pkt_type: Packet class
479 480
 *	@fclone: skbuff clone status
 *	@ipvs_property: skbuff is owned by ipvs
481 482
 *	@peeked: this packet has been seen already, so stats have been
 *		done for it, don't do them again
483
 *	@nf_trace: netfilter packet trace flag
484 485 486
 *	@protocol: Packet protocol from driver
 *	@destructor: Destruct function
 *	@nfct: Associated connection, if any
L
Linus Torvalds 已提交
487
 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
488
 *	@skb_iif: ifindex of device we arrived on
L
Linus Torvalds 已提交
489 490
 *	@tc_index: Traffic control index
 *	@tc_verd: traffic control verdict
491
 *	@hash: the packet hash
492
 *	@queue_mapping: Queue mapping for multiqueue devices
493
 *	@xmit_more: More SKBs are pending for this queue
494
 *	@ndisc_nodetype: router type (from link layer)
495
 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
496
 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
497
 *		ports.
498
 *	@sw_hash: indicates hash was computed in software stack
499 500
 *	@wifi_acked_valid: wifi_acked was set
 *	@wifi_acked: whether frame was acked on wifi or not
501
 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
E
Eliezer Tamir 已提交
502
  *	@napi_id: id of the NAPI struct this skb came from
503
 *	@secmark: security marking
504
 *	@mark: Generic packet mark
505
 *	@vlan_proto: vlan encapsulation protocol
506
 *	@vlan_tci: vlan tag control information
S
Simon Horman 已提交
507
 *	@inner_protocol: Protocol (encapsulation)
508 509
 *	@inner_transport_header: Inner transport layer header (encapsulation)
 *	@inner_network_header: Network layer header (encapsulation)
510
 *	@inner_mac_header: Link layer header (encapsulation)
511 512 513 514 515 516 517 518 519
 *	@transport_header: Transport layer header
 *	@network_header: Network layer header
 *	@mac_header: Link layer header
 *	@tail: Tail pointer
 *	@end: End pointer
 *	@head: Head of buffer
 *	@data: Data head pointer
 *	@truesize: Buffer size
 *	@users: User count - see {datagram,tcp}.c
L
Linus Torvalds 已提交
520 521 522
 */

struct sk_buff {
523
	union {
E
Eric Dumazet 已提交
524 525 526 527 528 529 530 531 532 533 534
		struct {
			/* These two members must be first. */
			struct sk_buff		*next;
			struct sk_buff		*prev;

			union {
				ktime_t		tstamp;
				struct skb_mstamp skb_mstamp;
			};
		};
		struct rb_node	rbnode; /* used in netem & tcp stack */
535
	};
536
	struct sock		*sk;
L
Linus Torvalds 已提交
537 538 539 540 541 542 543 544
	struct net_device	*dev;

	/*
	 * This is the control buffer. It is free to use for every
	 * layer. Please put your private variables there. If you
	 * want to keep them across layers you have to do a skb_clone()
	 * first. This is owned by whoever has the skb queued ATM.
	 */
545
	char			cb[48] __aligned(8);
L
Linus Torvalds 已提交
546

E
Eric Dumazet 已提交
547
	unsigned long		_skb_refdst;
548
	void			(*destructor)(struct sk_buff *skb);
549 550
#ifdef CONFIG_XFRM
	struct	sec_path	*sp;
551 552 553 554
#endif
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
	struct nf_conntrack	*nfct;
#endif
555
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
556
	struct nf_bridge_info	*nf_bridge;
557
#endif
L
Linus Torvalds 已提交
558
	unsigned int		len,
559 560 561
				data_len;
	__u16			mac_len,
				hdr_len;
562 563 564 565

	/* Following fields are _not_ copied in __copy_skb_header()
	 * Note that queue_mapping is here mostly to fill a hole.
	 */
566
	kmemcheck_bitfield_begin(flags1);
567 568
	__u16			queue_mapping;
	__u8			cloned:1,
569
				nohdr:1,
570
				fclone:2,
571
				peeked:1,
572 573 574
				head_frag:1,
				xmit_more:1;
	/* one bit hole */
575
	kmemcheck_bitfield_end(flags1);
576

577 578 579
	/* fields enclosed in headers_start/headers_end are copied
	 * using a single memcpy() in __copy_skb_header()
	 */
580
	/* private: */
581
	__u32			headers_start[0];
582
	/* public: */
583

584 585 586 587 588
/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX	(7 << 5)
#else
#define PKT_TYPE_MAX	7
L
Linus Torvalds 已提交
589
#endif
590
#define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
591

592
	__u8			__pkt_type_offset[0];
593
	__u8			pkt_type:3;
594
	__u8			pfmemalloc:1;
595 596 597 598 599
	__u8			ignore_df:1;
	__u8			nfctinfo:3;

	__u8			nf_trace:1;
	__u8			ip_summed:2;
600
	__u8			ooo_okay:1;
601
	__u8			l4_hash:1;
602
	__u8			sw_hash:1;
603 604
	__u8			wifi_acked_valid:1;
	__u8			wifi_acked:1;
605

606
	__u8			no_fcs:1;
607
	/* Indicates the inner headers are valid in the skbuff. */
608
	__u8			encapsulation:1;
609
	__u8			encap_hdr_csum:1;
610
	__u8			csum_valid:1;
611
	__u8			csum_complete_sw:1;
612 613
	__u8			csum_level:2;
	__u8			csum_bad:1;
614

615 616 617 618
#ifdef CONFIG_IPV6_NDISC_NODETYPE
	__u8			ndisc_nodetype:2;
#endif
	__u8			ipvs_property:1;
T
Tom Herbert 已提交
619
	__u8			inner_protocol_type:1;
620 621
	__u8			remcsum_offload:1;
	/* 3 or 5 bit hole */
622 623 624 625 626 627 628

#ifdef CONFIG_NET_SCHED
	__u16			tc_index;	/* traffic control index */
#ifdef CONFIG_NET_CLS_ACT
	__u16			tc_verd;	/* traffic control verdict */
#endif
#endif
629

630 631 632 633 634 635 636 637 638 639 640 641
	union {
		__wsum		csum;
		struct {
			__u16	csum_start;
			__u16	csum_offset;
		};
	};
	__u32			priority;
	int			skb_iif;
	__u32			hash;
	__be16			vlan_proto;
	__u16			vlan_tci;
E
Eric Dumazet 已提交
642 643 644 645 646
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
	union {
		unsigned int	napi_id;
		unsigned int	sender_cpu;
	};
647
#endif
648 649 650
#ifdef CONFIG_NETWORK_SECMARK
	__u32			secmark;
#endif
651 652
	union {
		__u32		mark;
E
Eric Dumazet 已提交
653
		__u32		reserved_tailroom;
654
	};
L
Linus Torvalds 已提交
655

T
Tom Herbert 已提交
656 657 658 659 660
	union {
		__be16		inner_protocol;
		__u8		inner_ipproto;
	};

661 662 663
	__u16			inner_transport_header;
	__u16			inner_network_header;
	__u16			inner_mac_header;
664 665

	__be16			protocol;
666 667 668
	__u16			transport_header;
	__u16			network_header;
	__u16			mac_header;
669

670
	/* private: */
671
	__u32			headers_end[0];
672
	/* public: */
673

L
Linus Torvalds 已提交
674
	/* These elements must be at the end, see alloc_skb() for details.  */
675
	sk_buff_data_t		tail;
676
	sk_buff_data_t		end;
L
Linus Torvalds 已提交
677
	unsigned char		*head,
678
				*data;
679 680
	unsigned int		truesize;
	atomic_t		users;
L
Linus Torvalds 已提交
681 682 683 684 685 686 687 688 689
};

#ifdef __KERNEL__
/*
 *	Handling routines are only of interest to the kernel
 */
#include <linux/slab.h>


690 691
#define SKB_ALLOC_FCLONE	0x01
#define SKB_ALLOC_RX		0x02
692
#define SKB_ALLOC_NAPI		0x04
693 694 695 696 697 698 699

/* Returns true if the skb was allocated from PFMEMALLOC reserves */
static inline bool skb_pfmemalloc(const struct sk_buff *skb)
{
	return unlikely(skb->pfmemalloc);
}

E
Eric Dumazet 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712
/*
 * skb might have a dst pointer attached, refcounted or not.
 * _skb_refdst low order bit is set if refcount was _not_ taken
 */
#define SKB_DST_NOREF	1UL
#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)

/**
 * skb_dst - returns skb dst_entry
 * @skb: buffer
 *
 * Returns skb dst_entry, regardless of reference taken or not.
 */
E
Eric Dumazet 已提交
713 714
static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
715 716 717 718 719 720 721
	/* If refdst was not refcounted, check we still are in a 
	 * rcu_read_lock section
	 */
	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
		!rcu_read_lock_held() &&
		!rcu_read_lock_bh_held());
	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
E
Eric Dumazet 已提交
722 723
}

E
Eric Dumazet 已提交
724 725 726 727 728 729 730 731
/**
 * skb_dst_set - sets skb dst
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was taken on dst and should
 * be released by skb_dst_drop()
 */
E
Eric Dumazet 已提交
732 733
static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
{
E
Eric Dumazet 已提交
734 735 736
	skb->_skb_refdst = (unsigned long)dst;
}

737 738 739 740 741 742 743 744 745 746 747 748
/**
 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was not taken on dst.
 * If dst entry is cached, we do not take reference and dst_release
 * will be avoided by refdst_drop. If dst entry is not cached, we take
 * reference, so that last dst_release can destroy the dst immediately.
 */
static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
{
749 750
	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
751
}
E
Eric Dumazet 已提交
752 753

/**
L
Lucas De Marchi 已提交
754
 * skb_dst_is_noref - Test if skb dst isn't refcounted
E
Eric Dumazet 已提交
755 756 757 758 759
 * @skb: buffer
 */
static inline bool skb_dst_is_noref(const struct sk_buff *skb)
{
	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
E
Eric Dumazet 已提交
760 761
}

