free-space-cache.c 102.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
J
Josef Bacik 已提交
2 3 4 5
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 */

6
#include <linux/pagemap.h>
J
Josef Bacik 已提交
7
#include <linux/sched.h>
8
#include <linux/sched/signal.h>
9
#include <linux/slab.h>
10
#include <linux/math64.h>
11
#include <linux/ratelimit.h>
12
#include <linux/error-injection.h>
13
#include <linux/sched/mm.h>
J
Josef Bacik 已提交
14
#include "ctree.h"
15 16
#include "free-space-cache.h"
#include "transaction.h"
17
#include "disk-io.h"
18
#include "extent_io.h"
19
#include "volumes.h"
20
#include "space-info.h"
21
#include "delalloc-space.h"
22
#include "block-group.h"
23
#include "discard.h"
24

25
#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
26 27
#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
#define FORCE_EXTENT_THRESHOLD	SZ_1M
J
Josef Bacik 已提交
28

29 30 31 32 33 34
struct btrfs_trim_range {
	u64 start;
	u64 bytes;
	struct list_head list;
};

35
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
36
			   struct btrfs_free_space *info);
37 38
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info);
39 40 41 42 43 44 45 46
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
			 struct btrfs_free_space *bitmap_info, u64 *offset,
			 u64 *bytes, bool for_alloc);
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
			struct btrfs_free_space *bitmap_info);
static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes);
J
Josef Bacik 已提交
47

48 49 50
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
					       struct btrfs_path *path,
					       u64 offset)
51
{
52
	struct btrfs_fs_info *fs_info = root->fs_info;
53 54 55 56 57 58
	struct btrfs_key key;
	struct btrfs_key location;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	struct inode *inode = NULL;
59
	unsigned nofs_flag;
60 61 62
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
63
	key.offset = offset;
64 65 66 67 68 69
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ERR_PTR(ret);
	if (ret > 0) {
70
		btrfs_release_path(path);
71 72 73 74 75 76 77 78
		return ERR_PTR(-ENOENT);
	}

	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_free_space_key(leaf, header, &disk_key);
	btrfs_disk_key_to_cpu(&location, &disk_key);
79
	btrfs_release_path(path);
80

81 82 83 84 85
	/*
	 * We are often under a trans handle at this point, so we need to make
	 * sure NOFS is set to keep us from deadlocking.
	 */
	nofs_flag = memalloc_nofs_save();
D
David Sterba 已提交
86
	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
87
	btrfs_release_path(path);
88
	memalloc_nofs_restore(nofs_flag);
89 90 91
	if (IS_ERR(inode))
		return inode;

A
Al Viro 已提交
92
	mapping_set_gfp_mask(inode->i_mapping,
93 94
			mapping_gfp_constraint(inode->i_mapping,
			~(__GFP_FS | __GFP_HIGHMEM)));
95

96 97 98
	return inode;
}

99
struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
100
		struct btrfs_path *path)
101
{
102
	struct btrfs_fs_info *fs_info = block_group->fs_info;
103
	struct inode *inode = NULL;
104
	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
105 106 107 108 109 110 111 112

	spin_lock(&block_group->lock);
	if (block_group->inode)
		inode = igrab(block_group->inode);
	spin_unlock(&block_group->lock);
	if (inode)
		return inode;

113
	inode = __lookup_free_space_inode(fs_info->tree_root, path,
114
					  block_group->start);
115 116 117
	if (IS_ERR(inode))
		return inode;

118
	spin_lock(&block_group->lock);
119
	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
120
		btrfs_info(fs_info, "Old style space inode found, converting.");
121 122
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
			BTRFS_INODE_NODATACOW;
123 124 125
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
	}

126
	if (!block_group->iref) {
127 128 129 130 131 132 133 134
		block_group->inode = igrab(inode);
		block_group->iref = 1;
	}
	spin_unlock(&block_group->lock);

	return inode;
}

135 136 137 138
static int __create_free_space_inode(struct btrfs_root *root,
				     struct btrfs_trans_handle *trans,
				     struct btrfs_path *path,
				     u64 ino, u64 offset)
139 140 141 142 143 144
{
	struct btrfs_key key;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
145
	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
146 147
	int ret;

148
	ret = btrfs_insert_empty_inode(trans, root, path, ino);
149 150 151
	if (ret)
		return ret;

152 153 154 155
	/* We inline crc's for the free disk space cache */
	if (ino != BTRFS_FREE_INO_OBJECTID)
		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;

156 157 158 159
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	btrfs_item_key(leaf, &disk_key, path->slots[0]);
160
	memzero_extent_buffer(leaf, (unsigned long)inode_item,
161 162 163 164 165 166 167
			     sizeof(*inode_item));
	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
	btrfs_set_inode_size(leaf, inode_item, 0);
	btrfs_set_inode_nbytes(leaf, inode_item, 0);
	btrfs_set_inode_uid(leaf, inode_item, 0);
	btrfs_set_inode_gid(leaf, inode_item, 0);
	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
168
	btrfs_set_inode_flags(leaf, inode_item, flags);
169 170
	btrfs_set_inode_nlink(leaf, inode_item, 1);
	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
171
	btrfs_set_inode_block_group(leaf, inode_item, offset);
172
	btrfs_mark_buffer_dirty(leaf);
173
	btrfs_release_path(path);
174 175

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
176
	key.offset = offset;
177 178 179 180
	key.type = 0;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(struct btrfs_free_space_header));
	if (ret < 0) {
181
		btrfs_release_path(path);
182 183
		return ret;
	}
184

185 186 187
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
188
	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
189 190
	btrfs_set_free_space_key(leaf, header, &disk_key);
	btrfs_mark_buffer_dirty(leaf);
191
	btrfs_release_path(path);
192 193 194 195

	return 0;
}

196
int create_free_space_inode(struct btrfs_trans_handle *trans,
197
			    struct btrfs_block_group *block_group,
198 199 200 201 202
			    struct btrfs_path *path)
{
	int ret;
	u64 ino;

203
	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
204 205 206
	if (ret < 0)
		return ret;

207
	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
208
					 ino, block_group->start);
209 210
}

211
int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
212
				       struct btrfs_block_rsv *rsv)
213
{
214
	u64 needed_bytes;
215
	int ret;
216 217

	/* 1 for slack space, 1 for updating the inode */
218 219
	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
		btrfs_calc_metadata_size(fs_info, 1);
220

221 222 223 224 225 226
	spin_lock(&rsv->lock);
	if (rsv->reserved < needed_bytes)
		ret = -ENOSPC;
	else
		ret = 0;
	spin_unlock(&rsv->lock);
227
	return ret;
228 229
}

230
int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
231
				    struct btrfs_block_group *block_group,
232 233
				    struct inode *inode)
{
234
	struct btrfs_root *root = BTRFS_I(inode)->root;
235
	int ret = 0;
236
	bool locked = false;
237 238

	if (block_group) {
239 240 241 242 243 244
		struct btrfs_path *path = btrfs_alloc_path();

		if (!path) {
			ret = -ENOMEM;
			goto fail;
		}
245
		locked = true;
246 247 248 249
		mutex_lock(&trans->transaction->cache_write_mutex);
		if (!list_empty(&block_group->io_list)) {
			list_del_init(&block_group->io_list);

250
			btrfs_wait_cache_io(trans, block_group, path);
251 252 253 254 255 256 257 258 259 260
			btrfs_put_block_group(block_group);
		}

		/*
		 * now that we've truncated the cache away, its no longer
		 * setup or written
		 */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
261
		btrfs_free_path(path);
262
	}
263

264
	btrfs_i_size_write(BTRFS_I(inode), 0);
265
	truncate_pagecache(inode, 0);
266 267

	/*
268 269
	 * We skip the throttling logic for free space cache inodes, so we don't
	 * need to check for -EAGAIN.
270
	 */
271
	ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
272
					 0, BTRFS_EXTENT_DATA_KEY);
273 274
	if (ret)
		goto fail;
275

276
	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
277 278

fail:
279 280
	if (locked)
		mutex_unlock(&trans->transaction->cache_write_mutex);
281
	if (ret)
282
		btrfs_abort_transaction(trans, ret);
283

284
	return ret;
285 286
}

287
static void readahead_cache(struct inode *inode)
288 289 290 291 292 293
{
	struct file_ra_state *ra;
	unsigned long last_index;

	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
294
		return;
295 296

	file_ra_state_init(ra, inode->i_mapping);
297
	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
298 299 300 301 302 303

	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);

	kfree(ra);
}

304
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
305
		       int write)
306
{
307 308 309
	int num_pages;
	int check_crcs = 0;

310
	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
311

312
	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
313 314
		check_crcs = 1;

315
	/* Make sure we can fit our crcs and generation into the first page */
316
	if (write && check_crcs &&
317
	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
318 319
		return -ENOSPC;

320
	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
321

322
	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
323 324
	if (!io_ctl->pages)
		return -ENOMEM;
325 326

	io_ctl->num_pages = num_pages;
327
	io_ctl->fs_info = btrfs_sb(inode->i_sb);
328
	io_ctl->check_crcs = check_crcs;
329
	io_ctl->inode = inode;
330

331 332
	return 0;
}
333
ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
334

335
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
336 337
{
	kfree(io_ctl->pages);
338
	io_ctl->pages = NULL;
339 340
}

341
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
342 343 344 345 346 347 348
{
	if (io_ctl->cur) {
		io_ctl->cur = NULL;
		io_ctl->orig = NULL;
	}
}

349
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
350
{
351
	ASSERT(io_ctl->index < io_ctl->num_pages);
352
	io_ctl->page = io_ctl->pages[io_ctl->index++];
353
	io_ctl->cur = page_address(io_ctl->page);
354
	io_ctl->orig = io_ctl->cur;
355
	io_ctl->size = PAGE_SIZE;
356
	if (clear)
357
		clear_page(io_ctl->cur);
358 359
}

360
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
361 362 363 364 365 366
{
	int i;

	io_ctl_unmap_page(io_ctl);

	for (i = 0; i < io_ctl->num_pages; i++) {
367 368 369
		if (io_ctl->pages[i]) {
			ClearPageChecked(io_ctl->pages[i]);
			unlock_page(io_ctl->pages[i]);
370
			put_page(io_ctl->pages[i]);
371
		}
372 373 374
	}
}

375
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
376 377
{
	struct page *page;
378
	struct inode *inode = io_ctl->inode;
379 380 381 382 383 384 385 386 387 388 389 390 391
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
	int i;

	for (i = 0; i < io_ctl->num_pages; i++) {
		page = find_or_create_page(inode->i_mapping, i, mask);
		if (!page) {
			io_ctl_drop_pages(io_ctl);
			return -ENOMEM;
		}
		io_ctl->pages[i] = page;
		if (uptodate && !PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
392 393 394 395 396 397
			if (page->mapping != inode->i_mapping) {
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					  "free space cache page truncated");
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
398
			if (!PageUptodate(page)) {
399 400
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					   "error reading free space cache");
401 402 403 404 405 406
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
		}
	}

407 408 409 410 411
	for (i = 0; i < io_ctl->num_pages; i++) {
		clear_page_dirty_for_io(io_ctl->pages[i]);
		set_page_extent_mapped(io_ctl->pages[i]);
	}

412 413 414
	return 0;
}

415
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
416 417 418 419
{
	io_ctl_map_page(io_ctl, 1);

	/*
420 421
	 * Skip the csum areas.  If we don't check crcs then we just have a
	 * 64bit chunk at the front of the first page.
422
	 */
423 424 425 426 427 428 429
	if (io_ctl->check_crcs) {
		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
430

431
	put_unaligned_le64(generation, io_ctl->cur);
432 433 434
	io_ctl->cur += sizeof(u64);
}

435
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
436
{
437
	u64 cache_gen;
438

439 440 441 442 443 444 445 446 447 448 449 450
	/*
	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
	 * chunk at the front of the first page.
	 */
	if (io_ctl->check_crcs) {
		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
		io_ctl->size -= sizeof(u64) +
			(sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
451

452 453
	cache_gen = get_unaligned_le64(io_ctl->cur);
	if (cache_gen != generation) {
454
		btrfs_err_rl(io_ctl->fs_info,
455
			"space cache generation (%llu) does not match inode (%llu)",
456
				cache_gen, generation);
457 458 459 460
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}
	io_ctl->cur += sizeof(u64);
461 462 463
	return 0;
}

464
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
465 466 467 468 469 470 471 472 473 474 475
{
	u32 *tmp;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_unmap_page(io_ctl);
		return;
	}

	if (index == 0)
476
		offset = sizeof(u32) * io_ctl->num_pages;
477

478 479
	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
	btrfs_crc32c_final(crc, (u8 *)&crc);
480
	io_ctl_unmap_page(io_ctl);
481
	tmp = page_address(io_ctl->pages[0]);
482 483 484 485
	tmp += index;
	*tmp = crc;
}

486
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
487 488 489 490 491 492 493 494 495 496 497 498 499
{
	u32 *tmp, val;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_map_page(io_ctl, 0);
		return 0;
	}

	if (index == 0)
		offset = sizeof(u32) * io_ctl->num_pages;

500
	tmp = page_address(io_ctl->pages[0]);
501 502 503 504
	tmp += index;
	val = *tmp;

	io_ctl_map_page(io_ctl, 0);
505 506
	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
	btrfs_crc32c_final(crc, (u8 *)&crc);
507
	if (val != crc) {
508
		btrfs_err_rl(io_ctl->fs_info,
509
			"csum mismatch on free space cache");
510 511 512 513
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}

