skbuff.h 120.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *	Definitions for the 'struct sk_buff' memory handlers.
 *
 *	Authors:
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 */

#ifndef _LINUX_SKBUFF_H
#define _LINUX_SKBUFF_H

#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/time.h>
20
#include <linux/bug.h>
L
Linus Torvalds 已提交
21
#include <linux/cache.h>
E
Eric Dumazet 已提交
22
#include <linux/rbtree.h>
23
#include <linux/socket.h>
24
#include <linux/refcount.h>
L
Linus Torvalds 已提交
25

A
Arun Sharma 已提交
26
#include <linux/atomic.h>
L
Linus Torvalds 已提交
27 28 29
#include <asm/types.h>
#include <linux/spinlock.h>
#include <linux/net.h>
30
#include <linux/textsearch.h>
L
Linus Torvalds 已提交
31
#include <net/checksum.h>
32
#include <linux/rcupdate.h>
33
#include <linux/hrtimer.h>
34
#include <linux/dma-mapping.h>
35
#include <linux/netdev_features.h>
36
#include <linux/sched.h>
37
#include <linux/sched/clock.h>
38
#include <net/flow_dissector.h>
39
#include <linux/splice.h>
40
#include <linux/in6.h>
41
#include <linux/if_packet.h>
42
#include <net/flow.h>
L
Linus Torvalds 已提交
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/* The interface for checksum offload between the stack and networking drivers
 * is as follows...
 *
 * A. IP checksum related features
 *
 * Drivers advertise checksum offload capabilities in the features of a device.
 * From the stack's point of view these are capabilities offered by the driver,
 * a driver typically only advertises features that it is capable of offloading
 * to its device.
 *
 * The checksum related features are:
 *
 *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
 *			  IP (one's complement) checksum for any combination
 *			  of protocols or protocol layering. The checksum is
 *			  computed and set in a packet per the CHECKSUM_PARTIAL
 *			  interface (see below).
 *
 *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
 *			  TCP or UDP packets over IPv4. These are specifically
 *			  unencapsulated packets of the form IPv4|TCP or
 *			  IPv4|UDP where the Protocol field in the IPv4 header
 *			  is TCP or UDP. The IPv4 header may contain IP options
 *			  This feature cannot be set in features for a device
 *			  with NETIF_F_HW_CSUM also set. This feature is being
 *			  DEPRECATED (see below).
 *
 *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
 *			  TCP or UDP packets over IPv6. These are specifically
 *			  unencapsulated packets of the form IPv6|TCP or
 *			  IPv4|UDP where the Next Header field in the IPv6
 *			  header is either TCP or UDP. IPv6 extension headers
 *			  are not supported with this feature. This feature
 *			  cannot be set in features for a device with
 *			  NETIF_F_HW_CSUM also set. This feature is being
 *			  DEPRECATED (see below).
 *
 *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
 *			 This flag is used only used to disable the RX checksum
 *			 feature for a device. The stack will accept receive
 *			 checksum indication in packets received on a device
 *			 regardless of whether NETIF_F_RXCSUM is set.
 *
 * B. Checksumming of received packets by device. Indication of checksum
 *    verification is in set skb->ip_summed. Possible values are:
89 90 91
 *
 * CHECKSUM_NONE:
 *
92
 *   Device did not checksum this packet e.g. due to lack of capabilities.
93 94 95 96 97 98 99
 *   The packet contains full (though not verified) checksum in packet but
 *   not in skb->csum. Thus, skb->csum is undefined in this case.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   The hardware you're dealing with doesn't calculate the full checksum
 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 101
 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 *   if their checksums are okay. skb->csum is still undefined in this case
102 103
 *   though. A driver or device must never modify the checksum field in the
 *   packet even if checksum is verified.
104 105 106 107 108 109 110 111
 *
 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 *     TCP: IPv6 and IPv4.
 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 *       may perform further validation in this case.
 *     GRE: only if the checksum is present in the header.
 *     SCTP: indicates the CRC in SCTP header has been validated.
112
 *     FCOE: indicates the CRC in FC frame has been validated.
113 114 115 116 117 118 119 120 121 122
 *
 *   skb->csum_level indicates the number of consecutive checksums found in
 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 *   and a device is able to verify the checksums for UDP (possibly zero),
 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 *   two. If the device were only able to verify the UDP checksum and not
 *   GRE, either because it doesn't support GRE checksum of because GRE
 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 *   not considered in this case).
123 124 125 126 127 128 129
 *
 * CHECKSUM_COMPLETE:
 *
 *   This is the most generic way. The device supplied checksum of the _whole_
 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 *   hardware doesn't need to parse L3/L4 headers to implement this.
 *
130 131 132 133
 *   Notes:
 *   - Even if device supports only some protocols, but is able to produce
 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 135 136
 *
 * CHECKSUM_PARTIAL:
 *
137 138
 *   A checksum is set up to be offloaded to a device as described in the
 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139
 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140 141 142 143 144 145
 *   on the same host, or it may be set in the input path in GRO or remote
 *   checksum offload. For the purposes of checksum verification, the checksum
 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 *   checksums in the packet are considered verified. Any checksums in the
 *   packet that are after the checksum being offloaded are not considered to
 *   be verified.
146
 *
147 148
 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 *    in the skb->ip_summed for a packet. Values are:
149 150 151
 *
 * CHECKSUM_PARTIAL:
 *
152
 *   The driver is required to checksum the packet as seen by hard_start_xmit()
153
 *   from skb->csum_start up to the end, and to record/write the checksum at
154 155 156 157 158 159 160 161 162 163 164 165 166 167
 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 *   csum_start and csum_offset values are valid values given the length and
 *   offset of the packet, however they should not attempt to validate that the
 *   checksum refers to a legitimate transport layer checksum-- it is the
 *   purview of the stack to validate that csum_start and csum_offset are set
 *   correctly.
 *
 *   When the stack requests checksum offload for a packet, the driver MUST
 *   ensure that the checksum is set correctly. A driver can either offload the
 *   checksum calculation to the device, or call skb_checksum_help (in the case
 *   that the device does not support offload for a particular checksum).
 *
 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 169 170 171 172
 *   checksum offload capability.
 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 *   on network device checksumming capabilities: if a packet does not match
 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 *   csum_not_inet, see item D.) is called to resolve the checksum.
173
 *
174
 * CHECKSUM_NONE:
175
 *
176 177
 *   The skb was already checksummed by the protocol, or a checksum is not
 *   required.
178 179 180
 *
 * CHECKSUM_UNNECESSARY:
 *
181 182
 *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
 *   output.
183
 *
184 185 186 187 188 189 190 191
 * CHECKSUM_COMPLETE:
 *   Not used in checksum output. If a driver observes a packet with this value
 *   set in skbuff, if should treat as CHECKSUM_NONE being set.
 *
 * D. Non-IP checksum (CRC) offloads
 *
 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 *     offloading the SCTP CRC in a packet. To perform this offload the stack
192 193 194 195 196 197 198
 *     will set set csum_start and csum_offset accordingly, set ip_summed to
 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 *     must verify which offload is configured for a packet by testing the
 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 *
 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 *     accordingly. Note the there is no indication in the skbuff that the
 *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
 *     both IP checksum offload and FCOE CRC offload must verify which offload
 *     is configured for a packet presumably by inspecting packet headers.
 *
 * E. Checksumming on output with GSO.
 *
 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 * part of the GSO operation is implied. If a checksum is being offloaded
 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
 * are set to refer to the outermost checksum being offload (two offloaded
 * checksums are possible with UDP encapsulation).
217 218
 */

219
/* Don't change this without changing skb_csum_unnecessary! */
220 221 222 223
#define CHECKSUM_NONE		0
#define CHECKSUM_UNNECESSARY	1
#define CHECKSUM_COMPLETE	2
#define CHECKSUM_PARTIAL	3
L
Linus Torvalds 已提交
224

225 226 227
/* Maximum value in skb->csum_level */
#define SKB_MAX_CSUM_LEVEL	3

228
#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229
#define SKB_WITH_OVERHEAD(X)	\
230
	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 232
#define SKB_MAX_ORDER(X, ORDER) \
	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
L
Linus Torvalds 已提交
233 234 235
#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))

E
Eric Dumazet 已提交
236 237 238 239 240
/* return minimum truesize of one skb containing X bytes of data */
#define SKB_TRUESIZE(X) ((X) +						\
			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))

L
Linus Torvalds 已提交
241
struct net_device;
242
struct scatterlist;
J
Jens Axboe 已提交
243
struct pipe_inode_info;
H
Herbert Xu 已提交
244
struct iov_iter;
245
struct napi_struct;
246 247
struct bpf_prog;
union bpf_attr;
L
Linus Torvalds 已提交
248

249
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
L
Linus Torvalds 已提交
250 251 252
struct nf_conntrack {
	atomic_t use;
};
253
#endif
L
Linus Torvalds 已提交
254

255
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
256
struct nf_bridge_info {
257
	refcount_t		use;
258 259 260 261
	enum {
		BRNF_PROTO_UNCHANGED,
		BRNF_PROTO_8021Q,
		BRNF_PROTO_PPPOE
262
	} orig_proto:8;
263 264 265
	u8			pkt_otherhost:1;
	u8			in_prerouting:1;
	u8			bridged_dnat:1;
266
	__u16			frag_max_size;
267
	struct net_device	*physindev;
268 269 270

	/* always valid & non-NULL from FORWARD on, for physdev match */
	struct net_device	*physoutdev;
271
	union {
272
		/* prerouting: detect dnat in orig/reply direction */
273 274
		__be32          ipv4_daddr;
		struct in6_addr ipv6_daddr;
275 276 277 278 279 280

		/* after prerouting + nat detected: store original source
		 * mac since neigh resolution overwrites it, only used while
		 * skb is out in neigh layer.
		 */
		char neigh_header[8];
281
	};
L
Linus Torvalds 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295
};
#endif

struct sk_buff_head {
	/* These two members must be first. */
	struct sk_buff	*next;
	struct sk_buff	*prev;

	__u32		qlen;
	spinlock_t	lock;
};

struct sk_buff;

296 297 298 299 300 301
/* To allow 64K frame to be packed as single skb without frag_list we
 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 * buffers which do not start on a page boundary.
 *
 * Since GRO uses frags we allocate at least 16 regardless of page
 * size.
302
 */
303
#if (65536/PAGE_SIZE + 1) < 16
304
#define MAX_SKB_FRAGS 16UL
305
#else
306
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
307
#endif
H
Hans Westgaard Ry 已提交
308
extern int sysctl_max_skb_frags;
L
Linus Torvalds 已提交
309

310 311 312 313 314
/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 * segment using its current segmentation instead.
 */
#define GSO_BY_FRAGS	0xFFFF

L
Linus Torvalds 已提交
315 316 317
typedef struct skb_frag_struct skb_frag_t;

struct skb_frag_struct {
318 319 320
	struct {
		struct page *p;
	} page;
321
#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
322 323
	__u32 page_offset;
	__u32 size;
324 325 326 327
#else
	__u16 page_offset;
	__u16 size;
#endif
L
Linus Torvalds 已提交
328 329
};

E
Eric Dumazet 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
{
	return frag->size;
}

static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
{
	frag->size = size;
}

static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
{
	frag->size += delta;
}

static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
{
	frag->size -= delta;
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
static inline bool skb_frag_must_loop(struct page *p)
{
#if defined(CONFIG_HIGHMEM)
	if (PageHighMem(p))
		return true;
#endif
	return false;
}

/**
 *	skb_frag_foreach_page - loop over pages in a fragment
 *
 *	@f:		skb frag to operate on
 *	@f_off:		offset from start of f->page.p
 *	@f_len:		length from f_off to loop over
 *	@p:		(temp var) current page
 *	@p_off:		(temp var) offset from start of current page,
 *	                           non-zero only on first page.
 *	@p_len:		(temp var) length in current page,
 *				   < PAGE_SIZE only on first and last page.
 *	@copied:	(temp var) length so far, excluding current p_len.
 *
 *	A fragment can hold a compound page, in which case per-page
 *	operations, notably kmap_atomic, must be called for each
 *	regular page.
 */
#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
	     p_off = (f_off) & (PAGE_SIZE - 1),				\
	     p_len = skb_frag_must_loop(p) ?				\
	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
	     copied = 0;						\
	     copied < f_len;						\
	     copied += p_len, p++, p_off = 0,				\
	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\

386 387 388
#define HAVE_HW_TIME_STAMP

/**
389
 * struct skb_shared_hwtstamps - hardware time stamps
390 391 392 393
 * @hwtstamp:	hardware time stamp transformed into duration
 *		since arbitrary point in time
 *
 * Software time stamps generated by ktime_get_real() are stored in
394
 * skb->tstamp.
395 396 397 398 399 400 401 402 403 404 405
 *
 * hwtstamps can only be compared against other hwtstamps from
 * the same device.
 *
 * This structure is attached to packets as part of the
 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 */
struct skb_shared_hwtstamps {
	ktime_t	hwtstamp;
};

406 407 408 409 410
/* Definitions for tx_flags in struct skb_shared_info */
enum {
	/* generate hardware time stamp */
	SKBTX_HW_TSTAMP = 1 << 0,

411
	/* generate software time stamp when queueing packet to NIC */
412 413 414 415 416
	SKBTX_SW_TSTAMP = 1 << 1,

	/* device driver is going to provide hardware time stamp */
	SKBTX_IN_PROGRESS = 1 << 2,

417
	/* device driver supports TX zero-copy buffers */
E
Eric Dumazet 已提交
418
	SKBTX_DEV_ZEROCOPY = 1 << 3,
419 420

	/* generate wifi status information (where possible) */
E
Eric Dumazet 已提交
421
	SKBTX_WIFI_STATUS = 1 << 4,
422 423 424 425 426 427 428

	/* This indicates at least one fragment might be overwritten
	 * (as in vmsplice(), sendfile() ...)
	 * If we need to compute a TX checksum, we'll need to copy
	 * all frags to avoid possible bad checksum
	 */
	SKBTX_SHARED_FRAG = 1 << 5,
429 430 431

	/* generate software time stamp when entering packet scheduling */
	SKBTX_SCHED_TSTAMP = 1 << 6,
432 433
};

W
Willem de Bruijn 已提交
434
#define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
435
#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
436
				 SKBTX_SCHED_TSTAMP)
437 438
#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)