E
Eric Dumazet 已提交
762 763
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
764
	return (struct rtable *)skb_dst(skb);
E
Eric Dumazet 已提交
765 766
}

767 768 769 770 771
void kfree_skb(struct sk_buff *skb);
void kfree_skb_list(struct sk_buff *segs);
void skb_tx_error(struct sk_buff *skb);
void consume_skb(struct sk_buff *skb);
void  __kfree_skb(struct sk_buff *skb);
772
extern struct kmem_cache *skbuff_head_cache;
E
Eric Dumazet 已提交
773

774 775 776
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
		      bool *fragstolen, int *delta_truesize);
E
Eric Dumazet 已提交
777

778 779
struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
			    int node);
E
Eric Dumazet 已提交
780
struct sk_buff *__build_skb(void *data, unsigned int frag_size);
781
struct sk_buff *build_skb(void *data, unsigned int frag_size);
782
static inline struct sk_buff *alloc_skb(unsigned int size,
A
Al Viro 已提交
783
					gfp_t priority)
784
{
E
Eric Dumazet 已提交
785
	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
786 787
}

788 789 790 791 792 793
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
				     unsigned long data_len,
				     int max_page_order,
				     int *errcode,
				     gfp_t gfp_mask);

794 795 796 797 798 799 800 801 802 803 804 805 806 807
/* Layout of fast clones : [skb1][skb2][fclone_ref] */
struct sk_buff_fclones {
	struct sk_buff	skb1;

	struct sk_buff	skb2;

	atomic_t	fclone_ref;
};

/**
 *	skb_fclone_busy - check if fclone is busy
 *	@skb: buffer
 *
 * Returns true is skb is a fast clone, and its clone is not freed.
808 809
 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 * so we also check that this didnt happen.
810
 */
811 812
static inline bool skb_fclone_busy(const struct sock *sk,
				   const struct sk_buff *skb)
813 814 815 816 817 818
{
	const struct sk_buff_fclones *fclones;

	fclones = container_of(skb, struct sk_buff_fclones, skb1);

	return skb->fclone == SKB_FCLONE_ORIG &&
819
	       atomic_read(&fclones->fclone_ref) > 1 &&
820
	       fclones->skb2.sk == sk;
821 822
}

823
static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
A
Al Viro 已提交
824
					       gfp_t priority)
825
{
826
	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
827 828
}

829
struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
830 831 832 833 834
static inline struct sk_buff *alloc_skb_head(gfp_t priority)
{
	return __alloc_skb_head(priority, -1);
}

835 836 837 838
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
839 840 841 842 843 844 845
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
				   gfp_t gfp_mask, bool fclone);
static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
					  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
}
846 847 848 849 850 851

int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
				     unsigned int headroom);
struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
				int newtailroom, gfp_t priority);
852 853
int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
			int offset, int len);
854 855 856 857
int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
		 int len);
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
int skb_pad(struct sk_buff *skb, int pad);
858
#define dev_kfree_skb(a)	consume_skb(a)
L
Linus Torvalds 已提交
859

860 861 862 863
int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
			    int getfrag(void *from, char *to, int offset,
					int len, int odd, struct sk_buff *skb),
			    void *from, int length);
864

865 866 867
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
			 int offset, size_t size);

E
Eric Dumazet 已提交
868
struct skb_seq_state {
869 870 871 872 873 874 875 876 877
	__u32		lower_offset;
	__u32		upper_offset;
	__u32		frag_idx;
	__u32		stepped_offset;
	struct sk_buff	*root_skb;
	struct sk_buff	*cur_skb;
	__u8		*frag_data;
};

878 879 880 881 882
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
			  unsigned int to, struct skb_seq_state *st);
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
			  struct skb_seq_state *st);
void skb_abort_seq_read(struct skb_seq_state *st);
883

884
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
885
			   unsigned int to, struct ts_config *config);
886

T
Tom Herbert 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
/*
 * Packet hash types specify the type of hash in skb_set_hash.
 *
 * Hash types refer to the protocol layer addresses which are used to
 * construct a packet's hash. The hashes are used to differentiate or identify
 * flows of the protocol layer for the hash type. Hash types are either
 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
 *
 * Properties of hashes:
 *
 * 1) Two packets in different flows have different hash values
 * 2) Two packets in the same flow should have the same hash value
 *
 * A hash at a higher layer is considered to be more specific. A driver should
 * set the most specific hash possible.
 *
 * A driver cannot indicate a more specific hash than the layer at which a hash
 * was computed. For instance an L3 hash cannot be set as an L4 hash.
 *
 * A driver may indicate a hash level which is less specific than the
 * actual layer the hash was computed on. For instance, a hash computed
 * at L4 may be considered an L3 hash. This should only be done if the
 * driver can't unambiguously determine that the HW computed the hash at
 * the higher layer. Note that the "should" in the second property above
 * permits this.
 */
enum pkt_hash_types {
	PKT_HASH_TYPE_NONE,	/* Undefined type */
	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
};

static inline void
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
{
923
	skb->l4_hash = (type == PKT_HASH_TYPE_L4);
924
	skb->sw_hash = 0;
925
	skb->hash = hash;
T
Tom Herbert 已提交
926 927
}

928
static inline __u32 skb_get_hash(struct sk_buff *skb)
929
{
930
	if (!skb->l4_hash && !skb->sw_hash)
931
		__skb_get_hash(skb);
932

933
	return skb->hash;
934 935
}

T
Tom Herbert 已提交
936 937
__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);

T
Tom Herbert 已提交
938 939
static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
{
940
	return skb->hash;
T
Tom Herbert 已提交
941 942
}

943 944
static inline void skb_clear_hash(struct sk_buff *skb)
{
945
	skb->hash = 0;
946
	skb->sw_hash = 0;
947
	skb->l4_hash = 0;
948 949 950 951
}

static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
{
952
	if (!skb->l4_hash)
953 954 955
		skb_clear_hash(skb);
}

956 957
static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
{
958
	to->hash = from->hash;
959
	to->sw_hash = from->sw_hash;
960
	to->l4_hash = from->l4_hash;
961 962
};

963 964 965 966 967 968 969
static inline void skb_sender_cpu_clear(struct sk_buff *skb)
{
#ifdef CONFIG_XPS
	skb->sender_cpu = 0;
#endif
}

970 971 972 973 974
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->end;
}
975 976 977 978 979

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end;
}
980 981 982 983 984
#else
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->end;
}
985 986 987 988 989

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end - skb->head;
}
990 991
#endif

L
Linus Torvalds 已提交
992
/* Internal */
993
#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
L
Linus Torvalds 已提交
994

995 996 997 998 999
static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
{
	return &skb_shinfo(skb)->hwtstamps;
}

L
Linus Torvalds 已提交
1000 1001 1002 1003 1004 1005 1006 1007
/**
 *	skb_queue_empty - check if a queue is empty
 *	@list: queue head
 *
 *	Returns true if the queue is empty, false otherwise.
 */
static inline int skb_queue_empty(const struct sk_buff_head *list)
{
1008
	return list->next == (const struct sk_buff *) list;
L
Linus Torvalds 已提交
1009 1010
}

D
David S. Miller 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/**
 *	skb_queue_is_last - check if skb is the last entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the last buffer on the list.
 */
static inline bool skb_queue_is_last(const struct sk_buff_head *list,
				     const struct sk_buff *skb)
{
1021
	return skb->next == (const struct sk_buff *) list;
D
David S. Miller 已提交
1022 1023
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 *	skb_queue_is_first - check if skb is the first entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the first buffer on the list.
 */
static inline bool skb_queue_is_first(const struct sk_buff_head *list,
				      const struct sk_buff *skb)
{
1034
	return skb->prev == (const struct sk_buff *) list;
1035 1036
}

D
David S. Miller 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/**
 *	skb_queue_next - return the next packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the next packet in @list after @skb.  It is only valid to
 *	call this if skb_queue_is_last() evaluates to false.
 */
static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_last(list, skb));
	return skb->next;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/**
 *	skb_queue_prev - return the prev packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the prev packet in @list before @skb.  It is only valid to
 *	call this if skb_queue_is_first() evaluates to false.
 */
static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_first(list, skb));
	return skb->prev;
}

L
Linus Torvalds 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/**
 *	skb_get - reference buffer
 *	@skb: buffer to reference
 *
 *	Makes another reference to a socket buffer and returns a pointer
 *	to the buffer.
 */
static inline struct sk_buff *skb_get(struct sk_buff *skb)
{
	atomic_inc(&skb->users);
	return skb;
}

/*
 * If users == 1, we are the only owner and are can avoid redundant
 * atomic change.
 */

/**
 *	skb_cloned - is the buffer a clone
 *	@skb: buffer to check
 *
 *	Returns true if the buffer was generated with skb_clone() and is
 *	one of multiple shared copies of the buffer. Cloned buffers are
 *	shared data so must not be written to under normal circumstances.
 */
static inline int skb_cloned(const struct sk_buff *skb)
{
	return skb->cloned &&
	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
	might_sleep_if(pri & __GFP_WAIT);

	if (skb_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

L
Linus Torvalds 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/**
 *	skb_header_cloned - is the header a clone
 *	@skb: buffer to check
 *
 *	Returns true if modifying the header part of the buffer requires
 *	the data to be copied.
 */
static inline int skb_header_cloned(const struct sk_buff *skb)
{
	int dataref;

	if (!skb->cloned)
		return 0;

	dataref = atomic_read(&skb_shinfo(skb)->dataref);
	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
	return dataref != 1;
}