514 515 516
	return 0;
}

517
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
518 519 520 521 522 523 524 525
			    void *bitmap)
{
	struct btrfs_free_space_entry *entry;

	if (!io_ctl->cur)
		return -ENOSPC;

	entry = io_ctl->cur;
526 527
	put_unaligned_le64(offset, &entry->offset);
	put_unaligned_le64(bytes, &entry->bytes);
528 529 530 531 532 533 534 535
	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
		BTRFS_FREE_SPACE_EXTENT;
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
		return 0;

536
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
537 538 539 540 541 542 543 544 545 546

	/* No more pages to map */
	if (io_ctl->index >= io_ctl->num_pages)
		return 0;

	/* map the next page */
	io_ctl_map_page(io_ctl, 1);
	return 0;
}

547
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
548 549 550 551 552 553 554 555 556
{
	if (!io_ctl->cur)
		return -ENOSPC;

	/*
	 * If we aren't at the start of the current page, unmap this one and
	 * map the next one if there is any left.
	 */
	if (io_ctl->cur != io_ctl->orig) {
557
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
558 559 560 561 562
		if (io_ctl->index >= io_ctl->num_pages)
			return -ENOSPC;
		io_ctl_map_page(io_ctl, 0);
	}

563
	copy_page(io_ctl->cur, bitmap);
564
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
565 566 567 568 569
	if (io_ctl->index < io_ctl->num_pages)
		io_ctl_map_page(io_ctl, 0);
	return 0;
}

570
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
571
{
572 573 574 575 576 577 578 579
	/*
	 * If we're not on the boundary we know we've modified the page and we
	 * need to crc the page.
	 */
	if (io_ctl->cur != io_ctl->orig)
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
	else
		io_ctl_unmap_page(io_ctl);
580 581 582

	while (io_ctl->index < io_ctl->num_pages) {
		io_ctl_map_page(io_ctl, 1);
583
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
584 585 586
	}
}

587
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
588
			    struct btrfs_free_space *entry, u8 *type)
589 590
{
	struct btrfs_free_space_entry *e;
591 592 593 594 595 596 597
	int ret;

	if (!io_ctl->cur) {
		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
		if (ret)
			return ret;
	}
598 599

	e = io_ctl->cur;
600 601
	entry->offset = get_unaligned_le64(&e->offset);
	entry->bytes = get_unaligned_le64(&e->bytes);
602
	*type = e->type;
603 604 605 606
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
607
		return 0;
608 609 610

	io_ctl_unmap_page(io_ctl);

611
	return 0;
612 613
}

614
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
615
			      struct btrfs_free_space *entry)
616
{
617 618 619 620 621 622
	int ret;

	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
	if (ret)
		return ret;

623
	copy_page(entry->bitmap, io_ctl->cur);
624
	io_ctl_unmap_page(io_ctl);
625 626

	return 0;
627 628
}

629 630 631
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_path *path, u64 offset)
632
{
633
	struct btrfs_fs_info *fs_info = root->fs_info;
634 635
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
636
	struct btrfs_io_ctl io_ctl;
637
	struct btrfs_key key;
638
	struct btrfs_free_space *e, *n;
639
	LIST_HEAD(bitmaps);
640 641 642
	u64 num_entries;
	u64 num_bitmaps;
	u64 generation;
643
	u8 type;
644
	int ret = 0;
645 646

	/* Nothing in the space cache, goodbye */
647
	if (!i_size_read(inode))
648
		return 0;
649 650

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
651
	key.offset = offset;
652 653 654
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
655
	if (ret < 0)
656
		return 0;
657
	else if (ret > 0) {
658
		btrfs_release_path(path);
659
		return 0;
660 661
	}

662 663
	ret = -1;

664 665 666 667 668 669
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	num_entries = btrfs_free_space_entries(leaf, header);
	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
	generation = btrfs_free_space_generation(leaf, header);
670
	btrfs_release_path(path);
671

672
	if (!BTRFS_I(inode)->generation) {
673
		btrfs_info(fs_info,
674
			   "the free space cache file (%llu) is invalid, skip it",
675 676 677 678
			   offset);
		return 0;
	}

679
	if (BTRFS_I(inode)->generation != generation) {
680 681 682
		btrfs_err(fs_info,
			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
			  BTRFS_I(inode)->generation, generation);
683
		return 0;
684 685 686
	}

	if (!num_entries)
687
		return 0;
688

689
	ret = io_ctl_init(&io_ctl, inode, 0);
690 691 692
	if (ret)
		return ret;

693
	readahead_cache(inode);
694

695
	ret = io_ctl_prepare_pages(&io_ctl, true);
696 697
	if (ret)
		goto out;
698

699 700 701 702
	ret = io_ctl_check_crc(&io_ctl, 0);
	if (ret)
		goto free_cache;

703 704 705
	ret = io_ctl_check_generation(&io_ctl, generation);
	if (ret)
		goto free_cache;
706

707 708 709 710
	while (num_entries) {
		e = kmem_cache_zalloc(btrfs_free_space_cachep,
				      GFP_NOFS);
		if (!e)
711 712
			goto free_cache;

713 714 715 716 717 718
		ret = io_ctl_read_entry(&io_ctl, e, &type);
		if (ret) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
		}

719 720 721
		if (!e->bytes) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
722
		}
723 724 725 726 727 728

		if (type == BTRFS_FREE_SPACE_EXTENT) {
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
729
				btrfs_err(fs_info,
730
					"Duplicate entries in free space cache, dumping");
731
				kmem_cache_free(btrfs_free_space_cachep, e);
732 733
				goto free_cache;
			}
734
		} else {
735
			ASSERT(num_bitmaps);
736
			num_bitmaps--;
737 738
			e->bitmap = kmem_cache_zalloc(
					btrfs_free_space_bitmap_cachep, GFP_NOFS);
739 740 741
			if (!e->bitmap) {
				kmem_cache_free(
					btrfs_free_space_cachep, e);
742 743
				goto free_cache;
			}
744 745 746 747 748 749
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			ctl->total_bitmaps++;
			ctl->op->recalc_thresholds(ctl);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
750
				btrfs_err(fs_info,
751
					"Duplicate entries in free space cache, dumping");
752
				kmem_cache_free(btrfs_free_space_cachep, e);
753 754
				goto free_cache;
			}
755
			list_add_tail(&e->list, &bitmaps);
756 757
		}

758 759
		num_entries--;
	}
760

761 762
	io_ctl_unmap_page(&io_ctl);

763 764 765 766 767
	/*
	 * We add the bitmaps at the end of the entries in order that
	 * the bitmap entries are added to the cache.
	 */
	list_for_each_entry_safe(e, n, &bitmaps, list) {
768
		list_del_init(&e->list);
769 770 771
		ret = io_ctl_read_bitmap(&io_ctl, e);
		if (ret)
			goto free_cache;
772 773
	}

774
	io_ctl_drop_pages(&io_ctl);
775 776
	ret = 1;
out:
777
	io_ctl_free(&io_ctl);
778 779
	return ret;
free_cache:
780
	io_ctl_drop_pages(&io_ctl);
781
	__btrfs_remove_free_space_cache(ctl);
782 783 784
	goto out;
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static int copy_free_space_cache(struct btrfs_block_group *block_group,
				 struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_free_space *info;
	struct rb_node *n;
	int ret = 0;

	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(n, struct btrfs_free_space, offset_index);
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			ret = btrfs_add_free_space(block_group, info->offset,
						   info->bytes);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			u64 offset = info->offset;
			u64 bytes = ctl->unit;

			while (search_bitmap(ctl, info, &offset, &bytes,
					     false) == 0) {
				ret = btrfs_add_free_space(block_group, offset,
							   bytes);
				if (ret)
					break;
				bitmap_clear_bits(ctl, info, offset, bytes);
				offset = info->offset;
				bytes = ctl->unit;
			}
			free_bitmap(ctl, info);
		}
		cond_resched();
	}
	return ret;
}

820
int load_free_space_cache(struct btrfs_block_group *block_group)
J
Josef Bacik 已提交
821
{
822
	struct btrfs_fs_info *fs_info = block_group->fs_info;
823
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
824
	struct btrfs_free_space_ctl tmp_ctl = {};
825 826
	struct inode *inode;
	struct btrfs_path *path;
827
	int ret = 0;
828
	bool matched;
829
	u64 used = block_group->used;
830

831 832 833 834 835 836 837
	/*
	 * Because we could potentially discard our loaded free space, we want
	 * to load everything into a temporary structure first, and then if it's
	 * valid copy it all into the actual free space ctl.
	 */
	btrfs_init_free_space_ctl(block_group, &tmp_ctl);

838 839 840 841
	/*
	 * If this block group has been marked to be cleared for one reason or
	 * another then we can't trust the on disk cache, so just return.
	 */
842
	spin_lock(&block_group->lock);
843 844 845 846
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
		return 0;
	}
847
	spin_unlock(&block_group->lock);
848 849 850 851

	path = btrfs_alloc_path();
	if (!path)
		return 0;
852 853
	path->search_commit_root = 1;
	path->skip_locking = 1;
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	/*
	 * We must pass a path with search_commit_root set to btrfs_iget in
	 * order to avoid a deadlock when allocating extents for the tree root.
	 *
	 * When we are COWing an extent buffer from the tree root, when looking
	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
	 * block group without its free space cache loaded. When we find one
	 * we must load its space cache which requires reading its free space
	 * cache's inode item from the root tree. If this inode item is located
	 * in the same leaf that we started COWing before, then we end up in
	 * deadlock on the extent buffer (trying to read lock it when we
	 * previously write locked it).
	 *
	 * It's safe to read the inode item using the commit root because
	 * block groups, once loaded, stay in memory forever (until they are
	 * removed) as well as their space caches once loaded. New block groups
	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
	 * we will never try to read their inode item while the fs is mounted.
	 */
874
	inode = lookup_free_space_inode(block_group, path);
875 876 877 878 879
	if (IS_ERR(inode)) {
		btrfs_free_path(path);
		return 0;
	}

880 881 882 883
	/* We may have converted the inode and made the cache invalid. */
	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
884
		btrfs_free_path(path);
885 886 887 888
		goto out;
	}
	spin_unlock(&block_group->lock);

889
	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
890
				      path, block_group->start);
891 892 893 894
	btrfs_free_path(path);
	if (ret <= 0)
		goto out;

895 896
	matched = (tmp_ctl.free_space == (block_group->length - used -
					  block_group->bytes_super));
897

898 899 900 901 902 903 904 905 906 907
	if (matched) {
		ret = copy_free_space_cache(block_group, &tmp_ctl);
		/*
		 * ret == 1 means we successfully loaded the free space cache,
		 * so we need to re-set it here.
		 */
		if (ret == 0)
			ret = 1;
	} else {
		__btrfs_remove_free_space_cache(&tmp_ctl);
J
Jeff Mahoney 已提交
908 909
		btrfs_warn(fs_info,
			   "block group %llu has wrong amount of free space",
910
			   block_group->start);
911 912 913 914 915 916 917 918
		ret = -1;
	}
out:
	if (ret < 0) {
		/* This cache is bogus, make sure it gets cleared */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
919
		ret = 0;
920

J
Jeff Mahoney 已提交
921 922
		btrfs_warn(fs_info,
			   "failed to load free space cache for block group %llu, rebuilding it now",
923
			   block_group->start);
924 925
	}

926 927 928
	spin_lock(&ctl->tree_lock);
	btrfs_discard_update_discardable(block_group);
	spin_unlock(&ctl->tree_lock);
929 930
	iput(inode);
	return ret;
931 932
}

933
static noinline_for_stack
934
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
935
			      struct btrfs_free_space_ctl *ctl,
936
			      struct btrfs_block_group *block_group,
937 938
			      int *entries, int *bitmaps,
			      struct list_head *bitmap_list)
J
Josef Bacik 已提交
939
{
940
	int ret;
941
	struct btrfs_free_cluster *cluster = NULL;
942
	struct btrfs_free_cluster *cluster_locked = NULL;
943
	struct rb_node *node = rb_first(&ctl->free_space_offset);
944
	struct btrfs_trim_range *trim_entry;
945

946
	/* Get the cluster for this block_group if it exists */
947
	if (block_group && !list_empty(&block_group->cluster_list)) {
948 949 950
		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
951
	}
952

953
	if (!node && cluster) {
954 955
		cluster_locked = cluster;
		spin_lock(&cluster_locked->lock);
956 957 958 959
		node = rb_first(&cluster->root);
		cluster = NULL;
	}

960 961 962
	/* Write out the extent entries */
	while (node) {
		struct btrfs_free_space *e;
J
Josef Bacik 已提交
963

964
		e = rb_entry(node, struct btrfs_free_space, offset_index);
965
		*entries += 1;
J
Josef Bacik 已提交
966

967
		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
968 969
				       e->bitmap);
		if (ret)
970
			goto fail;
971

972
		if (e->bitmap) {
973 974
			list_add_tail(&e->list, bitmap_list);
			*bitmaps += 1;
975
		}
976 977 978
		node = rb_next(node);
		if (!node && cluster) {
			node = rb_first(&cluster->root);
979 980
			cluster_locked = cluster;
			spin_lock(&cluster_locked->lock);
981
			cluster = NULL;
982
		}
983
	}
984 985 986 987
	if (cluster_locked) {
		spin_unlock(&cluster_locked->lock);
		cluster_locked = NULL;
	}
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002

	/*
	 * Make sure we don't miss any range that was removed from our rbtree
	 * because trimming is running. Otherwise after a umount+mount (or crash
	 * after committing the transaction) we would leak free space and get
	 * an inconsistent free space cache report from fsck.
	 */
	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
				       trim_entry->bytes, NULL);
		if (ret)
			goto fail;
		*entries += 1;
	}