439 440 441
/*
 * The callback notifies userspace to release buffers when skb DMA is done in
 * lower device, the skb last reference should be 0 when calling this.
442 443
 * The zerocopy_success argument is true if zero copy transmit occurred,
 * false on data copy or out of memory error caused by data copy attempt.
444 445
 * The ctx field is used to track device context.
 * The desc field is used to track userspace buffer index.
446 447
 */
struct ubuf_info {
448
	void (*callback)(struct ubuf_info *, bool zerocopy_success);
449 450 451 452 453 454 455 456 457 458 459 460
	union {
		struct {
			unsigned long desc;
			void *ctx;
		};
		struct {
			u32 id;
			u16 len;
			u16 zerocopy:1;
			u32 bytelen;
		};
	};
461
	refcount_t refcnt;
462 463 464 465 466

	struct mmpin {
		struct user_struct *user;
		unsigned int num_pg;
	} mmp;
467 468
};

W
Willem de Bruijn 已提交
469 470
#define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))

471 472 473
int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
void mm_unaccount_pinned_pages(struct mmpin *mmp);

W
Willem de Bruijn 已提交
474
struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
475 476
struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
					struct ubuf_info *uarg);
W
Willem de Bruijn 已提交
477 478 479

static inline void sock_zerocopy_get(struct ubuf_info *uarg)
{
480
	refcount_inc(&uarg->refcnt);
W
Willem de Bruijn 已提交
481 482 483
}

void sock_zerocopy_put(struct ubuf_info *uarg);
484
void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
W
Willem de Bruijn 已提交
485 486 487

void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);

W
Willem de Bruijn 已提交
488
int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
W
Willem de Bruijn 已提交
489 490 491 492
int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
			     struct msghdr *msg, int len,
			     struct ubuf_info *uarg);

L
Linus Torvalds 已提交
493 494 495 496
/* This data is invariant across clones and lives at
 * the end of the header data, ie. at skb->end.
 */
struct skb_shared_info {
497 498 499
	__u8		__unused;
	__u8		meta_len;
	__u8		nr_frags;
500
	__u8		tx_flags;
501 502 503
	unsigned short	gso_size;
	/* Warning: this field is not always filled in (UFO)! */
	unsigned short	gso_segs;
L
Linus Torvalds 已提交
504
	struct sk_buff	*frag_list;
505
	struct skb_shared_hwtstamps hwtstamps;
506
	unsigned int	gso_type;
507
	u32		tskey;
E
Eric Dumazet 已提交
508 509 510 511 512 513

	/*
	 * Warning : all fields before dataref are cleared in __alloc_skb()
	 */
	atomic_t	dataref;

J
Johann Baudy 已提交
514 515 516
	/* Intermediate layers must ensure that destructor_arg
	 * remains valid until skb destructor */
	void *		destructor_arg;
517

518 519
	/* must be last field, see pskb_expand_head() */
	skb_frag_t	frags[MAX_SKB_FRAGS];
L
Linus Torvalds 已提交
520 521 522 523
};

/* We divide dataref into two halves.  The higher 16 bits hold references
 * to the payload part of skb->data.  The lower 16 bits hold references to
524 525
 * the entire skb->data.  A clone of a headerless skb holds the length of
 * the header in skb->hdr_len.
L
Linus Torvalds 已提交
526 527 528 529 530 531 532 533 534 535
 *
 * All users must obey the rule that the skb->data reference count must be
 * greater than or equal to the payload reference count.
 *
 * Holding a reference to the payload part means that the user does not
 * care about modifications to the header part of skb->data.
 */
#define SKB_DATAREF_SHIFT 16
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)

536 537

enum {
538 539 540
	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
541 542
};

543 544
enum {
	SKB_GSO_TCPV4 = 1 << 0,
545 546

	/* This indicates the skb is from an untrusted source. */
547
	SKB_GSO_DODGY = 1 << 1,
M
Michael Chan 已提交
548 549

	/* This indicates the tcp segment has CWR set. */
550
	SKB_GSO_TCP_ECN = 1 << 2,
H
Herbert Xu 已提交
551

552
	SKB_GSO_TCP_FIXEDID = 1 << 3,
553

554
	SKB_GSO_TCPV6 = 1 << 4,
555

556
	SKB_GSO_FCOE = 1 << 5,
557

558
	SKB_GSO_GRE = 1 << 6,
S
Simon Horman 已提交
559

560
	SKB_GSO_GRE_CSUM = 1 << 7,
E
Eric Dumazet 已提交
561

562
	SKB_GSO_IPXIP4 = 1 << 8,
E
Eric Dumazet 已提交
563

564
	SKB_GSO_IPXIP6 = 1 << 9,
565

566
	SKB_GSO_UDP_TUNNEL = 1 << 10,
T
Tom Herbert 已提交
567

568
	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
569

570
	SKB_GSO_PARTIAL = 1 << 12,
571

572
	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
M
Marcelo Ricardo Leitner 已提交
573

574
	SKB_GSO_SCTP = 1 << 14,
S
Steffen Klassert 已提交
575

576
	SKB_GSO_ESP = 1 << 15,
577 578

	SKB_GSO_UDP = 1 << 16,
W
Willem de Bruijn 已提交
579 580

	SKB_GSO_UDP_L4 = 1 << 17,
581 582
};

583 584 585 586 587 588 589 590 591 592
#if BITS_PER_LONG > 32
#define NET_SKBUFF_DATA_USES_OFFSET 1
#endif

#ifdef NET_SKBUFF_DATA_USES_OFFSET
typedef unsigned int sk_buff_data_t;
#else
typedef unsigned char *sk_buff_data_t;
#endif

L
Linus Torvalds 已提交
593 594 595 596
/** 
 *	struct sk_buff - socket buffer
 *	@next: Next buffer in list
 *	@prev: Previous buffer in list
597
 *	@tstamp: Time we arrived/left
E
Eric Dumazet 已提交
598
 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
599
 *	@sk: Socket we are owned by
L
Linus Torvalds 已提交
600
 *	@dev: Device we arrived on/are leaving by
601
 *	@cb: Control buffer. Free for use by every layer. Put private vars here
E
Eric Dumazet 已提交
602
 *	@_skb_refdst: destination entry (with norefcount bit)
603
 *	@sp: the security path, used for xfrm
L
Linus Torvalds 已提交
604 605 606
 *	@len: Length of actual data
 *	@data_len: Data length
 *	@mac_len: Length of link layer header
607
 *	@hdr_len: writable header length of cloned skb
608 609 610
 *	@csum: Checksum (must include start/offset pair)
 *	@csum_start: Offset from skb->head where checksumming should start
 *	@csum_offset: Offset from csum_start where checksum should be stored
611
 *	@priority: Packet queueing priority
W
WANG Cong 已提交
612
 *	@ignore_df: allow local fragmentation
L
Linus Torvalds 已提交
613
 *	@cloned: Head may be cloned (check refcnt to be sure)
614
 *	@ip_summed: Driver fed us an IP checksum
L
Linus Torvalds 已提交
615 616
 *	@nohdr: Payload reference only, must not modify header
 *	@pkt_type: Packet class
617 618
 *	@fclone: skbuff clone status
 *	@ipvs_property: skbuff is owned by ipvs
619 620
 *	@offload_fwd_mark: Packet was L2-forwarded in hardware
 *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
621
 *	@tc_skip_classify: do not classify packet. set by IFB device
622
 *	@tc_at_ingress: used within tc_classify to distinguish in/egress
623 624
 *	@tc_redirected: packet was redirected by a tc action
 *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
625 626
 *	@peeked: this packet has been seen already, so stats have been
 *		done for it, don't do them again
627
 *	@nf_trace: netfilter packet trace flag
628 629
 *	@protocol: Packet protocol from driver
 *	@destructor: Destruct function
630
 *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
631
 *	@_nfct: Associated connection, if any (with nfctinfo bits)
L
Linus Torvalds 已提交
632
 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
633
 *	@skb_iif: ifindex of device we arrived on
L
Linus Torvalds 已提交
634
 *	@tc_index: Traffic control index
635
 *	@hash: the packet hash
636
 *	@queue_mapping: Queue mapping for multiqueue devices
637
 *	@xmit_more: More SKBs are pending for this queue
638
 *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
639
 *	@ndisc_nodetype: router type (from link layer)
640
 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
641
 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
642
 *		ports.
643
 *	@sw_hash: indicates hash was computed in software stack
644 645
 *	@wifi_acked_valid: wifi_acked was set
 *	@wifi_acked: whether frame was acked on wifi or not
646
 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
647
 *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
648
 *	@dst_pending_confirm: need to confirm neighbour
649
 *	@decrypted: Decrypted SKB
E
Eliezer Tamir 已提交
650
  *	@napi_id: id of the NAPI struct this skb came from
651
 *	@secmark: security marking
652
 *	@mark: Generic packet mark
653
 *	@vlan_proto: vlan encapsulation protocol
654
 *	@vlan_tci: vlan tag control information
S
Simon Horman 已提交
655
 *	@inner_protocol: Protocol (encapsulation)
656 657
 *	@inner_transport_header: Inner transport layer header (encapsulation)
 *	@inner_network_header: Network layer header (encapsulation)
658
 *	@inner_mac_header: Link layer header (encapsulation)
659 660 661 662 663 664 665 666 667
 *	@transport_header: Transport layer header
 *	@network_header: Network layer header
 *	@mac_header: Link layer header
 *	@tail: Tail pointer
 *	@end: End pointer
 *	@head: Head of buffer
 *	@data: Data head pointer
 *	@truesize: Buffer size
 *	@users: User count - see {datagram,tcp}.c
L
Linus Torvalds 已提交
668 669 670
 */

struct sk_buff {
671
	union {
E
Eric Dumazet 已提交
672 673 674 675 676 677
		struct {
			/* These two members must be first. */
			struct sk_buff		*next;
			struct sk_buff		*prev;

			union {
E
Eric Dumazet 已提交
678 679 680 681 682 683
				struct net_device	*dev;
				/* Some protocols might use this space to store information,
				 * while device pointer would be NULL.
				 * UDP receive path is one user.
				 */
				unsigned long		dev_scratch;
E
Eric Dumazet 已提交
684 685
			};
		};
686
		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
687
		struct list_head	list;
688
	};
689 690 691 692 693

	union {
		struct sock		*sk;
		int			ip_defrag_offset;
	};
L
Linus Torvalds 已提交
694

695
	union {
E
Eric Dumazet 已提交
696
		ktime_t		tstamp;
697
		u64		skb_mstamp_ns; /* earliest departure time */
698
	};
L
Linus Torvalds 已提交
699 700 701 702 703 704
	/*
	 * This is the control buffer. It is free to use for every
	 * layer. Please put your private variables there. If you
	 * want to keep them across layers you have to do a skb_clone()
	 * first. This is owned by whoever has the skb queued ATM.
	 */
705
	char			cb[48] __aligned(8);
L
Linus Torvalds 已提交
706

707 708 709 710 711 712 713 714
	union {
		struct {
			unsigned long	_skb_refdst;
			void		(*destructor)(struct sk_buff *skb);
		};
		struct list_head	tcp_tsorted_anchor;
	};

715 716
#ifdef CONFIG_XFRM
	struct	sec_path	*sp;
717 718
#endif
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
719
	unsigned long		 _nfct;
720
#endif
721
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
722
	struct nf_bridge_info	*nf_bridge;
723
#endif
L
Linus Torvalds 已提交
724
	unsigned int		len,
725 726 727
				data_len;
	__u16			mac_len,
				hdr_len;
728 729 730 731 732

	/* Following fields are _not_ copied in __copy_skb_header()
	 * Note that queue_mapping is here mostly to fill a hole.
	 */
	__u16			queue_mapping;
733 734 735 736 737 738 739 740 741 742

/* if you move cloned around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define CLONED_MASK	(1 << 7)
#else
#define CLONED_MASK	1
#endif
#define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)

	__u8			__cloned_offset[0];
743
	__u8			cloned:1,
744
				nohdr:1,
745
				fclone:2,
746
				peeked:1,
747
				head_frag:1,
748
				xmit_more:1,
749
				pfmemalloc:1;
750

751 752 753
	/* fields enclosed in headers_start/headers_end are copied
	 * using a single memcpy() in __copy_skb_header()
	 */
754
	/* private: */
755
	__u32			headers_start[0];
756
	/* public: */
757

758 759 760 761 762
/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX	(7 << 5)
#else
#define PKT_TYPE_MAX	7
L
Linus Torvalds 已提交
763
#endif
764
#define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
765

766
	__u8			__pkt_type_offset[0];
767 768 769 770
	__u8			pkt_type:3;
	__u8			ignore_df:1;
	__u8			nf_trace:1;
	__u8			ip_summed:2;
771
	__u8			ooo_okay:1;
772

773
	__u8			l4_hash:1;
774
	__u8			sw_hash:1;
775 776
	__u8			wifi_acked_valid:1;
	__u8			wifi_acked:1;
777
	__u8			no_fcs:1;
778
	/* Indicates the inner headers are valid in the skbuff. */
779
	__u8			encapsulation:1;
780
	__u8			encap_hdr_csum:1;
781
	__u8			csum_valid:1;
782

M
Michał Mirosław 已提交
783 784 785 786 787 788 789 790
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_VLAN_PRESENT_BIT	7
#else
#define PKT_VLAN_PRESENT_BIT	0
#endif
#define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
	__u8			__pkt_vlan_present_offset[0];
	__u8			vlan_present:1;
791
	__u8			csum_complete_sw:1;
792
	__u8			csum_level:2;
793
	__u8			csum_not_inet:1;
794
	__u8			dst_pending_confirm:1;
795 796 797
#ifdef CONFIG_IPV6_NDISC_NODETYPE
	__u8			ndisc_nodetype:2;
#endif
798

M
Michał Mirosław 已提交
799
	__u8			ipvs_property:1;
T
Tom Herbert 已提交
800
	__u8			inner_protocol_type:1;
801
	__u8			remcsum_offload:1;
802 803
#ifdef CONFIG_NET_SWITCHDEV
	__u8			offload_fwd_mark:1;
804
	__u8			offload_l3_fwd_mark:1;
805
#endif
806 807
#ifdef CONFIG_NET_CLS_ACT
	__u8			tc_skip_classify:1;
808
	__u8			tc_at_ingress:1;
809 810
	__u8			tc_redirected:1;
	__u8			tc_from_ingress:1;
811
#endif
812 813 814
#ifdef CONFIG_TLS_DEVICE
	__u8			decrypted:1;
#endif
815 816 817 818

#ifdef CONFIG_NET_SCHED
	__u16			tc_index;	/* traffic control index */
#endif
819

820 821 822 823 824 825 826 827 828 829 830 831
	union {
		__wsum		csum;
		struct {
			__u16	csum_start;
			__u16	csum_offset;
		};
	};
	__u32			priority;
	int			skb_iif;
	__u32			hash;
	__be16			vlan_proto;
	__u16			vlan_tci;
E
Eric Dumazet 已提交
832 833 834 835 836
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
	union {
		unsigned int	napi_id;
		unsigned int	sender_cpu;
	};
837
#endif
838
#ifdef CONFIG_NETWORK_SECMARK
839
	__u32		secmark;
840 841
#endif