/**
 *	skb_header_release - release reference to header
 *	@skb: buffer to operate on
 *
 *	Drop a reference to the header part of the buffer.  This is done
 *	by acquiring a payload reference.  You must not read from the header
 *	part of skb->data after this.
1141
 *	Note : Check if you can use __skb_header_release() instead.
L
Linus Torvalds 已提交
1142 1143 1144 1145 1146 1147 1148 1149
 */
static inline void skb_header_release(struct sk_buff *skb)
{
	BUG_ON(skb->nohdr);
	skb->nohdr = 1;
	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/**
 *	__skb_header_release - release reference to header
 *	@skb: buffer to operate on
 *
 *	Variant of skb_header_release() assuming skb is private to caller.
 *	We can avoid one atomic operation.
 */
static inline void __skb_header_release(struct sk_buff *skb)
{
	skb->nohdr = 1;
	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
}


L
Linus Torvalds 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
/**
 *	skb_shared - is the buffer shared
 *	@skb: buffer to check
 *
 *	Returns true if more than one person has a reference to this
 *	buffer.
 */
static inline int skb_shared(const struct sk_buff *skb)
{
	return atomic_read(&skb->users) != 1;
}

/**
 *	skb_share_check - check if buffer is shared and if so clone it
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the buffer is shared the buffer is cloned and the old copy
 *	drops a reference. A new clone with a single reference is returned.
 *	If the buffer is not shared the original buffer is returned. When
 *	being called from interrupt status or with spinlocks held pri must
 *	be GFP_ATOMIC.
 *
 *	NULL is returned on a memory allocation failure.
 */
1189
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
L
Linus Torvalds 已提交
1190 1191 1192 1193
{
	might_sleep_if(pri & __GFP_WAIT);
	if (skb_shared(skb)) {
		struct sk_buff *nskb = skb_clone(skb, pri);
1194 1195 1196 1197 1198

		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		skb = nskb;
	}
	return skb;
}

/*
 *	Copy shared buffers into a new sk_buff. We effectively do COW on
 *	packets to handle cases where we have a local reader and forward
 *	and a couple of other messy ones. The normal one is tcpdumping
 *	a packet thats being forwarded.
 */

/**
 *	skb_unshare - make a copy of a shared buffer
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the socket buffer is a clone then this function creates a new
 *	copy of the data, drops a reference count on the old copy and returns
 *	the new copy with the reference count at 1. If the buffer is not a clone
 *	the original buffer is returned. When called with a spinlock held or
 *	from interrupt state @pri must be %GFP_ATOMIC
 *
 *	%NULL is returned on a memory allocation failure.
 */
1224
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
A
Al Viro 已提交
1225
					  gfp_t pri)
L
Linus Torvalds 已提交
1226 1227 1228 1229
{
	might_sleep_if(pri & __GFP_WAIT);
	if (skb_cloned(skb)) {
		struct sk_buff *nskb = skb_copy(skb, pri);
1230 1231 1232 1233 1234 1235

		/* Free our shared copy */
		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1236 1237 1238 1239 1240 1241
		skb = nskb;
	}
	return skb;
}

/**
1242
 *	skb_peek - peek at the head of an &sk_buff_head
L
Linus Torvalds 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the head element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1254
static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1255
{
1256 1257 1258 1259 1260
	struct sk_buff *skb = list_->next;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;
L
Linus Torvalds 已提交
1261 1262
}

P
Pavel Emelyanov 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/**
 *	skb_peek_next - peek skb following the given one from a queue
 *	@skb: skb to start from
 *	@list_: list to peek at
 *
 *	Returns %NULL when the end of the list is met or a pointer to the
 *	next element. The reference count is not incremented and the
 *	reference is therefore volatile. Use with caution.
 */
static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
		const struct sk_buff_head *list_)
{
	struct sk_buff *next = skb->next;
1276

P
Pavel Emelyanov 已提交
1277 1278 1279 1280 1281
	if (next == (struct sk_buff *)list_)
		next = NULL;
	return next;
}

L
Linus Torvalds 已提交
1282
/**
1283
 *	skb_peek_tail - peek at the tail of an &sk_buff_head
L
Linus Torvalds 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the tail element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1295
static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1296
{
1297 1298 1299 1300 1301 1302
	struct sk_buff *skb = list_->prev;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;

L
Linus Torvalds 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
}

/**
 *	skb_queue_len	- get queue length
 *	@list_: list to measure
 *
 *	Return the length of an &sk_buff queue.
 */
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
{
	return list_->qlen;
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
/**
 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 *	@list: queue to initialize
 *
 *	This initializes only the list and queue length aspects of
 *	an sk_buff_head object.  This allows to initialize the list
 *	aspects of an sk_buff_head without reinitializing things like
 *	the spinlock.  It can also be used for on-stack sk_buff_head
 *	objects where the spinlock is known to not be used.
 */
static inline void __skb_queue_head_init(struct sk_buff_head *list)
{
	list->prev = list->next = (struct sk_buff *)list;
	list->qlen = 0;
}

1332 1333 1334 1335 1336 1337 1338 1339
/*
 * This function creates a split out lock class for each invocation;
 * this is needed for now since a whole lot of users of the skb-queue
 * infrastructure in drivers have different locking usage (in hardirq)
 * than the networking core (in softirq only). In the long run either the
 * network layer or drivers should need annotation to consolidate the
 * main types of usage into 3 classes.
 */
L
Linus Torvalds 已提交
1340 1341 1342
static inline void skb_queue_head_init(struct sk_buff_head *list)
{
	spin_lock_init(&list->lock);
1343
	__skb_queue_head_init(list);
L
Linus Torvalds 已提交
1344 1345
}

1346 1347 1348 1349 1350 1351 1352
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
		struct lock_class_key *class)
{
	skb_queue_head_init(list);
	lockdep_set_class(&list->lock, class);
}

L
Linus Torvalds 已提交
1353
/*
1354
 *	Insert an sk_buff on a list.
L
Linus Torvalds 已提交
1355 1356 1357 1358
 *
 *	The "__skb_xxxx()" functions are the non-atomic ones that
 *	can only be called with interrupts disabled.
 */
1359 1360
void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1361 1362 1363 1364 1365 1366 1367 1368 1369
static inline void __skb_insert(struct sk_buff *newsk,
				struct sk_buff *prev, struct sk_buff *next,
				struct sk_buff_head *list)
{
	newsk->next = next;
	newsk->prev = prev;
	next->prev  = prev->next = newsk;
	list->qlen++;
}
L
Linus Torvalds 已提交
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
static inline void __skb_queue_splice(const struct sk_buff_head *list,
				      struct sk_buff *prev,
				      struct sk_buff *next)
{
	struct sk_buff *first = list->next;
	struct sk_buff *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 *	skb_queue_splice - join two skb lists, this is designed for stacks
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice(const struct sk_buff_head *list,
				    struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1395
		head->qlen += list->qlen;
1396 1397 1398 1399
	}
}

/**
E
Eric Dumazet 已提交
1400
 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_init(struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1411
		head->qlen += list->qlen;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		__skb_queue_head_init(list);
	}
}

/**
 *	skb_queue_splice_tail - join two skb lists, each list being a queue
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1426
		head->qlen += list->qlen;
1427 1428 1429 1430
	}
}

/**
E
Eric Dumazet 已提交
1431
 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	Each of the lists is a queue.
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
					      struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1443
		head->qlen += list->qlen;
1444 1445 1446 1447
		__skb_queue_head_init(list);
	}
}

L
Linus Torvalds 已提交
1448
/**
1449
 *	__skb_queue_after - queue a buffer at the list head
L
Linus Torvalds 已提交
1450
 *	@list: list to use
1451
 *	@prev: place after this buffer
L
Linus Torvalds 已提交
1452 1453
 *	@newsk: buffer to queue
 *
1454
 *	Queue a buffer int the middle of a list. This function takes no locks
L
Linus Torvalds 已提交
1455 1456 1457 1458
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1459 1460 1461
static inline void __skb_queue_after(struct sk_buff_head *list,
				     struct sk_buff *prev,
				     struct sk_buff *newsk)
L
Linus Torvalds 已提交
1462
{
1463
	__skb_insert(newsk, prev, prev->next, list);
L
Linus Torvalds 已提交
1464 1465
}

1466 1467
void skb_append(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1468

1469 1470 1471 1472 1473 1474 1475
static inline void __skb_queue_before(struct sk_buff_head *list,
				      struct sk_buff *next,
				      struct sk_buff *newsk)
{
	__skb_insert(newsk, next->prev, next, list);
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
/**
 *	__skb_queue_head - queue a buffer at the list head
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the start of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1486
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1487 1488 1489 1490 1491 1492
static inline void __skb_queue_head(struct sk_buff_head *list,
				    struct sk_buff *newsk)
{
	__skb_queue_after(list, (struct sk_buff *)list, newsk);
}

L
Linus Torvalds 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/**
 *	__skb_queue_tail - queue a buffer at the list tail
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the end of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1503
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
L
Linus Torvalds 已提交
1504 1505 1506
static inline void __skb_queue_tail(struct sk_buff_head *list,
				   struct sk_buff *newsk)
{
1507
	__skb_queue_before(list, (struct sk_buff *)list, newsk);
L
Linus Torvalds 已提交
1508 1509 1510 1511 1512 1513
}

/*
 * remove sk_buff from list. _Must_ be called atomically, and with
 * the list known..
 */
1514
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
L
Linus Torvalds 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
	struct sk_buff *next, *prev;

	list->qlen--;
	next	   = skb->next;
	prev	   = skb->prev;
	skb->next  = skb->prev = NULL;
	next->prev = prev;
	prev->next = next;
}

1527 1528 1529 1530 1531 1532 1533 1534
/**
 *	__skb_dequeue - remove from the head of the queue
 *	@list: list to dequeue from
 *
 *	Remove the head of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The head item is
 *	returned or %NULL if the list is empty.
 */
1535
struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1536 1537 1538 1539 1540 1541 1542
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}
L
Linus Torvalds 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551

/**
 *	__skb_dequeue_tail - remove from the tail of the queue
 *	@list: list to dequeue from
 *
 *	Remove the tail of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The tail item is
 *	returned or %NULL if the list is empty.
 */
1552
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
L
Linus Torvalds 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek_tail(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}