1003 1004
	return 0;
fail:
1005 1006
	if (cluster_locked)
		spin_unlock(&cluster_locked->lock);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	return -ENOSPC;
}

static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct inode *inode,
		  struct btrfs_path *path, u64 offset,
		  int entries, int bitmaps)
{
	struct btrfs_key key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
	key.offset = offset;
	key.type = 0;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0) {
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1029
				 EXTENT_DELALLOC, 0, 0, NULL);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		goto fail;
	}
	leaf = path->nodes[0];
	if (ret > 0) {
		struct btrfs_key found_key;
		ASSERT(path->slots[0]);
		path->slots[0]--;
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
		    found_key.offset != offset) {
			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1041 1042
					 inode->i_size - 1, EXTENT_DELALLOC, 0,
					 0, NULL);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
			btrfs_release_path(path);
			goto fail;
		}
	}

	BTRFS_I(inode)->generation = trans->transid;
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_set_free_space_entries(leaf, header, entries);
	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
	btrfs_set_free_space_generation(leaf, header, trans->transid);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_release_path(path);

	return 0;

fail:
	return -1;
}

1063
static noinline_for_stack int write_pinned_extent_entries(
1064
			    struct btrfs_trans_handle *trans,
1065
			    struct btrfs_block_group *block_group,
1066
			    struct btrfs_io_ctl *io_ctl,
1067
			    int *entries)
1068 1069 1070 1071
{
	u64 start, extent_start, extent_end, len;
	struct extent_io_tree *unpin = NULL;
	int ret;
1072

1073 1074 1075
	if (!block_group)
		return 0;

1076 1077 1078
	/*
	 * We want to add any pinned extents to our free space cache
	 * so we don't leak the space
1079
	 *
1080 1081 1082
	 * We shouldn't have switched the pinned extents yet so this is the
	 * right one
	 */
1083
	unpin = &trans->transaction->pinned_extents;
1084

1085
	start = block_group->start;
1086

1087
	while (start < block_group->start + block_group->length) {
1088 1089
		ret = find_first_extent_bit(unpin, start,
					    &extent_start, &extent_end,
1090
					    EXTENT_DIRTY, NULL);
1091 1092
		if (ret)
			return 0;
J
Josef Bacik 已提交
1093

1094
		/* This pinned extent is out of our range */
1095
		if (extent_start >= block_group->start + block_group->length)
1096
			return 0;
1097

1098
		extent_start = max(extent_start, start);
1099 1100
		extent_end = min(block_group->start + block_group->length,
				 extent_end + 1);
1101
		len = extent_end - extent_start;
J
Josef Bacik 已提交
1102

1103 1104
		*entries += 1;
		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1105
		if (ret)
1106
			return -ENOSPC;
J
Josef Bacik 已提交
1107

1108
		start = extent_end;
1109
	}
J
Josef Bacik 已提交
1110

1111 1112 1113 1114
	return 0;
}

static noinline_for_stack int
1115
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1116
{
1117
	struct btrfs_free_space *entry, *next;
1118 1119
	int ret;

J
Josef Bacik 已提交
1120
	/* Write out the bitmaps */
1121
	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1122
		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1123
		if (ret)
1124
			return -ENOSPC;
J
Josef Bacik 已提交
1125
		list_del_init(&entry->list);
1126 1127
	}

1128 1129
	return 0;
}
J
Josef Bacik 已提交
1130

1131 1132 1133
static int flush_dirty_cache(struct inode *inode)
{
	int ret;
1134

1135
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1136
	if (ret)
1137
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1138
				 EXTENT_DELALLOC, 0, 0, NULL);
J
Josef Bacik 已提交
1139

1140
	return ret;
1141 1142 1143
}

static void noinline_for_stack
1144
cleanup_bitmap_list(struct list_head *bitmap_list)
1145
{
1146
	struct btrfs_free_space *entry, *next;
1147

1148
	list_for_each_entry_safe(entry, next, bitmap_list, list)
1149
		list_del_init(&entry->list);
1150 1151 1152 1153 1154
}

static void noinline_for_stack
cleanup_write_cache_enospc(struct inode *inode,
			   struct btrfs_io_ctl *io_ctl,
1155
			   struct extent_state **cached_state)
1156
{
1157 1158
	io_ctl_drop_pages(io_ctl);
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1159
			     i_size_read(inode) - 1, cached_state);
1160
}
1161

1162 1163
static int __btrfs_wait_cache_io(struct btrfs_root *root,
				 struct btrfs_trans_handle *trans,
1164
				 struct btrfs_block_group *block_group,
1165 1166
				 struct btrfs_io_ctl *io_ctl,
				 struct btrfs_path *path, u64 offset)
1167 1168 1169 1170
{
	int ret;
	struct inode *inode = io_ctl->inode;

1171 1172 1173
	if (!inode)
		return 0;

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	/* Flush the dirty pages in the cache file. */
	ret = flush_dirty_cache(inode);
	if (ret)
		goto out;

	/* Update the cache item to tell everyone this cache file is valid. */
	ret = update_cache_item(trans, root, inode, path, offset,
				io_ctl->entries, io_ctl->bitmaps);
out:
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
1186 1187
		if (block_group)
			btrfs_debug(root->fs_info,
1188 1189
	  "failed to write free space cache for block group %llu error %d",
				  block_group->start, ret);
1190
	}
1191
	btrfs_update_inode(trans, root, BTRFS_I(inode));
1192 1193

	if (block_group) {
1194 1195 1196 1197
		/* the dirty list is protected by the dirty_bgs_lock */
		spin_lock(&trans->transaction->dirty_bgs_lock);

		/* the disk_cache_state is protected by the block group lock */
1198 1199 1200 1201
		spin_lock(&block_group->lock);

		/*
		 * only mark this as written if we didn't get put back on
1202 1203
		 * the dirty list while waiting for IO.   Otherwise our
		 * cache state won't be right, and we won't get written again
1204 1205 1206 1207 1208 1209 1210
		 */
		if (!ret && list_empty(&block_group->dirty_list))
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		else if (ret)
			block_group->disk_cache_state = BTRFS_DC_ERROR;

		spin_unlock(&block_group->lock);
1211
		spin_unlock(&trans->transaction->dirty_bgs_lock);
1212 1213 1214 1215 1216 1217 1218 1219
		io_ctl->inode = NULL;
		iput(inode);
	}

	return ret;

}

1220
int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1221
			struct btrfs_block_group *block_group,
1222 1223 1224 1225
			struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
				     block_group, &block_group->io_ctl,
1226
				     path, block_group->start);
1227 1228
}

1229 1230 1231 1232 1233 1234 1235 1236
/**
 * __btrfs_write_out_cache - write out cached info to an inode
 * @root - the root the inode belongs to
 * @ctl - the free space cache we are going to write out
 * @block_group - the block_group for this cache if it belongs to a block_group
 * @trans - the trans handle
 *
 * This function writes out a free space cache struct to disk for quick recovery
G
Geliang Tang 已提交
1237
 * on mount.  This will return 0 if it was successful in writing the cache out,
1238
 * or an errno if it was not.
1239 1240 1241
 */
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
1242
				   struct btrfs_block_group *block_group,
1243
				   struct btrfs_io_ctl *io_ctl,
1244
				   struct btrfs_trans_handle *trans)
1245 1246
{
	struct extent_state *cached_state = NULL;
1247
	LIST_HEAD(bitmap_list);
1248 1249 1250
	int entries = 0;
	int bitmaps = 0;
	int ret;
1251
	int must_iput = 0;
1252 1253

	if (!i_size_read(inode))
1254
		return -EIO;
1255

1256
	WARN_ON(io_ctl->pages);
1257
	ret = io_ctl_init(io_ctl, inode, 1);
1258
	if (ret)
1259
		return ret;
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
		down_write(&block_group->data_rwsem);
		spin_lock(&block_group->lock);
		if (block_group->delalloc_bytes) {
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
			spin_unlock(&block_group->lock);
			up_write(&block_group->data_rwsem);
			BTRFS_I(inode)->generation = 0;
			ret = 0;
1270
			must_iput = 1;
1271 1272 1273 1274 1275
			goto out;
		}
		spin_unlock(&block_group->lock);
	}

1276
	/* Lock all pages first so we can lock the extent safely. */
1277
	ret = io_ctl_prepare_pages(io_ctl, false);
1278
	if (ret)
1279
		goto out_unlock;
1280 1281

	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1282
			 &cached_state);
1283

1284
	io_ctl_set_generation(io_ctl, trans->transid);
1285

1286
	mutex_lock(&ctl->cache_writeout_mutex);
1287
	/* Write out the extent entries in the free space cache */
1288
	spin_lock(&ctl->tree_lock);
1289
	ret = write_cache_extent_entries(io_ctl, ctl,
1290 1291
					 block_group, &entries, &bitmaps,
					 &bitmap_list);
1292 1293
	if (ret)
		goto out_nospc_locked;
1294

1295 1296 1297 1298
	/*
	 * Some spaces that are freed in the current transaction are pinned,
	 * they will be added into free space cache after the transaction is
	 * committed, we shouldn't lose them.
1299 1300 1301
	 *
	 * If this changes while we are working we'll get added back to
	 * the dirty list and redo it.  No locking needed
1302
	 */
1303
	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1304 1305
	if (ret)
		goto out_nospc_locked;
1306

1307 1308 1309 1310 1311
	/*
	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
	 * locked while doing it because a concurrent trim can be manipulating
	 * or freeing the bitmap.
	 */
1312
	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1313
	spin_unlock(&ctl->tree_lock);
1314
	mutex_unlock(&ctl->cache_writeout_mutex);
1315 1316 1317 1318
	if (ret)
		goto out_nospc;

	/* Zero out the rest of the pages just to make sure */
1319
	io_ctl_zero_remaining_pages(io_ctl);
1320

1321
	/* Everything is written out, now we dirty the pages in the file. */
1322 1323
	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
				io_ctl->num_pages, 0, i_size_read(inode),
1324
				&cached_state, false);
1325
	if (ret)
1326
		goto out_nospc;
1327

1328 1329
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);
1330 1331 1332 1333
	/*
	 * Release the pages and unlock the extent, we will flush
	 * them out later
	 */
1334
	io_ctl_drop_pages(io_ctl);
1335
	io_ctl_free(io_ctl);
1336 1337

	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1338
			     i_size_read(inode) - 1, &cached_state);
1339

1340 1341
	/*
	 * at this point the pages are under IO and we're happy,
1342
	 * The caller is responsible for waiting on them and updating
1343 1344 1345 1346 1347 1348
	 * the cache and the inode
	 */
	io_ctl->entries = entries;
	io_ctl->bitmaps = bitmaps;

	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1349
	if (ret)
1350 1351
		goto out;

1352 1353
	return 0;

1354 1355 1356 1357 1358
out_nospc_locked:
	cleanup_bitmap_list(&bitmap_list);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

1359
out_nospc:
1360
	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1361

1362
out_unlock:
1363 1364 1365
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);

1366 1367 1368 1369 1370 1371 1372
out:
	io_ctl->inode = NULL;
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
	}
1373
	btrfs_update_inode(trans, root, BTRFS_I(inode));
1374 1375 1376
	if (must_iput)
		iput(inode);
	return ret;
1377 1378
}

1379
int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1380
			  struct btrfs_block_group *block_group,
1381 1382
			  struct btrfs_path *path)
{
1383
	struct btrfs_fs_info *fs_info = trans->fs_info;
1384 1385 1386 1387 1388 1389 1390
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct inode *inode;
	int ret = 0;

	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
		spin_unlock(&block_group->lock);
1391 1392
		return 0;
	}
1393 1394
	spin_unlock(&block_group->lock);

1395
	inode = lookup_free_space_inode(block_group, path);
1396 1397 1398
	if (IS_ERR(inode))
		return 0;

1399 1400
	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
				block_group, &block_group->io_ctl, trans);
1401
	if (ret) {
1402
		btrfs_debug(fs_info,
1403 1404
	  "failed to write free space cache for block group %llu error %d",
			  block_group->start, ret);
1405 1406 1407 1408 1409 1410
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&block_group->lock);

		block_group->io_ctl.inode = NULL;
		iput(inode);
1411 1412
	}

1413 1414 1415 1416 1417
	/*
	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
	 * to wait for IO and put the inode
	 */

J
Josef Bacik 已提交
1418 1419 1420
	return ret;
}

1421
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1422
					  u64 offset)
J
Josef Bacik 已提交
1423
{
1424
	ASSERT(offset >= bitmap_start);
1425
	offset -= bitmap_start;
1426
	return (unsigned long)(div_u64(offset, unit));
1427
}
J
Josef Bacik 已提交
1428

1429
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1430
{
1431
	return (unsigned long)(div_u64(bytes, unit));
1432
}
J
Josef Bacik 已提交
1433

1434
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1435 1436 1437
				   u64 offset)
{
	u64 bitmap_start;
1438
	u64 bytes_per_bitmap;
J
Josef Bacik 已提交
1439

1440 1441
	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
	bitmap_start = offset - ctl->start;
1442
	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1443
	bitmap_start *= bytes_per_bitmap;
1444
	bitmap_start += ctl->start;
J
Josef Bacik 已提交
1445

1446
	return bitmap_start;
J
Josef Bacik 已提交
1447 1448
}

1449 1450
static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
J
Josef Bacik 已提交
1451 1452 1453 1454 1455 1456 1457
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
1458
		info = rb_entry(parent, struct btrfs_free_space, offset_index);
J
Josef Bacik 已提交
1459