842 843
	union {
		__u32		mark;
E
Eric Dumazet 已提交
844
		__u32		reserved_tailroom;
845
	};
L
Linus Torvalds 已提交
846

T
Tom Herbert 已提交
847 848 849 850 851
	union {
		__be16		inner_protocol;
		__u8		inner_ipproto;
	};

852 853 854
	__u16			inner_transport_header;
	__u16			inner_network_header;
	__u16			inner_mac_header;
855 856

	__be16			protocol;
857 858 859
	__u16			transport_header;
	__u16			network_header;
	__u16			mac_header;
860

861
	/* private: */
862
	__u32			headers_end[0];
863
	/* public: */
864

L
Linus Torvalds 已提交
865
	/* These elements must be at the end, see alloc_skb() for details.  */
866
	sk_buff_data_t		tail;
867
	sk_buff_data_t		end;
L
Linus Torvalds 已提交
868
	unsigned char		*head,
869
				*data;
870
	unsigned int		truesize;
871
	refcount_t		users;
L
Linus Torvalds 已提交
872 873 874 875 876 877 878
};

#ifdef __KERNEL__
/*
 *	Handling routines are only of interest to the kernel
 */

879 880
#define SKB_ALLOC_FCLONE	0x01
#define SKB_ALLOC_RX		0x02
881
#define SKB_ALLOC_NAPI		0x04
882 883 884 885 886 887 888

/* Returns true if the skb was allocated from PFMEMALLOC reserves */
static inline bool skb_pfmemalloc(const struct sk_buff *skb)
{
	return unlikely(skb->pfmemalloc);
}

E
Eric Dumazet 已提交
889 890 891 892 893 894 895
/*
 * skb might have a dst pointer attached, refcounted or not.
 * _skb_refdst low order bit is set if refcount was _not_ taken
 */
#define SKB_DST_NOREF	1UL
#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)

896
#define SKB_NFCT_PTRMASK	~(7UL)
E
Eric Dumazet 已提交
897 898 899 900 901 902
/**
 * skb_dst - returns skb dst_entry
 * @skb: buffer
 *
 * Returns skb dst_entry, regardless of reference taken or not.
 */
E
Eric Dumazet 已提交
903 904
static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
905 906 907 908 909 910 911
	/* If refdst was not refcounted, check we still are in a 
	 * rcu_read_lock section
	 */
	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
		!rcu_read_lock_held() &&
		!rcu_read_lock_bh_held());
	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
E
Eric Dumazet 已提交
912 913
}

E
Eric Dumazet 已提交
914 915 916 917 918 919 920 921
/**
 * skb_dst_set - sets skb dst
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was taken on dst and should
 * be released by skb_dst_drop()
 */
E
Eric Dumazet 已提交
922 923
static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
{
E
Eric Dumazet 已提交
924 925 926
	skb->_skb_refdst = (unsigned long)dst;
}

927 928 929 930 931 932 933 934 935 936 937 938
/**
 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was not taken on dst.
 * If dst entry is cached, we do not take reference and dst_release
 * will be avoided by refdst_drop. If dst entry is not cached, we take
 * reference, so that last dst_release can destroy the dst immediately.
 */
static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
{
939 940
	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
941
}
E
Eric Dumazet 已提交
942 943

/**
L
Lucas De Marchi 已提交
944
 * skb_dst_is_noref - Test if skb dst isn't refcounted
E
Eric Dumazet 已提交
945 946 947 948 949
 * @skb: buffer
 */
static inline bool skb_dst_is_noref(const struct sk_buff *skb)
{
	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
E
Eric Dumazet 已提交
950 951
}

E
Eric Dumazet 已提交
952 953
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
954
	return (struct rtable *)skb_dst(skb);
E
Eric Dumazet 已提交
955 956
}

957 958 959 960 961 962 963 964 965
/* For mangling skb->pkt_type from user space side from applications
 * such as nft, tc, etc, we only allow a conservative subset of
 * possible pkt_types to be set.
*/
static inline bool skb_pkt_type_ok(u32 ptype)
{
	return ptype <= PACKET_OTHERHOST;
}

966 967 968 969 970 971 972 973 974
static inline unsigned int skb_napi_id(const struct sk_buff *skb)
{
#ifdef CONFIG_NET_RX_BUSY_POLL
	return skb->napi_id;
#else
	return 0;
#endif
}

975 976 977 978 979
/* decrement the reference count and return true if we can free the skb */
static inline bool skb_unref(struct sk_buff *skb)
{
	if (unlikely(!skb))
		return false;
980
	if (likely(refcount_read(&skb->users) == 1))
981
		smp_rmb();
982
	else if (likely(!refcount_dec_and_test(&skb->users)))
983 984 985 986 987
		return false;

	return true;
}

P
Paolo Abeni 已提交
988
void skb_release_head_state(struct sk_buff *skb);
989 990 991 992
void kfree_skb(struct sk_buff *skb);
void kfree_skb_list(struct sk_buff *segs);
void skb_tx_error(struct sk_buff *skb);
void consume_skb(struct sk_buff *skb);
993
void __consume_stateless_skb(struct sk_buff *skb);
994
void  __kfree_skb(struct sk_buff *skb);
995
extern struct kmem_cache *skbuff_head_cache;
E
Eric Dumazet 已提交
996

997 998 999
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
		      bool *fragstolen, int *delta_truesize);
E
Eric Dumazet 已提交
1000

1001 1002
struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
			    int node);
E
Eric Dumazet 已提交
1003
struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1004
struct sk_buff *build_skb(void *data, unsigned int frag_size);
1005
static inline struct sk_buff *alloc_skb(unsigned int size,
A
Al Viro 已提交
1006
					gfp_t priority)
1007
{
E
Eric Dumazet 已提交
1008
	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1009 1010
}

1011 1012 1013 1014 1015 1016
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
				     unsigned long data_len,
				     int max_page_order,
				     int *errcode,
				     gfp_t gfp_mask);

1017 1018 1019 1020 1021 1022
/* Layout of fast clones : [skb1][skb2][fclone_ref] */
struct sk_buff_fclones {
	struct sk_buff	skb1;

	struct sk_buff	skb2;

1023
	refcount_t	fclone_ref;
1024 1025 1026 1027
};

/**
 *	skb_fclone_busy - check if fclone is busy
1028
 *	@sk: socket
1029 1030
 *	@skb: buffer
 *
M
Masanari Iida 已提交
1031
 * Returns true if skb is a fast clone, and its clone is not freed.
1032 1033
 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 * so we also check that this didnt happen.
1034
 */
1035 1036
static inline bool skb_fclone_busy(const struct sock *sk,
				   const struct sk_buff *skb)
1037 1038 1039 1040 1041 1042
{
	const struct sk_buff_fclones *fclones;

	fclones = container_of(skb, struct sk_buff_fclones, skb1);

	return skb->fclone == SKB_FCLONE_ORIG &&
1043
	       refcount_read(&fclones->fclone_ref) > 1 &&
1044
	       fclones->skb2.sk == sk;
1045 1046
}

1047
static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
A
Al Viro 已提交
1048
					       gfp_t priority)
1049
{
1050
	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1051 1052
}

1053
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1054
void skb_headers_offset_update(struct sk_buff *skb, int off);
1055 1056
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1057
void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1058
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1059 1060 1061 1062 1063 1064 1065
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
				   gfp_t gfp_mask, bool fclone);
static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
					  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
}
1066 1067 1068 1069 1070 1071

int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
				     unsigned int headroom);
struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
				int newtailroom, gfp_t priority);
1072 1073 1074 1075
int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
				     int offset, int len);
int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
			      int offset, int len);
1076
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);

/**
 *	skb_pad			-	zero pad the tail of an skb
 *	@skb: buffer to pad
 *	@pad: space to pad
 *
 *	Ensure that a buffer is followed by a padding area that is zero
 *	filled. Used by network drivers which may DMA or transfer data
 *	beyond the buffer end onto the wire.
 *
 *	May return error in out of memory cases. The skb is freed on error.
 */
static inline int skb_pad(struct sk_buff *skb, int pad)
{
	return __skb_pad(skb, pad, true);
}
1094
#define dev_kfree_skb(a)	consume_skb(a)
L
Linus Torvalds 已提交
1095

1096 1097 1098
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
			 int offset, size_t size);

E
Eric Dumazet 已提交
1099
struct skb_seq_state {
1100 1101 1102 1103 1104 1105 1106 1107 1108
	__u32		lower_offset;
	__u32		upper_offset;
	__u32		frag_idx;
	__u32		stepped_offset;
	struct sk_buff	*root_skb;
	struct sk_buff	*cur_skb;
	__u8		*frag_data;
};

1109 1110 1111 1112 1113
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
			  unsigned int to, struct skb_seq_state *st);
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
			  struct skb_seq_state *st);
void skb_abort_seq_read(struct skb_seq_state *st);
1114

1115
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1116
			   unsigned int to, struct ts_config *config);
1117

T
Tom Herbert 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * Packet hash types specify the type of hash in skb_set_hash.
 *
 * Hash types refer to the protocol layer addresses which are used to
 * construct a packet's hash. The hashes are used to differentiate or identify
 * flows of the protocol layer for the hash type. Hash types are either
 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
 *
 * Properties of hashes:
 *
 * 1) Two packets in different flows have different hash values
 * 2) Two packets in the same flow should have the same hash value
 *
 * A hash at a higher layer is considered to be more specific. A driver should
 * set the most specific hash possible.
 *
 * A driver cannot indicate a more specific hash than the layer at which a hash
 * was computed. For instance an L3 hash cannot be set as an L4 hash.
 *
 * A driver may indicate a hash level which is less specific than the
 * actual layer the hash was computed on. For instance, a hash computed
 * at L4 may be considered an L3 hash. This should only be done if the
 * driver can't unambiguously determine that the HW computed the hash at
 * the higher layer. Note that the "should" in the second property above
 * permits this.
 */
enum pkt_hash_types {
	PKT_HASH_TYPE_NONE,	/* Undefined type */
	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
};

1151
static inline void skb_clear_hash(struct sk_buff *skb)
T
Tom Herbert 已提交
1152
{
1153
	skb->hash = 0;
1154
	skb->sw_hash = 0;
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	skb->l4_hash = 0;
}

static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
{
	if (!skb->l4_hash)
		skb_clear_hash(skb);
}

static inline void
__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
{
	skb->l4_hash = is_l4;
	skb->sw_hash = is_sw;
1169
	skb->hash = hash;
T
Tom Herbert 已提交
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static inline void
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
{
	/* Used by drivers to set hash from HW */
	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
}

static inline void
__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
{
	__skb_set_hash(skb, hash, true, is_l4);
}

1185
void __skb_get_hash(struct sk_buff *skb);
1186
u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1187 1188
u32 skb_get_poff(const struct sk_buff *skb);
u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1189
		   const struct flow_keys_basic *keys, int hlen);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
			    void *data, int hlen_proto);

static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
					int thoff, u8 ip_proto)
{
	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
}

void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
			     const struct flow_dissector_key *key,
			     unsigned int key_count);

1203
#ifdef CONFIG_NET
1204 1205 1206 1207
int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
				       struct bpf_prog *prog);

int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
#else
static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
						     struct bpf_prog *prog)
{
	return -EOPNOTSUPP;
}

static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
{
	return -EOPNOTSUPP;
}
#endif
1220

1221 1222 1223
bool __skb_flow_dissect(const struct sk_buff *skb,
			struct flow_dissector *flow_dissector,
			void *target_container,
1224 1225
			void *data, __be16 proto, int nhoff, int hlen,
			unsigned int flags);
1226 1227 1228

static inline bool skb_flow_dissect(const struct sk_buff *skb,
				    struct flow_dissector *flow_dissector,
1229
				    void *target_container, unsigned int flags)
1230 1231
{
	return __skb_flow_dissect(skb, flow_dissector, target_container,
1232
				  NULL, 0, 0, 0, flags);
1233 1234 1235
}

static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1236 1237
					      struct flow_keys *flow,
					      unsigned int flags)
1238 1239 1240
{
	memset(flow, 0, sizeof(*flow));
	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1241
				  NULL, 0, 0, 0, flags);
1242 1243
}

1244 1245 1246 1247 1248
static inline bool
skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
				 struct flow_keys_basic *flow, void *data,
				 __be16 proto, int nhoff, int hlen,
				 unsigned int flags)
1249 1250
{
	memset(flow, 0, sizeof(*flow));
1251
	return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
1252
				  data, proto, nhoff, hlen, flags);
1253 1254
}

1255 1256 1257 1258 1259
void
skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
			     struct flow_dissector *flow_dissector,
			     void *target_container);

1260
static inline __u32 skb_get_hash(struct sk_buff *skb)
1261
{
1262
	if (!skb->l4_hash && !skb->sw_hash)
1263
		__skb_get_hash(skb);
1264

1265
	return skb->hash;
1266 1267
}

1268
static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1269
{
1270 1271
	if (!skb->l4_hash && !skb->sw_hash) {
		struct flow_keys keys;
1272
		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1273

1274
		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1275
	}
1276 1277 1278 1279

	return skb->hash;
}

T
Tom Herbert 已提交
1280 1281
__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);

T
Tom Herbert 已提交
1282 1283
static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
{
1284
	return skb->hash;
T
Tom Herbert 已提交
1285 1286
}

1287 1288
static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
{
1289
	to->hash = from->hash;
1290
	to->sw_hash = from->sw_hash;
1291
	to->l4_hash = from->l4_hash;
1292 1293
};

1294 1295 1296 1297 1298
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->end;
}
1299 1300 1301 1302 1303

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end;
}
1304 1305 1306 1307 1308
#else
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->end;
}
1309 1310 1311 1312 1313

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end - skb->head;
}
1314 1315
#endif

L
Linus Torvalds 已提交
1316
/* Internal */
1317
#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
L
Linus Torvalds 已提交
1318

1319 1320 1321 1322 1323
static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
{
	return &skb_shinfo(skb)->hwtstamps;
}

W
Willem de Bruijn 已提交
1324 1325 1326 1327 1328 1329 1330
static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
{
	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;

	return is_zcopy ? skb_uarg(skb) : NULL;
}

1331 1332
static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
				 bool *have_ref)
W
Willem de Bruijn 已提交
1333 1334
{
	if (skb && uarg && !skb_zcopy(skb)) {
1335 1336 1337 1338
		if (unlikely(have_ref && *have_ref))
			*have_ref = false;
		else
			sock_zerocopy_get(uarg);
W
Willem de Bruijn 已提交
1339 1340 1341 1342 1343
		skb_shinfo(skb)->destructor_arg = uarg;
		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
	}
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
{
	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
}

static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
{
	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
}

static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
{
	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
}