1562
static inline bool skb_is_nonlinear(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
{
	return skb->data_len;
}

static inline unsigned int skb_headlen(const struct sk_buff *skb)
{
	return skb->len - skb->data_len;
}

static inline int skb_pagelen(const struct sk_buff *skb)
{
	int i, len = 0;

	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
E
Eric Dumazet 已提交
1577
		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
L
Linus Torvalds 已提交
1578 1579 1580
	return len + skb_headlen(skb);
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
/**
 * __skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * Initialises the @i'th fragment of @skb to point to &size bytes at
 * offset @off within @page.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
					struct page *page, int off, int size)
L
Linus Torvalds 已提交
1596 1597 1598
{
	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

1599 1600 1601 1602 1603 1604 1605 1606 1607
	/*
	 * Propagate page->pfmemalloc to the skb if we can. The problem is
	 * that not all callers have unique ownership of the page. If
	 * pfmemalloc is set, we check the mapping as a mapping implies
	 * page->index is set (index and pfmemalloc share space).
	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
	 * do not lose pfmemalloc information as the pages would not be
	 * allocated using __GFP_MEMALLOC.
	 */
1608
	frag->page.p		  = page;
L
Linus Torvalds 已提交
1609
	frag->page_offset	  = off;
E
Eric Dumazet 已提交
1610
	skb_frag_size_set(frag, size);
1611 1612 1613 1614

	page = compound_head(page);
	if (page->pfmemalloc && !page->mapping)
		skb->pfmemalloc	= true;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
}

/**
 * skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
M
Mathias Krause 已提交
1626
 * @skb to point to @size bytes at offset @off within @page. In
1627 1628 1629 1630 1631 1632 1633 1634
 * addition updates @skb such that @i is the last fragment.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
				      struct page *page, int off, int size)
{
	__skb_fill_page_desc(skb, i, page, off, size);
L
Linus Torvalds 已提交
1635 1636 1637
	skb_shinfo(skb)->nr_frags = i + 1;
}

1638 1639
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
		     int size, unsigned int truesize);
P
Peter Zijlstra 已提交
1640

J
Jason Wang 已提交
1641 1642 1643
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
			  unsigned int truesize);

L
Linus Torvalds 已提交
1644
#define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1645
#define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
L
Linus Torvalds 已提交
1646 1647
#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data - skb->head;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb_reset_tail_pointer(skb);
	skb->tail += offset;
}
1664

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
#else /* NET_SKBUFF_DATA_USES_OFFSET */
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb->tail = skb->data + offset;
}
1680

1681 1682
#endif /* NET_SKBUFF_DATA_USES_OFFSET */

L
Linus Torvalds 已提交
1683 1684 1685
/*
 *	Add data to an sk_buff
 */
M
Mathias Krause 已提交
1686
unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1687
unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1688 1689
static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
{
1690
	unsigned char *tmp = skb_tail_pointer(skb);
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695 1696
	SKB_LINEAR_ASSERT(skb);
	skb->tail += len;
	skb->len  += len;
	return tmp;
}

1697
unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1698 1699 1700 1701 1702 1703 1704
static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
{
	skb->data -= len;
	skb->len  += len;
	return skb->data;
}

1705
unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1706 1707 1708 1709 1710 1711 1712
static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
{
	skb->len -= len;
	BUG_ON(skb->len < skb->data_len);
	return skb->data += len;
}

1713 1714 1715 1716 1717
static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
}

1718
unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
L
Linus Torvalds 已提交
1719 1720 1721 1722

static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
{
	if (len > skb_headlen(skb) &&
G
Gerrit Renker 已提交
1723
	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		return NULL;
	skb->len -= len;
	return skb->data += len;
}

static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
}

static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
{
	if (likely(len <= skb_headlen(skb)))
		return 1;
	if (unlikely(len > skb->len))
		return 0;
G
Gerrit Renker 已提交
1740
	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745 1746 1747 1748
}

/**
 *	skb_headroom - bytes at buffer head
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the head of an &sk_buff.
 */
1749
static inline unsigned int skb_headroom(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
{
	return skb->data - skb->head;
}

/**
 *	skb_tailroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 */
static inline int skb_tailroom(const struct sk_buff *skb)
{
1762
	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
L
Linus Torvalds 已提交
1763 1764
}

1765 1766 1767 1768 1769 1770 1771 1772 1773
/**
 *	skb_availroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 *	allocated by sk_stream_alloc()
 */
static inline int skb_availroom(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
1774 1775 1776 1777
	if (skb_is_nonlinear(skb))
		return 0;

	return skb->end - skb->tail - skb->reserved_tailroom;
1778 1779
}

L
Linus Torvalds 已提交
1780 1781 1782 1783 1784 1785 1786 1787
/**
 *	skb_reserve - adjust headroom
 *	@skb: buffer to alter
 *	@len: bytes to move
 *
 *	Increase the headroom of an empty &sk_buff by reducing the tail
 *	room. This is only allowed for an empty buffer.
 */
1788
static inline void skb_reserve(struct sk_buff *skb, int len)
L
Linus Torvalds 已提交
1789 1790 1791 1792 1793
{
	skb->data += len;
	skb->tail += len;
}

T
Tom Herbert 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
#define ENCAP_TYPE_ETHER	0
#define ENCAP_TYPE_IPPROTO	1

static inline void skb_set_inner_protocol(struct sk_buff *skb,
					  __be16 protocol)
{
	skb->inner_protocol = protocol;
	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
}

static inline void skb_set_inner_ipproto(struct sk_buff *skb,
					 __u8 ipproto)
{
	skb->inner_ipproto = ipproto;
	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
}

1811 1812
static inline void skb_reset_inner_headers(struct sk_buff *skb)
{
1813
	skb->inner_mac_header = skb->mac_header;
1814 1815 1816 1817
	skb->inner_network_header = skb->network_header;
	skb->inner_transport_header = skb->transport_header;
}

1818 1819 1820 1821 1822
static inline void skb_reset_mac_len(struct sk_buff *skb)
{
	skb->mac_len = skb->network_header - skb->mac_header;
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
static inline unsigned char *skb_inner_transport_header(const struct sk_buff
							*skb)
{
	return skb->head + skb->inner_transport_header;
}

static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
{
	skb->inner_transport_header = skb->data - skb->head;
}

static inline void skb_set_inner_transport_header(struct sk_buff *skb,
						   const int offset)
{
	skb_reset_inner_transport_header(skb);
	skb->inner_transport_header += offset;
}

static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_network_header;
}

static inline void skb_reset_inner_network_header(struct sk_buff *skb)
{
	skb->inner_network_header = skb->data - skb->head;
}

static inline void skb_set_inner_network_header(struct sk_buff *skb,
						const int offset)
{
	skb_reset_inner_network_header(skb);
	skb->inner_network_header += offset;
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_mac_header;
}

static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
{
	skb->inner_mac_header = skb->data - skb->head;
}

static inline void skb_set_inner_mac_header(struct sk_buff *skb,
					    const int offset)
{
	skb_reset_inner_mac_header(skb);
	skb->inner_mac_header += offset;
}
1874 1875
static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
{
C
Cong Wang 已提交
1876
	return skb->transport_header != (typeof(skb->transport_header))~0U;
1877 1878
}

1879 1880
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
1881
	return skb->head + skb->transport_header;
1882 1883
}

1884 1885
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
1886
	skb->transport_header = skb->data - skb->head;
1887 1888
}

1889 1890 1891
static inline void skb_set_transport_header(struct sk_buff *skb,
					    const int offset)
{
1892 1893
	skb_reset_transport_header(skb);
	skb->transport_header += offset;
1894 1895
}

1896 1897
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
1898
	return skb->head + skb->network_header;
1899 1900
}

1901 1902
static inline void skb_reset_network_header(struct sk_buff *skb)
{
1903
	skb->network_header = skb->data - skb->head;
1904 1905
}

1906 1907
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
1908 1909
	skb_reset_network_header(skb);
	skb->network_header += offset;
1910 1911
}

1912
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1913
{
1914
	return skb->head + skb->mac_header;
1915 1916
}

1917
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1918
{
C
Cong Wang 已提交
1919
	return skb->mac_header != (typeof(skb->mac_header))~0U;
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
}

static inline void skb_reset_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->data - skb->head;
}

static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
	skb_reset_mac_header(skb);
	skb->mac_header += offset;
}

1933 1934 1935 1936 1937
static inline void skb_pop_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->network_header;
}

1938 1939 1940 1941 1942 1943 1944
static inline void skb_probe_transport_header(struct sk_buff *skb,
					      const int offset_hint)
{
	struct flow_keys keys;

	if (skb_transport_header_was_set(skb))
		return;
1945
	else if (skb_flow_dissect_flow_keys(skb, &keys))
1946
		skb_set_transport_header(skb, keys.control.thoff);
1947 1948 1949 1950
	else
		skb_set_transport_header(skb, offset_hint);
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
static inline void skb_mac_header_rebuild(struct sk_buff *skb)
{
	if (skb_mac_header_was_set(skb)) {
		const unsigned char *old_mac = skb_mac_header(skb);

		skb_set_mac_header(skb, -skb->mac_len);
		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
	}
}

1961 1962 1963 1964 1965
static inline int skb_checksum_start_offset(const struct sk_buff *skb)
{
	return skb->csum_start - skb_headroom(skb);
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
static inline int skb_transport_offset(const struct sk_buff *skb)
{
	return skb_transport_header(skb) - skb->data;
}

static inline u32 skb_network_header_len(const struct sk_buff *skb)
{
	return skb->transport_header - skb->network_header;
}

1976 1977 1978 1979 1980
static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
{
	return skb->inner_transport_header - skb->inner_network_header;
}

1981 1982 1983 1984
static inline int skb_network_offset(const struct sk_buff *skb)
{
	return skb_network_header(skb) - skb->data;
}
1985