1460
		if (offset < info->offset) {
J
Josef Bacik 已提交
1461
			p = &(*p)->rb_left;
1462
		} else if (offset > info->offset) {
J
Josef Bacik 已提交
1463
			p = &(*p)->rb_right;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
1479 1480 1481 1482
				if (info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1483 1484
				p = &(*p)->rb_right;
			} else {
1485 1486 1487 1488
				if (!info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1489 1490 1491
				p = &(*p)->rb_left;
			}
		}
J
Josef Bacik 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
J
Josef Bacik 已提交
1501 1502
 * searches the tree for the given offset.
 *
1503 1504 1505
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
J
Josef Bacik 已提交
1506
 */
1507
static struct btrfs_free_space *
1508
tree_search_offset(struct btrfs_free_space_ctl *ctl,
1509
		   u64 offset, int bitmap_only, int fuzzy)
J
Josef Bacik 已提交
1510
{
1511
	struct rb_node *n = ctl->free_space_offset.rb_node;
1512 1513 1514 1515 1516 1517 1518 1519
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}
J
Josef Bacik 已提交
1520 1521

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1522
		prev = entry;
J
Josef Bacik 已提交
1523

1524
		if (offset < entry->offset)
J
Josef Bacik 已提交
1525
			n = n->rb_left;
1526
		else if (offset > entry->offset)
J
Josef Bacik 已提交
1527
			n = n->rb_right;
1528
		else
J
Josef Bacik 已提交
1529 1530 1531
			break;
	}

1532 1533 1534 1535 1536
	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;
J
Josef Bacik 已提交
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;
J
Josef Bacik 已提交
1548

1549 1550 1551 1552
		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
J
Josef Bacik 已提交
1553
			/*
1554 1555
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
J
Josef Bacik 已提交
1556
			 */
1557 1558
			n = rb_prev(&entry->offset_index);
			if (n) {
1559 1560
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
1561 1562 1563
				if (!prev->bitmap &&
				    prev->offset + prev->bytes > offset)
					entry = prev;
J
Josef Bacik 已提交
1564
			}
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
1579
			ASSERT(entry->offset <= offset);
J
Josef Bacik 已提交
1580
		} else {
1581 1582 1583 1584
			if (fuzzy)
				return entry;
			else
				return NULL;
J
Josef Bacik 已提交
1585 1586 1587
		}
	}

1588
	if (entry->bitmap) {
1589 1590
		n = rb_prev(&entry->offset_index);
		if (n) {
1591 1592
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
1593 1594 1595
			if (!prev->bitmap &&
			    prev->offset + prev->bytes > offset)
				return prev;
1596
		}
1597
		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
1608
			    ctl->unit > offset)
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
J
Josef Bacik 已提交
1621 1622
}

1623
static inline void
1624
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1625
		    struct btrfs_free_space *info)
J
Josef Bacik 已提交
1626
{
1627 1628
	rb_erase(&info->offset_index, &ctl->free_space_offset);
	ctl->free_extents--;
1629

1630
	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1631
		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1632 1633
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
	}
1634 1635
}

1636
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1637 1638
			      struct btrfs_free_space *info)
{
1639 1640
	__unlink_free_space(ctl, info);
	ctl->free_space -= info->bytes;
J
Josef Bacik 已提交
1641 1642
}

1643
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1644 1645 1646 1647
			   struct btrfs_free_space *info)
{
	int ret = 0;

1648
	ASSERT(info->bytes || info->bitmap);
1649
	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1650
				 &info->offset_index, (info->bitmap != NULL));
J
Josef Bacik 已提交
1651 1652 1653
	if (ret)
		return ret;

1654
	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1655
		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1656 1657
		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
	}
1658

1659 1660
	ctl->free_space += info->bytes;
	ctl->free_extents++;
1661 1662 1663
	return ret;
}

1664
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1665
{
1666
	struct btrfs_block_group *block_group = ctl->private;
1667 1668 1669
	u64 max_bytes;
	u64 bitmap_bytes;
	u64 extent_bytes;
1670
	u64 size = block_group->length;
1671 1672
	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1673

1674
	max_bitmaps = max_t(u64, max_bitmaps, 1);
1675

1676
	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1677 1678

	/*
1679 1680 1681 1682
	 * We are trying to keep the total amount of memory used per 1GiB of
	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
	 * bitmaps, we may end up using more memory than this.
1683
	 */
1684
	if (size < SZ_1G)
1685 1686
		max_bytes = MAX_CACHE_BYTES_PER_GIG;
	else
1687
		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1688

1689
	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
1690

1691
	/*
1692
	 * we want the extent entry threshold to always be at most 1/2 the max
1693 1694 1695
	 * bytes we can have, or whatever is less than that.
	 */
	extent_bytes = max_bytes - bitmap_bytes;
1696
	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1697

1698
	ctl->extents_thresh =
1699
		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1700 1701
}

1702 1703 1704
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       u64 offset, u64 bytes)
1705
{
1706 1707
	unsigned long start, count, end;
	int extent_delta = -1;
1708

1709 1710
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1711 1712
	end = start + count;
	ASSERT(end <= BITS_PER_BITMAP);
1713

L
Li Zefan 已提交
1714
	bitmap_clear(info->bitmap, start, count);
1715 1716

	info->bytes -= bytes;
1717 1718
	if (info->max_extent_size > ctl->unit)
		info->max_extent_size = 0;
1719 1720 1721 1722 1723 1724 1725 1726

	if (start && test_bit(start - 1, info->bitmap))
		extent_delta++;

	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
		extent_delta++;

	info->bitmap_extents += extent_delta;
1727
	if (!btrfs_free_space_trimmed(info)) {
1728
		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1729 1730
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
	}
1731 1732 1733 1734 1735 1736 1737
}

static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	__bitmap_clear_bits(ctl, info, offset, bytes);
1738
	ctl->free_space -= bytes;
1739 1740
}

1741
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1742 1743
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
1744
{
1745 1746
	unsigned long start, count, end;
	int extent_delta = 1;
1747

1748 1749
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1750 1751
	end = start + count;
	ASSERT(end <= BITS_PER_BITMAP);
1752

L
Li Zefan 已提交
1753
	bitmap_set(info->bitmap, start, count);
1754 1755

	info->bytes += bytes;
1756
	ctl->free_space += bytes;
1757 1758 1759 1760 1761 1762 1763 1764

	if (start && test_bit(start - 1, info->bitmap))
		extent_delta--;

	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
		extent_delta--;

	info->bitmap_extents += extent_delta;
1765
	if (!btrfs_free_space_trimmed(info)) {
1766
		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1767 1768
		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
	}
1769 1770
}

1771 1772 1773 1774
/*
 * If we can not find suitable extent, we will use bytes to record
 * the size of the max extent.
 */
1775
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1776
			 struct btrfs_free_space *bitmap_info, u64 *offset,
1777
			 u64 *bytes, bool for_alloc)
1778 1779
{
	unsigned long found_bits = 0;
1780
	unsigned long max_bits = 0;
1781 1782
	unsigned long bits, i;
	unsigned long next_zero;
1783
	unsigned long extent_bits;
1784

1785 1786 1787 1788
	/*
	 * Skip searching the bitmap if we don't have a contiguous section that
	 * is large enough for this allocation.
	 */
1789 1790
	if (for_alloc &&
	    bitmap_info->max_extent_size &&
1791 1792 1793 1794 1795
	    bitmap_info->max_extent_size < *bytes) {
		*bytes = bitmap_info->max_extent_size;
		return -1;
	}

1796
	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1797
			  max_t(u64, *offset, bitmap_info->offset));
1798
	bits = bytes_to_bits(*bytes, ctl->unit);
1799

1800
	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1801 1802 1803 1804
		if (for_alloc && bits == 1) {
			found_bits = 1;
			break;
		}
1805 1806
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
1807 1808 1809
		extent_bits = next_zero - i;
		if (extent_bits >= bits) {
			found_bits = extent_bits;
1810
			break;
1811 1812
		} else if (extent_bits > max_bits) {
			max_bits = extent_bits;
1813 1814 1815 1816 1817
		}
		i = next_zero;
	}

	if (found_bits) {
1818 1819
		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
		*bytes = (u64)(found_bits) * ctl->unit;
1820 1821 1822
		return 0;
	}

1823
	*bytes = (u64)(max_bits) * ctl->unit;
1824
	bitmap_info->max_extent_size = *bytes;
1825 1826 1827
	return -1;
}

J
Josef Bacik 已提交
1828 1829 1830 1831 1832 1833 1834
static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
{
	if (entry->bitmap)
		return entry->max_extent_size;
	return entry->bytes;
}

1835
/* Cache the size of the max extent in bytes */
1836
static struct btrfs_free_space *
D
David Woodhouse 已提交
1837
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1838
		unsigned long align, u64 *max_extent_size)
1839 1840 1841
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
D
David Woodhouse 已提交
1842 1843
	u64 tmp;
	u64 align_off;
1844 1845
	int ret;

1846
	if (!ctl->free_space_offset.rb_node)
1847
		goto out;
1848

1849
	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1850
	if (!entry)
1851
		goto out;
1852 1853 1854

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1855
		if (entry->bytes < *bytes) {
J
Josef Bacik 已提交
1856 1857
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
1858
			continue;
1859
		}
1860

D
David Woodhouse 已提交
1861 1862 1863 1864
		/* make sure the space returned is big enough
		 * to match our requested alignment
		 */
		if (*bytes >= align) {
1865
			tmp = entry->offset - ctl->start + align - 1;
1866
			tmp = div64_u64(tmp, align);
D
David Woodhouse 已提交
1867 1868 1869 1870 1871 1872 1873
			tmp = tmp * align + ctl->start;
			align_off = tmp - entry->offset;
		} else {
			align_off = 0;
			tmp = entry->offset;
		}

1874
		if (entry->bytes < *bytes + align_off) {
J
Josef Bacik 已提交
1875 1876
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
D
David Woodhouse 已提交
1877
			continue;
1878
		}
D
David Woodhouse 已提交
1879

1880
		if (entry->bitmap) {
1881 1882
			u64 size = *bytes;

1883
			ret = search_bitmap(ctl, entry, &tmp, &size, true);
D
David Woodhouse 已提交
1884 1885
			if (!ret) {
				*offset = tmp;
1886
				*bytes = size;
1887
				return entry;
J
Josef Bacik 已提交
1888 1889 1890 1891
			} else {
				*max_extent_size =
					max(get_max_extent_size(entry),
					    *max_extent_size);
D
David Woodhouse 已提交
1892
			}
1893 1894 1895
			continue;
		}

D
David Woodhouse 已提交
1896 1897
		*offset = tmp;
		*bytes = entry->bytes - align_off;
1898 1899
		return entry;
	}
1900
out:
1901 1902 1903
	return NULL;
}

1904
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1905 1906
			   struct btrfs_free_space *info, u64 offset)
{
1907
	info->offset = offset_to_bitmap(ctl, offset);
J
Josef Bacik 已提交
1908
	info->bytes = 0;
1909
	info->bitmap_extents = 0;
1910
	INIT_LIST_HEAD(&info->list);
1911 1912
	link_free_space(ctl, info);
	ctl->total_bitmaps++;
1913

1914
	ctl->op->recalc_thresholds(ctl);
1915 1916
}

1917
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1918 1919
			struct btrfs_free_space *bitmap_info)
{
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	/*
	 * Normally when this is called, the bitmap is completely empty. However,
	 * if we are blowing up the free space cache for one reason or another
	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
	 * we may leave stats on the table.
	 */
	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
		ctl->discardable_extents[BTRFS_STAT_CURR] -=
			bitmap_info->bitmap_extents;
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;

	}
1932
	unlink_free_space(ctl, bitmap_info);
1933
	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1934
	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1935 1936
	ctl->total_bitmaps--;
	ctl->op->recalc_thresholds(ctl);
1937 1938
}

1939
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1940 1941 1942 1943
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
1944 1945
	u64 search_start, search_bytes;
	int ret;
1946 1947

again:
1948
	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1949

1950
	/*
1951 1952 1953 1954
	 * We need to search for bits in this bitmap.  We could only cover some
	 * of the extent in this bitmap thanks to how we add space, so we need
	 * to search for as much as it as we can and clear that amount, and then
	 * go searching for the next bit.
1955 1956
	 */
	search_start = *offset;
1957
	search_bytes = ctl->unit;
1958
	search_bytes = min(search_bytes, end - search_start + 1);
1959 1960
	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
			    false);
1961 1962
	if (ret < 0 || search_start != *offset)
		return -EINVAL;
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972
	/* We may have found more bits than what we need */
	search_bytes = min(search_bytes, *bytes);

	/* Cannot clear past the end of the bitmap */
	search_bytes = min(search_bytes, end - search_start + 1);

	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
	*offset += search_bytes;
	*bytes -= search_bytes;
1973 1974

	if (*bytes) {
1975
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1976
		if (!bitmap_info->bytes)
1977
			free_bitmap(ctl, bitmap_info);
1978

1979 1980 1981 1982 1983
		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
1984 1985
			return -EINVAL;

1986 1987 1988 1989 1990 1991 1992
		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
1993 1994 1995
		if (!bitmap_info->bitmap)
			return -EAGAIN;

1996 1997 1998 1999 2000 2001 2002
		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
2003
		search_bytes = ctl->unit;
2004
		ret = search_bitmap(ctl, bitmap_info, &search_start,
2005
				    &search_bytes, false);
2006 2007 2008
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

2009
		goto again;
2010
	} else if (!bitmap_info->bytes)
2011
		free_bitmap(ctl, bitmap_info);
2012 2013 2014 2015

	return 0;
}

J
Josef Bacik 已提交
2016 2017
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
			       struct btrfs_free_space *info, u64 offset,
2018
			       u64 bytes, enum btrfs_trim_state trim_state)
J
Josef Bacik 已提交
2019 2020 2021 2022
{
	u64 bytes_to_set = 0;
	u64 end;