W
Willem de Bruijn 已提交
1360 1361 1362 1363 1364 1365
/* Release a reference on a zerocopy structure */
static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
{
	struct ubuf_info *uarg = skb_zcopy(skb);

	if (uarg) {
1366 1367 1368
		if (uarg->callback == sock_zerocopy_callback) {
			uarg->zerocopy = uarg->zerocopy && zerocopy;
			sock_zerocopy_put(uarg);
1369
		} else if (!skb_zcopy_is_nouarg(skb)) {
1370 1371 1372
			uarg->callback(uarg, zerocopy);
		}

W
Willem de Bruijn 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
	}
}

/* Abort a zerocopy operation and revert zckey on error in send syscall */
static inline void skb_zcopy_abort(struct sk_buff *skb)
{
	struct ubuf_info *uarg = skb_zcopy(skb);

	if (uarg) {
1383
		sock_zerocopy_put_abort(uarg, false);
W
Willem de Bruijn 已提交
1384 1385 1386 1387
		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
	}
}

1388 1389 1390 1391 1392
static inline void skb_mark_not_on_list(struct sk_buff *skb)
{
	skb->next = NULL;
}

1393 1394 1395 1396 1397 1398
static inline void skb_list_del_init(struct sk_buff *skb)
{
	__list_del_entry(&skb->list);
	skb_mark_not_on_list(skb);
}

L
Linus Torvalds 已提交
1399 1400 1401 1402 1403 1404 1405 1406
/**
 *	skb_queue_empty - check if a queue is empty
 *	@list: queue head
 *
 *	Returns true if the queue is empty, false otherwise.
 */
static inline int skb_queue_empty(const struct sk_buff_head *list)
{
1407
	return list->next == (const struct sk_buff *) list;
L
Linus Torvalds 已提交
1408 1409
}

D
David S. Miller 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/**
 *	skb_queue_is_last - check if skb is the last entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the last buffer on the list.
 */
static inline bool skb_queue_is_last(const struct sk_buff_head *list,
				     const struct sk_buff *skb)
{
1420
	return skb->next == (const struct sk_buff *) list;
D
David S. Miller 已提交
1421 1422
}

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
/**
 *	skb_queue_is_first - check if skb is the first entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the first buffer on the list.
 */
static inline bool skb_queue_is_first(const struct sk_buff_head *list,
				      const struct sk_buff *skb)
{
1433
	return skb->prev == (const struct sk_buff *) list;
1434 1435
}

D
David S. Miller 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/**
 *	skb_queue_next - return the next packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the next packet in @list after @skb.  It is only valid to
 *	call this if skb_queue_is_last() evaluates to false.
 */
static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_last(list, skb));
	return skb->next;
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
/**
 *	skb_queue_prev - return the prev packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the prev packet in @list before @skb.  It is only valid to
 *	call this if skb_queue_is_first() evaluates to false.
 */
static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_first(list, skb));
	return skb->prev;
}

L
Linus Torvalds 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480
/**
 *	skb_get - reference buffer
 *	@skb: buffer to reference
 *
 *	Makes another reference to a socket buffer and returns a pointer
 *	to the buffer.
 */
static inline struct sk_buff *skb_get(struct sk_buff *skb)
{
1481
	refcount_inc(&skb->users);
L
Linus Torvalds 已提交
1482 1483 1484 1485
	return skb;
}

/*
1486
 * If users == 1, we are the only owner and can avoid redundant atomic changes.
L
Linus Torvalds 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
 */

/**
 *	skb_cloned - is the buffer a clone
 *	@skb: buffer to check
 *
 *	Returns true if the buffer was generated with skb_clone() and is
 *	one of multiple shared copies of the buffer. Cloned buffers are
 *	shared data so must not be written to under normal circumstances.
 */
static inline int skb_cloned(const struct sk_buff *skb)
{
	return skb->cloned &&
	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
}

1503 1504
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
1505
	might_sleep_if(gfpflags_allow_blocking(pri));
1506 1507 1508 1509 1510 1511 1512

	if (skb_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

L
Linus Torvalds 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/**
 *	skb_header_cloned - is the header a clone
 *	@skb: buffer to check
 *
 *	Returns true if modifying the header part of the buffer requires
 *	the data to be copied.
 */
static inline int skb_header_cloned(const struct sk_buff *skb)
{
	int dataref;

	if (!skb->cloned)
		return 0;

	dataref = atomic_read(&skb_shinfo(skb)->dataref);
	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
	return dataref != 1;
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
{
	might_sleep_if(gfpflags_allow_blocking(pri));

	if (skb_header_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
/**
 *	__skb_header_release - release reference to header
 *	@skb: buffer to operate on
 */
static inline void __skb_header_release(struct sk_buff *skb)
{
	skb->nohdr = 1;
	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
}


L
Linus Torvalds 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561
/**
 *	skb_shared - is the buffer shared
 *	@skb: buffer to check
 *
 *	Returns true if more than one person has a reference to this
 *	buffer.
 */
static inline int skb_shared(const struct sk_buff *skb)
{
1562
	return refcount_read(&skb->users) != 1;
L
Linus Torvalds 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
}

/**
 *	skb_share_check - check if buffer is shared and if so clone it
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the buffer is shared the buffer is cloned and the old copy
 *	drops a reference. A new clone with a single reference is returned.
 *	If the buffer is not shared the original buffer is returned. When
 *	being called from interrupt status or with spinlocks held pri must
 *	be GFP_ATOMIC.
 *
 *	NULL is returned on a memory allocation failure.
 */
1578
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
L
Linus Torvalds 已提交
1579
{
1580
	might_sleep_if(gfpflags_allow_blocking(pri));
L
Linus Torvalds 已提交
1581 1582
	if (skb_shared(skb)) {
		struct sk_buff *nskb = skb_clone(skb, pri);
1583 1584 1585 1586 1587

		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		skb = nskb;
	}
	return skb;
}

/*
 *	Copy shared buffers into a new sk_buff. We effectively do COW on
 *	packets to handle cases where we have a local reader and forward
 *	and a couple of other messy ones. The normal one is tcpdumping
 *	a packet thats being forwarded.
 */

/**
 *	skb_unshare - make a copy of a shared buffer
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the socket buffer is a clone then this function creates a new
 *	copy of the data, drops a reference count on the old copy and returns
 *	the new copy with the reference count at 1. If the buffer is not a clone
 *	the original buffer is returned. When called with a spinlock held or
 *	from interrupt state @pri must be %GFP_ATOMIC
 *
 *	%NULL is returned on a memory allocation failure.
 */
1613
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
A
Al Viro 已提交
1614
					  gfp_t pri)
L
Linus Torvalds 已提交
1615
{
1616
	might_sleep_if(gfpflags_allow_blocking(pri));
L
Linus Torvalds 已提交
1617 1618
	if (skb_cloned(skb)) {
		struct sk_buff *nskb = skb_copy(skb, pri);
1619 1620 1621 1622 1623 1624

		/* Free our shared copy */
		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1625 1626 1627 1628 1629 1630
		skb = nskb;
	}
	return skb;
}

/**
1631
 *	skb_peek - peek at the head of an &sk_buff_head
L
Linus Torvalds 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the head element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1643
static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1644
{
1645 1646 1647 1648 1649
	struct sk_buff *skb = list_->next;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;
L
Linus Torvalds 已提交
1650 1651
}

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
/**
 *	__skb_peek - peek at the head of a non-empty &sk_buff_head
 *	@list_: list to peek at
 *
 *	Like skb_peek(), but the caller knows that the list is not empty.
 */
static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
{
	return list_->next;
}

P
Pavel Emelyanov 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
/**
 *	skb_peek_next - peek skb following the given one from a queue
 *	@skb: skb to start from
 *	@list_: list to peek at
 *
 *	Returns %NULL when the end of the list is met or a pointer to the
 *	next element. The reference count is not incremented and the
 *	reference is therefore volatile. Use with caution.
 */
static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
		const struct sk_buff_head *list_)
{
	struct sk_buff *next = skb->next;
1676

P
Pavel Emelyanov 已提交
1677 1678 1679 1680 1681
	if (next == (struct sk_buff *)list_)
		next = NULL;
	return next;
}

L
Linus Torvalds 已提交
1682
/**
1683
 *	skb_peek_tail - peek at the tail of an &sk_buff_head
L
Linus Torvalds 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the tail element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1695
static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1696
{
1697 1698 1699 1700 1701 1702
	struct sk_buff *skb = list_->prev;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;

L
Linus Torvalds 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
}

/**
 *	skb_queue_len	- get queue length
 *	@list_: list to measure
 *
 *	Return the length of an &sk_buff queue.
 */
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
{
	return list_->qlen;
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
/**
 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 *	@list: queue to initialize
 *
 *	This initializes only the list and queue length aspects of
 *	an sk_buff_head object.  This allows to initialize the list
 *	aspects of an sk_buff_head without reinitializing things like
 *	the spinlock.  It can also be used for on-stack sk_buff_head
 *	objects where the spinlock is known to not be used.
 */
static inline void __skb_queue_head_init(struct sk_buff_head *list)
{
	list->prev = list->next = (struct sk_buff *)list;
	list->qlen = 0;
}

1732 1733 1734 1735 1736 1737 1738 1739
/*
 * This function creates a split out lock class for each invocation;
 * this is needed for now since a whole lot of users of the skb-queue
 * infrastructure in drivers have different locking usage (in hardirq)
 * than the networking core (in softirq only). In the long run either the
 * network layer or drivers should need annotation to consolidate the
 * main types of usage into 3 classes.
 */
L
Linus Torvalds 已提交
1740 1741 1742
static inline void skb_queue_head_init(struct sk_buff_head *list)
{
	spin_lock_init(&list->lock);
1743
	__skb_queue_head_init(list);
L
Linus Torvalds 已提交
1744 1745
}

1746 1747 1748 1749 1750 1751 1752
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
		struct lock_class_key *class)
{
	skb_queue_head_init(list);
	lockdep_set_class(&list->lock, class);
}

L
Linus Torvalds 已提交
1753
/*
1754
 *	Insert an sk_buff on a list.
L
Linus Torvalds 已提交
1755 1756 1757 1758
 *
 *	The "__skb_xxxx()" functions are the non-atomic ones that
 *	can only be called with interrupts disabled.
 */
1759 1760 1761 1762 1763 1764 1765 1766 1767
static inline void __skb_insert(struct sk_buff *newsk,
				struct sk_buff *prev, struct sk_buff *next,
				struct sk_buff_head *list)
{
	newsk->next = next;
	newsk->prev = prev;
	next->prev  = prev->next = newsk;
	list->qlen++;
}
L
Linus Torvalds 已提交
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
static inline void __skb_queue_splice(const struct sk_buff_head *list,
				      struct sk_buff *prev,
				      struct sk_buff *next)
{
	struct sk_buff *first = list->next;
	struct sk_buff *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 *	skb_queue_splice - join two skb lists, this is designed for stacks
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice(const struct sk_buff_head *list,
				    struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1793
		head->qlen += list->qlen;
1794 1795 1796 1797
	}
}

/**
E
Eric Dumazet 已提交
1798
 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_init(struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1809
		head->qlen += list->qlen;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		__skb_queue_head_init(list);
	}
}

/**
 *	skb_queue_splice_tail - join two skb lists, each list being a queue
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1824
		head->qlen += list->qlen;
1825 1826 1827 1828
	}
}

/**
E
Eric Dumazet 已提交
1829
 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	Each of the lists is a queue.
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
					      struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1841
		head->qlen += list->qlen;
1842 1843 1844 1845
		__skb_queue_head_init(list);
	}
}

L
Linus Torvalds 已提交
1846
/**
1847
 *	__skb_queue_after - queue a buffer at the list head
L
Linus Torvalds 已提交
1848
 *	@list: list to use
1849
 *	@prev: place after this buffer
L
Linus Torvalds 已提交
1850 1851
 *	@newsk: buffer to queue
 *
1852
 *	Queue a buffer int the middle of a list. This function takes no locks
L
Linus Torvalds 已提交
1853 1854 1855 1856
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1857 1858 1859
static inline void __skb_queue_after(struct sk_buff_head *list,
				     struct sk_buff *prev,
				     struct sk_buff *newsk)
L
Linus Torvalds 已提交
1860
{
1861
	__skb_insert(newsk, prev, prev->next, list);
L
Linus Torvalds 已提交
1862 1863
}

1864 1865
void skb_append(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1866

1867 1868 1869 1870 1871 1872 1873
static inline void __skb_queue_before(struct sk_buff_head *list,
				      struct sk_buff *next,
				      struct sk_buff *newsk)
{
	__skb_insert(newsk, next->prev, next, list);
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
/**
 *	__skb_queue_head - queue a buffer at the list head
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the start of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1884
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1885 1886 1887 1888 1889 1890
static inline void __skb_queue_head(struct sk_buff_head *list,
				    struct sk_buff *newsk)
{
	__skb_queue_after(list, (struct sk_buff *)list, newsk);
}

L
Linus Torvalds 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
/**
 *	__skb_queue_tail - queue a buffer at the list tail
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the end of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1901
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
L
Linus Torvalds 已提交
1902 1903 1904
static inline void __skb_queue_tail(struct sk_buff_head *list,
				   struct sk_buff *newsk)
{
1905
	__skb_queue_before(list, (struct sk_buff *)list, newsk);
L
Linus Torvalds 已提交
1906 1907 1908 1909 1910 1911
}

/*
 * remove sk_buff from list. _Must_ be called atomically, and with
 * the list known..
 */
1912
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
L
Linus Torvalds 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
	struct sk_buff *next, *prev;

	list->qlen--;
	next	   = skb->next;
	prev	   = skb->prev;
	skb->next  = skb->prev = NULL;
	next->prev = prev;
	prev->next = next;
}

1925 1926 1927 1928 1929 1930 1931 1932
/**
 *	__skb_dequeue - remove from the head of the queue
 *	@list: list to dequeue from
 *
 *	Remove the head of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The head item is
 *	returned or %NULL if the list is empty.
 */
1933
struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1934 1935 1936 1937 1938 1939 1940
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949

/**
 *	__skb_dequeue_tail - remove from the tail of the queue
 *	@list: list to dequeue from
 *
 *	Remove the tail of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The tail item is
 *	returned or %NULL if the list is empty.
 */
1950
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
L
Linus Torvalds 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek_tail(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}


1960
static inline bool skb_is_nonlinear(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969
{
	return skb->data_len;
}

static inline unsigned int skb_headlen(const struct sk_buff *skb)
{
	return skb->len - skb->data_len;
}

1970
static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1971
{
1972
	unsigned int i, len = 0;
L
Linus Torvalds 已提交
1973