1986 1987 1988 1989 1990
static inline int skb_inner_network_offset(const struct sk_buff *skb)
{
	return skb_inner_network_header(skb) - skb->data;
}

1991 1992 1993 1994 1995
static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
{
	return pskb_may_pull(skb, skb_network_offset(skb) + len);
}

L
Linus Torvalds 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
/*
 * CPUs often take a performance hit when accessing unaligned memory
 * locations. The actual performance hit varies, it can be small if the
 * hardware handles it or large if we have to take an exception and fix it
 * in software.
 *
 * Since an ethernet header is 14 bytes network drivers often end up with
 * the IP header at an unaligned offset. The IP header can be aligned by
 * shifting the start of the packet by 2 bytes. Drivers should do this
 * with:
 *
2007
 * skb_reserve(skb, NET_IP_ALIGN);
L
Linus Torvalds 已提交
2008 2009 2010 2011
 *
 * The downside to this alignment of the IP header is that the DMA is now
 * unaligned. On some architectures the cost of an unaligned DMA is high
 * and this cost outweighs the gains made by aligning the IP header.
2012
 *
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018 2019
 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
 * to be overridden.
 */
#ifndef NET_IP_ALIGN
#define NET_IP_ALIGN	2
#endif

2020 2021 2022 2023
/*
 * The networking layer reserves some headroom in skb data (via
 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
 * the header has to grow. In the default case, if the header has to grow
2024
 * 32 bytes or less we avoid the reallocation.
2025 2026 2027 2028 2029 2030 2031
 *
 * Unfortunately this headroom changes the DMA alignment of the resulting
 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
 * on some architectures. An architecture can override this value,
 * perhaps setting it to a cacheline in size (since that will maintain
 * cacheline alignment of the DMA). It must be a power of 2.
 *
2032
 * Various parts of the networking layer expect at least 32 bytes of
2033
 * headroom, you should not reduce this.
2034 2035 2036 2037
 *
 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
 * to reduce average number of cache lines per packet.
 * get_rps_cpus() for example only access one 64 bytes aligned block :
2038
 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2039 2040
 */
#ifndef NET_SKB_PAD
2041
#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2042 2043
#endif

2044
int ___pskb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2045 2046 2047

static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
{
2048
	if (unlikely(skb_is_nonlinear(skb))) {
2049 2050 2051
		WARN_ON(1);
		return;
	}
2052 2053
	skb->len = len;
	skb_set_tail_pointer(skb, len);
L
Linus Torvalds 已提交
2054 2055
}

2056
void skb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2057 2058 2059

static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
{
2060 2061 2062 2063
	if (skb->data_len)
		return ___pskb_trim(skb, len);
	__skb_trim(skb, len);
	return 0;
L
Linus Torvalds 已提交
2064 2065 2066 2067 2068 2069 2070
}

static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
{
	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
/**
 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
 *	@skb: buffer to alter
 *	@len: new length
 *
 *	This is identical to pskb_trim except that the caller knows that
 *	the skb is not cloned so we should never get an error due to out-
 *	of-memory.
 */
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
{
	int err = pskb_trim(skb, len);
	BUG_ON(err);
}

L
Linus Torvalds 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
/**
 *	skb_orphan - orphan a buffer
 *	@skb: buffer to orphan
 *
 *	If a buffer currently has an owner then we call the owner's
 *	destructor function and make the @skb unowned. The buffer continues
 *	to exist but is no longer charged to its former owner.
 */
static inline void skb_orphan(struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2096
	if (skb->destructor) {
L
Linus Torvalds 已提交
2097
		skb->destructor(skb);
E
Eric Dumazet 已提交
2098 2099
		skb->destructor = NULL;
		skb->sk		= NULL;
2100 2101
	} else {
		BUG_ON(skb->sk);
E
Eric Dumazet 已提交
2102
	}
L
Linus Torvalds 已提交
2103 2104
}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
/**
 *	skb_orphan_frags - orphan the frags contained in a buffer
 *	@skb: buffer to orphan frags from
 *	@gfp_mask: allocation mask for replacement pages
 *
 *	For each frag in the SKB which needs a destructor (i.e. has an
 *	owner) create a copy of that frag and release the original
 *	page by calling the destructor.
 */
static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
{
	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

L
Linus Torvalds 已提交
2121 2122 2123 2124 2125 2126 2127 2128
/**
 *	__skb_queue_purge - empty a list
 *	@list: list to empty
 *
 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
 *	the list and one reference dropped. This function does not take the
 *	list lock and the caller must hold the relevant locks to use it.
 */
2129
void skb_queue_purge(struct sk_buff_head *list);
L
Linus Torvalds 已提交
2130 2131 2132 2133 2134 2135 2136
static inline void __skb_queue_purge(struct sk_buff_head *list)
{
	struct sk_buff *skb;
	while ((skb = __skb_dequeue(list)) != NULL)
		kfree_skb(skb);
}

2137
void *netdev_alloc_frag(unsigned int fragsz);
L
Linus Torvalds 已提交
2138

2139 2140
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
				   gfp_t gfp_mask);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

/**
 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
 *	@dev: network device to receive on
 *	@length: length to allocate
 *
 *	Allocate a new &sk_buff and assign it a usage count of one. The
 *	buffer has unspecified headroom built in. Users should allocate
 *	the headroom they think they need without accounting for the
 *	built in space. The built in space is used for optimisations.
 *
 *	%NULL is returned if there is no free memory. Although this function
 *	allocates memory it can be called from an interrupt.
 */
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2156
					       unsigned int length)
2157 2158 2159 2160
{
	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
}

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
/* legacy helper around __netdev_alloc_skb() */
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
					      gfp_t gfp_mask)
{
	return __netdev_alloc_skb(NULL, length, gfp_mask);
}

/* legacy helper around netdev_alloc_skb() */
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
	return netdev_alloc_skb(NULL, length);
}


2175 2176
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length, gfp_t gfp)
2177
{
2178
	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2179 2180 2181 2182 2183 2184

	if (NET_IP_ALIGN && skb)
		skb_reserve(skb, NET_IP_ALIGN);
	return skb;
}

2185 2186 2187 2188 2189 2190
static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length)
{
	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
}

2191 2192 2193 2194 2195
static inline void skb_free_frag(void *addr)
{
	__free_page_frag(addr);
}

2196
void *napi_alloc_frag(unsigned int fragsz);
2197 2198 2199 2200 2201 2202 2203
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
				 unsigned int length, gfp_t gfp_mask);
static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
					     unsigned int length)
{
	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
}
2204

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/**
 * __dev_alloc_pages - allocate page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 * @order: size of the allocation
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
*/
static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
					     unsigned int order)
{
	/* This piece of code contains several assumptions.
	 * 1.  This is for device Rx, therefor a cold page is preferred.
	 * 2.  The expectation is the user wants a compound page.
	 * 3.  If requesting a order 0 page it will not be compound
	 *     due to the check to see if order has a value in prep_new_page
	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
	 *     code in gfp_to_alloc_flags that should be enforcing this.
	 */
	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;

	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
}

static inline struct page *dev_alloc_pages(unsigned int order)
{
	return __dev_alloc_pages(GFP_ATOMIC, order);
}

/**
 * __dev_alloc_page - allocate a page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
 */
static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
{
	return __dev_alloc_pages(gfp_mask, 0);
}

static inline struct page *dev_alloc_page(void)
{
	return __dev_alloc_page(GFP_ATOMIC);
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
/**
 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
 *	@page: The page that was allocated from skb_alloc_page
 *	@skb: The skb that may need pfmemalloc set
 */
static inline void skb_propagate_pfmemalloc(struct page *page,
					     struct sk_buff *skb)
{
	if (page && page->pfmemalloc)
		skb->pfmemalloc = true;
}

2265
/**
2266
 * skb_frag_page - retrieve the page referred to by a paged fragment
2267 2268 2269 2270 2271 2272
 * @frag: the paged fragment
 *
 * Returns the &struct page associated with @frag.
 */
static inline struct page *skb_frag_page(const skb_frag_t *frag)
{
2273
	return frag->page.p;
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
}

/**
 * __skb_frag_ref - take an addition reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Takes an additional reference on the paged fragment @frag.
 */
static inline void __skb_frag_ref(skb_frag_t *frag)
{
	get_page(skb_frag_page(frag));
}

/**
 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset.
 *
 * Takes an additional reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_ref(struct sk_buff *skb, int f)
{
	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
}

/**
 * __skb_frag_unref - release a reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Releases a reference on the paged fragment @frag.
 */
static inline void __skb_frag_unref(skb_frag_t *frag)
{
	put_page(skb_frag_page(frag));
}

/**
 * skb_frag_unref - release a reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset
 *
 * Releases a reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_unref(struct sk_buff *skb, int f)
{
	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
}

/**
 * skb_frag_address - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. The page must already
 * be mapped.
 */
static inline void *skb_frag_address(const skb_frag_t *frag)
{
	return page_address(skb_frag_page(frag)) + frag->page_offset;
}

/**
 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. Checks that the page
 * is mapped and returns %NULL otherwise.
 */
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
{
	void *ptr = page_address(skb_frag_page(frag));
	if (unlikely(!ptr))
		return NULL;

	return ptr + frag->page_offset;
}

/**
 * __skb_frag_set_page - sets the page contained in a paged fragment
 * @frag: the paged fragment
 * @page: the page to set
 *
 * Sets the fragment @frag to contain @page.
 */
static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
{
2359
	frag->page.p = page;
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
}

/**
 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
 * @skb: the buffer
 * @f: the fragment offset
 * @page: the page to set
 *
 * Sets the @f'th fragment of @skb to contain @page.
 */
static inline void skb_frag_set_page(struct sk_buff *skb, int f,
				     struct page *page)
{
	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
}

E
Eric Dumazet 已提交
2376 2377
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);