2023 2024 2025 2026
	/*
	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
	 * whole bitmap untrimmed if at any point we add untrimmed regions.
	 */
2027
	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2028
		if (btrfs_free_space_trimmed(info)) {
2029 2030
			ctl->discardable_extents[BTRFS_STAT_CURR] +=
				info->bitmap_extents;
2031 2032
			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
		}
2033
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2034
	}
2035

J
Josef Bacik 已提交
2036 2037 2038 2039 2040 2041
	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);

	bytes_to_set = min(end - offset, bytes);

	bitmap_set_bits(ctl, info, offset, bytes_to_set);

2042 2043 2044 2045 2046 2047
	/*
	 * We set some bytes, we have no idea what the max extent size is
	 * anymore.
	 */
	info->max_extent_size = 0;

J
Josef Bacik 已提交
2048 2049 2050 2051
	return bytes_to_set;

}

2052 2053
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
		      struct btrfs_free_space *info)
2054
{
2055
	struct btrfs_block_group *block_group = ctl->private;
2056
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2057 2058 2059
	bool forced = false;

#ifdef CONFIG_BTRFS_DEBUG
2060
	if (btrfs_should_fragment_free_space(block_group))
2061 2062
		forced = true;
#endif
2063

2064 2065 2066 2067
	/* This is a way to reclaim large regions from the bitmaps. */
	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
		return false;

2068 2069 2070 2071
	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
2072
	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2073 2074 2075
		/*
		 * If this block group has some small extents we don't want to
		 * use up all of our free slots in the cache with them, we want
2076
		 * to reserve them to larger extents, however if we have plenty
2077 2078 2079
		 * of cache left then go ahead an dadd them, no sense in adding
		 * the overhead of a bitmap if we don't have to.
		 */
2080 2081
		if (info->bytes <= fs_info->sectorsize * 8) {
			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2082
				return false;
2083
		} else {
2084
			return false;
2085 2086
		}
	}
2087 2088

	/*
2089 2090 2091 2092 2093 2094
	 * The original block groups from mkfs can be really small, like 8
	 * megabytes, so don't bother with a bitmap for those entries.  However
	 * some block groups can be smaller than what a bitmap would cover but
	 * are still large enough that they could overflow the 32k memory limit,
	 * so allow those block groups to still be allowed to have a bitmap
	 * entry.
2095
	 */
2096
	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2097 2098 2099 2100 2101
		return false;

	return true;
}

2102
static const struct btrfs_free_space_op free_space_op = {
J
Josef Bacik 已提交
2103 2104 2105 2106
	.recalc_thresholds	= recalculate_thresholds,
	.use_bitmap		= use_bitmap,
};

2107 2108 2109 2110
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
2111
	struct btrfs_block_group *block_group = NULL;
2112
	int added = 0;
J
Josef Bacik 已提交
2113
	u64 bytes, offset, bytes_added;
2114
	enum btrfs_trim_state trim_state;
2115
	int ret;
2116 2117 2118

	bytes = info->bytes;
	offset = info->offset;
2119
	trim_state = info->trim_state;
2120

2121 2122 2123
	if (!ctl->op->use_bitmap(ctl, info))
		return 0;

J
Josef Bacik 已提交
2124 2125
	if (ctl->op == &free_space_op)
		block_group = ctl->private;
2126
again:
J
Josef Bacik 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	/*
	 * Since we link bitmaps right into the cluster we need to see if we
	 * have a cluster here, and if so and it has our bitmap we need to add
	 * the free space to that bitmap.
	 */
	if (block_group && !list_empty(&block_group->cluster_list)) {
		struct btrfs_free_cluster *cluster;
		struct rb_node *node;
		struct btrfs_free_space *entry;

		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
		spin_lock(&cluster->lock);
		node = rb_first(&cluster->root);
		if (!node) {
			spin_unlock(&cluster->lock);
2144
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2145 2146 2147 2148 2149
		}

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (!entry->bitmap) {
			spin_unlock(&cluster->lock);
2150
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2151 2152 2153
		}

		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2154 2155
			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
							  bytes, trim_state);
J
Josef Bacik 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164
			bytes -= bytes_added;
			offset += bytes_added;
		}
		spin_unlock(&cluster->lock);
		if (!bytes) {
			ret = 1;
			goto out;
		}
	}
2165 2166

no_cluster_bitmap:
2167
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2168 2169
					 1, 0);
	if (!bitmap_info) {
2170
		ASSERT(added == 0);
2171 2172 2173
		goto new_bitmap;
	}

2174 2175
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
					  trim_state);
J
Josef Bacik 已提交
2176 2177 2178
	bytes -= bytes_added;
	offset += bytes_added;
	added = 0;
2179 2180 2181 2182 2183 2184 2185 2186 2187

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
2188
		add_new_bitmap(ctl, info, offset);
2189 2190 2191 2192
		added = 1;
		info = NULL;
		goto again;
	} else {
2193
		spin_unlock(&ctl->tree_lock);
2194 2195 2196

		/* no pre-allocated info, allocate a new one */
		if (!info) {
2197 2198
			info = kmem_cache_zalloc(btrfs_free_space_cachep,
						 GFP_NOFS);
2199
			if (!info) {
2200
				spin_lock(&ctl->tree_lock);
2201 2202 2203 2204 2205 2206
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
2207 2208
		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
						 GFP_NOFS);
2209
		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2210
		spin_lock(&ctl->tree_lock);
2211 2212 2213 2214 2215 2216 2217 2218 2219
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
2220 2221 2222
		if (info->bitmap)
			kmem_cache_free(btrfs_free_space_bitmap_cachep,
					info->bitmap);
2223
		kmem_cache_free(btrfs_free_space_cachep, info);
2224
	}
J
Josef Bacik 已提交
2225 2226 2227 2228

	return ret;
}

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
/*
 * Free space merging rules:
 *  1) Merge trimmed areas together
 *  2) Let untrimmed areas coalesce with trimmed areas
 *  3) Always pull neighboring regions from bitmaps
 *
 * The above rules are for when we merge free space based on btrfs_trim_state.
 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
 * same reason: to promote larger extent regions which makes life easier for
 * find_free_extent().  Rule 2 enables coalescing based on the common path
 * being returning free space from btrfs_finish_extent_commit().  So when free
 * space is trimmed, it will prevent aggregating trimmed new region and
 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
 * and provide find_free_extent() with the largest extents possible hoping for
 * the reuse path.
 */
2245
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2246
			  struct btrfs_free_space *info, bool update_stat)
J
Josef Bacik 已提交
2247
{
2248
	struct btrfs_free_space *left_info = NULL;
2249 2250 2251 2252
	struct btrfs_free_space *right_info;
	bool merged = false;
	u64 offset = info->offset;
	u64 bytes = info->bytes;
2253
	const bool is_trimmed = btrfs_free_space_trimmed(info);
2254

J
Josef Bacik 已提交
2255 2256 2257 2258 2259
	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
2260
	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2261 2262 2263
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
2264
	else if (!right_info)
2265
		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
J
Josef Bacik 已提交
2266

2267 2268 2269
	/* See try_merge_free_space() comment. */
	if (right_info && !right_info->bitmap &&
	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2270
		if (update_stat)
2271
			unlink_free_space(ctl, right_info);
2272
		else
2273
			__unlink_free_space(ctl, right_info);
2274
		info->bytes += right_info->bytes;
2275
		kmem_cache_free(btrfs_free_space_cachep, right_info);
2276
		merged = true;
J
Josef Bacik 已提交
2277 2278
	}

2279
	/* See try_merge_free_space() comment. */
2280
	if (left_info && !left_info->bitmap &&
2281 2282
	    left_info->offset + left_info->bytes == offset &&
	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2283
		if (update_stat)
2284
			unlink_free_space(ctl, left_info);
2285
		else
2286
			__unlink_free_space(ctl, left_info);
2287 2288
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
2289
		kmem_cache_free(btrfs_free_space_cachep, left_info);
2290
		merged = true;
J
Josef Bacik 已提交
2291 2292
	}

2293 2294 2295
	return merged;
}

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
				     struct btrfs_free_space *info,
				     bool update_stat)
{
	struct btrfs_free_space *bitmap;
	unsigned long i;
	unsigned long j;
	const u64 end = info->offset + info->bytes;
	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
	u64 bytes;

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, end);
	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
	if (j == i)
		return false;
	bytes = (j - i) * ctl->unit;
	info->bytes += bytes;

2318 2319 2320 2321
	/* See try_merge_free_space() comment. */
	if (!btrfs_free_space_trimmed(bitmap))
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, end, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, end, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       bool update_stat)
{
	struct btrfs_free_space *bitmap;
	u64 bitmap_offset;
	unsigned long i;
	unsigned long j;
	unsigned long prev_j;
	u64 bytes;

	bitmap_offset = offset_to_bitmap(ctl, info->offset);
	/* If we're on a boundary, try the previous logical bitmap. */
	if (bitmap_offset == info->offset) {
		if (info->offset == 0)
			return false;
		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
	}

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
	j = 0;
	prev_j = (unsigned long)-1;
	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
		if (j > i)
			break;
		prev_j = j;
	}
	if (prev_j == i)
		return false;

	if (prev_j == (unsigned long)-1)
		bytes = (i + 1) * ctl->unit;
	else
		bytes = (i - prev_j) * ctl->unit;

	info->offset -= bytes;
	info->bytes += bytes;

2375 2376 2377 2378
	/* See try_merge_free_space() comment. */
	if (!btrfs_free_space_trimmed(bitmap))
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

/*
 * We prefer always to allocate from extent entries, both for clustered and
 * non-clustered allocation requests. So when attempting to add a new extent
 * entry, try to see if there's adjacent free space in bitmap entries, and if
 * there is, migrate that space from the bitmaps to the extent.
 * Like this we get better chances of satisfying space allocation requests
 * because we attempt to satisfy them based on a single cache entry, and never
 * on 2 or more entries - even if the entries represent a contiguous free space
 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 * ends).
 */
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info,
			      bool update_stat)
{
	/*
	 * Only work with disconnected entries, as we can change their offset,
	 * and must be extent entries.
	 */
	ASSERT(!info->bitmap);
	ASSERT(RB_EMPTY_NODE(&info->offset_index));

	if (ctl->total_bitmaps > 0) {
		bool stole_end;
		bool stole_front = false;

		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
		if (ctl->total_bitmaps > 0)
			stole_front = steal_from_bitmap_to_front(ctl, info,
								 update_stat);

		if (stole_end || stole_front)
			try_merge_free_space(ctl, info, update_stat);
	}
}

2426 2427
int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
			   struct btrfs_free_space_ctl *ctl,
2428 2429
			   u64 offset, u64 bytes,
			   enum btrfs_trim_state trim_state)
2430
{
2431
	struct btrfs_block_group *block_group = ctl->private;
2432 2433
	struct btrfs_free_space *info;
	int ret = 0;
D
Dennis Zhou 已提交
2434
	u64 filter_bytes = bytes;
2435

2436
	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2437 2438 2439 2440 2441
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;
2442
	info->trim_state = trim_state;
2443
	RB_CLEAR_NODE(&info->offset_index);
2444

2445
	spin_lock(&ctl->tree_lock);
2446

2447
	if (try_merge_free_space(ctl, info, true))
2448 2449 2450 2451 2452 2453 2454
		goto link;

	/*
	 * There was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
2455
	ret = insert_into_bitmap(ctl, info);
2456 2457 2458 2459 2460 2461 2462
	if (ret < 0) {
		goto out;
	} else if (ret) {
		ret = 0;
		goto out;
	}
link:
2463 2464 2465 2466 2467 2468 2469 2470
	/*
	 * Only steal free space from adjacent bitmaps if we're sure we're not
	 * going to add the new free space to existing bitmap entries - because
	 * that would mean unnecessary work that would be reverted. Therefore
	 * attempt to steal space from bitmaps if we're adding an extent entry.
	 */
	steal_from_bitmap(ctl, info, true);

D
Dennis Zhou 已提交
2471 2472
	filter_bytes = max(filter_bytes, info->bytes);

2473
	ret = link_free_space(ctl, info);
J
Josef Bacik 已提交
2474
	if (ret)
2475
		kmem_cache_free(btrfs_free_space_cachep, info);
2476
out:
2477
	btrfs_discard_update_discardable(block_group);
2478
	spin_unlock(&ctl->tree_lock);
2479

J
Josef Bacik 已提交
2480
	if (ret) {
2481
		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2482
		ASSERT(ret != -EEXIST);
J
Josef Bacik 已提交
2483 2484
	}

D
Dennis Zhou 已提交
2485 2486
	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
		btrfs_discard_check_filter(block_group, filter_bytes);
2487
		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
D
Dennis Zhou 已提交
2488
	}
2489

J
Josef Bacik 已提交
2490 2491 2492
	return ret;
}

2493
int btrfs_add_free_space(struct btrfs_block_group *block_group,
2494 2495
			 u64 bytenr, u64 size)
{
2496 2497 2498 2499 2500
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
		trim_state = BTRFS_TRIM_STATE_TRIMMED;

2501 2502
	return __btrfs_add_free_space(block_group->fs_info,
				      block_group->free_space_ctl,
2503
				      bytenr, size, trim_state);
2504 2505
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
/*
 * This is a subtle distinction because when adding free space back in general,
 * we want it to be added as untrimmed for async. But in the case where we add
 * it on loading of a block group, we want to consider it trimmed.
 */
int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
				       u64 bytenr, u64 size)
{
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
		trim_state = BTRFS_TRIM_STATE_TRIMMED;

	return __btrfs_add_free_space(block_group->fs_info,
				      block_group->free_space_ctl,
				      bytenr, size, trim_state);
}