1974
	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
E
Eric Dumazet 已提交
1975
		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1976 1977 1978 1979 1980 1981
	return len;
}

static inline unsigned int skb_pagelen(const struct sk_buff *skb)
{
	return skb_headlen(skb) + __skb_pagelen(skb);
L
Linus Torvalds 已提交
1982 1983
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
/**
 * __skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * Initialises the @i'th fragment of @skb to point to &size bytes at
 * offset @off within @page.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
					struct page *page, int off, int size)
L
Linus Torvalds 已提交
1999 2000 2001
{
	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

2002
	/*
2003 2004 2005
	 * Propagate page pfmemalloc to the skb if we can. The problem is
	 * that not all callers have unique ownership of the page but rely
	 * on page_is_pfmemalloc doing the right thing(tm).
2006
	 */
2007
	frag->page.p		  = page;
L
Linus Torvalds 已提交
2008
	frag->page_offset	  = off;
E
Eric Dumazet 已提交
2009
	skb_frag_size_set(frag, size);
2010 2011

	page = compound_head(page);
2012
	if (page_is_pfmemalloc(page))
2013
		skb->pfmemalloc	= true;
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
}

/**
 * skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
M
Mathias Krause 已提交
2025
 * @skb to point to @size bytes at offset @off within @page. In
2026 2027 2028 2029 2030 2031 2032 2033
 * addition updates @skb such that @i is the last fragment.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
				      struct page *page, int off, int size)
{
	__skb_fill_page_desc(skb, i, page, off, size);
L
Linus Torvalds 已提交
2034 2035 2036
	skb_shinfo(skb)->nr_frags = i + 1;
}

2037 2038
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
		     int size, unsigned int truesize);
P
Peter Zijlstra 已提交
2039

J
Jason Wang 已提交
2040 2041 2042
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
			  unsigned int truesize);

L
Linus Torvalds 已提交
2043
#define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
2044
#define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
L
Linus Torvalds 已提交
2045 2046
#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data - skb->head;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb_reset_tail_pointer(skb);
	skb->tail += offset;
}
2063

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
#else /* NET_SKBUFF_DATA_USES_OFFSET */
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb->tail = skb->data + offset;
}
2079

2080 2081
#endif /* NET_SKBUFF_DATA_USES_OFFSET */

L
Linus Torvalds 已提交
2082 2083 2084
/*
 *	Add data to an sk_buff
 */
2085 2086 2087
void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
void *skb_put(struct sk_buff *skb, unsigned int len);
static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2088
{
2089
	void *tmp = skb_tail_pointer(skb);
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095
	SKB_LINEAR_ASSERT(skb);
	skb->tail += len;
	skb->len  += len;
	return tmp;
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
{
	void *tmp = __skb_put(skb, len);

	memset(tmp, 0, len);
	return tmp;
}

static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
				   unsigned int len)
{
	void *tmp = __skb_put(skb, len);

	memcpy(tmp, data, len);
	return tmp;
}

static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
{
	*(u8 *)__skb_put(skb, 1) = val;
}

2118
static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2119
{
2120
	void *tmp = skb_put(skb, len);
2121 2122 2123 2124 2125 2126

	memset(tmp, 0, len);

	return tmp;
}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
static inline void *skb_put_data(struct sk_buff *skb, const void *data,
				 unsigned int len)
{
	void *tmp = skb_put(skb, len);

	memcpy(tmp, data, len);

	return tmp;
}

2137 2138 2139 2140 2141
static inline void skb_put_u8(struct sk_buff *skb, u8 val)
{
	*(u8 *)skb_put(skb, 1) = val;
}

2142 2143
void *skb_push(struct sk_buff *skb, unsigned int len);
static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149
{
	skb->data -= len;
	skb->len  += len;
	return skb->data;
}

2150 2151
void *skb_pull(struct sk_buff *skb, unsigned int len);
static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2152 2153 2154 2155 2156 2157
{
	skb->len -= len;
	BUG_ON(skb->len < skb->data_len);
	return skb->data += len;
}

2158
static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2159 2160 2161 2162
{
	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
}

2163
void *__pskb_pull_tail(struct sk_buff *skb, int delta);
L
Linus Torvalds 已提交
2164

2165
static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2166 2167
{
	if (len > skb_headlen(skb) &&
G
Gerrit Renker 已提交
2168
	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173
		return NULL;
	skb->len -= len;
	return skb->data += len;
}

2174
static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
{
	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
}

static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
{
	if (likely(len <= skb_headlen(skb)))
		return 1;
	if (unlikely(len > skb->len))
		return 0;
G
Gerrit Renker 已提交
2185
	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
L
Linus Torvalds 已提交
2186 2187
}

2188 2189
void skb_condense(struct sk_buff *skb);

L
Linus Torvalds 已提交
2190 2191 2192 2193 2194 2195
/**
 *	skb_headroom - bytes at buffer head
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the head of an &sk_buff.
 */
2196
static inline unsigned int skb_headroom(const struct sk_buff *skb)
L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
{
	return skb->data - skb->head;
}

/**
 *	skb_tailroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 */
static inline int skb_tailroom(const struct sk_buff *skb)
{
2209
	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
L
Linus Torvalds 已提交
2210 2211
}

2212 2213 2214 2215 2216 2217 2218 2219 2220
/**
 *	skb_availroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 *	allocated by sk_stream_alloc()
 */
static inline int skb_availroom(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2221 2222 2223 2224
	if (skb_is_nonlinear(skb))
		return 0;

	return skb->end - skb->tail - skb->reserved_tailroom;
2225 2226
}

L
Linus Torvalds 已提交
2227 2228 2229 2230 2231 2232 2233 2234
/**
 *	skb_reserve - adjust headroom
 *	@skb: buffer to alter
 *	@len: bytes to move
 *
 *	Increase the headroom of an empty &sk_buff by reducing the tail
 *	room. This is only allowed for an empty buffer.
 */
2235
static inline void skb_reserve(struct sk_buff *skb, int len)
L
Linus Torvalds 已提交
2236 2237 2238 2239 2240
{
	skb->data += len;
	skb->tail += len;
}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
/**
 *	skb_tailroom_reserve - adjust reserved_tailroom
 *	@skb: buffer to alter
 *	@mtu: maximum amount of headlen permitted
 *	@needed_tailroom: minimum amount of reserved_tailroom
 *
 *	Set reserved_tailroom so that headlen can be as large as possible but
 *	not larger than mtu and tailroom cannot be smaller than
 *	needed_tailroom.
 *	The required headroom should already have been reserved before using
 *	this function.
 */
static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
					unsigned int needed_tailroom)
{
	SKB_LINEAR_ASSERT(skb);
	if (mtu < skb_tailroom(skb) - needed_tailroom)
		/* use at most mtu */
		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
	else
		/* use up to all available space */
		skb->reserved_tailroom = needed_tailroom;
}

T
Tom Herbert 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
#define ENCAP_TYPE_ETHER	0
#define ENCAP_TYPE_IPPROTO	1

static inline void skb_set_inner_protocol(struct sk_buff *skb,
					  __be16 protocol)
{
	skb->inner_protocol = protocol;
	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
}

static inline void skb_set_inner_ipproto(struct sk_buff *skb,
					 __u8 ipproto)
{
	skb->inner_ipproto = ipproto;
	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
}

2282 2283
static inline void skb_reset_inner_headers(struct sk_buff *skb)
{
2284
	skb->inner_mac_header = skb->mac_header;
2285 2286 2287 2288
	skb->inner_network_header = skb->network_header;
	skb->inner_transport_header = skb->transport_header;
}

2289 2290 2291 2292 2293
static inline void skb_reset_mac_len(struct sk_buff *skb)
{
	skb->mac_len = skb->network_header - skb->mac_header;
}

2294 2295 2296 2297 2298 2299
static inline unsigned char *skb_inner_transport_header(const struct sk_buff
							*skb)
{
	return skb->head + skb->inner_transport_header;
}

2300 2301 2302 2303 2304
static inline int skb_inner_transport_offset(const struct sk_buff *skb)
{
	return skb_inner_transport_header(skb) - skb->data;
}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
{
	skb->inner_transport_header = skb->data - skb->head;
}

static inline void skb_set_inner_transport_header(struct sk_buff *skb,
						   const int offset)
{
	skb_reset_inner_transport_header(skb);
	skb->inner_transport_header += offset;
}

static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_network_header;
}

static inline void skb_reset_inner_network_header(struct sk_buff *skb)
{
	skb->inner_network_header = skb->data - skb->head;
}

static inline void skb_set_inner_network_header(struct sk_buff *skb,
						const int offset)
{
	skb_reset_inner_network_header(skb);
	skb->inner_network_header += offset;
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_mac_header;
}

static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
{
	skb->inner_mac_header = skb->data - skb->head;
}

static inline void skb_set_inner_mac_header(struct sk_buff *skb,
					    const int offset)
{
	skb_reset_inner_mac_header(skb);
	skb->inner_mac_header += offset;
}
2350 2351
static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
{
C
Cong Wang 已提交
2352
	return skb->transport_header != (typeof(skb->transport_header))~0U;
2353 2354
}

2355 2356
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
2357
	return skb->head + skb->transport_header;
2358 2359
}

2360 2361
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
2362
	skb->transport_header = skb->data - skb->head;
2363 2364
}

2365 2366 2367
static inline void skb_set_transport_header(struct sk_buff *skb,
					    const int offset)
{
2368 2369
	skb_reset_transport_header(skb);
	skb->transport_header += offset;
2370 2371
}

2372 2373
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
2374
	return skb->head + skb->network_header;
2375 2376
}

2377 2378
static inline void skb_reset_network_header(struct sk_buff *skb)
{
2379
	skb->network_header = skb->data - skb->head;
2380 2381
}

2382 2383
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
2384 2385
	skb_reset_network_header(skb);
	skb->network_header += offset;
2386 2387
}

2388
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2389
{
2390
	return skb->head + skb->mac_header;
2391 2392
}

2393 2394 2395 2396 2397
static inline int skb_mac_offset(const struct sk_buff *skb)
{
	return skb_mac_header(skb) - skb->data;
}

2398 2399 2400 2401 2402
static inline u32 skb_mac_header_len(const struct sk_buff *skb)
{
	return skb->network_header - skb->mac_header;
}

2403
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2404
{
C
Cong Wang 已提交
2405
	return skb->mac_header != (typeof(skb->mac_header))~0U;
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
}

static inline void skb_reset_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->data - skb->head;
}

static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
	skb_reset_mac_header(skb);
	skb->mac_header += offset;
}

2419 2420 2421 2422 2423
static inline void skb_pop_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->network_header;
}

2424 2425 2426
static inline void skb_probe_transport_header(struct sk_buff *skb,
					      const int offset_hint)
{
2427
	struct flow_keys_basic keys;
2428 2429 2430

	if (skb_transport_header_was_set(skb))
		return;
2431

2432
	if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
2433
		skb_set_transport_header(skb, keys.control.thoff);
2434 2435 2436 2437
	else
		skb_set_transport_header(skb, offset_hint);
}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
static inline void skb_mac_header_rebuild(struct sk_buff *skb)
{
	if (skb_mac_header_was_set(skb)) {
		const unsigned char *old_mac = skb_mac_header(skb);

		skb_set_mac_header(skb, -skb->mac_len);
		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
	}
}

2448 2449 2450 2451 2452
static inline int skb_checksum_start_offset(const struct sk_buff *skb)
{
	return skb->csum_start - skb_headroom(skb);
}

2453 2454 2455 2456 2457
static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
{
	return skb->head + skb->csum_start;
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
static inline int skb_transport_offset(const struct sk_buff *skb)
{
	return skb_transport_header(skb) - skb->data;
}

static inline u32 skb_network_header_len(const struct sk_buff *skb)
{
	return skb->transport_header - skb->network_header;
}

2468 2469 2470 2471 2472
static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
{
	return skb->inner_transport_header - skb->inner_network_header;
}

2473 2474 2475 2476
static inline int skb_network_offset(const struct sk_buff *skb)
{
	return skb_network_header(skb) - skb->data;
}
2477

2478 2479 2480 2481 2482
static inline int skb_inner_network_offset(const struct sk_buff *skb)
{
	return skb_inner_network_header(skb) - skb->data;
}

2483 2484 2485 2486 2487
static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
{
	return pskb_may_pull(skb, skb_network_offset(skb) + len);
}

L
Linus Torvalds 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
/*
 * CPUs often take a performance hit when accessing unaligned memory
 * locations. The actual performance hit varies, it can be small if the
 * hardware handles it or large if we have to take an exception and fix it
 * in software.
 *
 * Since an ethernet header is 14 bytes network drivers often end up with
 * the IP header at an unaligned offset. The IP header can be aligned by
 * shifting the start of the packet by 2 bytes. Drivers should do this
 * with:
 *
2499
 * skb_reserve(skb, NET_IP_ALIGN);
L
Linus Torvalds 已提交
2500 2501 2502 2503
 *
 * The downside to this alignment of the IP header is that the DMA is now
 * unaligned. On some architectures the cost of an unaligned DMA is high
 * and this cost outweighs the gains made by aligning the IP header.
2504
 *
L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510 2511
 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
 * to be overridden.
 */
#ifndef NET_IP_ALIGN
#define NET_IP_ALIGN	2
#endif

2512 2513 2514 2515
/*
 * The networking layer reserves some headroom in skb data (via
 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
 * the header has to grow. In the default case, if the header has to grow
2516
 * 32 bytes or less we avoid the reallocation.
2517 2518 2519 2520 2521 2522 2523
 *
 * Unfortunately this headroom changes the DMA alignment of the resulting
 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
 * on some architectures. An architecture can override this value,
 * perhaps setting it to a cacheline in size (since that will maintain
 * cacheline alignment of the DMA). It must be a power of 2.
 *
2524
 * Various parts of the networking layer expect at least 32 bytes of
2525
 * headroom, you should not reduce this.
2526 2527 2528 2529
 *
 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
 * to reduce average number of cache lines per packet.
 * get_rps_cpus() for example only access one 64 bytes aligned block :
2530
 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2531 2532
 */
#ifndef NET_SKB_PAD
2533
#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2534 2535
#endif

2536
int ___pskb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2537

2538
static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2539
{
2540
	if (WARN_ON(skb_is_nonlinear(skb)))
2541
		return;
2542 2543
	skb->len = len;
	skb_set_tail_pointer(skb, len);
L
Linus Torvalds 已提交
2544 2545
}

2546 2547 2548 2549 2550
static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
{
	__skb_set_length(skb, len);
}

2551
void skb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2552 2553 2554

static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
{
2555 2556 2557 2558
	if (skb->data_len)
		return ___pskb_trim(skb, len);
	__skb_trim(skb, len);
	return 0;
L
Linus Torvalds 已提交
2559 2560 2561 2562 2563 2564 2565
}

static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
{
	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
}