2378 2379
/**
 * skb_frag_dma_map - maps a paged fragment via the DMA API
2380
 * @dev: the device to map the fragment to
2381 2382 2383 2384
 * @frag: the paged fragment to map
 * @offset: the offset within the fragment (starting at the
 *          fragment's own offset)
 * @size: the number of bytes to map
2385
 * @dir: the direction of the mapping (%PCI_DMA_*)
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
 *
 * Maps the page associated with @frag to @device.
 */
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
					  const skb_frag_t *frag,
					  size_t offset, size_t size,
					  enum dma_data_direction dir)
{
	return dma_map_page(dev, skb_frag_page(frag),
			    frag->page_offset + offset, size, dir);
}

E
Eric Dumazet 已提交
2398 2399 2400 2401 2402 2403
static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
					gfp_t gfp_mask)
{
	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
}

2404 2405 2406 2407 2408 2409 2410 2411

static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
						  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
}


2412 2413 2414 2415 2416 2417 2418 2419
/**
 *	skb_clone_writable - is the header of a clone writable
 *	@skb: buffer to check
 *	@len: length up to which to write
 *
 *	Returns true if modifying the header part of the cloned buffer
 *	does not requires the data to be copied.
 */
2420
static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2421 2422 2423 2424 2425
{
	return !skb_header_cloned(skb) &&
	       skb_headroom(skb) + len <= skb->hdr_len;
}

H
Herbert Xu 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
			    int cloned)
{
	int delta = 0;

	if (headroom > skb_headroom(skb))
		delta = headroom - skb_headroom(skb);

	if (delta || cloned)
		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
					GFP_ATOMIC);
	return 0;
}

L
Linus Torvalds 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
/**
 *	skb_cow - copy header of skb when it is required
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	If the skb passed lacks sufficient headroom or its data part
 *	is shared, data is reallocated. If reallocation fails, an error
 *	is returned and original skb is not changed.
 *
 *	The result is skb with writable area skb->head...skb->tail
 *	and at least @headroom of space at head.
 */
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
{
H
Herbert Xu 已提交
2454 2455
	return __skb_cow(skb, headroom, skb_cloned(skb));
}
L
Linus Torvalds 已提交
2456

H
Herbert Xu 已提交
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
/**
 *	skb_cow_head - skb_cow but only making the head writable
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	This function is identical to skb_cow except that we replace the
 *	skb_cloned check by skb_header_cloned.  It should be used when
 *	you only need to push on some header and do not need to modify
 *	the data.
 */
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
{
	return __skb_cow(skb, headroom, skb_header_cloned(skb));
L
Linus Torvalds 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478
}

/**
 *	skb_padto	- pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
2479 2480
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
L
Linus Torvalds 已提交
2481
 */
2482
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2483 2484 2485
{
	unsigned int size = skb->len;
	if (likely(size >= len))
2486
		return 0;
G
Gerrit Renker 已提交
2487
	return skb_pad(skb, len - size);
L
Linus Torvalds 已提交
2488 2489
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
/**
 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
 */
static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
{
	unsigned int size = skb->len;

	if (unlikely(size < len)) {
		len -= size;
		if (skb_pad(skb, len))
			return -ENOMEM;
		__skb_put(skb, len);
	}
	return 0;
}

L
Linus Torvalds 已提交
2513
static inline int skb_add_data(struct sk_buff *skb,
2514
			       struct iov_iter *from, int copy)
L
Linus Torvalds 已提交
2515 2516 2517 2518
{
	const int off = skb->len;

	if (skb->ip_summed == CHECKSUM_NONE) {
2519 2520 2521
		__wsum csum = 0;
		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
					    &csum, from) == copy) {
L
Linus Torvalds 已提交
2522 2523 2524
			skb->csum = csum_block_add(skb->csum, csum, off);
			return 0;
		}
2525
	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
L
Linus Torvalds 已提交
2526 2527 2528 2529 2530 2531
		return 0;

	__skb_trim(skb, off);
	return -EFAULT;
}

2532 2533
static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
				    const struct page *page, int off)
L
Linus Torvalds 已提交
2534 2535
{
	if (i) {
E
Eric Dumazet 已提交
2536
		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
L
Linus Torvalds 已提交
2537

2538
		return page == skb_frag_page(frag) &&
E
Eric Dumazet 已提交
2539
		       off == frag->page_offset + skb_frag_size(frag);
L
Linus Torvalds 已提交
2540
	}
2541
	return false;
L
Linus Torvalds 已提交
2542 2543
}

H
Herbert Xu 已提交
2544 2545 2546 2547 2548
static inline int __skb_linearize(struct sk_buff *skb)
{
	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
}

L
Linus Torvalds 已提交
2549 2550 2551 2552 2553 2554 2555
/**
 *	skb_linearize - convert paged skb to linear one
 *	@skb: buffer to linarize
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
H
Herbert Xu 已提交
2556 2557 2558 2559 2560
static inline int skb_linearize(struct sk_buff *skb)
{
	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
}

2561 2562 2563 2564 2565 2566 2567 2568 2569
/**
 * skb_has_shared_frag - can any frag be overwritten
 * @skb: buffer to test
 *
 * Return true if the skb has at least one frag that might be modified
 * by an external entity (as in vmsplice()/sendfile())
 */
static inline bool skb_has_shared_frag(const struct sk_buff *skb)
{
2570 2571
	return skb_is_nonlinear(skb) &&
	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2572 2573
}

H
Herbert Xu 已提交
2574 2575 2576 2577 2578 2579 2580 2581
/**
 *	skb_linearize_cow - make sure skb is linear and writable
 *	@skb: buffer to process
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
static inline int skb_linearize_cow(struct sk_buff *skb)
L
Linus Torvalds 已提交
2582
{
H
Herbert Xu 已提交
2583 2584
	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
	       __skb_linearize(skb) : 0;
L
Linus Torvalds 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593
}

/**
 *	skb_postpull_rcsum - update checksum for received skb after pull
 *	@skb: buffer to update
 *	@start: start of data before pull
 *	@len: length of data pulled
 *
 *	After doing a pull on a received packet, you need to call this to
2594 2595
 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
 *	CHECKSUM_NONE so that it can be recomputed from scratch.
L
Linus Torvalds 已提交
2596 2597 2598
 */

static inline void skb_postpull_rcsum(struct sk_buff *skb,
2599
				      const void *start, unsigned int len)
L
Linus Torvalds 已提交
2600
{
2601
	if (skb->ip_summed == CHECKSUM_COMPLETE)
L
Linus Torvalds 已提交
2602 2603 2604
		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
}

2605 2606
unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/**
 *	pskb_trim_rcsum - trim received skb and update checksum
 *	@skb: buffer to trim
 *	@len: new length
 *
 *	This is exactly the same as pskb_trim except that it ensures the
 *	checksum of received packets are still valid after the operation.
 */

static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (likely(len >= skb->len))
		return 0;
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __pskb_trim(skb, len);
}

L
Linus Torvalds 已提交
2625 2626
#define skb_queue_walk(queue, skb) \
		for (skb = (queue)->next;					\
2627
		     skb != (struct sk_buff *)(queue);				\
L
Linus Torvalds 已提交
2628 2629
		     skb = skb->next)

2630 2631 2632 2633 2634
#define skb_queue_walk_safe(queue, skb, tmp)					\
		for (skb = (queue)->next, tmp = skb->next;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

2635
#define skb_queue_walk_from(queue, skb)						\
2636
		for (; skb != (struct sk_buff *)(queue);			\
2637 2638 2639 2640 2641 2642 2643
		     skb = skb->next)

#define skb_queue_walk_from_safe(queue, skb, tmp)				\
		for (tmp = skb->next;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

2644 2645
#define skb_queue_reverse_walk(queue, skb) \
		for (skb = (queue)->prev;					\
2646
		     skb != (struct sk_buff *)(queue);				\
2647 2648
		     skb = skb->prev)

2649 2650 2651 2652 2653 2654 2655 2656 2657
#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
		for (skb = (queue)->prev, tmp = skb->prev;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)

#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
		for (tmp = skb->prev;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)
L
Linus Torvalds 已提交
2658

2659
static inline bool skb_has_frag_list(const struct sk_buff *skb)
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
{
	return skb_shinfo(skb)->frag_list != NULL;
}

static inline void skb_frag_list_init(struct sk_buff *skb)
{
	skb_shinfo(skb)->frag_list = NULL;
}

static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
{
	frag->next = skb_shinfo(skb)->frag_list;
	skb_shinfo(skb)->frag_list = frag;
}

#define skb_walk_frags(skb, iter)	\
	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)

2678 2679 2680 2681 2682 2683
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
				    int *peeked, int *off, int *err);
struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
				  int *err);
unsigned int datagram_poll(struct file *file, struct socket *sock,
			   struct poll_table_struct *wait);
A
Al Viro 已提交
2684 2685
int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
			   struct iov_iter *to, int size);
2686 2687 2688
static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
					struct msghdr *msg, int size)
{
2689
	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2690
}
2691 2692
int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
				   struct msghdr *msg);
2693 2694 2695
int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
				 struct iov_iter *from, int len);
int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2696 2697 2698 2699 2700 2701 2702
void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
			      int len, __wsum csum);
2703 2704 2705 2706
ssize_t skb_socket_splice(struct sock *sk,
			  struct pipe_inode_info *pipe,
			  struct splice_pipe_desc *spd);
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2707
		    struct pipe_inode_info *pipe, unsigned int len,
2708 2709 2710 2711
		    unsigned int flags,
		    ssize_t (*splice_cb)(struct sock *,
					 struct pipe_inode_info *,
					 struct splice_pipe_desc *));
2712
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2713
unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2714 2715
int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
		 int len, int hlen);
2716 2717 2718
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2719
unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2720
struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2721
struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2722
int skb_ensure_writable(struct sk_buff *skb, int write_len);
2723 2724
int skb_vlan_pop(struct sk_buff *skb);
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2725

A
Al Viro 已提交
2726 2727
static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
{
2728
	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
A
Al Viro 已提交
2729 2730
}