2525
int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2526
			    u64 offset, u64 bytes)
J
Josef Bacik 已提交
2527
{
2528
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2529
	struct btrfs_free_space *info;
2530 2531
	int ret;
	bool re_search = false;
J
Josef Bacik 已提交
2532

2533
	spin_lock(&ctl->tree_lock);
2534

2535
again:
2536
	ret = 0;
2537 2538 2539
	if (!bytes)
		goto out_lock;

2540
	info = tree_search_offset(ctl, offset, 0, 0);
2541
	if (!info) {
2542 2543 2544 2545
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
2546
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2547 2548
					  1, 0);
		if (!info) {
2549 2550 2551 2552
			/*
			 * If we found a partial bit of our free space in a
			 * bitmap but then couldn't find the other part this may
			 * be a problem, so WARN about it.
2553
			 */
2554
			WARN_ON(re_search);
2555 2556
			goto out_lock;
		}
2557 2558
	}

2559
	re_search = false;
2560
	if (!info->bitmap) {
2561
		unlink_free_space(ctl, info);
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
		if (offset == info->offset) {
			u64 to_free = min(bytes, info->bytes);

			info->bytes -= to_free;
			info->offset += to_free;
			if (info->bytes) {
				ret = link_free_space(ctl, info);
				WARN_ON(ret);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, info);
			}
J
Josef Bacik 已提交
2573

2574 2575 2576 2577 2578
			offset += to_free;
			bytes -= to_free;
			goto again;
		} else {
			u64 old_end = info->bytes + info->offset;
2579

2580
			info->bytes = offset - info->offset;
2581
			ret = link_free_space(ctl, info);
2582 2583 2584 2585
			WARN_ON(ret);
			if (ret)
				goto out_lock;

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
			/* Not enough bytes in this entry to satisfy us */
			if (old_end < offset + bytes) {
				bytes -= old_end - offset;
				offset = old_end;
				goto again;
			} else if (old_end == offset + bytes) {
				/* all done */
				goto out_lock;
			}
			spin_unlock(&ctl->tree_lock);

2597 2598 2599 2600
			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
						     offset + bytes,
						     old_end - (offset + bytes),
						     info->trim_state);
2601 2602 2603
			WARN_ON(ret);
			goto out;
		}
J
Josef Bacik 已提交
2604
	}
2605

2606
	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2607 2608
	if (ret == -EAGAIN) {
		re_search = true;
2609
		goto again;
2610
	}
2611
out_lock:
2612
	btrfs_discard_update_discardable(block_group);
2613
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2614
out:
2615 2616 2617
	return ret;
}

2618
void btrfs_dump_free_space(struct btrfs_block_group *block_group,
J
Josef Bacik 已提交
2619 2620
			   u64 bytes)
{
2621
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2622
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2623 2624 2625 2626
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

2627
	spin_lock(&ctl->tree_lock);
2628
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
J
Josef Bacik 已提交
2629
		info = rb_entry(n, struct btrfs_free_space, offset_index);
L
Liu Bo 已提交
2630
		if (info->bytes >= bytes && !block_group->ro)
J
Josef Bacik 已提交
2631
			count++;
2632
		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2633
			   info->offset, info->bytes,
2634
		       (info->bitmap) ? "yes" : "no");
J
Josef Bacik 已提交
2635
	}
2636
	spin_unlock(&ctl->tree_lock);
2637
	btrfs_info(fs_info, "block group has cluster?: %s",
2638
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2639
	btrfs_info(fs_info,
2640
		   "%d blocks of free space at or bigger than bytes is", count);
J
Josef Bacik 已提交
2641 2642
}

2643 2644
void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
			       struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2645
{
2646
	struct btrfs_fs_info *fs_info = block_group->fs_info;
J
Josef Bacik 已提交
2647

2648
	spin_lock_init(&ctl->tree_lock);
2649
	ctl->unit = fs_info->sectorsize;
2650
	ctl->start = block_group->start;
2651 2652
	ctl->private = block_group;
	ctl->op = &free_space_op;
2653 2654
	INIT_LIST_HEAD(&ctl->trimming_ranges);
	mutex_init(&ctl->cache_writeout_mutex);
J
Josef Bacik 已提交
2655

2656 2657 2658 2659 2660
	/*
	 * we only want to have 32k of ram per block group for keeping
	 * track of free space, and if we pass 1/2 of that we want to
	 * start converting things over to using bitmaps
	 */
2661
	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
J
Josef Bacik 已提交
2662 2663
}

2664 2665 2666 2667 2668 2669
/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
2670
static void __btrfs_return_cluster_to_free_space(
2671
			     struct btrfs_block_group *block_group,
2672 2673
			     struct btrfs_free_cluster *cluster)
{
2674
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2675 2676 2677 2678 2679 2680 2681
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

2682
	cluster->block_group = NULL;
2683
	cluster->window_start = 0;
2684 2685
	list_del_init(&cluster->block_group_list);

2686
	node = rb_first(&cluster->root);
2687
	while (node) {
2688 2689
		bool bitmap;

2690 2691 2692
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
2693
		RB_CLEAR_NODE(&entry->offset_index);
2694 2695

		bitmap = (entry->bitmap != NULL);
2696
		if (!bitmap) {
2697
			/* Merging treats extents as if they were new */
2698
			if (!btrfs_free_space_trimmed(entry)) {
2699
				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2700 2701 2702
				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
					entry->bytes;
			}
2703

2704
			try_merge_free_space(ctl, entry, false);
2705
			steal_from_bitmap(ctl, entry, false);
2706 2707

			/* As we insert directly, update these statistics */
2708
			if (!btrfs_free_space_trimmed(entry)) {
2709
				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2710 2711 2712
				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
					entry->bytes;
			}
2713
		}
2714
		tree_insert_offset(&ctl->free_space_offset,
2715
				   entry->offset, &entry->offset_index, bitmap);
2716
	}
2717
	cluster->root = RB_ROOT;
2718

2719 2720
out:
	spin_unlock(&cluster->lock);
2721
	btrfs_put_block_group(block_group);
2722 2723
}

2724 2725
static void __btrfs_remove_free_space_cache_locked(
				struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2726 2727 2728
{
	struct btrfs_free_space *info;
	struct rb_node *node;
2729 2730 2731

	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
2732 2733 2734 2735 2736 2737
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			free_bitmap(ctl, info);
		}
2738 2739

		cond_resched_lock(&ctl->tree_lock);
2740
	}
2741 2742 2743 2744 2745 2746
}

void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
	spin_lock(&ctl->tree_lock);
	__btrfs_remove_free_space_cache_locked(ctl);
2747
	if (ctl->private)
2748
		btrfs_discard_update_discardable(ctl->private);
2749 2750 2751
	spin_unlock(&ctl->tree_lock);
}

2752
void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2753 2754
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2755
	struct btrfs_free_cluster *cluster;
2756
	struct list_head *head;
J
Josef Bacik 已提交
2757

2758
	spin_lock(&ctl->tree_lock);
2759 2760 2761 2762
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);
2763 2764 2765

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
2766 2767

		cond_resched_lock(&ctl->tree_lock);
2768
	}
2769
	__btrfs_remove_free_space_cache_locked(ctl);
2770
	btrfs_discard_update_discardable(block_group);
2771
	spin_unlock(&ctl->tree_lock);
2772

J
Josef Bacik 已提交
2773 2774
}

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
/**
 * btrfs_is_free_space_trimmed - see if everything is trimmed
 * @block_group: block_group of interest
 *
 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
 */
bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *info;
	struct rb_node *node;
	bool ret = true;

	spin_lock(&ctl->tree_lock);
	node = rb_first(&ctl->free_space_offset);

	while (node) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);

		if (!btrfs_free_space_trimmed(info)) {
			ret = false;
			break;
		}

		node = rb_next(node);
	}

	spin_unlock(&ctl->tree_lock);
	return ret;
}

2806
u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2807 2808
			       u64 offset, u64 bytes, u64 empty_size,
			       u64 *max_extent_size)
J
Josef Bacik 已提交
2809
{
2810
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2811 2812
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
2813
	struct btrfs_free_space *entry = NULL;
2814
	u64 bytes_search = bytes + empty_size;
2815
	u64 ret = 0;
D
David Woodhouse 已提交
2816 2817
	u64 align_gap = 0;
	u64 align_gap_len = 0;
2818
	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
J
Josef Bacik 已提交
2819

2820
	spin_lock(&ctl->tree_lock);
D
David Woodhouse 已提交
2821
	entry = find_free_space(ctl, &offset, &bytes_search,
2822
				block_group->full_stripe_len, max_extent_size);
2823
	if (!entry)
2824 2825 2826 2827
		goto out;

	ret = offset;
	if (entry->bitmap) {
2828
		bitmap_clear_bits(ctl, entry, offset, bytes);
2829 2830 2831 2832

		if (!btrfs_free_space_trimmed(entry))
			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

2833
		if (!entry->bytes)
2834
			free_bitmap(ctl, entry);
2835
	} else {
2836
		unlink_free_space(ctl, entry);
D
David Woodhouse 已提交
2837 2838
		align_gap_len = offset - entry->offset;
		align_gap = entry->offset;
2839
		align_gap_trim_state = entry->trim_state;
D
David Woodhouse 已提交
2840

2841 2842 2843
		if (!btrfs_free_space_trimmed(entry))
			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

D
David Woodhouse 已提交
2844 2845 2846 2847
		entry->offset = offset + bytes;
		WARN_ON(entry->bytes < bytes + align_gap_len);

		entry->bytes -= bytes + align_gap_len;
2848
		if (!entry->bytes)
2849
			kmem_cache_free(btrfs_free_space_cachep, entry);
2850
		else
2851
			link_free_space(ctl, entry);
2852
	}
2853
out:
2854
	btrfs_discard_update_discardable(block_group);
2855
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2856

D
David Woodhouse 已提交
2857
	if (align_gap_len)
2858
		__btrfs_add_free_space(block_group->fs_info, ctl,
2859 2860
				       align_gap, align_gap_len,
				       align_gap_trim_state);
J
Josef Bacik 已提交
2861 2862
	return ret;
}
2863 2864 2865 2866 2867 2868 2869 2870 2871

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
2872
void btrfs_return_cluster_to_free_space(
2873
			       struct btrfs_block_group *block_group,
2874 2875
			       struct btrfs_free_cluster *cluster)
{
2876
	struct btrfs_free_space_ctl *ctl;
2877 2878 2879 2880 2881 2882 2883

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
2884
			return;
2885 2886 2887 2888
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
2889
		return;
2890
	}
2891
	btrfs_get_block_group(block_group);
2892 2893
	spin_unlock(&cluster->lock);

2894 2895
	ctl = block_group->free_space_ctl;

2896
	/* now return any extents the cluster had on it */
2897
	spin_lock(&ctl->tree_lock);
2898
	__btrfs_return_cluster_to_free_space(block_group, cluster);
2899
	spin_unlock(&ctl->tree_lock);
2900

2901 2902
	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);

2903 2904 2905 2906
	/* finally drop our ref */
	btrfs_put_block_group(block_group);
}

2907
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2908
				   struct btrfs_free_cluster *cluster,
2909
				   struct btrfs_free_space *entry,
2910 2911
				   u64 bytes, u64 min_start,
				   u64 *max_extent_size)
2912
{
2913
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2914 2915 2916 2917 2918 2919 2920 2921
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	search_start = min_start;
	search_bytes = bytes;

2922
	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2923
	if (err) {
J
Josef Bacik 已提交
2924 2925
		*max_extent_size = max(get_max_extent_size(entry),
				       *max_extent_size);
2926
		return 0;
2927
	}
2928 2929

	ret = search_start;
2930
	__bitmap_clear_bits(ctl, entry, ret, bytes);
2931 2932 2933 2934

	return ret;
}

2935 2936 2937 2938 2939
/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
2940
u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2941
			     struct btrfs_free_cluster *cluster, u64 bytes,
2942
			     u64 min_start, u64 *max_extent_size)
2943
{
2944
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2945 2946
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2963
	while (1) {
J
Josef Bacik 已提交
2964 2965 2966
		if (entry->bytes < bytes)
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
2967

2968 2969
		if (entry->bytes < bytes ||
		    (!entry->bitmap && entry->offset < min_start)) {
2970 2971 2972 2973 2974 2975 2976 2977
			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}

2978 2979 2980
		if (entry->bitmap) {
			ret = btrfs_alloc_from_bitmap(block_group,
						      cluster, entry, bytes,
2981 2982
						      cluster->window_start,
						      max_extent_size);
2983 2984 2985 2986 2987 2988 2989 2990
			if (ret == 0) {
				node = rb_next(&entry->offset_index);
				if (!node)
					break;
				entry = rb_entry(node, struct btrfs_free_space,
						 offset_index);
				continue;
			}
2991
			cluster->window_start += bytes;
2992 2993 2994 2995 2996 2997
		} else {
			ret = entry->offset;

			entry->offset += bytes;
			entry->bytes -= bytes;
		}
2998

2999
		if (entry->bytes == 0)
3000 3001 3002 3003 3004
			rb_erase(&entry->offset_index, &cluster->root);
		break;
	}
out:
	spin_unlock(&cluster->lock);
3005

3006 3007 3008
	if (!ret)
		return 0;

3009
	spin_lock(&ctl->tree_lock);
3010

3011 3012 3013
	if (!btrfs_free_space_trimmed(entry))
		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