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
/**
 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
 *	@skb: buffer to alter
 *	@len: new length
 *
 *	This is identical to pskb_trim except that the caller knows that
 *	the skb is not cloned so we should never get an error due to out-
 *	of-memory.
 */
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
{
	int err = pskb_trim(skb, len);
	BUG_ON(err);
}

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
{
	unsigned int diff = len - skb->len;

	if (skb_tailroom(skb) < diff) {
		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
					   GFP_ATOMIC);
		if (ret)
			return ret;
	}
	__skb_set_length(skb, len);
	return 0;
}

L
Linus Torvalds 已提交
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
/**
 *	skb_orphan - orphan a buffer
 *	@skb: buffer to orphan
 *
 *	If a buffer currently has an owner then we call the owner's
 *	destructor function and make the @skb unowned. The buffer continues
 *	to exist but is no longer charged to its former owner.
 */
static inline void skb_orphan(struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2605
	if (skb->destructor) {
L
Linus Torvalds 已提交
2606
		skb->destructor(skb);
E
Eric Dumazet 已提交
2607 2608
		skb->destructor = NULL;
		skb->sk		= NULL;
2609 2610
	} else {
		BUG_ON(skb->sk);
E
Eric Dumazet 已提交
2611
	}
L
Linus Torvalds 已提交
2612 2613
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/**
 *	skb_orphan_frags - orphan the frags contained in a buffer
 *	@skb: buffer to orphan frags from
 *	@gfp_mask: allocation mask for replacement pages
 *
 *	For each frag in the SKB which needs a destructor (i.e. has an
 *	owner) create a copy of that frag and release the original
 *	page by calling the destructor.
 */
static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
{
W
Willem de Bruijn 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	if (likely(!skb_zcopy(skb)))
		return 0;
	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
{
	if (likely(!skb_zcopy(skb)))
2636 2637 2638 2639
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

L
Linus Torvalds 已提交
2640 2641 2642 2643 2644 2645 2646 2647
/**
 *	__skb_queue_purge - empty a list
 *	@list: list to empty
 *
 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
 *	the list and one reference dropped. This function does not take the
 *	list lock and the caller must hold the relevant locks to use it.
 */
2648
void skb_queue_purge(struct sk_buff_head *list);
L
Linus Torvalds 已提交
2649 2650 2651 2652 2653 2654 2655
static inline void __skb_queue_purge(struct sk_buff_head *list)
{
	struct sk_buff *skb;
	while ((skb = __skb_dequeue(list)) != NULL)
		kfree_skb(skb);
}

2656
unsigned int skb_rbtree_purge(struct rb_root *root);
2657

2658
void *netdev_alloc_frag(unsigned int fragsz);
L
Linus Torvalds 已提交
2659

2660 2661
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
				   gfp_t gfp_mask);
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676

/**
 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
 *	@dev: network device to receive on
 *	@length: length to allocate
 *
 *	Allocate a new &sk_buff and assign it a usage count of one. The
 *	buffer has unspecified headroom built in. Users should allocate
 *	the headroom they think they need without accounting for the
 *	built in space. The built in space is used for optimisations.
 *
 *	%NULL is returned if there is no free memory. Although this function
 *	allocates memory it can be called from an interrupt.
 */
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2677
					       unsigned int length)
2678 2679 2680 2681
{
	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
}

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
/* legacy helper around __netdev_alloc_skb() */
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
					      gfp_t gfp_mask)
{
	return __netdev_alloc_skb(NULL, length, gfp_mask);
}

/* legacy helper around netdev_alloc_skb() */
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
	return netdev_alloc_skb(NULL, length);
}


2696 2697
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length, gfp_t gfp)
2698
{
2699
	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2700 2701 2702 2703 2704 2705

	if (NET_IP_ALIGN && skb)
		skb_reserve(skb, NET_IP_ALIGN);
	return skb;
}

2706 2707 2708 2709 2710 2711
static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length)
{
	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
}

2712 2713
static inline void skb_free_frag(void *addr)
{
2714
	page_frag_free(addr);
2715 2716
}

2717
void *napi_alloc_frag(unsigned int fragsz);
2718 2719 2720 2721 2722 2723 2724
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
				 unsigned int length, gfp_t gfp_mask);
static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
					     unsigned int length)
{
	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
}
2725 2726 2727
void napi_consume_skb(struct sk_buff *skb, int budget);

void __kfree_skb_flush(void);
2728
void __kfree_skb_defer(struct sk_buff *skb);
2729

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
/**
 * __dev_alloc_pages - allocate page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 * @order: size of the allocation
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
*/
static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
					     unsigned int order)
{
	/* This piece of code contains several assumptions.
	 * 1.  This is for device Rx, therefor a cold page is preferred.
	 * 2.  The expectation is the user wants a compound page.
	 * 3.  If requesting a order 0 page it will not be compound
	 *     due to the check to see if order has a value in prep_new_page
	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
	 *     code in gfp_to_alloc_flags that should be enforcing this.
	 */
M
Mel Gorman 已提交
2750
	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2751 2752 2753 2754 2755 2756

	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
}

static inline struct page *dev_alloc_pages(unsigned int order)
{
2757
	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
}

/**
 * __dev_alloc_page - allocate a page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
 */
static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
{
	return __dev_alloc_pages(gfp_mask, 0);
}

static inline struct page *dev_alloc_page(void)
{
2775
	return dev_alloc_pages(0);
2776 2777
}

2778 2779 2780 2781 2782 2783 2784 2785
/**
 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
 *	@page: The page that was allocated from skb_alloc_page
 *	@skb: The skb that may need pfmemalloc set
 */
static inline void skb_propagate_pfmemalloc(struct page *page,
					     struct sk_buff *skb)
{
2786
	if (page_is_pfmemalloc(page))
2787 2788 2789
		skb->pfmemalloc = true;
}

2790
/**
2791
 * skb_frag_page - retrieve the page referred to by a paged fragment
2792 2793 2794 2795 2796 2797
 * @frag: the paged fragment
 *
 * Returns the &struct page associated with @frag.
 */
static inline struct page *skb_frag_page(const skb_frag_t *frag)
{
2798
	return frag->page.p;
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
}

/**
 * __skb_frag_ref - take an addition reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Takes an additional reference on the paged fragment @frag.
 */
static inline void __skb_frag_ref(skb_frag_t *frag)
{
	get_page(skb_frag_page(frag));
}

/**
 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset.
 *
 * Takes an additional reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_ref(struct sk_buff *skb, int f)
{
	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
}

/**
 * __skb_frag_unref - release a reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Releases a reference on the paged fragment @frag.
 */
static inline void __skb_frag_unref(skb_frag_t *frag)
{
	put_page(skb_frag_page(frag));
}

/**
 * skb_frag_unref - release a reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset
 *
 * Releases a reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_unref(struct sk_buff *skb, int f)
{
	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
}

/**
 * skb_frag_address - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. The page must already
 * be mapped.
 */
static inline void *skb_frag_address(const skb_frag_t *frag)
{
	return page_address(skb_frag_page(frag)) + frag->page_offset;
}

/**
 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. Checks that the page
 * is mapped and returns %NULL otherwise.
 */
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
{
	void *ptr = page_address(skb_frag_page(frag));
	if (unlikely(!ptr))
		return NULL;

	return ptr + frag->page_offset;
}

/**
 * __skb_frag_set_page - sets the page contained in a paged fragment
 * @frag: the paged fragment
 * @page: the page to set
 *
 * Sets the fragment @frag to contain @page.
 */
static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
{
2884
	frag->page.p = page;
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
}

/**
 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
 * @skb: the buffer
 * @f: the fragment offset
 * @page: the page to set
 *
 * Sets the @f'th fragment of @skb to contain @page.
 */
static inline void skb_frag_set_page(struct sk_buff *skb, int f,
				     struct page *page)
{
	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
}

E
Eric Dumazet 已提交
2901 2902
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);

2903 2904
/**
 * skb_frag_dma_map - maps a paged fragment via the DMA API
2905
 * @dev: the device to map the fragment to
2906 2907 2908 2909
 * @frag: the paged fragment to map
 * @offset: the offset within the fragment (starting at the
 *          fragment's own offset)
 * @size: the number of bytes to map
2910
 * @dir: the direction of the mapping (``PCI_DMA_*``)
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
 *
 * Maps the page associated with @frag to @device.
 */
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
					  const skb_frag_t *frag,
					  size_t offset, size_t size,
					  enum dma_data_direction dir)
{
	return dma_map_page(dev, skb_frag_page(frag),
			    frag->page_offset + offset, size, dir);
}

E
Eric Dumazet 已提交
2923 2924 2925 2926 2927 2928
static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
					gfp_t gfp_mask)
{
	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
}

2929 2930 2931 2932 2933 2934 2935 2936

static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
						  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
}


2937 2938 2939 2940 2941 2942 2943 2944
/**
 *	skb_clone_writable - is the header of a clone writable
 *	@skb: buffer to check
 *	@len: length up to which to write
 *
 *	Returns true if modifying the header part of the cloned buffer
 *	does not requires the data to be copied.
 */
2945
static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2946 2947 2948 2949 2950
{
	return !skb_header_cloned(skb) &&
	       skb_headroom(skb) + len <= skb->hdr_len;
}

2951 2952 2953 2954 2955 2956 2957
static inline int skb_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
}

H
Herbert Xu 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
			    int cloned)
{
	int delta = 0;

	if (headroom > skb_headroom(skb))
		delta = headroom - skb_headroom(skb);

	if (delta || cloned)
		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
					GFP_ATOMIC);
	return 0;
}

L
Linus Torvalds 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
/**
 *	skb_cow - copy header of skb when it is required
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	If the skb passed lacks sufficient headroom or its data part
 *	is shared, data is reallocated. If reallocation fails, an error
 *	is returned and original skb is not changed.
 *
 *	The result is skb with writable area skb->head...skb->tail
 *	and at least @headroom of space at head.
 */
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
{
H
Herbert Xu 已提交
2986 2987
	return __skb_cow(skb, headroom, skb_cloned(skb));
}
L
Linus Torvalds 已提交
2988

H
Herbert Xu 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
/**
 *	skb_cow_head - skb_cow but only making the head writable
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	This function is identical to skb_cow except that we replace the
 *	skb_cloned check by skb_header_cloned.  It should be used when
 *	you only need to push on some header and do not need to modify
 *	the data.
 */
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
{
	return __skb_cow(skb, headroom, skb_header_cloned(skb));
L
Linus Torvalds 已提交
3002 3003 3004 3005 3006 3007 3008 3009 3010
}

/**
 *	skb_padto	- pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
3011 3012
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
L
Linus Torvalds 已提交
3013
 */
3014
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
3015 3016 3017
{
	unsigned int size = skb->len;
	if (likely(size >= len))
3018
		return 0;
G
Gerrit Renker 已提交
3019
	return skb_pad(skb, len - size);
L
Linus Torvalds 已提交
3020 3021
}

3022 3023 3024 3025
/**
 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
3026
 *	@free_on_error: free buffer on error
3027 3028 3029 3030
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
 *	is untouched. Otherwise it is extended. Returns zero on
3031
 *	success. The skb is freed on error if @free_on_error is true.
3032
 */
3033 3034
static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
				  bool free_on_error)
3035 3036 3037 3038 3039
{
	unsigned int size = skb->len;

	if (unlikely(size < len)) {
		len -= size;
3040
		if (__skb_pad(skb, len, free_on_error))
3041 3042 3043 3044 3045 3046
			return -ENOMEM;
		__skb_put(skb, len);
	}
	return 0;
}

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
/**
 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
 */
static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
{
	return __skb_put_padto(skb, len, true);
}

L
Linus Torvalds 已提交
3062
static inline int skb_add_data(struct sk_buff *skb,
3063
			       struct iov_iter *from, int copy)
L
Linus Torvalds 已提交
3064 3065 3066 3067
{
	const int off = skb->len;

	if (skb->ip_summed == CHECKSUM_NONE) {
3068
		__wsum csum = 0;
3069 3070
		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
					         &csum, from)) {
L
Linus Torvalds 已提交
3071 3072 3073
			skb->csum = csum_block_add(skb->csum, csum, off);
			return 0;
		}
3074
	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
L
Linus Torvalds 已提交
3075 3076 3077 3078 3079 3080
		return 0;

	__skb_trim(skb, off);
	return -EFAULT;
}

3081 3082
static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
				    const struct page *page, int off)
L
Linus Torvalds 已提交
3083
{
W
Willem de Bruijn 已提交
3084 3085
	if (skb_zcopy(skb))
		return false;
L
Linus Torvalds 已提交
3086
	if (i) {
E
Eric Dumazet 已提交
3087
		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
L
Linus Torvalds 已提交
3088

3089
		return page == skb_frag_page(frag) &&
E
Eric Dumazet 已提交
3090
		       off == frag->page_offset + skb_frag_size(frag);
L
Linus Torvalds 已提交
3091
	}
3092
	return false;
L
Linus Torvalds 已提交
3093 3094
}

H
Herbert Xu 已提交
3095 3096 3097 3098 3099
static inline int __skb_linearize(struct sk_buff *skb)
{
	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
}

L
Linus Torvalds 已提交
3100 3101 3102 3103 3104 3105 3106
/**
 *	skb_linearize - convert paged skb to linear one
 *	@skb: buffer to linarize
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
H
Herbert Xu 已提交
3107 3108 3109 3110 3111
static inline int skb_linearize(struct sk_buff *skb)
{
	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
}

3112 3113 3114 3115 3116 3117 3118 3119 3120
/**
 * skb_has_shared_frag - can any frag be overwritten
 * @skb: buffer to test
 *
 * Return true if the skb has at least one frag that might be modified
 * by an external entity (as in vmsplice()/sendfile())
 */
static inline bool skb_has_shared_frag(const struct sk_buff *skb)
{
3121 3122
	return skb_is_nonlinear(skb) &&
	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3123 3124
}

H
Herbert Xu 已提交
3125 3126 3127 3128 3129 3130 3131 3132
/**
 *	skb_linearize_cow - make sure skb is linear and writable
 *	@skb: buffer to process
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
static inline int skb_linearize_cow(struct sk_buff *skb)
L
Linus Torvalds 已提交
3133
{
H
Herbert Xu 已提交
3134 3135
	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
	       __skb_linearize(skb) : 0;
L
Linus Torvalds 已提交
3136 3137
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
static __always_inline void
__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
		     unsigned int off)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->csum = csum_block_sub(skb->csum,
					   csum_partial(start, len, 0), off);
	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) < 0)
		skb->ip_summed = CHECKSUM_NONE;
}

L
Linus Torvalds 已提交
3150 3151 3152 3153 3154 3155 3156
/**
 *	skb_postpull_rcsum - update checksum for received skb after pull
 *	@skb: buffer to update
 *	@start: start of data before pull
 *	@len: length of data pulled
 *
 *	After doing a pull on a received packet, you need to call this to
3157 3158
 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
 *	CHECKSUM_NONE so that it can be recomputed from scratch.
L
Linus Torvalds 已提交
3159 3160
 */
static inline void skb_postpull_rcsum(struct sk_buff *skb,
3161
				      const void *start, unsigned int len)
L
Linus Torvalds 已提交
3162
{
3163
	__skb_postpull_rcsum(skb, start, len, 0);
L
Linus Torvalds 已提交
3164 3165
}

3166 3167 3168 3169 3170 3171 3172 3173
static __always_inline void
__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
		     unsigned int off)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->csum = csum_block_add(skb->csum,
					   csum_partial(start, len, 0), off);
}
3174

3175 3176 3177 3178 3179 3180 3181 3182 3183
/**
 *	skb_postpush_rcsum - update checksum for received skb after push
 *	@skb: buffer to update
 *	@start: start of data after push
 *	@len: length of data pushed
 *
 *	After doing a push on a received packet, you need to call this to
 *	update the CHECKSUM_COMPLETE checksum.
 */
3184 3185 3186
static inline void skb_postpush_rcsum(struct sk_buff *skb,
				      const void *start, unsigned int len)
{
3187
	__skb_postpush_rcsum(skb, start, len, 0);
3188 3189
}

3190
void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
/**
 *	skb_push_rcsum - push skb and update receive checksum
 *	@skb: buffer to update
 *	@len: length of data pulled
 *
 *	This function performs an skb_push on the packet and updates
 *	the CHECKSUM_COMPLETE checksum.  It should be used on
 *	receive path processing instead of skb_push unless you know
 *	that the checksum difference is zero (e.g., a valid IP header)
 *	or you are setting ip_summed to CHECKSUM_NONE.
 */
3203
static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3204 3205 3206 3207 3208 3209
{
	skb_push(skb, len);
	skb_postpush_rcsum(skb, skb->data, len);
	return skb->data;
}

3210
int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
/**
 *	pskb_trim_rcsum - trim received skb and update checksum
 *	@skb: buffer to trim
 *	@len: new length
 *
 *	This is exactly the same as pskb_trim except that it ensures the
 *	checksum of received packets are still valid after the operation.
 */

static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (likely(len >= skb->len))
		return 0;
3224
	return pskb_trim_rcsum_slow(skb, len);
3225 3226
}

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	__skb_trim(skb, len);
	return 0;
}

static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __skb_grow(skb, len);
}

3242 3243 3244 3245 3246 3247
#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
#define skb_rb_first(root) rb_to_skb(rb_first(root))
#define skb_rb_last(root)  rb_to_skb(rb_last(root))
#define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
#define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))

L
Linus Torvalds 已提交
3248 3249
#define skb_queue_walk(queue, skb) \
		for (skb = (queue)->next;					\
3250
		     skb != (struct sk_buff *)(queue);				\
L
Linus Torvalds 已提交
3251 3252
		     skb = skb->next)

3253 3254 3255 3256 3257
#define skb_queue_walk_safe(queue, skb, tmp)					\
		for (skb = (queue)->next, tmp = skb->next;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

3258
#define skb_queue_walk_from(queue, skb)						\
3259
		for (; skb != (struct sk_buff *)(queue);			\
3260 3261
		     skb = skb->next)

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
#define skb_rbtree_walk(skb, root)						\
		for (skb = skb_rb_first(root); skb != NULL;			\
		     skb = skb_rb_next(skb))

#define skb_rbtree_walk_from(skb)						\
		for (; skb != NULL;						\
		     skb = skb_rb_next(skb))

#define skb_rbtree_walk_from_safe(skb, tmp)					\
		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
		     skb = tmp)

3274 3275 3276 3277 3278
#define skb_queue_walk_from_safe(queue, skb, tmp)				\
		for (tmp = skb->next;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

3279 3280
#define skb_queue_reverse_walk(queue, skb) \
		for (skb = (queue)->prev;					\
3281
		     skb != (struct sk_buff *)(queue);				\
3282 3283
		     skb = skb->prev)

3284 3285 3286 3287 3288 3289 3290 3291 3292
#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
		for (skb = (queue)->prev, tmp = skb->prev;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)

#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
		for (tmp = skb->prev;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)
L
Linus Torvalds 已提交
3293

3294
static inline bool skb_has_frag_list(const struct sk_buff *skb)
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
{
	return skb_shinfo(skb)->frag_list != NULL;
}

static inline void skb_frag_list_init(struct sk_buff *skb)
{
	skb_shinfo(skb)->frag_list = NULL;
}

#define skb_walk_frags(skb, iter)	\
	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)

3307 3308 3309

int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
				const struct sk_buff *skb);
3310 3311 3312 3313 3314 3315 3316
struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
					  struct sk_buff_head *queue,
					  unsigned int flags,
					  void (*destructor)(struct sock *sk,
							   struct sk_buff *skb),
					  int *peeked, int *off, int *err,
					  struct sk_buff **last);
3317
struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3318 3319
					void (*destructor)(struct sock *sk,
							   struct sk_buff *skb),
3320 3321
					int *peeked, int *off, int *err,
					struct sk_buff **last);
3322
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3323 3324
				    void (*destructor)(struct sock *sk,
						       struct sk_buff *skb),
3325 3326 3327
				    int *peeked, int *off, int *err);
struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
				  int *err);
3328 3329
__poll_t datagram_poll(struct file *file, struct socket *sock,
			   struct poll_table_struct *wait);
A
Al Viro 已提交
3330 3331
int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
			   struct iov_iter *to, int size);
3332 3333 3334
static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
					struct msghdr *msg, int size)
{
3335
	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3336
}
3337 3338
int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
				   struct msghdr *msg);
3339 3340 3341
int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
				 struct iov_iter *from, int len);
int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3342
void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3343 3344 3345 3346 3347 3348
void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
static inline void skb_free_datagram_locked(struct sock *sk,
					    struct sk_buff *skb)
{
	__skb_free_datagram_locked(sk, skb, 0);
}
3349 3350 3351 3352 3353
int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
			      int len, __wsum csum);
3354
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3355
		    struct pipe_inode_info *pipe, unsigned int len,
A
Al Viro 已提交
3356
		    unsigned int flags);
3357 3358
int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
			 int len);
3359
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3360
unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3361 3362
int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
		 int len, int hlen);
3363 3364 3365
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3366
bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3367
bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3368
struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3369
struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3370
int skb_ensure_writable(struct sk_buff *skb, int write_len);
3371
int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3372 3373
int skb_vlan_pop(struct sk_buff *skb);
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3374 3375
struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
			     gfp_t gfp);
3376

A
Al Viro 已提交
3377 3378
static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
{
3379
	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
A
Al Viro 已提交
3380 3381
}

A
Al Viro 已提交
3382 3383
static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
{
3384
	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
A
Al Viro 已提交
3385 3386
}

3387 3388 3389 3390 3391
struct skb_checksum_ops {
	__wsum (*update)(const void *mem, int len, __wsum wsum);
	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
};

3392 3393
extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;

3394 3395 3396 3397 3398
__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
		      __wsum csum, const struct skb_checksum_ops *ops);
__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
		    __wsum csum);

3399 3400 3401
static inline void * __must_check
__skb_header_pointer(const struct sk_buff *skb, int offset,
		     int len, void *data, int hlen, void *buffer)
L
Linus Torvalds 已提交
3402
{
3403
	if (hlen - offset >= len)
3404
		return data + offset;
L
Linus Torvalds 已提交
3405

3406 3407
	if (!skb ||
	    skb_copy_bits(skb, offset, buffer, len) < 0)
L
Linus Torvalds 已提交
3408 3409 3410 3411 3412
		return NULL;

	return buffer;
}

3413 3414
static inline void * __must_check
skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3415 3416 3417 3418 3419
{
	return __skb_header_pointer(skb, offset, len, skb->data,
				    skb_headlen(skb), buffer);
}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
/**
 *	skb_needs_linearize - check if we need to linearize a given skb
 *			      depending on the given device features.
 *	@skb: socket buffer to check
 *	@features: net device features
 *
 *	Returns true if either:
 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
 *	2. skb is fragmented and the device does not support SG.
 */
static inline bool skb_needs_linearize(struct sk_buff *skb,
				       netdev_features_t features)
{
	return skb_is_nonlinear(skb) &&
	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
}

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
					     void *to,
					     const unsigned int len)
{
	memcpy(to, skb->data, len);
}

static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
						    const int offset, void *to,
						    const unsigned int len)
{
	memcpy(to, skb->data + offset, len);
}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
					   const void *from,
					   const unsigned int len)
{
	memcpy(skb->data, from, len);
}

static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
						  const int offset,
						  const void *from,
						  const unsigned int len)
{
	memcpy(skb->data + offset, from, len);
}

3467
void skb_init(void);
L
Linus Torvalds 已提交
3468

3469 3470 3471 3472 3473
static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
{
	return skb->tstamp;
}

3474 3475 3476 3477 3478 3479 3480 3481 3482
/**
 *	skb_get_timestamp - get timestamp from a skb
 *	@skb: skb to get stamp from
 *	@stamp: pointer to struct timeval to store stamp in
 *
 *	Timestamps are stored in the skb as offsets to a base timestamp.
 *	This function converts the offset back to a struct timeval and stores
 *	it in stamp.
 */
3483 3484
static inline void skb_get_timestamp(const struct sk_buff *skb,
				     struct timeval *stamp)
3485
{
3486
	*stamp = ktime_to_timeval(skb->tstamp);
3487 3488
}

3489 3490 3491 3492 3493 3494
static inline void skb_get_timestampns(const struct sk_buff *skb,
				       struct timespec *stamp)
{
	*stamp = ktime_to_timespec(skb->tstamp);
}

3495
static inline void __net_timestamp(struct sk_buff *skb)
3496
{
3497
	skb->tstamp = ktime_get_real();
3498 3499
}

3500 3501 3502 3503 3504
static inline ktime_t net_timedelta(ktime_t t)
{
	return ktime_sub(ktime_get_real(), t);
}

3505 3506
static inline ktime_t net_invalid_timestamp(void)
{
T
Thomas Gleixner 已提交
3507
	return 0;
3508
}
3509

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
static inline u8 skb_metadata_len(const struct sk_buff *skb)
{
	return skb_shinfo(skb)->meta_len;
}

static inline void *skb_metadata_end(const struct sk_buff *skb)
{
	return skb_mac_header(skb);
}

static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
					  const struct sk_buff *skb_b,
					  u8 meta_len)
{
	const void *a = skb_metadata_end(skb_a);
	const void *b = skb_metadata_end(skb_b);
	/* Using more efficient varaiant than plain call to memcmp(). */
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
	u64 diffs = 0;

	switch (meta_len) {
#define __it(x, op) (x -= sizeof(u##op))
#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
	case 32: diffs |= __it_diff(a, b, 64);
3534
		 /* fall through */
3535
	case 24: diffs |= __it_diff(a, b, 64);
3536
		 /* fall through */
3537
	case 16: diffs |= __it_diff(a, b, 64);
3538
		 /* fall through */
3539 3540 3541
	case  8: diffs |= __it_diff(a, b, 64);
		break;
	case 28: diffs |= __it_diff(a, b, 64);
3542
		 /* fall through */
3543
	case 20: diffs |= __it_diff(a, b, 64);
3544
		 /* fall through */
3545
	case 12: diffs |= __it_diff(a, b, 64);
3546
		 /* fall through */
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	case  4: diffs |= __it_diff(a, b, 32);
		break;
	}
	return diffs;
#else
	return memcmp(a - meta_len, b - meta_len, meta_len);
#endif
}

static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
					const struct sk_buff *skb_b)
{
	u8 len_a = skb_metadata_len(skb_a);
	u8 len_b = skb_metadata_len(skb_b);

	if (!(len_a | len_b))
		return false;

	return len_a != len_b ?
	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
}

static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
{
	skb_shinfo(skb)->meta_len = meta_len;
}

static inline void skb_metadata_clear(struct sk_buff *skb)
{
	skb_metadata_set(skb, 0);
}

3579 3580
struct sk_buff *skb_clone_sk(struct sk_buff *skb);

3581 3582
#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING

3583 3584
void skb_clone_tx_timestamp(struct sk_buff *skb);
bool skb_defer_rx_timestamp(struct sk_buff *skb);
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601

#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */

static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
{
}

static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
{
	return false;
}

#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */

/**
 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
 *
3602 3603
 * PHY drivers may accept clones of transmitted packets for
 * timestamping via their phy_driver.txtstamp method. These drivers
3604 3605
 * must call this function to return the skb back to the stack with a
 * timestamp.
3606
 *
3607
 * @skb: clone of the the original outgoing packet
3608
 * @hwtstamps: hardware time stamps
3609 3610 3611 3612 3613
 *
 */
void skb_complete_tx_timestamp(struct sk_buff *skb,
			       struct skb_shared_hwtstamps *hwtstamps);

3614 3615 3616 3617
void __skb_tstamp_tx(struct sk_buff *orig_skb,
		     struct skb_shared_hwtstamps *hwtstamps,
		     struct sock *sk, int tstype);

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
/**
 * skb_tstamp_tx - queue clone of skb with send time stamps
 * @orig_skb:	the original outgoing packet
 * @hwtstamps:	hardware time stamps, may be NULL if not available
 *
 * If the skb has a socket associated, then this function clones the
 * skb (thus sharing the actual data and optional structures), stores
 * the optional hardware time stamping information (if non NULL) or
 * generates a software time stamp (otherwise), then queues the clone
 * to the error queue of the socket.  Errors are silently ignored.
 */
3629 3630
void skb_tstamp_tx(struct sk_buff *orig_skb,
		   struct skb_shared_hwtstamps *hwtstamps);
3631

3632 3633 3634 3635
/**
 * skb_tx_timestamp() - Driver hook for transmit timestamping
 *
 * Ethernet MAC Drivers should call this function in their hard_xmit()
3636
 * function immediately before giving the sk_buff to the MAC hardware.
3637
 *
3638 3639 3640 3641
 * Specifically, one should make absolutely sure that this function is
 * called before TX completion of this packet can trigger.  Otherwise
 * the packet could potentially already be freed.
 *
3642 3643 3644 3645
 * @skb: A socket buffer.
 */
static inline void skb_tx_timestamp(struct sk_buff *skb)
{
3646
	skb_clone_tx_timestamp(skb);
3647 3648
	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
		skb_tstamp_tx(skb, NULL);
3649 3650
}

3651 3652 3653 3654 3655 3656 3657 3658 3659
/**
 * skb_complete_wifi_ack - deliver skb with wifi status
 *
 * @skb: the original outgoing packet
 * @acked: ack status
 *
 */
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);

3660 3661
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
__sum16 __skb_checksum_complete(struct sk_buff *skb);
3662