A
Al Viro 已提交
2731 2732
static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
{
2733
	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
A
Al Viro 已提交
2734 2735
}

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
struct skb_checksum_ops {
	__wsum (*update)(const void *mem, int len, __wsum wsum);
	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
};

__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
		      __wsum csum, const struct skb_checksum_ops *ops);
__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
		    __wsum csum);

2746 2747
static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
					 int len, void *data, int hlen, void *buffer)
L
Linus Torvalds 已提交
2748
{
2749
	if (hlen - offset >= len)
2750
		return data + offset;
L
Linus Torvalds 已提交
2751

2752 2753
	if (!skb ||
	    skb_copy_bits(skb, offset, buffer, len) < 0)
L
Linus Torvalds 已提交
2754 2755 2756 2757 2758
		return NULL;

	return buffer;
}

2759 2760 2761 2762 2763 2764 2765
static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
				       int len, void *buffer)
{
	return __skb_header_pointer(skb, offset, len, skb->data,
				    skb_headlen(skb), buffer);
}

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
/**
 *	skb_needs_linearize - check if we need to linearize a given skb
 *			      depending on the given device features.
 *	@skb: socket buffer to check
 *	@features: net device features
 *
 *	Returns true if either:
 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
 *	2. skb is fragmented and the device does not support SG.
 */
static inline bool skb_needs_linearize(struct sk_buff *skb,
				       netdev_features_t features)
{
	return skb_is_nonlinear(skb) &&
	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
}

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
					     void *to,
					     const unsigned int len)
{
	memcpy(to, skb->data, len);
}

static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
						    const int offset, void *to,
						    const unsigned int len)
{
	memcpy(to, skb->data + offset, len);
}

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
					   const void *from,
					   const unsigned int len)
{
	memcpy(skb->data, from, len);
}

static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
						  const int offset,
						  const void *from,
						  const unsigned int len)
{
	memcpy(skb->data + offset, from, len);
}

2813
void skb_init(void);
L
Linus Torvalds 已提交
2814

2815 2816 2817 2818 2819
static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
{
	return skb->tstamp;
}

2820 2821 2822 2823 2824 2825 2826 2827 2828
/**
 *	skb_get_timestamp - get timestamp from a skb
 *	@skb: skb to get stamp from
 *	@stamp: pointer to struct timeval to store stamp in
 *
 *	Timestamps are stored in the skb as offsets to a base timestamp.
 *	This function converts the offset back to a struct timeval and stores
 *	it in stamp.
 */
2829 2830
static inline void skb_get_timestamp(const struct sk_buff *skb,
				     struct timeval *stamp)
2831
{
2832
	*stamp = ktime_to_timeval(skb->tstamp);
2833 2834
}

2835 2836 2837 2838 2839 2840
static inline void skb_get_timestampns(const struct sk_buff *skb,
				       struct timespec *stamp)
{
	*stamp = ktime_to_timespec(skb->tstamp);
}

2841
static inline void __net_timestamp(struct sk_buff *skb)
2842
{
2843
	skb->tstamp = ktime_get_real();
2844 2845
}

2846 2847 2848 2849 2850
static inline ktime_t net_timedelta(ktime_t t)
{
	return ktime_sub(ktime_get_real(), t);
}

2851 2852 2853 2854
static inline ktime_t net_invalid_timestamp(void)
{
	return ktime_set(0, 0);
}
2855

2856 2857
struct sk_buff *skb_clone_sk(struct sk_buff *skb);

2858 2859
#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING

2860 2861
void skb_clone_tx_timestamp(struct sk_buff *skb);
bool skb_defer_rx_timestamp(struct sk_buff *skb);
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */

static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
{
}

static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
{
	return false;
}

#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */

/**
 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
 *
2879 2880 2881 2882 2883
 * PHY drivers may accept clones of transmitted packets for
 * timestamping via their phy_driver.txtstamp method. These drivers
 * must call this function to return the skb back to the stack, with
 * or without a timestamp.
 *
2884
 * @skb: clone of the the original outgoing packet
2885
 * @hwtstamps: hardware time stamps, may be NULL if not available
2886 2887 2888 2889 2890
 *
 */
void skb_complete_tx_timestamp(struct sk_buff *skb,
			       struct skb_shared_hwtstamps *hwtstamps);

2891 2892 2893 2894
void __skb_tstamp_tx(struct sk_buff *orig_skb,
		     struct skb_shared_hwtstamps *hwtstamps,
		     struct sock *sk, int tstype);

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
/**
 * skb_tstamp_tx - queue clone of skb with send time stamps
 * @orig_skb:	the original outgoing packet
 * @hwtstamps:	hardware time stamps, may be NULL if not available
 *
 * If the skb has a socket associated, then this function clones the
 * skb (thus sharing the actual data and optional structures), stores
 * the optional hardware time stamping information (if non NULL) or
 * generates a software time stamp (otherwise), then queues the clone
 * to the error queue of the socket.  Errors are silently ignored.
 */
2906 2907
void skb_tstamp_tx(struct sk_buff *orig_skb,
		   struct skb_shared_hwtstamps *hwtstamps);
2908

2909 2910
static inline void sw_tx_timestamp(struct sk_buff *skb)
{
2911 2912
	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2913 2914 2915 2916 2917 2918 2919
		skb_tstamp_tx(skb, NULL);
}

/**
 * skb_tx_timestamp() - Driver hook for transmit timestamping
 *
 * Ethernet MAC Drivers should call this function in their hard_xmit()
2920
 * function immediately before giving the sk_buff to the MAC hardware.
2921
 *
2922 2923 2924 2925
 * Specifically, one should make absolutely sure that this function is
 * called before TX completion of this packet can trigger.  Otherwise
 * the packet could potentially already be freed.
 *
2926 2927 2928 2929
 * @skb: A socket buffer.
 */
static inline void skb_tx_timestamp(struct sk_buff *skb)
{
2930
	skb_clone_tx_timestamp(skb);
2931 2932 2933
	sw_tx_timestamp(skb);
}

2934 2935 2936 2937 2938 2939 2940 2941 2942
/**
 * skb_complete_wifi_ack - deliver skb with wifi status
 *
 * @skb: the original outgoing packet
 * @acked: ack status
 *
 */
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);

2943 2944
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
__sum16 __skb_checksum_complete(struct sk_buff *skb);
2945

2946 2947
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
{
2948 2949 2950 2951
	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
		skb->csum_valid ||
		(skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) >= 0));
2952 2953
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
/**
 *	skb_checksum_complete - Calculate checksum of an entire packet
 *	@skb: packet to process
 *
 *	This function calculates the checksum over the entire packet plus
 *	the value of skb->csum.  The latter can be used to supply the
 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
 *	checksum.
 *
 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
 *	this function can be used to verify that checksum on received
 *	packets.  In that case the function should return zero if the
 *	checksum is correct.  In particular, this function will return zero
 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
 *	hardware has already verified the correctness of the checksum.
 */
2970
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2971
{
2972 2973
	return skb_csum_unnecessary(skb) ?
	       0 : __skb_checksum_complete(skb);
2974 2975
}

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level == 0)
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->csum_level--;
	}
}

static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
			skb->csum_level++;
	} else if (skb->ip_summed == CHECKSUM_NONE) {
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		skb->csum_level = 0;
	}
}

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
{
	/* Mark current checksum as bad (typically called from GRO
	 * path). In the case that ip_summed is CHECKSUM_NONE
	 * this must be the first checksum encountered in the packet.
	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
	 * checksum after the last one validated. For UDP, a zero
	 * checksum can not be marked as bad.
	 */

	if (skb->ip_summed == CHECKSUM_NONE ||
	    skb->ip_summed == CHECKSUM_UNNECESSARY)
		skb->csum_bad = 1;
}

3012 3013 3014 3015 3016 3017 3018 3019 3020
/* Check if we need to perform checksum complete validation.
 *
 * Returns true if checksum complete is needed, false otherwise
 * (either checksum is unnecessary or zero checksum is allowed).
 */
static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
						  bool zero_okay,
						  __sum16 check)
{
3021 3022
	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
		skb->csum_valid = 1;
3023
		__skb_decr_checksum_unnecessary(skb);
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
		return false;
	}

	return true;
}

/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
 * in checksum_init.
 */
#define CHECKSUM_BREAK 76

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
/* Unset checksum-complete
 *
 * Unset checksum complete can be done when packet is being modified
 * (uncompressed for instance) and checksum-complete value is
 * invalidated.
 */
static inline void skb_checksum_complete_unset(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
/* Validate (init) checksum based on checksum complete.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
 *	checksum is stored in skb->csum for use in __skb_checksum_complete
 *   non-zero: value of invalid checksum
 *
 */
static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
						       bool complete,
						       __wsum psum)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE) {
		if (!csum_fold(csum_add(psum, skb->csum))) {
3062
			skb->csum_valid = 1;
3063 3064
			return 0;
		}
3065 3066
	} else if (skb->csum_bad) {
		/* ip_summed == CHECKSUM_NONE in this case */
E
Eric Dumazet 已提交
3067
		return (__force __sum16)1;
3068 3069 3070 3071
	}

	skb->csum = psum;

3072 3073 3074 3075 3076 3077 3078
	if (complete || skb->len <= CHECKSUM_BREAK) {
		__sum16 csum;

		csum = __skb_checksum_complete(skb);
		skb->csum_valid = !csum;
		return csum;
	}
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101

	return 0;
}

static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
{
	return 0;
}

/* Perform checksum validate (init). Note that this is a macro since we only
 * want to calculate the pseudo header which is an input function if necessary.
 * First we try to validate without any computation (checksum unnecessary) and
 * then calculate based on checksum complete calling the function to compute
 * pseudo header.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete
 *   non-zero: value of invalid checksum
 */
#define __skb_checksum_validate(skb, proto, complete,			\
				zero_okay, check, compute_pseudo)	\
({									\
	__sum16 __ret = 0;						\
3102
	skb->csum_valid = 0;						\
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
		__ret = __skb_checksum_validate_complete(skb,		\
				complete, compute_pseudo(skb, proto));	\
	__ret;								\
})