3014
	ctl->free_space -= bytes;
3015 3016
	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3017
	if (entry->bytes == 0) {
3018
		ctl->free_extents--;
3019
		if (entry->bitmap) {
3020 3021
			kmem_cache_free(btrfs_free_space_bitmap_cachep,
					entry->bitmap);
3022 3023
			ctl->total_bitmaps--;
			ctl->op->recalc_thresholds(ctl);
3024 3025
		} else if (!btrfs_free_space_trimmed(entry)) {
			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3026
		}
3027
		kmem_cache_free(btrfs_free_space_cachep, entry);
3028 3029
	}

3030
	spin_unlock(&ctl->tree_lock);
3031

3032 3033 3034
	return ret;
}

3035
static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3036 3037
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
3038 3039
				u64 offset, u64 bytes,
				u64 cont1_bytes, u64 min_bytes)
3040
{
3041
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3042 3043
	unsigned long next_zero;
	unsigned long i;
3044 3045
	unsigned long want_bits;
	unsigned long min_bits;
3046
	unsigned long found_bits;
3047
	unsigned long max_bits = 0;
3048 3049
	unsigned long start = 0;
	unsigned long total_found = 0;
3050
	int ret;
3051

3052
	i = offset_to_bit(entry->offset, ctl->unit,
3053
			  max_t(u64, offset, entry->offset));
3054 3055
	want_bits = bytes_to_bits(bytes, ctl->unit);
	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3056

3057 3058 3059 3060 3061 3062 3063
	/*
	 * Don't bother looking for a cluster in this bitmap if it's heavily
	 * fragmented.
	 */
	if (entry->max_extent_size &&
	    entry->max_extent_size < cont1_bytes)
		return -ENOSPC;
3064 3065
again:
	found_bits = 0;
3066
	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3067 3068
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
3069
		if (next_zero - i >= min_bits) {
3070
			found_bits = next_zero - i;
3071 3072
			if (found_bits > max_bits)
				max_bits = found_bits;
3073 3074
			break;
		}
3075 3076
		if (next_zero - i > max_bits)
			max_bits = next_zero - i;
3077 3078 3079
		i = next_zero;
	}

3080 3081
	if (!found_bits) {
		entry->max_extent_size = (u64)max_bits * ctl->unit;
3082
		return -ENOSPC;
3083
	}
3084

3085
	if (!total_found) {
3086
		start = i;
3087
		cluster->max_size = 0;
3088 3089 3090 3091
	}

	total_found += found_bits;

3092 3093
	if (cluster->max_size < found_bits * ctl->unit)
		cluster->max_size = found_bits * ctl->unit;
3094

3095 3096
	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
		i = next_zero + 1;
3097 3098 3099
		goto again;
	}

3100
	cluster->window_start = start * ctl->unit + entry->offset;
3101
	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3102 3103
	ret = tree_insert_offset(&cluster->root, entry->offset,
				 &entry->offset_index, 1);
3104
	ASSERT(!ret); /* -EEXIST; Logic error */
3105

J
Josef Bacik 已提交
3106
	trace_btrfs_setup_cluster(block_group, cluster,
3107
				  total_found * ctl->unit, 1);
3108 3109 3110
	return 0;
}

3111 3112
/*
 * This searches the block group for just extents to fill the cluster with.
3113 3114
 * Try to find a cluster with at least bytes total bytes, at least one
 * extent of cont1_bytes, and other clusters of at least min_bytes.
3115
 */
3116
static noinline int
3117
setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3118 3119
			struct btrfs_free_cluster *cluster,
			struct list_head *bitmaps, u64 offset, u64 bytes,
3120
			u64 cont1_bytes, u64 min_bytes)
3121
{
3122
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3123 3124 3125 3126 3127 3128
	struct btrfs_free_space *first = NULL;
	struct btrfs_free_space *entry = NULL;
	struct btrfs_free_space *last;
	struct rb_node *node;
	u64 window_free;
	u64 max_extent;
J
Josef Bacik 已提交
3129
	u64 total_size = 0;
3130

3131
	entry = tree_search_offset(ctl, offset, 0, 1);
3132 3133 3134 3135 3136 3137 3138
	if (!entry)
		return -ENOSPC;

	/*
	 * We don't want bitmaps, so just move along until we find a normal
	 * extent entry.
	 */
3139 3140
	while (entry->bitmap || entry->bytes < min_bytes) {
		if (entry->bitmap && list_empty(&entry->list))
3141
			list_add_tail(&entry->list, bitmaps);
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		node = rb_next(&entry->offset_index);
		if (!node)
			return -ENOSPC;
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	window_free = entry->bytes;
	max_extent = entry->bytes;
	first = entry;
	last = entry;

3153 3154
	for (node = rb_next(&entry->offset_index); node;
	     node = rb_next(&entry->offset_index)) {
3155 3156
		entry = rb_entry(node, struct btrfs_free_space, offset_index);

3157 3158 3159
		if (entry->bitmap) {
			if (list_empty(&entry->list))
				list_add_tail(&entry->list, bitmaps);
3160
			continue;
3161 3162
		}

3163 3164 3165 3166 3167 3168
		if (entry->bytes < min_bytes)
			continue;

		last = entry;
		window_free += entry->bytes;
		if (entry->bytes > max_extent)
3169 3170 3171
			max_extent = entry->bytes;
	}

3172 3173 3174
	if (window_free < bytes || max_extent < cont1_bytes)
		return -ENOSPC;

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	cluster->window_start = first->offset;

	node = &first->offset_index;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 */
	do {
		int ret;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
3188
		if (entry->bitmap || entry->bytes < min_bytes)
3189 3190
			continue;

3191
		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3192 3193
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
J
Josef Bacik 已提交
3194
		total_size += entry->bytes;
3195
		ASSERT(!ret); /* -EEXIST; Logic error */
3196 3197 3198
	} while (node && entry != last);

	cluster->max_size = max_extent;
J
Josef Bacik 已提交
3199
	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3200 3201 3202 3203 3204 3205 3206
	return 0;
}

/*
 * This specifically looks for bitmaps that may work in the cluster, we assume
 * that we have already failed to find extents that will work.
 */
3207
static noinline int
3208
setup_cluster_bitmap(struct btrfs_block_group *block_group,
3209 3210
		     struct btrfs_free_cluster *cluster,
		     struct list_head *bitmaps, u64 offset, u64 bytes,
3211
		     u64 cont1_bytes, u64 min_bytes)
3212
{
3213
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3214
	struct btrfs_free_space *entry = NULL;
3215
	int ret = -ENOSPC;
3216
	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3217

3218
	if (ctl->total_bitmaps == 0)
3219 3220
		return -ENOSPC;

3221 3222 3223 3224
	/*
	 * The bitmap that covers offset won't be in the list unless offset
	 * is just its start offset.
	 */
3225 3226 3227 3228
	if (!list_empty(bitmaps))
		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);

	if (!entry || entry->offset != bitmap_offset) {
3229 3230 3231 3232 3233
		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
		if (entry && list_empty(&entry->list))
			list_add(&entry->list, bitmaps);
	}

3234
	list_for_each_entry(entry, bitmaps, list) {
3235
		if (entry->bytes < bytes)
3236 3237
			continue;
		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3238
					   bytes, cont1_bytes, min_bytes);
3239 3240 3241 3242 3243
		if (!ret)
			return 0;
	}

	/*
3244 3245
	 * The bitmaps list has all the bitmaps that record free space
	 * starting after offset, so no more search is required.
3246
	 */
3247
	return -ENOSPC;
3248 3249
}

3250 3251
/*
 * here we try to find a cluster of blocks in a block group.  The goal
3252
 * is to find at least bytes+empty_size.
3253 3254 3255 3256 3257
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
3258
int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3259 3260 3261
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
3262
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3263
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3264
	struct btrfs_free_space *entry, *tmp;
3265
	LIST_HEAD(bitmaps);
3266
	u64 min_bytes;
3267
	u64 cont1_bytes;
3268 3269
	int ret;

3270 3271 3272 3273 3274 3275
	/*
	 * Choose the minimum extent size we'll require for this
	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
	 * For metadata, allow allocates with smaller extents.  For
	 * data, keep it dense.
	 */
3276
	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3277
		cont1_bytes = min_bytes = bytes + empty_size;
3278
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3279
		cont1_bytes = bytes;
3280
		min_bytes = fs_info->sectorsize;
3281 3282
	} else {
		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3283
		min_bytes = fs_info->sectorsize;
3284
	}
3285

3286
	spin_lock(&ctl->tree_lock);
3287 3288 3289 3290 3291

	/*
	 * If we know we don't have enough space to make a cluster don't even
	 * bother doing all the work to try and find one.
	 */
3292
	if (ctl->free_space < bytes) {
3293
		spin_unlock(&ctl->tree_lock);
3294 3295 3296
		return -ENOSPC;
	}

3297 3298 3299 3300 3301 3302 3303 3304
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}

J
Josef Bacik 已提交
3305 3306 3307
	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
				 min_bytes);

3308
	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3309 3310
				      bytes + empty_size,
				      cont1_bytes, min_bytes);
3311
	if (ret)
3312
		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3313 3314
					   offset, bytes + empty_size,
					   cont1_bytes, min_bytes);
3315 3316 3317 3318

	/* Clear our temporary list */
	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
		list_del_init(&entry->list);
3319

3320
	if (!ret) {
3321
		btrfs_get_block_group(block_group);
3322 3323 3324
		list_add_tail(&cluster->block_group_list,
			      &block_group->cluster_list);
		cluster->block_group = block_group;
J
Josef Bacik 已提交
3325 3326
	} else {
		trace_btrfs_failed_cluster_setup(block_group);
3327 3328 3329
	}
out:
	spin_unlock(&cluster->lock);
3330
	spin_unlock(&ctl->tree_lock);
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
3342
	cluster->root = RB_ROOT;
3343
	cluster->max_size = 0;
3344
	cluster->fragmented = false;
3345 3346 3347 3348
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}

3349
static int do_trimming(struct btrfs_block_group *block_group,
3350
		       u64 *total_trimmed, u64 start, u64 bytes,
3351
		       u64 reserved_start, u64 reserved_bytes,
3352
		       enum btrfs_trim_state reserved_trim_state,
3353
		       struct btrfs_trim_range *trim_entry)
3354
{
3355
	struct btrfs_space_info *space_info = block_group->space_info;
3356
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3357
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3358 3359
	int ret;
	int update = 0;
3360 3361 3362
	const u64 end = start + bytes;
	const u64 reserved_end = reserved_start + reserved_bytes;
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3363
	u64 trimmed = 0;
3364

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
	spin_lock(&space_info->lock);
	spin_lock(&block_group->lock);
	if (!block_group->ro) {
		block_group->reserved += reserved_bytes;
		space_info->bytes_reserved += reserved_bytes;
		update = 1;
	}
	spin_unlock(&block_group->lock);
	spin_unlock(&space_info->lock);

3375
	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3376
	if (!ret) {
3377
		*total_trimmed += trimmed;
3378 3379
		trim_state = BTRFS_TRIM_STATE_TRIMMED;
	}
3380

3381
	mutex_lock(&ctl->cache_writeout_mutex);
3382 3383 3384 3385 3386 3387 3388 3389
	if (reserved_start < start)
		__btrfs_add_free_space(fs_info, ctl, reserved_start,
				       start - reserved_start,
				       reserved_trim_state);
	if (start + bytes < reserved_start + reserved_bytes)
		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
				       reserved_trim_state);
	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3390 3391
	list_del(&trim_entry->list);
	mutex_unlock(&ctl->cache_writeout_mutex);
3392 3393 3394 3395 3396 3397 3398 3399 3400

	if (update) {
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);
		if (block_group->ro)
			space_info->bytes_readonly += reserved_bytes;
		block_group->reserved -= reserved_bytes;
		space_info->bytes_reserved -= reserved_bytes;
		spin_unlock(&block_group->lock);
3401
		spin_unlock(&space_info->lock);
3402 3403 3404 3405 3406
	}

	return ret;
}

3407 3408 3409
/*
 * If @async is set, then we will trim 1 region and return.
 */
3410
static int trim_no_bitmap(struct btrfs_block_group *block_group,
3411 3412
			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
			  bool async)
3413
{
3414 3415
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
3416 3417 3418 3419 3420 3421
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret = 0;
	u64 extent_start;
	u64 extent_bytes;
3422
	enum btrfs_trim_state extent_trim_state;
3423
	u64 bytes;
3424
	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3425 3426

	while (start < end) {
3427 3428 3429
		struct btrfs_trim_range trim_entry;

		mutex_lock(&ctl->cache_writeout_mutex);
3430
		spin_lock(&ctl->tree_lock);
3431

3432 3433
		if (ctl->free_space < minlen)
			goto out_unlock;
3434

3435
		entry = tree_search_offset(ctl, start, 0, 1);
3436 3437
		if (!entry)
			goto out_unlock;
3438

3439 3440 3441
		/* Skip bitmaps and if async, already trimmed entries */
		while (entry->bitmap ||
		       (async && btrfs_free_space_trimmed(entry))) {
3442
			node = rb_next(&entry->offset_index);
3443 3444
			if (!node)
				goto out_unlock;
3445 3446
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
3447 3448
		}