3663 3664
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
{
3665 3666 3667 3668
	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
		skb->csum_valid ||
		(skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) >= 0));
3669 3670
}

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
/**
 *	skb_checksum_complete - Calculate checksum of an entire packet
 *	@skb: packet to process
 *
 *	This function calculates the checksum over the entire packet plus
 *	the value of skb->csum.  The latter can be used to supply the
 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
 *	checksum.
 *
 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
 *	this function can be used to verify that checksum on received
 *	packets.  In that case the function should return zero if the
 *	checksum is correct.  In particular, this function will return zero
 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
 *	hardware has already verified the correctness of the checksum.
 */
3687
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3688
{
3689 3690
	return skb_csum_unnecessary(skb) ?
	       0 : __skb_checksum_complete(skb);
3691 3692
}

3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level == 0)
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->csum_level--;
	}
}

static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
			skb->csum_level++;
	} else if (skb->ip_summed == CHECKSUM_NONE) {
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		skb->csum_level = 0;
	}
}

3714 3715 3716 3717 3718 3719 3720 3721 3722
/* Check if we need to perform checksum complete validation.
 *
 * Returns true if checksum complete is needed, false otherwise
 * (either checksum is unnecessary or zero checksum is allowed).
 */
static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
						  bool zero_okay,
						  __sum16 check)
{
3723 3724
	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
		skb->csum_valid = 1;
3725
		__skb_decr_checksum_unnecessary(skb);
3726 3727 3728 3729 3730 3731
		return false;
	}

	return true;
}

3732
/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3733 3734 3735 3736
 * in checksum_init.
 */
#define CHECKSUM_BREAK 76

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
/* Unset checksum-complete
 *
 * Unset checksum complete can be done when packet is being modified
 * (uncompressed for instance) and checksum-complete value is
 * invalidated.
 */
static inline void skb_checksum_complete_unset(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
/* Validate (init) checksum based on checksum complete.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
 *	checksum is stored in skb->csum for use in __skb_checksum_complete
 *   non-zero: value of invalid checksum
 *
 */
static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
						       bool complete,
						       __wsum psum)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE) {
		if (!csum_fold(csum_add(psum, skb->csum))) {
3764
			skb->csum_valid = 1;
3765 3766 3767 3768 3769 3770
			return 0;
		}
	}

	skb->csum = psum;

3771 3772 3773 3774 3775 3776 3777
	if (complete || skb->len <= CHECKSUM_BREAK) {
		__sum16 csum;

		csum = __skb_checksum_complete(skb);
		skb->csum_valid = !csum;
		return csum;
	}
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800

	return 0;
}

static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
{
	return 0;
}

/* Perform checksum validate (init). Note that this is a macro since we only
 * want to calculate the pseudo header which is an input function if necessary.
 * First we try to validate without any computation (checksum unnecessary) and
 * then calculate based on checksum complete calling the function to compute
 * pseudo header.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete
 *   non-zero: value of invalid checksum
 */
#define __skb_checksum_validate(skb, proto, complete,			\
				zero_okay, check, compute_pseudo)	\
({									\
	__sum16 __ret = 0;						\
3801
	skb->csum_valid = 0;						\
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
		__ret = __skb_checksum_validate_complete(skb,		\
				complete, compute_pseudo(skb, proto));	\
	__ret;								\
})

#define skb_checksum_init(skb, proto, compute_pseudo)			\
	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)

#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)

#define skb_checksum_validate(skb, proto, compute_pseudo)		\
	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)

#define skb_checksum_validate_zero_check(skb, proto, check,		\
					 compute_pseudo)		\
3819
	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3820 3821 3822 3823

#define skb_checksum_simple_validate(skb)				\
	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)

3824 3825
static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
{
3826
	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
}

static inline void __skb_checksum_convert(struct sk_buff *skb,
					  __sum16 check, __wsum pseudo)
{
	skb->csum = ~pseudo;
	skb->ip_summed = CHECKSUM_COMPLETE;
}

#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
do {									\
	if (__skb_checksum_convert_check(skb))				\
		__skb_checksum_convert(skb, check,			\
				       compute_pseudo(skb, proto));	\
} while (0)

3843 3844 3845 3846 3847 3848 3849 3850
static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
					      u16 start, u16 offset)
{
	skb->ip_summed = CHECKSUM_PARTIAL;
	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
	skb->csum_offset = offset - start;
}

3851 3852 3853 3854 3855 3856
/* Update skbuf and packet to reflect the remote checksum offload operation.
 * When called, ptr indicates the starting point for skb->csum when
 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
 */
static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3857
				       int start, int offset, bool nopartial)
3858 3859 3860
{
	__wsum delta;

3861 3862 3863 3864 3865
	if (!nopartial) {
		skb_remcsum_adjust_partial(skb, ptr, start, offset);
		return;
	}

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
		__skb_checksum_complete(skb);
		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
	}

	delta = remcsum_adjust(ptr, skb->csum, start, offset);

	/* Adjust skb->csum since we changed the packet */
	skb->csum = csum_add(skb->csum, delta);
}

3877 3878 3879
static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3880
	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3881 3882 3883 3884 3885
#else
	return NULL;
#endif
}

3886
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3887
void nf_conntrack_destroy(struct nf_conntrack *nfct);
L
Linus Torvalds 已提交
3888 3889 3890
static inline void nf_conntrack_put(struct nf_conntrack *nfct)
{
	if (nfct && atomic_dec_and_test(&nfct->use))
3891
		nf_conntrack_destroy(nfct);
L
Linus Torvalds 已提交
3892 3893 3894 3895 3896 3897
}
static inline void nf_conntrack_get(struct nf_conntrack *nfct)
{
	if (nfct)
		atomic_inc(&nfct->use);
}
3898
#endif
3899
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
3900 3901
static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
{
3902
	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
L
Linus Torvalds 已提交
3903 3904 3905 3906 3907
		kfree(nf_bridge);
}
static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge)
3908
		refcount_inc(&nf_bridge->use);
L
Linus Torvalds 已提交
3909 3910
}
#endif /* CONFIG_BRIDGE_NETFILTER */
3911 3912
static inline void nf_reset(struct sk_buff *skb)
{
3913
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3914 3915
	nf_conntrack_put(skb_nfct(skb));
	skb->_nfct = 0;
3916
#endif
3917
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3918 3919 3920 3921 3922
	nf_bridge_put(skb->nf_bridge);
	skb->nf_bridge = NULL;
#endif
}

3923 3924
static inline void nf_reset_trace(struct sk_buff *skb)
{
3925
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
G
Gao feng 已提交
3926 3927
	skb->nf_trace = 0;
#endif
3928 3929
}

3930 3931 3932 3933 3934 3935 3936
static inline void ipvs_reset(struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_IP_VS)
	skb->ipvs_property = 0;
#endif
}

3937
/* Note: This doesn't put any conntrack and bridge info in dst. */
3938 3939
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
			     bool copy)
3940
{
3941
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3942 3943
	dst->_nfct = src->_nfct;
	nf_conntrack_get(skb_nfct(src));
3944
#endif
3945
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3946 3947 3948
	dst->nf_bridge  = src->nf_bridge;
	nf_bridge_get(src->nf_bridge);
#endif
3949
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3950 3951
	if (copy)
		dst->nf_trace = src->nf_trace;
3952
#endif
3953 3954
}

3955 3956 3957
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3958
	nf_conntrack_put(skb_nfct(dst));
3959
#endif
3960
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3961 3962
	nf_bridge_put(dst->nf_bridge);
#endif
3963
	__nf_copy(dst, src, true);
3964 3965
}

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
#ifdef CONFIG_NETWORK_SECMARK
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{
	to->secmark = from->secmark;
}

static inline void skb_init_secmark(struct sk_buff *skb)
{
	skb->secmark = 0;
}
#else
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{ }

static inline void skb_init_secmark(struct sk_buff *skb)
{ }
#endif

3984 3985 3986 3987 3988 3989
static inline bool skb_irq_freeable(const struct sk_buff *skb)
{
	return !skb->destructor &&
#if IS_ENABLED(CONFIG_XFRM)
		!skb->sp &&
#endif
3990
		!skb_nfct(skb) &&
3991 3992 3993 3994
		!skb->_skb_refdst &&
		!skb_has_frag_list(skb);
}

3995 3996 3997 3998 3999
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
{
	skb->queue_mapping = queue_mapping;
}

4000
static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4001 4002 4003 4004
{
	return skb->queue_mapping;
}

4005 4006 4007 4008 4009
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
{
	to->queue_mapping = from->queue_mapping;
}

4010 4011 4012 4013 4014
static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
{
	skb->queue_mapping = rx_queue + 1;
}

4015
static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4016 4017 4018 4019
{
	return skb->queue_mapping - 1;
}

4020
static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4021
{
E
Eric Dumazet 已提交
4022
	return skb->queue_mapping != 0;
4023 4024
}

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
{
	skb->dst_pending_confirm = val;
}

static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
{
	return skb->dst_pending_confirm != 0;
}

4035 4036
static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
{
4037
#ifdef CONFIG_XFRM
4038 4039 4040 4041
	return skb->sp;
#else
	return NULL;
#endif
4042
}
4043

4044 4045 4046
/* Keeps track of mac header offset relative to skb->head.
 * It is useful for TSO of Tunneling protocol. e.g. GRE.
 * For non-tunnel skb it points to skb_mac_header() and for
4047 4048 4049
 * tunnel skb it points to outer mac header.
 * Keeps track of level of encapsulation of network headers.
 */
4050
struct skb_gso_cb {
4051 4052 4053 4054
	union {
		int	mac_offset;
		int	data_offset;
	};
4055
	int	encap_level;
4056
	__wsum	csum;
4057
	__u16	csum_start;
4058
};
4059 4060
#define SKB_SGO_CB_OFFSET	32
#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4061 4062 4063 4064 4065 4066 4067

static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
{
	return (skb_mac_header(inner_skb) - inner_skb->head) -
		SKB_GSO_CB(inner_skb)->mac_offset;
}

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
{
	int new_headroom, headroom;
	int ret;

	headroom = skb_headroom(skb);
	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
	if (ret)
		return ret;

	new_headroom = skb_headroom(skb);
	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
	return 0;
}

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
{
	/* Do not update partial checksums if remote checksum is enabled. */
	if (skb->remcsum_offload)
		return;

	SKB_GSO_CB(skb)->csum = res;
	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
}

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
/* Compute the checksum for a gso segment. First compute the checksum value
 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
 * then add in skb->csum (checksum from csum_start to end of packet).
 * skb->csum and csum_start are then updated to reflect the checksum of the
 * resultant packet starting from the transport header-- the resultant checksum
 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
 * header.
 */
static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
{
4103 4104 4105
	unsigned char *csum_start = skb_transport_header(skb);
	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
	__wsum partial = SKB_GSO_CB(skb)->csum;
4106

4107 4108
	SKB_GSO_CB(skb)->csum = res;
	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4109

4110
	return csum_fold(csum_partial(csum_start, plen, partial));
4111 4112
}

4113
static inline bool skb_is_gso(const struct sk_buff *skb)
H
Herbert Xu 已提交
4114 4115 4116 4117
{
	return skb_shinfo(skb)->gso_size;
}

4118
/* Note: Should be called only if skb_is_gso(skb) is true */
4119
static inline bool skb_is_gso_v6(const struct sk_buff *skb)
B
Brice Goglin 已提交
4120 4121 4122 4123
{
	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
}

4124 4125 4126 4127 4128 4129
/* Note: Should be called only if skb_is_gso(skb) is true */
static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
{
	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
}

4130 4131 4132 4133 4134 4135 4136
static inline void skb_gso_reset(struct sk_buff *skb)
{
	skb_shinfo(skb)->gso_size = 0;
	skb_shinfo(skb)->gso_segs = 0;
	skb_shinfo(skb)->gso_type = 0;
}

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
					 u16 increment)
{
	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
		return;
	shinfo->gso_size += increment;
}

static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
					 u16 decrement)
{
	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
		return;
	shinfo->gso_size -= decrement;
}

4153
void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4154 4155 4156 4157 4158

static inline bool skb_warn_if_lro(const struct sk_buff *skb)
{
	/* LRO sets gso_size but not gso_type, whereas if GSO is really
	 * wanted then gso_type will be set. */
4159 4160
	const struct skb_shared_info *shinfo = skb_shinfo(skb);

4161 4162
	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
	    unlikely(shinfo->gso_type == 0)) {
4163 4164 4165 4166 4167 4168
		__skb_warn_lro_forwarding(skb);
		return true;
	}
	return false;
}

4169 4170 4171 4172 4173 4174 4175
static inline void skb_forward_csum(struct sk_buff *skb)
{
	/* Unfortunately we don't support this one.  Any brave souls? */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

4176 4177 4178 4179 4180 4181 4182 4183
/**
 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
 * @skb: skb to check
 *
 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
 * use this helper, to document places where we make this assertion.
 */
4184
static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4185 4186 4187 4188 4189 4190
{
#ifdef DEBUG
	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
#endif
}

4191
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4192

P
Paul Durrant 已提交
4193
int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4194 4195 4196
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
				     unsigned int transport_len,
				     __sum16(*skb_chkf)(struct sk_buff *skb));
P
Paul Durrant 已提交
4197

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
/**
 * skb_head_is_locked - Determine if the skb->head is locked down
 * @skb: skb to check
 *
 * The head on skbs build around a head frag can be removed if they are
 * not cloned.  This function returns true if the skb head is locked down
 * due to either being allocated via kmalloc, or by being a clone with
 * multiple references to the head.
 */
static inline bool skb_head_is_locked(const struct sk_buff *skb)
{
	return !skb->head_frag || skb_cloned(skb);
}
4211

4212 4213 4214
/* Local Checksum Offload.
 * Compute outer checksum based on the assumption that the
 * inner checksum will be offloaded later.
4215 4216
 * See Documentation/networking/checksum-offloads.txt for
 * explanation of how this works.
4217 4218 4219 4220 4221 4222
 * Fill in outer checksum adjustment (e.g. with sum of outer
 * pseudo-header) before calling.
 * Also ensure that inner checksum is in linear data area.
 */
static inline __wsum lco_csum(struct sk_buff *skb)
{
4223 4224 4225
	unsigned char *csum_start = skb_checksum_start(skb);
	unsigned char *l4_hdr = skb_transport_header(skb);
	__wsum partial;
4226 4227

	/* Start with complement of inner checksum adjustment */
4228 4229 4230
	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
						    skb->csum_offset));

4231
	/* Add in checksum of our headers (incl. outer checksum
4232
	 * adjustment filled in by caller) and return result.
4233
	 */
4234
	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4235 4236
}

L
Linus Torvalds 已提交
4237 4238
#endif	/* __KERNEL__ */
#endif	/* _LINUX_SKBUFF_H */