#define skb_checksum_init(skb, proto, compute_pseudo)			\
	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)

#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)

#define skb_checksum_validate(skb, proto, compute_pseudo)		\
	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)

#define skb_checksum_validate_zero_check(skb, proto, check,		\
					 compute_pseudo)		\
3120
	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3121 3122 3123 3124

#define skb_checksum_simple_validate(skb)				\
	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
{
	return (skb->ip_summed == CHECKSUM_NONE &&
		skb->csum_valid && !skb->csum_bad);
}

static inline void __skb_checksum_convert(struct sk_buff *skb,
					  __sum16 check, __wsum pseudo)
{
	skb->csum = ~pseudo;
	skb->ip_summed = CHECKSUM_COMPLETE;
}

#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
do {									\
	if (__skb_checksum_convert_check(skb))				\
		__skb_checksum_convert(skb, check,			\
				       compute_pseudo(skb, proto));	\
} while (0)

3145 3146 3147 3148 3149 3150 3151 3152
static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
					      u16 start, u16 offset)
{
	skb->ip_summed = CHECKSUM_PARTIAL;
	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
	skb->csum_offset = offset - start;
}

3153 3154 3155 3156 3157 3158
/* Update skbuf and packet to reflect the remote checksum offload operation.
 * When called, ptr indicates the starting point for skb->csum when
 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
 */
static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3159
				       int start, int offset, bool nopartial)
3160 3161 3162
{
	__wsum delta;

3163 3164 3165 3166 3167
	if (!nopartial) {
		skb_remcsum_adjust_partial(skb, ptr, start, offset);
		return;
	}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
		__skb_checksum_complete(skb);
		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
	}

	delta = remcsum_adjust(ptr, skb->csum, start, offset);

	/* Adjust skb->csum since we changed the packet */
	skb->csum = csum_add(skb->csum, delta);
}

3179
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3180
void nf_conntrack_destroy(struct nf_conntrack *nfct);
L
Linus Torvalds 已提交
3181 3182 3183
static inline void nf_conntrack_put(struct nf_conntrack *nfct)
{
	if (nfct && atomic_dec_and_test(&nfct->use))
3184
		nf_conntrack_destroy(nfct);
L
Linus Torvalds 已提交
3185 3186 3187 3188 3189 3190
}
static inline void nf_conntrack_get(struct nf_conntrack *nfct)
{
	if (nfct)
		atomic_inc(&nfct->use);
}
3191
#endif
3192
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
		kfree(nf_bridge);
}
static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge)
		atomic_inc(&nf_bridge->use);
}
#endif /* CONFIG_BRIDGE_NETFILTER */
3204 3205
static inline void nf_reset(struct sk_buff *skb)
{
3206
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3207 3208
	nf_conntrack_put(skb->nfct);
	skb->nfct = NULL;
3209
#endif
3210
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3211 3212 3213 3214 3215
	nf_bridge_put(skb->nf_bridge);
	skb->nf_bridge = NULL;
#endif
}

3216 3217
static inline void nf_reset_trace(struct sk_buff *skb)
{
3218
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
G
Gao feng 已提交
3219 3220
	skb->nf_trace = 0;
#endif
3221 3222
}

3223
/* Note: This doesn't put any conntrack and bridge info in dst. */
3224 3225
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
			     bool copy)
3226
{
3227
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3228 3229
	dst->nfct = src->nfct;
	nf_conntrack_get(src->nfct);
3230 3231
	if (copy)
		dst->nfctinfo = src->nfctinfo;
3232
#endif
3233
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3234 3235 3236
	dst->nf_bridge  = src->nf_bridge;
	nf_bridge_get(src->nf_bridge);
#endif
3237
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3238 3239
	if (copy)
		dst->nf_trace = src->nf_trace;
3240
#endif
3241 3242
}

3243 3244 3245
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3246
	nf_conntrack_put(dst->nfct);
3247
#endif
3248
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3249 3250
	nf_bridge_put(dst->nf_bridge);
#endif
3251
	__nf_copy(dst, src, true);
3252 3253
}

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
#ifdef CONFIG_NETWORK_SECMARK
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{
	to->secmark = from->secmark;
}

static inline void skb_init_secmark(struct sk_buff *skb)
{
	skb->secmark = 0;
}
#else
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{ }

static inline void skb_init_secmark(struct sk_buff *skb)
{ }
#endif

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
static inline bool skb_irq_freeable(const struct sk_buff *skb)
{
	return !skb->destructor &&
#if IS_ENABLED(CONFIG_XFRM)
		!skb->sp &&
#endif
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
		!skb->nfct &&
#endif
		!skb->_skb_refdst &&
		!skb_has_frag_list(skb);
}

3285 3286 3287 3288 3289
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
{
	skb->queue_mapping = queue_mapping;
}

3290
static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3291 3292 3293 3294
{
	return skb->queue_mapping;
}

3295 3296 3297 3298 3299
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
{
	to->queue_mapping = from->queue_mapping;
}

3300 3301 3302 3303 3304
static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
{
	skb->queue_mapping = rx_queue + 1;
}

3305
static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3306 3307 3308 3309
{
	return skb->queue_mapping - 1;
}

3310
static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3311
{
E
Eric Dumazet 已提交
3312
	return skb->queue_mapping != 0;
3313 3314
}

3315 3316
static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
{
3317
#ifdef CONFIG_XFRM
3318 3319 3320 3321
	return skb->sp;
#else
	return NULL;
#endif
3322
}
3323

3324 3325 3326
/* Keeps track of mac header offset relative to skb->head.
 * It is useful for TSO of Tunneling protocol. e.g. GRE.
 * For non-tunnel skb it points to skb_mac_header() and for
3327 3328 3329
 * tunnel skb it points to outer mac header.
 * Keeps track of level of encapsulation of network headers.
 */
3330
struct skb_gso_cb {
3331 3332
	int	mac_offset;
	int	encap_level;
3333
	__u16	csum_start;
3334 3335 3336 3337 3338 3339 3340 3341 3342
};
#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)

static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
{
	return (skb_mac_header(inner_skb) - inner_skb->head) -
		SKB_GSO_CB(inner_skb)->mac_offset;
}

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
{
	int new_headroom, headroom;
	int ret;

	headroom = skb_headroom(skb);
	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
	if (ret)
		return ret;

	new_headroom = skb_headroom(skb);
	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
	return 0;
}

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
/* Compute the checksum for a gso segment. First compute the checksum value
 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
 * then add in skb->csum (checksum from csum_start to end of packet).
 * skb->csum and csum_start are then updated to reflect the checksum of the
 * resultant packet starting from the transport header-- the resultant checksum
 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
 * header.
 */
static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
{
	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
E
Eric Dumazet 已提交
3369 3370
		   skb_transport_offset(skb);
	__wsum partial;
3371

E
Eric Dumazet 已提交
3372
	partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
3373 3374 3375
	skb->csum = res;
	SKB_GSO_CB(skb)->csum_start -= plen;

E
Eric Dumazet 已提交
3376
	return csum_fold(partial);
3377 3378
}

3379
static inline bool skb_is_gso(const struct sk_buff *skb)
H
Herbert Xu 已提交
3380 3381 3382 3383
{
	return skb_shinfo(skb)->gso_size;
}

3384
/* Note: Should be called only if skb_is_gso(skb) is true */
3385
static inline bool skb_is_gso_v6(const struct sk_buff *skb)
B
Brice Goglin 已提交
3386 3387 3388 3389
{
	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
}

3390
void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3391 3392 3393 3394 3395

static inline bool skb_warn_if_lro(const struct sk_buff *skb)
{
	/* LRO sets gso_size but not gso_type, whereas if GSO is really
	 * wanted then gso_type will be set. */
3396 3397
	const struct skb_shared_info *shinfo = skb_shinfo(skb);

3398 3399
	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
	    unlikely(shinfo->gso_type == 0)) {
3400 3401 3402 3403 3404 3405
		__skb_warn_lro_forwarding(skb);
		return true;
	}
	return false;
}

3406 3407 3408 3409 3410 3411 3412
static inline void skb_forward_csum(struct sk_buff *skb)
{
	/* Unfortunately we don't support this one.  Any brave souls? */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3413 3414 3415 3416 3417 3418 3419 3420
/**
 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
 * @skb: skb to check
 *
 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
 * use this helper, to document places where we make this assertion.
 */
3421
static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3422 3423 3424 3425 3426 3427
{
#ifdef DEBUG
	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
#endif
}

3428
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3429

P
Paul Durrant 已提交
3430
int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3431 3432 3433
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
				     unsigned int transport_len,
				     __sum16(*skb_chkf)(struct sk_buff *skb));
P
Paul Durrant 已提交
3434

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
/**
 * skb_head_is_locked - Determine if the skb->head is locked down
 * @skb: skb to check
 *
 * The head on skbs build around a head frag can be removed if they are
 * not cloned.  This function returns true if the skb head is locked down
 * due to either being allocated via kmalloc, or by being a clone with
 * multiple references to the head.
 */
static inline bool skb_head_is_locked(const struct sk_buff *skb)
{
	return !skb->head_frag || skb_cloned(skb);
}
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464

/**
 * skb_gso_network_seglen - Return length of individual segments of a gso packet
 *
 * @skb: GSO skb
 *
 * skb_gso_network_seglen is used to determine the real size of the
 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
 *
 * The MAC/L2 header is not accounted for.
 */
static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
{
	unsigned int hdr_len = skb_transport_header(skb) -
			       skb_network_header(skb);
	return hdr_len + skb_gso_transport_seglen(skb);
}
L
Linus Torvalds 已提交
3465 3466
#endif	/* __KERNEL__ */
#endif	/* _LINUX_SKBUFF_H */