3449 3450
		if (entry->offset >= end)
			goto out_unlock;
3451

3452 3453
		extent_start = entry->offset;
		extent_bytes = entry->bytes;
3454
		extent_trim_state = entry->trim_state;
3455 3456 3457 3458 3459 3460 3461 3462 3463
		if (async) {
			start = entry->offset;
			bytes = entry->bytes;
			if (bytes < minlen) {
				spin_unlock(&ctl->tree_lock);
				mutex_unlock(&ctl->cache_writeout_mutex);
				goto next;
			}
			unlink_free_space(ctl, entry);
D
Dennis Zhou 已提交
3464 3465 3466 3467 3468 3469 3470 3471
			/*
			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
			 * X when we come back around.  So trim it now.
			 */
			if (max_discard_size &&
			    bytes >= (max_discard_size +
				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3472 3473 3474 3475
				bytes = max_discard_size;
				extent_bytes = max_discard_size;
				entry->offset += max_discard_size;
				entry->bytes -= max_discard_size;
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
				link_free_space(ctl, entry);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, entry);
			}
		} else {
			start = max(start, extent_start);
			bytes = min(extent_start + extent_bytes, end) - start;
			if (bytes < minlen) {
				spin_unlock(&ctl->tree_lock);
				mutex_unlock(&ctl->cache_writeout_mutex);
				goto next;
			}
3488

3489 3490 3491
			unlink_free_space(ctl, entry);
			kmem_cache_free(btrfs_free_space_cachep, entry);
		}
3492

3493
		spin_unlock(&ctl->tree_lock);
3494 3495 3496 3497
		trim_entry.start = extent_start;
		trim_entry.bytes = extent_bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3498

3499
		ret = do_trimming(block_group, total_trimmed, start, bytes,
3500 3501
				  extent_start, extent_bytes, extent_trim_state,
				  &trim_entry);
3502 3503
		if (ret) {
			block_group->discard_cursor = start + bytes;
3504
			break;
3505
		}
3506 3507
next:
		start += bytes;
3508 3509 3510
		block_group->discard_cursor = start;
		if (async && *total_trimmed)
			break;
3511

3512 3513 3514 3515 3516 3517 3518
		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}
3519 3520 3521 3522 3523 3524 3525 3526

	return ret;

out_unlock:
	block_group->discard_cursor = btrfs_block_group_end(block_group);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

3527 3528 3529
	return ret;
}

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
/*
 * If we break out of trimming a bitmap prematurely, we should reset the
 * trimming bit.  In a rather contrieved case, it's possible to race here so
 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
 *
 * start = start of bitmap
 * end = near end of bitmap
 *
 * Thread 1:			Thread 2:
 * trim_bitmaps(start)
 *				trim_bitmaps(end)
 *				end_trimming_bitmap()
 * reset_trimming_bitmap()
 */
static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
{
	struct btrfs_free_space *entry;

	spin_lock(&ctl->tree_lock);
	entry = tree_search_offset(ctl, offset, 1, 0);
3550
	if (entry) {
3551
		if (btrfs_free_space_trimmed(entry)) {
3552 3553
			ctl->discardable_extents[BTRFS_STAT_CURR] +=
				entry->bitmap_extents;
3554 3555
			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
		}
3556
		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3557 3558
	}

3559 3560 3561
	spin_unlock(&ctl->tree_lock);
}

3562 3563
static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
				struct btrfs_free_space *entry)
3564
{
3565
	if (btrfs_free_space_trimming_bitmap(entry)) {
3566
		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3567 3568
		ctl->discardable_extents[BTRFS_STAT_CURR] -=
			entry->bitmap_extents;
3569
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3570
	}
3571 3572
}

3573 3574 3575
/*
 * If @async is set, then we will trim 1 region and return.
 */
3576
static int trim_bitmaps(struct btrfs_block_group *block_group,
3577
			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
D
Dennis Zhou 已提交
3578
			u64 maxlen, bool async)
3579
{
3580 3581
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
3582 3583 3584 3585 3586 3587
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	int ret = 0;
	int ret2;
	u64 bytes;
	u64 offset = offset_to_bitmap(ctl, start);
3588
	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3589 3590 3591

	while (offset < end) {
		bool next_bitmap = false;
3592
		struct btrfs_trim_range trim_entry;
3593

3594
		mutex_lock(&ctl->cache_writeout_mutex);
3595 3596 3597
		spin_lock(&ctl->tree_lock);

		if (ctl->free_space < minlen) {
3598 3599
			block_group->discard_cursor =
				btrfs_block_group_end(block_group);
3600
			spin_unlock(&ctl->tree_lock);
3601
			mutex_unlock(&ctl->cache_writeout_mutex);
3602 3603 3604 3605
			break;
		}

		entry = tree_search_offset(ctl, offset, 1, 0);
D
Dennis Zhou 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614
		/*
		 * Bitmaps are marked trimmed lossily now to prevent constant
		 * discarding of the same bitmap (the reason why we are bound
		 * by the filters).  So, retrim the block group bitmaps when we
		 * are preparing to punt to the unused_bgs list.  This uses
		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
		 * which is the only discard index which sets minlen to 0.
		 */
		if (!entry || (async && minlen && start == offset &&
3615
			       btrfs_free_space_trimmed(entry))) {
3616
			spin_unlock(&ctl->tree_lock);
3617
			mutex_unlock(&ctl->cache_writeout_mutex);
3618 3619 3620 3621
			next_bitmap = true;
			goto next;
		}

3622 3623 3624 3625 3626 3627 3628 3629 3630
		/*
		 * Async discard bitmap trimming begins at by setting the start
		 * to be key.objectid and the offset_to_bitmap() aligns to the
		 * start of the bitmap.  This lets us know we are fully
		 * scanning the bitmap rather than only some portion of it.
		 */
		if (start == offset)
			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;

3631
		bytes = minlen;
3632
		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3633
		if (ret2 || start >= end) {
3634
			/*
D
Dennis Zhou 已提交
3635 3636
			 * We lossily consider a bitmap trimmed if we only skip
			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3637
			 */
D
Dennis Zhou 已提交
3638
			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3639
				end_trimming_bitmap(ctl, entry);
3640 3641
			else
				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3642
			spin_unlock(&ctl->tree_lock);
3643
			mutex_unlock(&ctl->cache_writeout_mutex);
3644 3645 3646 3647
			next_bitmap = true;
			goto next;
		}

3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
		/*
		 * We already trimmed a region, but are using the locking above
		 * to reset the trim_state.
		 */
		if (async && *total_trimmed) {
			spin_unlock(&ctl->tree_lock);
			mutex_unlock(&ctl->cache_writeout_mutex);
			goto out;
		}

3658
		bytes = min(bytes, end - start);
D
Dennis Zhou 已提交
3659
		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3660
			spin_unlock(&ctl->tree_lock);
3661
			mutex_unlock(&ctl->cache_writeout_mutex);
3662 3663 3664
			goto next;
		}

D
Dennis Zhou 已提交
3665 3666 3667 3668 3669 3670 3671 3672 3673
		/*
		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
		 * If X < @minlen, we won't trim X when we come back around.
		 * So trim it now.  We differ here from trimming extents as we
		 * don't keep individual state per bit.
		 */
		if (async &&
		    max_discard_size &&
		    bytes > (max_discard_size + minlen))
3674
			bytes = max_discard_size;
3675

3676 3677 3678 3679 3680
		bitmap_clear_bits(ctl, entry, start, bytes);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);

		spin_unlock(&ctl->tree_lock);
3681 3682 3683 3684
		trim_entry.start = start;
		trim_entry.bytes = bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3685 3686

		ret = do_trimming(block_group, total_trimmed, start, bytes,
3687
				  start, bytes, 0, &trim_entry);
3688 3689
		if (ret) {
			reset_trimming_bitmap(ctl, offset);
3690 3691
			block_group->discard_cursor =
				btrfs_block_group_end(block_group);
3692
			break;
3693
		}
3694 3695 3696
next:
		if (next_bitmap) {
			offset += BITS_PER_BITMAP * ctl->unit;
3697
			start = offset;
3698 3699
		} else {
			start += bytes;
3700
		}
3701
		block_group->discard_cursor = start;
3702 3703

		if (fatal_signal_pending(current)) {
3704 3705
			if (start != offset)
				reset_trimming_bitmap(ctl, offset);
3706 3707 3708 3709 3710 3711 3712
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}

3713 3714 3715 3716
	if (offset >= end)
		block_group->discard_cursor = end;

out:
3717 3718
	return ret;
}
3719

3720
int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3721 3722
			   u64 *trimmed, u64 start, u64 end, u64 minlen)
{
3723
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3724
	int ret;
3725
	u64 rem = 0;
3726 3727 3728 3729 3730

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
3731
		spin_unlock(&block_group->lock);
3732
		return 0;
3733
	}
3734
	btrfs_freeze_block_group(block_group);
3735 3736
	spin_unlock(&block_group->lock);

3737
	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3738 3739
	if (ret)
		goto out;
3740

D
Dennis Zhou 已提交
3741
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3742 3743 3744 3745
	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
	/* If we ended in the middle of a bitmap, reset the trimming flag */
	if (rem)
		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3746
out:
3747
	btrfs_unfreeze_block_group(block_group);
3748 3749 3750
	return ret;
}

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
				   u64 *trimmed, u64 start, u64 end, u64 minlen,
				   bool async)
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
		spin_unlock(&block_group->lock);
		return 0;
	}
3764
	btrfs_freeze_block_group(block_group);
3765 3766 3767
	spin_unlock(&block_group->lock);

	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3768
	btrfs_unfreeze_block_group(block_group);
3769 3770 3771 3772 3773 3774

	return ret;
}

int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
				   u64 *trimmed, u64 start, u64 end, u64 minlen,
D
Dennis Zhou 已提交
3775
				   u64 maxlen, bool async)
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
		spin_unlock(&block_group->lock);
		return 0;
	}
3786
	btrfs_freeze_block_group(block_group);
3787 3788
	spin_unlock(&block_group->lock);

D
Dennis Zhou 已提交
3789 3790 3791
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
			   async);

3792
	btrfs_unfreeze_block_group(block_group);
3793 3794 3795 3796

	return ret;
}

3797
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3798 3799 3800 3801 3802 3803
/*
 * Use this if you need to make a bitmap or extent entry specifically, it
 * doesn't do any of the merging that add_free_space does, this acts a lot like
 * how the free space cache loading stuff works, so you can get really weird
 * configurations.
 */
3804
int test_add_free_space_entry(struct btrfs_block_group *cache,
3805
			      u64 offset, u64 bytes, bool bitmap)
3806
{
3807 3808 3809
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info = NULL, *bitmap_info;
	void *map = NULL;
3810
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
3811 3812
	u64 bytes_added;
	int ret;
3813

3814 3815 3816 3817 3818
again:
	if (!info) {
		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
		if (!info)
			return -ENOMEM;
3819 3820
	}

3821 3822 3823 3824
	if (!bitmap) {
		spin_lock(&ctl->tree_lock);
		info->offset = offset;
		info->bytes = bytes;
3825
		info->max_extent_size = 0;
3826 3827 3828 3829 3830 3831 3832 3833
		ret = link_free_space(ctl, info);
		spin_unlock(&ctl->tree_lock);
		if (ret)
			kmem_cache_free(btrfs_free_space_cachep, info);
		return ret;
	}

	if (!map) {
3834
		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
		if (!map) {
			kmem_cache_free(btrfs_free_space_cachep, info);
			return -ENOMEM;
		}
	}

	spin_lock(&ctl->tree_lock);
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					 1, 0);
	if (!bitmap_info) {
		info->bitmap = map;
		map = NULL;
		add_new_bitmap(ctl, info, offset);
		bitmap_info = info;
3849
		info = NULL;
3850
	}
3851

3852 3853
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
					  trim_state);
3854

3855 3856 3857
	bytes -= bytes_added;
	offset += bytes_added;
	spin_unlock(&ctl->tree_lock);
3858

3859 3860
	if (bytes)
		goto again;
3861

3862 3863
	if (info)
		kmem_cache_free(btrfs_free_space_cachep, info);
3864 3865
	if (map)
		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3866
	return 0;
3867 3868 3869 3870 3871 3872 3873
}

/*
 * Checks to see if the given range is in the free space cache.  This is really
 * just used to check the absence of space, so if there is free space in the
 * range at all we will return 1.
 */
3874
int test_check_exists(struct btrfs_block_group *cache,
3875
		      u64 offset, u64 bytes)
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
{
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&ctl->tree_lock);
	info = tree_search_offset(ctl, offset, 0, 0);
	if (!info) {
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					  1, 0);
		if (!info)
			goto out;
	}

have_info:
	if (info->bitmap) {
		u64 bit_off, bit_bytes;
		struct rb_node *n;
		struct btrfs_free_space *tmp;

		bit_off = offset;
		bit_bytes = ctl->unit;
3898
		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
		if (!ret) {
			if (bit_off == offset) {
				ret = 1;
				goto out;
			} else if (bit_off > offset &&
				   offset + bytes > bit_off) {
				ret = 1;
				goto out;
			}
		}

		n = rb_prev(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (tmp->offset + tmp->bytes < offset)
				break;
			if (offset + bytes < tmp->offset) {
3917
				n = rb_prev(&tmp->offset_index);
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
				continue;
			}
			info = tmp;
			goto have_info;
		}

		n = rb_next(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (offset + bytes < tmp->offset)
				break;
			if (tmp->offset + tmp->bytes < offset) {
3931
				n = rb_next(&tmp->offset_index);
3932 3933 3934 3935 3936 3937
				continue;
			}
			info = tmp;
			goto have_info;
		}

3938
		ret = 0;
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
		goto out;
	}

	if (info->offset == offset) {
		ret = 1;
		goto out;
	}

	if (offset > info->offset && offset < info->offset + info->bytes)
		ret = 1;
out:
	spin_unlock(&ctl->tree_lock);
	return ret;
}
3953
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */