free-space-cache.c 107.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
J
Josef Bacik 已提交
2 3 4 5
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 */

6
#include <linux/pagemap.h>
J
Josef Bacik 已提交
7
#include <linux/sched.h>
8
#include <linux/sched/signal.h>
9
#include <linux/slab.h>
10
#include <linux/math64.h>
11
#include <linux/ratelimit.h>
12
#include <linux/error-injection.h>
13
#include <linux/sched/mm.h>
J
Josef Bacik 已提交
14
#include "ctree.h"
15 16
#include "free-space-cache.h"
#include "transaction.h"
17
#include "disk-io.h"
18
#include "extent_io.h"
19
#include "inode-map.h"
20
#include "volumes.h"
21
#include "space-info.h"
22
#include "delalloc-space.h"
23
#include "block-group.h"
24
#include "discard.h"
25

26
#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
27 28
#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
#define FORCE_EXTENT_THRESHOLD	SZ_1M
J
Josef Bacik 已提交
29

30 31 32 33 34 35
struct btrfs_trim_range {
	u64 start;
	u64 bytes;
	struct list_head list;
};

36 37
static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
				struct btrfs_free_space *bitmap_info);
38
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
39
			   struct btrfs_free_space *info);
40 41
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info);
42 43 44 45
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
			     struct btrfs_trans_handle *trans,
			     struct btrfs_io_ctl *io_ctl,
			     struct btrfs_path *path);
J
Josef Bacik 已提交
46

47 48 49
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
					       struct btrfs_path *path,
					       u64 offset)
50
{
51
	struct btrfs_fs_info *fs_info = root->fs_info;
52 53 54 55 56 57
	struct btrfs_key key;
	struct btrfs_key location;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	struct inode *inode = NULL;
58
	unsigned nofs_flag;
59 60 61
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
62
	key.offset = offset;
63 64 65 66 67 68
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ERR_PTR(ret);
	if (ret > 0) {
69
		btrfs_release_path(path);
70 71 72 73 74 75 76 77
		return ERR_PTR(-ENOENT);
	}

	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_free_space_key(leaf, header, &disk_key);
	btrfs_disk_key_to_cpu(&location, &disk_key);
78
	btrfs_release_path(path);
79

80 81 82 83 84
	/*
	 * We are often under a trans handle at this point, so we need to make
	 * sure NOFS is set to keep us from deadlocking.
	 */
	nofs_flag = memalloc_nofs_save();
D
David Sterba 已提交
85
	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
86
	btrfs_release_path(path);
87
	memalloc_nofs_restore(nofs_flag);
88 89 90
	if (IS_ERR(inode))
		return inode;

A
Al Viro 已提交
91
	mapping_set_gfp_mask(inode->i_mapping,
92 93
			mapping_gfp_constraint(inode->i_mapping,
			~(__GFP_FS | __GFP_HIGHMEM)));
94

95 96 97
	return inode;
}

98
struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
99
		struct btrfs_path *path)
100
{
101
	struct btrfs_fs_info *fs_info = block_group->fs_info;
102
	struct inode *inode = NULL;
103
	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
104 105 106 107 108 109 110 111

	spin_lock(&block_group->lock);
	if (block_group->inode)
		inode = igrab(block_group->inode);
	spin_unlock(&block_group->lock);
	if (inode)
		return inode;

112
	inode = __lookup_free_space_inode(fs_info->tree_root, path,
113
					  block_group->start);
114 115 116
	if (IS_ERR(inode))
		return inode;

117
	spin_lock(&block_group->lock);
118
	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
119
		btrfs_info(fs_info, "Old style space inode found, converting.");
120 121
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
			BTRFS_INODE_NODATACOW;
122 123 124
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
	}

125
	if (!block_group->iref) {
126 127 128 129 130 131 132 133
		block_group->inode = igrab(inode);
		block_group->iref = 1;
	}
	spin_unlock(&block_group->lock);

	return inode;
}

134 135 136 137
static int __create_free_space_inode(struct btrfs_root *root,
				     struct btrfs_trans_handle *trans,
				     struct btrfs_path *path,
				     u64 ino, u64 offset)
138 139 140 141 142 143
{
	struct btrfs_key key;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
144
	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
145 146
	int ret;

147
	ret = btrfs_insert_empty_inode(trans, root, path, ino);
148 149 150
	if (ret)
		return ret;

151 152 153 154
	/* We inline crc's for the free disk space cache */
	if (ino != BTRFS_FREE_INO_OBJECTID)
		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;

155 156 157 158
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	btrfs_item_key(leaf, &disk_key, path->slots[0]);
159
	memzero_extent_buffer(leaf, (unsigned long)inode_item,
160 161 162 163 164 165 166
			     sizeof(*inode_item));
	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
	btrfs_set_inode_size(leaf, inode_item, 0);
	btrfs_set_inode_nbytes(leaf, inode_item, 0);
	btrfs_set_inode_uid(leaf, inode_item, 0);
	btrfs_set_inode_gid(leaf, inode_item, 0);
	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
167
	btrfs_set_inode_flags(leaf, inode_item, flags);
168 169
	btrfs_set_inode_nlink(leaf, inode_item, 1);
	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
170
	btrfs_set_inode_block_group(leaf, inode_item, offset);
171
	btrfs_mark_buffer_dirty(leaf);
172
	btrfs_release_path(path);
173 174

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
175
	key.offset = offset;
176 177 178 179
	key.type = 0;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(struct btrfs_free_space_header));
	if (ret < 0) {
180
		btrfs_release_path(path);
181 182
		return ret;
	}
183

184 185 186
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
187
	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
188 189
	btrfs_set_free_space_key(leaf, header, &disk_key);
	btrfs_mark_buffer_dirty(leaf);
190
	btrfs_release_path(path);
191 192 193 194

	return 0;
}

195
int create_free_space_inode(struct btrfs_trans_handle *trans,
196
			    struct btrfs_block_group *block_group,
197 198 199 200 201
			    struct btrfs_path *path)
{
	int ret;
	u64 ino;

202
	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
203 204 205
	if (ret < 0)
		return ret;

206
	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
207
					 ino, block_group->start);
208 209
}

210
int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
211
				       struct btrfs_block_rsv *rsv)
212
{
213
	u64 needed_bytes;
214
	int ret;
215 216

	/* 1 for slack space, 1 for updating the inode */
217 218
	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
		btrfs_calc_metadata_size(fs_info, 1);
219

220 221 222 223 224 225
	spin_lock(&rsv->lock);
	if (rsv->reserved < needed_bytes)
		ret = -ENOSPC;
	else
		ret = 0;
	spin_unlock(&rsv->lock);
226
	return ret;
227 228
}

229
int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
230
				    struct btrfs_block_group *block_group,
231 232
				    struct inode *inode)
{
233
	struct btrfs_root *root = BTRFS_I(inode)->root;
234
	int ret = 0;
235
	bool locked = false;
236 237

	if (block_group) {
238 239 240 241 242 243
		struct btrfs_path *path = btrfs_alloc_path();

		if (!path) {
			ret = -ENOMEM;
			goto fail;
		}
244
		locked = true;
245 246 247 248
		mutex_lock(&trans->transaction->cache_write_mutex);
		if (!list_empty(&block_group->io_list)) {
			list_del_init(&block_group->io_list);

249
			btrfs_wait_cache_io(trans, block_group, path);
250 251 252 253 254 255 256 257 258 259
			btrfs_put_block_group(block_group);
		}

		/*
		 * now that we've truncated the cache away, its no longer
		 * setup or written
		 */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
260
		btrfs_free_path(path);
261
	}
262

263
	btrfs_i_size_write(BTRFS_I(inode), 0);
264
	truncate_pagecache(inode, 0);
265 266

	/*
267 268
	 * We skip the throttling logic for free space cache inodes, so we don't
	 * need to check for -EAGAIN.
269 270 271
	 */
	ret = btrfs_truncate_inode_items(trans, root, inode,
					 0, BTRFS_EXTENT_DATA_KEY);
272 273
	if (ret)
		goto fail;
274

275
	ret = btrfs_update_inode(trans, root, inode);
276 277

fail:
278 279
	if (locked)
		mutex_unlock(&trans->transaction->cache_write_mutex);
280
	if (ret)
281
		btrfs_abort_transaction(trans, ret);
282

283
	return ret;
284 285
}

286
static void readahead_cache(struct inode *inode)
287 288 289 290 291 292
{
	struct file_ra_state *ra;
	unsigned long last_index;

	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
293
		return;
294 295

	file_ra_state_init(ra, inode->i_mapping);
296
	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
297 298 299 300 301 302

	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);

	kfree(ra);
}

303
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
304
		       int write)
305
{
306 307 308
	int num_pages;
	int check_crcs = 0;

309
	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
310

311
	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
312 313
		check_crcs = 1;

314
	/* Make sure we can fit our crcs and generation into the first page */
315
	if (write && check_crcs &&
316
	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
317 318
		return -ENOSPC;

319
	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
320

321
	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
322 323
	if (!io_ctl->pages)
		return -ENOMEM;
324 325

	io_ctl->num_pages = num_pages;
326
	io_ctl->fs_info = btrfs_sb(inode->i_sb);
327
	io_ctl->check_crcs = check_crcs;
328
	io_ctl->inode = inode;
329

330 331
	return 0;
}
332
ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
333

334
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
335 336
{
	kfree(io_ctl->pages);
337
	io_ctl->pages = NULL;
338 339
}

340
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
341 342 343 344 345 346 347
{
	if (io_ctl->cur) {
		io_ctl->cur = NULL;
		io_ctl->orig = NULL;
	}
}

348
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
349
{
350
	ASSERT(io_ctl->index < io_ctl->num_pages);
351
	io_ctl->page = io_ctl->pages[io_ctl->index++];
352
	io_ctl->cur = page_address(io_ctl->page);
353
	io_ctl->orig = io_ctl->cur;
354
	io_ctl->size = PAGE_SIZE;
355
	if (clear)
356
		clear_page(io_ctl->cur);
357 358
}

359
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
360 361 362 363 364 365
{
	int i;

	io_ctl_unmap_page(io_ctl);

	for (i = 0; i < io_ctl->num_pages; i++) {
366 367 368
		if (io_ctl->pages[i]) {
			ClearPageChecked(io_ctl->pages[i]);
			unlock_page(io_ctl->pages[i]);
369
			put_page(io_ctl->pages[i]);
370
		}
371 372 373
	}
}

374
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
375 376
{
	struct page *page;
377
	struct inode *inode = io_ctl->inode;
378 379 380 381 382 383 384 385 386 387 388 389 390
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
	int i;

	for (i = 0; i < io_ctl->num_pages; i++) {
		page = find_or_create_page(inode->i_mapping, i, mask);
		if (!page) {
			io_ctl_drop_pages(io_ctl);
			return -ENOMEM;
		}
		io_ctl->pages[i] = page;
		if (uptodate && !PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
391 392 393 394 395 396
			if (page->mapping != inode->i_mapping) {
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					  "free space cache page truncated");
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
397
			if (!PageUptodate(page)) {
398 399
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					   "error reading free space cache");
400 401 402 403 404 405
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
		}
	}

406 407 408 409 410
	for (i = 0; i < io_ctl->num_pages; i++) {
		clear_page_dirty_for_io(io_ctl->pages[i]);
		set_page_extent_mapped(io_ctl->pages[i]);
	}

411 412 413
	return 0;
}

414
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
415 416 417 418
{
	io_ctl_map_page(io_ctl, 1);

	/*
419 420
	 * Skip the csum areas.  If we don't check crcs then we just have a
	 * 64bit chunk at the front of the first page.
421
	 */
422 423 424 425 426 427 428
	if (io_ctl->check_crcs) {
		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
429

430
	put_unaligned_le64(generation, io_ctl->cur);
431 432 433
	io_ctl->cur += sizeof(u64);
}

434
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435
{
436
	u64 cache_gen;
437

438 439 440 441 442 443 444 445 446 447 448 449
	/*
	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
	 * chunk at the front of the first page.
	 */
	if (io_ctl->check_crcs) {
		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
		io_ctl->size -= sizeof(u64) +
			(sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
450

451 452
	cache_gen = get_unaligned_le64(io_ctl->cur);
	if (cache_gen != generation) {
453
		btrfs_err_rl(io_ctl->fs_info,
454
			"space cache generation (%llu) does not match inode (%llu)",
455
				cache_gen, generation);
456 457 458 459
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}
	io_ctl->cur += sizeof(u64);
460 461 462
	return 0;
}

463
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464 465 466 467 468 469 470 471 472 473 474
{
	u32 *tmp;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_unmap_page(io_ctl);
		return;
	}

	if (index == 0)
475
		offset = sizeof(u32) * io_ctl->num_pages;
476

477 478
	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
	btrfs_crc32c_final(crc, (u8 *)&crc);
479
	io_ctl_unmap_page(io_ctl);
480
	tmp = page_address(io_ctl->pages[0]);
481 482 483 484
	tmp += index;
	*tmp = crc;
}

485
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
486 487 488 489 490 491 492 493 494 495 496 497 498
{
	u32 *tmp, val;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_map_page(io_ctl, 0);
		return 0;
	}

	if (index == 0)
		offset = sizeof(u32) * io_ctl->num_pages;

499
	tmp = page_address(io_ctl->pages[0]);
500 501 502 503
	tmp += index;
	val = *tmp;

	io_ctl_map_page(io_ctl, 0);
504 505
	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
	btrfs_crc32c_final(crc, (u8 *)&crc);
506
	if (val != crc) {
507
		btrfs_err_rl(io_ctl->fs_info,
508
			"csum mismatch on free space cache");
509 510 511 512
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}

513 514 515
	return 0;
}

516
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
517 518 519 520 521 522 523 524
			    void *bitmap)
{
	struct btrfs_free_space_entry *entry;

	if (!io_ctl->cur)
		return -ENOSPC;

	entry = io_ctl->cur;
525 526
	put_unaligned_le64(offset, &entry->offset);
	put_unaligned_le64(bytes, &entry->bytes);
527 528 529 530 531 532 533 534
	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
		BTRFS_FREE_SPACE_EXTENT;
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
		return 0;

535
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
536 537 538 539 540 541 542 543 544 545

	/* No more pages to map */
	if (io_ctl->index >= io_ctl->num_pages)
		return 0;

	/* map the next page */
	io_ctl_map_page(io_ctl, 1);
	return 0;
}

546
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
547 548 549 550 551 552 553 554 555
{
	if (!io_ctl->cur)
		return -ENOSPC;

	/*
	 * If we aren't at the start of the current page, unmap this one and
	 * map the next one if there is any left.
	 */
	if (io_ctl->cur != io_ctl->orig) {
556
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
557 558 559 560 561
		if (io_ctl->index >= io_ctl->num_pages)
			return -ENOSPC;
		io_ctl_map_page(io_ctl, 0);
	}

562
	copy_page(io_ctl->cur, bitmap);
563
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
564 565 566 567 568
	if (io_ctl->index < io_ctl->num_pages)
		io_ctl_map_page(io_ctl, 0);
	return 0;
}

569
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
570
{
571 572 573 574 575 576 577 578
	/*
	 * If we're not on the boundary we know we've modified the page and we
	 * need to crc the page.
	 */
	if (io_ctl->cur != io_ctl->orig)
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
	else
		io_ctl_unmap_page(io_ctl);
579 580 581

	while (io_ctl->index < io_ctl->num_pages) {
		io_ctl_map_page(io_ctl, 1);
582
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
583 584 585
	}
}

586
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
587
			    struct btrfs_free_space *entry, u8 *type)
588 589
{
	struct btrfs_free_space_entry *e;
590 591 592 593 594 595 596
	int ret;

	if (!io_ctl->cur) {
		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
		if (ret)
			return ret;
	}
597 598

	e = io_ctl->cur;
599 600
	entry->offset = get_unaligned_le64(&e->offset);
	entry->bytes = get_unaligned_le64(&e->bytes);
601
	*type = e->type;
602 603 604 605
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
606
		return 0;
607 608 609

	io_ctl_unmap_page(io_ctl);

610
	return 0;
611 612
}

613
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
614
			      struct btrfs_free_space *entry)
615
{
616 617 618 619 620 621
	int ret;

	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
	if (ret)
		return ret;

622
	copy_page(entry->bitmap, io_ctl->cur);
623
	io_ctl_unmap_page(io_ctl);
624 625

	return 0;
626 627
}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
/*
 * Since we attach pinned extents after the fact we can have contiguous sections
 * of free space that are split up in entries.  This poses a problem with the
 * tree logging stuff since it could have allocated across what appears to be 2
 * entries since we would have merged the entries when adding the pinned extents
 * back to the free space cache.  So run through the space cache that we just
 * loaded and merge contiguous entries.  This will make the log replay stuff not
 * blow up and it will make for nicer allocator behavior.
 */
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_free_space *e, *prev = NULL;
	struct rb_node *n;

again:
	spin_lock(&ctl->tree_lock);
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
		e = rb_entry(n, struct btrfs_free_space, offset_index);
		if (!prev)
			goto next;
		if (e->bitmap || prev->bitmap)
			goto next;
		if (prev->offset + prev->bytes == e->offset) {
			unlink_free_space(ctl, prev);
			unlink_free_space(ctl, e);
			prev->bytes += e->bytes;
			kmem_cache_free(btrfs_free_space_cachep, e);
			link_free_space(ctl, prev);
			prev = NULL;
			spin_unlock(&ctl->tree_lock);
			goto again;
		}
next:
		prev = e;
	}
	spin_unlock(&ctl->tree_lock);
}

666 667 668
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_path *path, u64 offset)
669
{
670
	struct btrfs_fs_info *fs_info = root->fs_info;
671 672
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
673
	struct btrfs_io_ctl io_ctl;
674
	struct btrfs_key key;
675
	struct btrfs_free_space *e, *n;
676
	LIST_HEAD(bitmaps);
677 678 679
	u64 num_entries;
	u64 num_bitmaps;
	u64 generation;
680
	u8 type;
681
	int ret = 0;
682 683

	/* Nothing in the space cache, goodbye */
684
	if (!i_size_read(inode))
685
		return 0;
686 687

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
688
	key.offset = offset;
689 690 691
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
692
	if (ret < 0)
693
		return 0;
694
	else if (ret > 0) {
695
		btrfs_release_path(path);
696
		return 0;
697 698
	}

699 700
	ret = -1;

701 702 703 704 705 706
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	num_entries = btrfs_free_space_entries(leaf, header);
	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
	generation = btrfs_free_space_generation(leaf, header);
707
	btrfs_release_path(path);
708

709
	if (!BTRFS_I(inode)->generation) {
710
		btrfs_info(fs_info,
711
			   "the free space cache file (%llu) is invalid, skip it",
712 713 714 715
			   offset);
		return 0;
	}

716
	if (BTRFS_I(inode)->generation != generation) {
717 718 719
		btrfs_err(fs_info,
			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
			  BTRFS_I(inode)->generation, generation);
720
		return 0;
721 722 723
	}

	if (!num_entries)
724
		return 0;
725

726
	ret = io_ctl_init(&io_ctl, inode, 0);
727 728 729
	if (ret)
		return ret;

730
	readahead_cache(inode);
731

732
	ret = io_ctl_prepare_pages(&io_ctl, true);
733 734
	if (ret)
		goto out;
735

736 737 738 739
	ret = io_ctl_check_crc(&io_ctl, 0);
	if (ret)
		goto free_cache;

740 741 742
	ret = io_ctl_check_generation(&io_ctl, generation);
	if (ret)
		goto free_cache;
743

744 745 746 747
	while (num_entries) {
		e = kmem_cache_zalloc(btrfs_free_space_cachep,
				      GFP_NOFS);
		if (!e)
748 749
			goto free_cache;

750 751 752 753 754 755
		ret = io_ctl_read_entry(&io_ctl, e, &type);
		if (ret) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
		}

756 757 758
		/*
		 * Sync discard ensures that the free space cache is always
		 * trimmed.  So when reading this in, the state should reflect
759 760
		 * that.  We also do this for async as a stop gap for lack of
		 * persistence.
761
		 */
762 763
		if (btrfs_test_opt(fs_info, DISCARD_SYNC) ||
		    btrfs_test_opt(fs_info, DISCARD_ASYNC))
764 765
			e->trim_state = BTRFS_TRIM_STATE_TRIMMED;

766 767 768
		if (!e->bytes) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
769
		}
770 771 772 773 774 775

		if (type == BTRFS_FREE_SPACE_EXTENT) {
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
776
				btrfs_err(fs_info,
777
					"Duplicate entries in free space cache, dumping");
778
				kmem_cache_free(btrfs_free_space_cachep, e);
779 780
				goto free_cache;
			}
781
		} else {
782
			ASSERT(num_bitmaps);
783
			num_bitmaps--;
784 785
			e->bitmap = kmem_cache_zalloc(
					btrfs_free_space_bitmap_cachep, GFP_NOFS);
786 787 788
			if (!e->bitmap) {
				kmem_cache_free(
					btrfs_free_space_cachep, e);
789 790
				goto free_cache;
			}
791 792 793 794 795 796
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			ctl->total_bitmaps++;
			ctl->op->recalc_thresholds(ctl);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
797
				btrfs_err(fs_info,
798
					"Duplicate entries in free space cache, dumping");
799
				kmem_cache_free(btrfs_free_space_cachep, e);
800 801
				goto free_cache;
			}
802
			list_add_tail(&e->list, &bitmaps);
803 804
		}

805 806
		num_entries--;
	}
807

808 809
	io_ctl_unmap_page(&io_ctl);

810 811 812 813 814
	/*
	 * We add the bitmaps at the end of the entries in order that
	 * the bitmap entries are added to the cache.
	 */
	list_for_each_entry_safe(e, n, &bitmaps, list) {
815
		list_del_init(&e->list);
816 817 818
		ret = io_ctl_read_bitmap(&io_ctl, e);
		if (ret)
			goto free_cache;
819
		e->bitmap_extents = count_bitmap_extents(ctl, e);
820
		if (!btrfs_free_space_trimmed(e)) {
821 822
			ctl->discardable_extents[BTRFS_STAT_CURR] +=
				e->bitmap_extents;
823 824
			ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes;
		}
825 826
	}

827
	io_ctl_drop_pages(&io_ctl);
828
	merge_space_tree(ctl);
829 830
	ret = 1;
out:
831
	btrfs_discard_update_discardable(ctl->private, ctl);
832
	io_ctl_free(&io_ctl);
833 834
	return ret;
free_cache:
835
	io_ctl_drop_pages(&io_ctl);
836
	__btrfs_remove_free_space_cache(ctl);
837 838 839
	goto out;
}

840
int load_free_space_cache(struct btrfs_block_group *block_group)
J
Josef Bacik 已提交
841
{
842
	struct btrfs_fs_info *fs_info = block_group->fs_info;
843
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
844 845
	struct inode *inode;
	struct btrfs_path *path;
846
	int ret = 0;
847
	bool matched;
848
	u64 used = block_group->used;
849 850 851 852 853

	/*
	 * If this block group has been marked to be cleared for one reason or
	 * another then we can't trust the on disk cache, so just return.
	 */
854
	spin_lock(&block_group->lock);
855 856 857 858
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
		return 0;
	}
859
	spin_unlock(&block_group->lock);
860 861 862 863

	path = btrfs_alloc_path();
	if (!path)
		return 0;
864 865
	path->search_commit_root = 1;
	path->skip_locking = 1;
866

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	/*
	 * We must pass a path with search_commit_root set to btrfs_iget in
	 * order to avoid a deadlock when allocating extents for the tree root.
	 *
	 * When we are COWing an extent buffer from the tree root, when looking
	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
	 * block group without its free space cache loaded. When we find one
	 * we must load its space cache which requires reading its free space
	 * cache's inode item from the root tree. If this inode item is located
	 * in the same leaf that we started COWing before, then we end up in
	 * deadlock on the extent buffer (trying to read lock it when we
	 * previously write locked it).
	 *
	 * It's safe to read the inode item using the commit root because
	 * block groups, once loaded, stay in memory forever (until they are
	 * removed) as well as their space caches once loaded. New block groups
	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
	 * we will never try to read their inode item while the fs is mounted.
	 */
886
	inode = lookup_free_space_inode(block_group, path);
887 888 889 890 891
	if (IS_ERR(inode)) {
		btrfs_free_path(path);
		return 0;
	}

892 893 894 895
	/* We may have converted the inode and made the cache invalid. */
	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
896
		btrfs_free_path(path);
897 898 899 900
		goto out;
	}
	spin_unlock(&block_group->lock);

901
	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
902
				      path, block_group->start);
903 904 905 906 907
	btrfs_free_path(path);
	if (ret <= 0)
		goto out;

	spin_lock(&ctl->tree_lock);
908
	matched = (ctl->free_space == (block_group->length - used -
909 910 911 912 913
				       block_group->bytes_super));
	spin_unlock(&ctl->tree_lock);

	if (!matched) {
		__btrfs_remove_free_space_cache(ctl);
J
Jeff Mahoney 已提交
914 915
		btrfs_warn(fs_info,
			   "block group %llu has wrong amount of free space",
916
			   block_group->start);
917 918 919 920 921 922 923 924
		ret = -1;
	}
out:
	if (ret < 0) {
		/* This cache is bogus, make sure it gets cleared */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
925
		ret = 0;
926

J
Jeff Mahoney 已提交
927 928
		btrfs_warn(fs_info,
			   "failed to load free space cache for block group %llu, rebuilding it now",
929
			   block_group->start);
930 931 932 933
	}

	iput(inode);
	return ret;
934 935
}

936
static noinline_for_stack
937
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
938
			      struct btrfs_free_space_ctl *ctl,
939
			      struct btrfs_block_group *block_group,
940 941
			      int *entries, int *bitmaps,
			      struct list_head *bitmap_list)
J
Josef Bacik 已提交
942
{
943
	int ret;
944
	struct btrfs_free_cluster *cluster = NULL;
945
	struct btrfs_free_cluster *cluster_locked = NULL;
946
	struct rb_node *node = rb_first(&ctl->free_space_offset);
947
	struct btrfs_trim_range *trim_entry;
948

949
	/* Get the cluster for this block_group if it exists */
950
	if (block_group && !list_empty(&block_group->cluster_list)) {
951 952 953
		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
954
	}
955

956
	if (!node && cluster) {
957 958
		cluster_locked = cluster;
		spin_lock(&cluster_locked->lock);
959 960 961 962
		node = rb_first(&cluster->root);
		cluster = NULL;
	}

963 964 965
	/* Write out the extent entries */
	while (node) {
		struct btrfs_free_space *e;
J
Josef Bacik 已提交
966

967
		e = rb_entry(node, struct btrfs_free_space, offset_index);
968
		*entries += 1;
J
Josef Bacik 已提交
969

970
		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
971 972
				       e->bitmap);
		if (ret)
973
			goto fail;
974

975
		if (e->bitmap) {
976 977
			list_add_tail(&e->list, bitmap_list);
			*bitmaps += 1;
978
		}
979 980 981
		node = rb_next(node);
		if (!node && cluster) {
			node = rb_first(&cluster->root);
982 983
			cluster_locked = cluster;
			spin_lock(&cluster_locked->lock);
984
			cluster = NULL;
985
		}
986
	}
987 988 989 990
	if (cluster_locked) {
		spin_unlock(&cluster_locked->lock);
		cluster_locked = NULL;
	}
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

	/*
	 * Make sure we don't miss any range that was removed from our rbtree
	 * because trimming is running. Otherwise after a umount+mount (or crash
	 * after committing the transaction) we would leak free space and get
	 * an inconsistent free space cache report from fsck.
	 */
	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
				       trim_entry->bytes, NULL);
		if (ret)
			goto fail;
		*entries += 1;
	}

1006 1007
	return 0;
fail:
1008 1009
	if (cluster_locked)
		spin_unlock(&cluster_locked->lock);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	return -ENOSPC;
}

static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct inode *inode,
		  struct btrfs_path *path, u64 offset,
		  int entries, int bitmaps)
{
	struct btrfs_key key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
	key.offset = offset;
	key.type = 0;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0) {
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1032
				 EXTENT_DELALLOC, 0, 0, NULL);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		goto fail;
	}
	leaf = path->nodes[0];
	if (ret > 0) {
		struct btrfs_key found_key;
		ASSERT(path->slots[0]);
		path->slots[0]--;
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
		    found_key.offset != offset) {
			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1044 1045
					 inode->i_size - 1, EXTENT_DELALLOC, 0,
					 0, NULL);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
			btrfs_release_path(path);
			goto fail;
		}
	}

	BTRFS_I(inode)->generation = trans->transid;
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_set_free_space_entries(leaf, header, entries);
	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
	btrfs_set_free_space_generation(leaf, header, trans->transid);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_release_path(path);

	return 0;

fail:
	return -1;
}

1066
static noinline_for_stack int write_pinned_extent_entries(
1067
			    struct btrfs_trans_handle *trans,
1068
			    struct btrfs_block_group *block_group,
1069
			    struct btrfs_io_ctl *io_ctl,
1070
			    int *entries)
1071 1072 1073 1074
{
	u64 start, extent_start, extent_end, len;
	struct extent_io_tree *unpin = NULL;
	int ret;
1075

1076 1077 1078
	if (!block_group)
		return 0;

1079 1080 1081
	/*
	 * We want to add any pinned extents to our free space cache
	 * so we don't leak the space
1082
	 *
1083 1084 1085
	 * We shouldn't have switched the pinned extents yet so this is the
	 * right one
	 */
1086
	unpin = &trans->transaction->pinned_extents;
1087

1088
	start = block_group->start;
1089

1090
	while (start < block_group->start + block_group->length) {
1091 1092
		ret = find_first_extent_bit(unpin, start,
					    &extent_start, &extent_end,
1093
					    EXTENT_DIRTY, NULL);
1094 1095
		if (ret)
			return 0;
J
Josef Bacik 已提交
1096

1097
		/* This pinned extent is out of our range */
1098
		if (extent_start >= block_group->start + block_group->length)
1099
			return 0;
1100

1101
		extent_start = max(extent_start, start);
1102 1103
		extent_end = min(block_group->start + block_group->length,
				 extent_end + 1);
1104
		len = extent_end - extent_start;
J
Josef Bacik 已提交
1105

1106 1107
		*entries += 1;
		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1108
		if (ret)
1109
			return -ENOSPC;
J
Josef Bacik 已提交
1110

1111
		start = extent_end;
1112
	}
J
Josef Bacik 已提交
1113

1114 1115 1116 1117
	return 0;
}

static noinline_for_stack int
1118
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1119
{
1120
	struct btrfs_free_space *entry, *next;
1121 1122
	int ret;

J
Josef Bacik 已提交
1123
	/* Write out the bitmaps */
1124
	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1125
		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1126
		if (ret)
1127
			return -ENOSPC;
J
Josef Bacik 已提交
1128
		list_del_init(&entry->list);
1129 1130
	}

1131 1132
	return 0;
}
J
Josef Bacik 已提交
1133

1134 1135 1136
static int flush_dirty_cache(struct inode *inode)
{
	int ret;
1137

1138
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1139
	if (ret)
1140
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1141
				 EXTENT_DELALLOC, 0, 0, NULL);
J
Josef Bacik 已提交
1142

1143
	return ret;
1144 1145 1146
}

static void noinline_for_stack
1147
cleanup_bitmap_list(struct list_head *bitmap_list)
1148
{
1149
	struct btrfs_free_space *entry, *next;
1150

1151
	list_for_each_entry_safe(entry, next, bitmap_list, list)
1152
		list_del_init(&entry->list);
1153 1154 1155 1156 1157
}

static void noinline_for_stack
cleanup_write_cache_enospc(struct inode *inode,
			   struct btrfs_io_ctl *io_ctl,
1158
			   struct extent_state **cached_state)
1159
{
1160 1161
	io_ctl_drop_pages(io_ctl);
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1162
			     i_size_read(inode) - 1, cached_state);
1163
}
1164

1165 1166
static int __btrfs_wait_cache_io(struct btrfs_root *root,
				 struct btrfs_trans_handle *trans,
1167
				 struct btrfs_block_group *block_group,
1168 1169
				 struct btrfs_io_ctl *io_ctl,
				 struct btrfs_path *path, u64 offset)
1170 1171 1172 1173
{
	int ret;
	struct inode *inode = io_ctl->inode;

1174 1175 1176
	if (!inode)
		return 0;

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	/* Flush the dirty pages in the cache file. */
	ret = flush_dirty_cache(inode);
	if (ret)
		goto out;

	/* Update the cache item to tell everyone this cache file is valid. */
	ret = update_cache_item(trans, root, inode, path, offset,
				io_ctl->entries, io_ctl->bitmaps);
out:
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
1189 1190
		if (block_group)
			btrfs_debug(root->fs_info,
1191 1192
	  "failed to write free space cache for block group %llu error %d",
				  block_group->start, ret);
1193 1194 1195 1196
	}
	btrfs_update_inode(trans, root, inode);

	if (block_group) {
1197 1198 1199 1200
		/* the dirty list is protected by the dirty_bgs_lock */
		spin_lock(&trans->transaction->dirty_bgs_lock);

		/* the disk_cache_state is protected by the block group lock */
1201 1202 1203 1204
		spin_lock(&block_group->lock);

		/*
		 * only mark this as written if we didn't get put back on
1205 1206
		 * the dirty list while waiting for IO.   Otherwise our
		 * cache state won't be right, and we won't get written again
1207 1208 1209 1210 1211 1212 1213
		 */
		if (!ret && list_empty(&block_group->dirty_list))
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		else if (ret)
			block_group->disk_cache_state = BTRFS_DC_ERROR;

		spin_unlock(&block_group->lock);
1214
		spin_unlock(&trans->transaction->dirty_bgs_lock);
1215 1216 1217 1218 1219 1220 1221 1222
		io_ctl->inode = NULL;
		iput(inode);
	}

	return ret;

}

1223 1224 1225 1226 1227 1228 1229 1230 1231
static int btrfs_wait_cache_io_root(struct btrfs_root *root,
				    struct btrfs_trans_handle *trans,
				    struct btrfs_io_ctl *io_ctl,
				    struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
}

int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1232
			struct btrfs_block_group *block_group,
1233 1234 1235 1236
			struct btrfs_path *path)
{
	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
				     block_group, &block_group->io_ctl,
1237
				     path, block_group->start);
1238 1239
}

1240 1241 1242 1243 1244 1245 1246 1247
/**
 * __btrfs_write_out_cache - write out cached info to an inode
 * @root - the root the inode belongs to
 * @ctl - the free space cache we are going to write out
 * @block_group - the block_group for this cache if it belongs to a block_group
 * @trans - the trans handle
 *
 * This function writes out a free space cache struct to disk for quick recovery
G
Geliang Tang 已提交
1248
 * on mount.  This will return 0 if it was successful in writing the cache out,
1249
 * or an errno if it was not.
1250 1251 1252
 */
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
1253
				   struct btrfs_block_group *block_group,
1254
				   struct btrfs_io_ctl *io_ctl,
1255
				   struct btrfs_trans_handle *trans)
1256 1257
{
	struct extent_state *cached_state = NULL;
1258
	LIST_HEAD(bitmap_list);
1259 1260 1261
	int entries = 0;
	int bitmaps = 0;
	int ret;
1262
	int must_iput = 0;
1263 1264

	if (!i_size_read(inode))
1265
		return -EIO;
1266

1267
	WARN_ON(io_ctl->pages);
1268
	ret = io_ctl_init(io_ctl, inode, 1);
1269
	if (ret)
1270
		return ret;
1271

1272 1273 1274 1275 1276 1277 1278 1279 1280
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
		down_write(&block_group->data_rwsem);
		spin_lock(&block_group->lock);
		if (block_group->delalloc_bytes) {
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
			spin_unlock(&block_group->lock);
			up_write(&block_group->data_rwsem);
			BTRFS_I(inode)->generation = 0;
			ret = 0;
1281
			must_iput = 1;
1282 1283 1284 1285 1286
			goto out;
		}
		spin_unlock(&block_group->lock);
	}

1287
	/* Lock all pages first so we can lock the extent safely. */
1288
	ret = io_ctl_prepare_pages(io_ctl, false);
1289
	if (ret)
1290
		goto out_unlock;
1291 1292

	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1293
			 &cached_state);
1294

1295
	io_ctl_set_generation(io_ctl, trans->transid);
1296

1297
	mutex_lock(&ctl->cache_writeout_mutex);
1298
	/* Write out the extent entries in the free space cache */
1299
	spin_lock(&ctl->tree_lock);
1300
	ret = write_cache_extent_entries(io_ctl, ctl,
1301 1302
					 block_group, &entries, &bitmaps,
					 &bitmap_list);
1303 1304
	if (ret)
		goto out_nospc_locked;
1305

1306 1307 1308 1309
	/*
	 * Some spaces that are freed in the current transaction are pinned,
	 * they will be added into free space cache after the transaction is
	 * committed, we shouldn't lose them.
1310 1311 1312
	 *
	 * If this changes while we are working we'll get added back to
	 * the dirty list and redo it.  No locking needed
1313
	 */
1314
	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1315 1316
	if (ret)
		goto out_nospc_locked;
1317

1318 1319 1320 1321 1322
	/*
	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
	 * locked while doing it because a concurrent trim can be manipulating
	 * or freeing the bitmap.
	 */
1323
	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1324
	spin_unlock(&ctl->tree_lock);
1325
	mutex_unlock(&ctl->cache_writeout_mutex);
1326 1327 1328 1329
	if (ret)
		goto out_nospc;

	/* Zero out the rest of the pages just to make sure */
1330
	io_ctl_zero_remaining_pages(io_ctl);
1331

1332
	/* Everything is written out, now we dirty the pages in the file. */
1333 1334 1335
	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
				io_ctl->num_pages, 0, i_size_read(inode),
				&cached_state);
1336
	if (ret)
1337
		goto out_nospc;
1338

1339 1340
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);
1341 1342 1343 1344
	/*
	 * Release the pages and unlock the extent, we will flush
	 * them out later
	 */
1345
	io_ctl_drop_pages(io_ctl);
1346
	io_ctl_free(io_ctl);
1347 1348

	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1349
			     i_size_read(inode) - 1, &cached_state);
1350

1351 1352
	/*
	 * at this point the pages are under IO and we're happy,
1353
	 * The caller is responsible for waiting on them and updating
1354 1355 1356 1357 1358 1359
	 * the cache and the inode
	 */
	io_ctl->entries = entries;
	io_ctl->bitmaps = bitmaps;

	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1360
	if (ret)
1361 1362
		goto out;

1363 1364
	return 0;

1365 1366 1367 1368 1369
out_nospc_locked:
	cleanup_bitmap_list(&bitmap_list);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

1370
out_nospc:
1371
	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1372

1373
out_unlock:
1374 1375 1376
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
out:
	io_ctl->inode = NULL;
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
	}
	btrfs_update_inode(trans, root, inode);
	if (must_iput)
		iput(inode);
	return ret;
1388 1389
}

1390
int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1391
			  struct btrfs_block_group *block_group,
1392 1393
			  struct btrfs_path *path)
{
1394
	struct btrfs_fs_info *fs_info = trans->fs_info;
1395 1396 1397 1398 1399 1400 1401
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct inode *inode;
	int ret = 0;

	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
		spin_unlock(&block_group->lock);
1402 1403
		return 0;
	}
1404 1405
	spin_unlock(&block_group->lock);

1406
	inode = lookup_free_space_inode(block_group, path);
1407 1408 1409
	if (IS_ERR(inode))
		return 0;

1410 1411
	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
				block_group, &block_group->io_ctl, trans);
1412
	if (ret) {
1413
		btrfs_debug(fs_info,
1414 1415
	  "failed to write free space cache for block group %llu error %d",
			  block_group->start, ret);
1416 1417 1418 1419 1420 1421
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&block_group->lock);

		block_group->io_ctl.inode = NULL;
		iput(inode);
1422 1423
	}

1424 1425 1426 1427 1428
	/*
	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
	 * to wait for IO and put the inode
	 */

J
Josef Bacik 已提交
1429 1430 1431
	return ret;
}

1432
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1433
					  u64 offset)
J
Josef Bacik 已提交
1434
{
1435
	ASSERT(offset >= bitmap_start);
1436
	offset -= bitmap_start;
1437
	return (unsigned long)(div_u64(offset, unit));
1438
}
J
Josef Bacik 已提交
1439

1440
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1441
{
1442
	return (unsigned long)(div_u64(bytes, unit));
1443
}
J
Josef Bacik 已提交
1444

1445
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1446 1447 1448
				   u64 offset)
{
	u64 bitmap_start;
1449
	u64 bytes_per_bitmap;
J
Josef Bacik 已提交
1450

1451 1452
	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
	bitmap_start = offset - ctl->start;
1453
	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1454
	bitmap_start *= bytes_per_bitmap;
1455
	bitmap_start += ctl->start;
J
Josef Bacik 已提交
1456

1457
	return bitmap_start;
J
Josef Bacik 已提交
1458 1459
}

1460 1461
static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
J
Josef Bacik 已提交
1462 1463 1464 1465 1466 1467 1468
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
1469
		info = rb_entry(parent, struct btrfs_free_space, offset_index);
J
Josef Bacik 已提交
1470

1471
		if (offset < info->offset) {
J
Josef Bacik 已提交
1472
			p = &(*p)->rb_left;
1473
		} else if (offset > info->offset) {
J
Josef Bacik 已提交
1474
			p = &(*p)->rb_right;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
1490 1491 1492 1493
				if (info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1494 1495
				p = &(*p)->rb_right;
			} else {
1496 1497 1498 1499
				if (!info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1500 1501 1502
				p = &(*p)->rb_left;
			}
		}
J
Josef Bacik 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
J
Josef Bacik 已提交
1512 1513
 * searches the tree for the given offset.
 *
1514 1515 1516
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
J
Josef Bacik 已提交
1517
 */
1518
static struct btrfs_free_space *
1519
tree_search_offset(struct btrfs_free_space_ctl *ctl,
1520
		   u64 offset, int bitmap_only, int fuzzy)
J
Josef Bacik 已提交
1521
{
1522
	struct rb_node *n = ctl->free_space_offset.rb_node;
1523 1524 1525 1526 1527 1528 1529 1530
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}
J
Josef Bacik 已提交
1531 1532

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1533
		prev = entry;
J
Josef Bacik 已提交
1534

1535
		if (offset < entry->offset)
J
Josef Bacik 已提交
1536
			n = n->rb_left;
1537
		else if (offset > entry->offset)
J
Josef Bacik 已提交
1538
			n = n->rb_right;
1539
		else
J
Josef Bacik 已提交
1540 1541 1542
			break;
	}

1543 1544 1545 1546 1547
	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;
J
Josef Bacik 已提交
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;
J
Josef Bacik 已提交
1559

1560 1561 1562 1563
		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
J
Josef Bacik 已提交
1564
			/*
1565 1566
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
J
Josef Bacik 已提交
1567
			 */
1568 1569
			n = rb_prev(&entry->offset_index);
			if (n) {
1570 1571
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
1572 1573 1574
				if (!prev->bitmap &&
				    prev->offset + prev->bytes > offset)
					entry = prev;
J
Josef Bacik 已提交
1575
			}
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
1590
			ASSERT(entry->offset <= offset);
J
Josef Bacik 已提交
1591
		} else {
1592 1593 1594 1595
			if (fuzzy)
				return entry;
			else
				return NULL;
J
Josef Bacik 已提交
1596 1597 1598
		}
	}

1599
	if (entry->bitmap) {
1600 1601
		n = rb_prev(&entry->offset_index);
		if (n) {
1602 1603
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
1604 1605 1606
			if (!prev->bitmap &&
			    prev->offset + prev->bytes > offset)
				return prev;
1607
		}
1608
		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
1619
			    ctl->unit > offset)
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
J
Josef Bacik 已提交
1632 1633
}

1634
static inline void
1635
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1636
		    struct btrfs_free_space *info)
J
Josef Bacik 已提交
1637
{
1638 1639
	rb_erase(&info->offset_index, &ctl->free_space_offset);
	ctl->free_extents--;
1640

1641
	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1642
		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1643 1644
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
	}
1645 1646
}

1647
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1648 1649
			      struct btrfs_free_space *info)
{
1650 1651
	__unlink_free_space(ctl, info);
	ctl->free_space -= info->bytes;
J
Josef Bacik 已提交
1652 1653
}

1654
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1655 1656 1657 1658
			   struct btrfs_free_space *info)
{
	int ret = 0;

1659
	ASSERT(info->bytes || info->bitmap);
1660
	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1661
				 &info->offset_index, (info->bitmap != NULL));
J
Josef Bacik 已提交
1662 1663 1664
	if (ret)
		return ret;

1665
	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1666
		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1667 1668
		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
	}
1669

1670 1671
	ctl->free_space += info->bytes;
	ctl->free_extents++;
1672 1673 1674
	return ret;
}

1675
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1676
{
1677
	struct btrfs_block_group *block_group = ctl->private;
1678 1679 1680
	u64 max_bytes;
	u64 bitmap_bytes;
	u64 extent_bytes;
1681
	u64 size = block_group->length;
1682 1683
	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1684

1685
	max_bitmaps = max_t(u64, max_bitmaps, 1);
1686

1687
	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1688 1689

	/*
1690 1691 1692 1693
	 * We are trying to keep the total amount of memory used per 1GiB of
	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
	 * bitmaps, we may end up using more memory than this.
1694
	 */
1695
	if (size < SZ_1G)
1696 1697
		max_bytes = MAX_CACHE_BYTES_PER_GIG;
	else
1698
		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1699

1700
	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
1701

1702
	/*
1703
	 * we want the extent entry threshold to always be at most 1/2 the max
1704 1705 1706
	 * bytes we can have, or whatever is less than that.
	 */
	extent_bytes = max_bytes - bitmap_bytes;
1707
	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1708

1709
	ctl->extents_thresh =
1710
		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1711 1712
}

1713 1714 1715
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       u64 offset, u64 bytes)
1716
{
1717 1718
	unsigned long start, count, end;
	int extent_delta = -1;
1719

1720 1721
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1722 1723
	end = start + count;
	ASSERT(end <= BITS_PER_BITMAP);
1724

L
Li Zefan 已提交
1725
	bitmap_clear(info->bitmap, start, count);
1726 1727

	info->bytes -= bytes;
1728 1729
	if (info->max_extent_size > ctl->unit)
		info->max_extent_size = 0;
1730 1731 1732 1733 1734 1735 1736 1737

	if (start && test_bit(start - 1, info->bitmap))
		extent_delta++;

	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
		extent_delta++;

	info->bitmap_extents += extent_delta;
1738
	if (!btrfs_free_space_trimmed(info)) {
1739
		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1740 1741
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
	}
1742 1743 1744 1745 1746 1747 1748
}

static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	__bitmap_clear_bits(ctl, info, offset, bytes);
1749
	ctl->free_space -= bytes;
1750 1751
}

1752
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1753 1754
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
1755
{
1756 1757
	unsigned long start, count, end;
	int extent_delta = 1;
1758

1759 1760
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1761 1762
	end = start + count;
	ASSERT(end <= BITS_PER_BITMAP);
1763

L
Li Zefan 已提交
1764
	bitmap_set(info->bitmap, start, count);
1765 1766

	info->bytes += bytes;
1767
	ctl->free_space += bytes;
1768 1769 1770 1771 1772 1773 1774 1775

	if (start && test_bit(start - 1, info->bitmap))
		extent_delta--;

	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
		extent_delta--;

	info->bitmap_extents += extent_delta;
1776
	if (!btrfs_free_space_trimmed(info)) {
1777
		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1778 1779
		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
	}
1780 1781
}

1782 1783 1784 1785
/*
 * If we can not find suitable extent, we will use bytes to record
 * the size of the max extent.
 */
1786
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1787
			 struct btrfs_free_space *bitmap_info, u64 *offset,
1788
			 u64 *bytes, bool for_alloc)
1789 1790
{
	unsigned long found_bits = 0;
1791
	unsigned long max_bits = 0;
1792 1793
	unsigned long bits, i;
	unsigned long next_zero;
1794
	unsigned long extent_bits;
1795

1796 1797 1798 1799
	/*
	 * Skip searching the bitmap if we don't have a contiguous section that
	 * is large enough for this allocation.
	 */
1800 1801
	if (for_alloc &&
	    bitmap_info->max_extent_size &&
1802 1803 1804 1805 1806
	    bitmap_info->max_extent_size < *bytes) {
		*bytes = bitmap_info->max_extent_size;
		return -1;
	}

1807
	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1808
			  max_t(u64, *offset, bitmap_info->offset));
1809
	bits = bytes_to_bits(*bytes, ctl->unit);
1810

1811
	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1812 1813 1814 1815
		if (for_alloc && bits == 1) {
			found_bits = 1;
			break;
		}
1816 1817
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
1818 1819 1820
		extent_bits = next_zero - i;
		if (extent_bits >= bits) {
			found_bits = extent_bits;
1821
			break;
1822 1823
		} else if (extent_bits > max_bits) {
			max_bits = extent_bits;
1824 1825 1826 1827 1828
		}
		i = next_zero;
	}

	if (found_bits) {
1829 1830
		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
		*bytes = (u64)(found_bits) * ctl->unit;
1831 1832 1833
		return 0;
	}

1834
	*bytes = (u64)(max_bits) * ctl->unit;
1835
	bitmap_info->max_extent_size = *bytes;
1836 1837 1838
	return -1;
}

J
Josef Bacik 已提交
1839 1840 1841 1842 1843 1844 1845
static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
{
	if (entry->bitmap)
		return entry->max_extent_size;
	return entry->bytes;
}

1846
/* Cache the size of the max extent in bytes */
1847
static struct btrfs_free_space *
D
David Woodhouse 已提交
1848
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1849
		unsigned long align, u64 *max_extent_size)
1850 1851 1852
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
D
David Woodhouse 已提交
1853 1854
	u64 tmp;
	u64 align_off;
1855 1856
	int ret;

1857
	if (!ctl->free_space_offset.rb_node)
1858
		goto out;
1859

1860
	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1861
	if (!entry)
1862
		goto out;
1863 1864 1865

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1866
		if (entry->bytes < *bytes) {
J
Josef Bacik 已提交
1867 1868
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
1869
			continue;
1870
		}
1871

D
David Woodhouse 已提交
1872 1873 1874 1875
		/* make sure the space returned is big enough
		 * to match our requested alignment
		 */
		if (*bytes >= align) {
1876
			tmp = entry->offset - ctl->start + align - 1;
1877
			tmp = div64_u64(tmp, align);
D
David Woodhouse 已提交
1878 1879 1880 1881 1882 1883 1884
			tmp = tmp * align + ctl->start;
			align_off = tmp - entry->offset;
		} else {
			align_off = 0;
			tmp = entry->offset;
		}

1885
		if (entry->bytes < *bytes + align_off) {
J
Josef Bacik 已提交
1886 1887
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
D
David Woodhouse 已提交
1888
			continue;
1889
		}
D
David Woodhouse 已提交
1890

1891
		if (entry->bitmap) {
1892 1893
			u64 size = *bytes;

1894
			ret = search_bitmap(ctl, entry, &tmp, &size, true);
D
David Woodhouse 已提交
1895 1896
			if (!ret) {
				*offset = tmp;
1897
				*bytes = size;
1898
				return entry;
J
Josef Bacik 已提交
1899 1900 1901 1902
			} else {
				*max_extent_size =
					max(get_max_extent_size(entry),
					    *max_extent_size);
D
David Woodhouse 已提交
1903
			}
1904 1905 1906
			continue;
		}

D
David Woodhouse 已提交
1907 1908
		*offset = tmp;
		*bytes = entry->bytes - align_off;
1909 1910
		return entry;
	}
1911
out:
1912 1913 1914
	return NULL;
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
				struct btrfs_free_space *bitmap_info)
{
	struct btrfs_block_group *block_group = ctl->private;
	u64 bytes = bitmap_info->bytes;
	unsigned int rs, re;
	int count = 0;

	if (!block_group || !bytes)
		return count;

	bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0,
				   BITS_PER_BITMAP) {
		bytes -= (rs - re) * ctl->unit;
		count++;

		if (!bytes)
			break;
	}

	return count;
}

1938
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1939 1940
			   struct btrfs_free_space *info, u64 offset)
{
1941
	info->offset = offset_to_bitmap(ctl, offset);
J
Josef Bacik 已提交
1942
	info->bytes = 0;
1943
	info->bitmap_extents = 0;
1944
	INIT_LIST_HEAD(&info->list);
1945 1946
	link_free_space(ctl, info);
	ctl->total_bitmaps++;
1947

1948
	ctl->op->recalc_thresholds(ctl);
1949 1950
}

1951
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1952 1953
			struct btrfs_free_space *bitmap_info)
{
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	/*
	 * Normally when this is called, the bitmap is completely empty. However,
	 * if we are blowing up the free space cache for one reason or another
	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
	 * we may leave stats on the table.
	 */
	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
		ctl->discardable_extents[BTRFS_STAT_CURR] -=
			bitmap_info->bitmap_extents;
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;

	}
1966
	unlink_free_space(ctl, bitmap_info);
1967
	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1968
	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1969 1970
	ctl->total_bitmaps--;
	ctl->op->recalc_thresholds(ctl);
1971 1972
}

1973
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1974 1975 1976 1977
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
1978 1979
	u64 search_start, search_bytes;
	int ret;
1980 1981

again:
1982
	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1983

1984
	/*
1985 1986 1987 1988
	 * We need to search for bits in this bitmap.  We could only cover some
	 * of the extent in this bitmap thanks to how we add space, so we need
	 * to search for as much as it as we can and clear that amount, and then
	 * go searching for the next bit.
1989 1990
	 */
	search_start = *offset;
1991
	search_bytes = ctl->unit;
1992
	search_bytes = min(search_bytes, end - search_start + 1);
1993 1994
	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
			    false);
1995 1996
	if (ret < 0 || search_start != *offset)
		return -EINVAL;
1997

1998 1999 2000 2001 2002 2003 2004 2005 2006
	/* We may have found more bits than what we need */
	search_bytes = min(search_bytes, *bytes);

	/* Cannot clear past the end of the bitmap */
	search_bytes = min(search_bytes, end - search_start + 1);

	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
	*offset += search_bytes;
	*bytes -= search_bytes;
2007 2008

	if (*bytes) {
2009
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2010
		if (!bitmap_info->bytes)
2011
			free_bitmap(ctl, bitmap_info);
2012

2013 2014 2015 2016 2017
		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
2018 2019
			return -EINVAL;

2020 2021 2022 2023 2024 2025 2026
		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
2027 2028 2029
		if (!bitmap_info->bitmap)
			return -EAGAIN;

2030 2031 2032 2033 2034 2035 2036
		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
2037
		search_bytes = ctl->unit;
2038
		ret = search_bitmap(ctl, bitmap_info, &search_start,
2039
				    &search_bytes, false);
2040 2041 2042
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

2043
		goto again;
2044
	} else if (!bitmap_info->bytes)
2045
		free_bitmap(ctl, bitmap_info);
2046 2047 2048 2049

	return 0;
}

J
Josef Bacik 已提交
2050 2051
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
			       struct btrfs_free_space *info, u64 offset,
2052
			       u64 bytes, enum btrfs_trim_state trim_state)
J
Josef Bacik 已提交
2053 2054 2055 2056
{
	u64 bytes_to_set = 0;
	u64 end;

2057 2058 2059 2060
	/*
	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
	 * whole bitmap untrimmed if at any point we add untrimmed regions.
	 */
2061
	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2062
		if (btrfs_free_space_trimmed(info)) {
2063 2064
			ctl->discardable_extents[BTRFS_STAT_CURR] +=
				info->bitmap_extents;
2065 2066
			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
		}
2067
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2068
	}
2069

J
Josef Bacik 已提交
2070 2071 2072 2073 2074 2075
	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);

	bytes_to_set = min(end - offset, bytes);

	bitmap_set_bits(ctl, info, offset, bytes_to_set);

2076 2077 2078 2079 2080 2081
	/*
	 * We set some bytes, we have no idea what the max extent size is
	 * anymore.
	 */
	info->max_extent_size = 0;

J
Josef Bacik 已提交
2082 2083 2084 2085
	return bytes_to_set;

}

2086 2087
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
		      struct btrfs_free_space *info)
2088
{
2089
	struct btrfs_block_group *block_group = ctl->private;
2090
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2091 2092 2093
	bool forced = false;

#ifdef CONFIG_BTRFS_DEBUG
2094
	if (btrfs_should_fragment_free_space(block_group))
2095 2096
		forced = true;
#endif
2097

2098 2099 2100 2101
	/* This is a way to reclaim large regions from the bitmaps. */
	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
		return false;

2102 2103 2104 2105
	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
2106
	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2107 2108 2109
		/*
		 * If this block group has some small extents we don't want to
		 * use up all of our free slots in the cache with them, we want
2110
		 * to reserve them to larger extents, however if we have plenty
2111 2112 2113
		 * of cache left then go ahead an dadd them, no sense in adding
		 * the overhead of a bitmap if we don't have to.
		 */
2114 2115
		if (info->bytes <= fs_info->sectorsize * 8) {
			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2116
				return false;
2117
		} else {
2118
			return false;
2119 2120
		}
	}
2121 2122

	/*
2123 2124 2125 2126 2127 2128
	 * The original block groups from mkfs can be really small, like 8
	 * megabytes, so don't bother with a bitmap for those entries.  However
	 * some block groups can be smaller than what a bitmap would cover but
	 * are still large enough that they could overflow the 32k memory limit,
	 * so allow those block groups to still be allowed to have a bitmap
	 * entry.
2129
	 */
2130
	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2131 2132 2133 2134 2135
		return false;

	return true;
}

2136
static const struct btrfs_free_space_op free_space_op = {
J
Josef Bacik 已提交
2137 2138 2139 2140
	.recalc_thresholds	= recalculate_thresholds,
	.use_bitmap		= use_bitmap,
};

2141 2142 2143 2144
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
2145
	struct btrfs_block_group *block_group = NULL;
2146
	int added = 0;
J
Josef Bacik 已提交
2147
	u64 bytes, offset, bytes_added;
2148
	enum btrfs_trim_state trim_state;
2149
	int ret;
2150 2151 2152

	bytes = info->bytes;
	offset = info->offset;
2153
	trim_state = info->trim_state;
2154

2155 2156 2157
	if (!ctl->op->use_bitmap(ctl, info))
		return 0;

J
Josef Bacik 已提交
2158 2159
	if (ctl->op == &free_space_op)
		block_group = ctl->private;
2160
again:
J
Josef Bacik 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	/*
	 * Since we link bitmaps right into the cluster we need to see if we
	 * have a cluster here, and if so and it has our bitmap we need to add
	 * the free space to that bitmap.
	 */
	if (block_group && !list_empty(&block_group->cluster_list)) {
		struct btrfs_free_cluster *cluster;
		struct rb_node *node;
		struct btrfs_free_space *entry;

		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
		spin_lock(&cluster->lock);
		node = rb_first(&cluster->root);
		if (!node) {
			spin_unlock(&cluster->lock);
2178
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2179 2180 2181 2182 2183
		}

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (!entry->bitmap) {
			spin_unlock(&cluster->lock);
2184
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2185 2186 2187
		}

		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2188 2189
			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
							  bytes, trim_state);
J
Josef Bacik 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198
			bytes -= bytes_added;
			offset += bytes_added;
		}
		spin_unlock(&cluster->lock);
		if (!bytes) {
			ret = 1;
			goto out;
		}
	}
2199 2200

no_cluster_bitmap:
2201
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2202 2203
					 1, 0);
	if (!bitmap_info) {
2204
		ASSERT(added == 0);
2205 2206 2207
		goto new_bitmap;
	}

2208 2209
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
					  trim_state);
J
Josef Bacik 已提交
2210 2211 2212
	bytes -= bytes_added;
	offset += bytes_added;
	added = 0;
2213 2214 2215 2216 2217 2218 2219 2220 2221

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
2222
		add_new_bitmap(ctl, info, offset);
2223 2224 2225 2226
		added = 1;
		info = NULL;
		goto again;
	} else {
2227
		spin_unlock(&ctl->tree_lock);
2228 2229 2230

		/* no pre-allocated info, allocate a new one */
		if (!info) {
2231 2232
			info = kmem_cache_zalloc(btrfs_free_space_cachep,
						 GFP_NOFS);
2233
			if (!info) {
2234
				spin_lock(&ctl->tree_lock);
2235 2236 2237 2238 2239 2240
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
2241 2242
		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
						 GFP_NOFS);
2243
		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2244
		spin_lock(&ctl->tree_lock);
2245 2246 2247 2248 2249 2250 2251 2252 2253
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
2254 2255 2256
		if (info->bitmap)
			kmem_cache_free(btrfs_free_space_bitmap_cachep,
					info->bitmap);
2257
		kmem_cache_free(btrfs_free_space_cachep, info);
2258
	}
J
Josef Bacik 已提交
2259 2260 2261 2262

	return ret;
}

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
/*
 * Free space merging rules:
 *  1) Merge trimmed areas together
 *  2) Let untrimmed areas coalesce with trimmed areas
 *  3) Always pull neighboring regions from bitmaps
 *
 * The above rules are for when we merge free space based on btrfs_trim_state.
 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
 * same reason: to promote larger extent regions which makes life easier for
 * find_free_extent().  Rule 2 enables coalescing based on the common path
 * being returning free space from btrfs_finish_extent_commit().  So when free
 * space is trimmed, it will prevent aggregating trimmed new region and
 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
 * and provide find_free_extent() with the largest extents possible hoping for
 * the reuse path.
 */
2279
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2280
			  struct btrfs_free_space *info, bool update_stat)
J
Josef Bacik 已提交
2281
{
2282
	struct btrfs_free_space *left_info = NULL;
2283 2284 2285 2286
	struct btrfs_free_space *right_info;
	bool merged = false;
	u64 offset = info->offset;
	u64 bytes = info->bytes;
2287
	const bool is_trimmed = btrfs_free_space_trimmed(info);
2288

J
Josef Bacik 已提交
2289 2290 2291 2292 2293
	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
2294
	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2295 2296 2297
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
2298
	else if (!right_info)
2299
		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
J
Josef Bacik 已提交
2300

2301 2302 2303
	/* See try_merge_free_space() comment. */
	if (right_info && !right_info->bitmap &&
	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2304
		if (update_stat)
2305
			unlink_free_space(ctl, right_info);
2306
		else
2307
			__unlink_free_space(ctl, right_info);
2308
		info->bytes += right_info->bytes;
2309
		kmem_cache_free(btrfs_free_space_cachep, right_info);
2310
		merged = true;
J
Josef Bacik 已提交
2311 2312
	}

2313
	/* See try_merge_free_space() comment. */
2314
	if (left_info && !left_info->bitmap &&
2315 2316
	    left_info->offset + left_info->bytes == offset &&
	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2317
		if (update_stat)
2318
			unlink_free_space(ctl, left_info);
2319
		else
2320
			__unlink_free_space(ctl, left_info);
2321 2322
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
2323
		kmem_cache_free(btrfs_free_space_cachep, left_info);
2324
		merged = true;
J
Josef Bacik 已提交
2325 2326
	}

2327 2328 2329
	return merged;
}

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
				     struct btrfs_free_space *info,
				     bool update_stat)
{
	struct btrfs_free_space *bitmap;
	unsigned long i;
	unsigned long j;
	const u64 end = info->offset + info->bytes;
	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
	u64 bytes;

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, end);
	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
	if (j == i)
		return false;
	bytes = (j - i) * ctl->unit;
	info->bytes += bytes;

2352 2353 2354 2355
	/* See try_merge_free_space() comment. */
	if (!btrfs_free_space_trimmed(bitmap))
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, end, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, end, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       bool update_stat)
{
	struct btrfs_free_space *bitmap;
	u64 bitmap_offset;
	unsigned long i;
	unsigned long j;
	unsigned long prev_j;
	u64 bytes;

	bitmap_offset = offset_to_bitmap(ctl, info->offset);
	/* If we're on a boundary, try the previous logical bitmap. */
	if (bitmap_offset == info->offset) {
		if (info->offset == 0)
			return false;
		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
	}

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
	j = 0;
	prev_j = (unsigned long)-1;
	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
		if (j > i)
			break;
		prev_j = j;
	}
	if (prev_j == i)
		return false;

	if (prev_j == (unsigned long)-1)
		bytes = (i + 1) * ctl->unit;
	else
		bytes = (i - prev_j) * ctl->unit;

	info->offset -= bytes;
	info->bytes += bytes;

2409 2410 2411 2412
	/* See try_merge_free_space() comment. */
	if (!btrfs_free_space_trimmed(bitmap))
		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

/*
 * We prefer always to allocate from extent entries, both for clustered and
 * non-clustered allocation requests. So when attempting to add a new extent
 * entry, try to see if there's adjacent free space in bitmap entries, and if
 * there is, migrate that space from the bitmaps to the extent.
 * Like this we get better chances of satisfying space allocation requests
 * because we attempt to satisfy them based on a single cache entry, and never
 * on 2 or more entries - even if the entries represent a contiguous free space
 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 * ends).
 */
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info,
			      bool update_stat)
{
	/*
	 * Only work with disconnected entries, as we can change their offset,
	 * and must be extent entries.
	 */
	ASSERT(!info->bitmap);
	ASSERT(RB_EMPTY_NODE(&info->offset_index));

	if (ctl->total_bitmaps > 0) {
		bool stole_end;
		bool stole_front = false;

		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
		if (ctl->total_bitmaps > 0)
			stole_front = steal_from_bitmap_to_front(ctl, info,
								 update_stat);

		if (stole_end || stole_front)
			try_merge_free_space(ctl, info, update_stat);
	}
}

2460 2461
int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
			   struct btrfs_free_space_ctl *ctl,
2462 2463
			   u64 offset, u64 bytes,
			   enum btrfs_trim_state trim_state)
2464
{
2465
	struct btrfs_block_group *block_group = ctl->private;
2466 2467
	struct btrfs_free_space *info;
	int ret = 0;
D
Dennis Zhou 已提交
2468
	u64 filter_bytes = bytes;
2469

2470
	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2471 2472 2473 2474 2475
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;
2476
	info->trim_state = trim_state;
2477
	RB_CLEAR_NODE(&info->offset_index);
2478

2479
	spin_lock(&ctl->tree_lock);
2480

2481
	if (try_merge_free_space(ctl, info, true))
2482 2483 2484 2485 2486 2487 2488
		goto link;

	/*
	 * There was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
2489
	ret = insert_into_bitmap(ctl, info);
2490 2491 2492 2493 2494 2495 2496
	if (ret < 0) {
		goto out;
	} else if (ret) {
		ret = 0;
		goto out;
	}
link:
2497 2498 2499 2500 2501 2502 2503 2504
	/*
	 * Only steal free space from adjacent bitmaps if we're sure we're not
	 * going to add the new free space to existing bitmap entries - because
	 * that would mean unnecessary work that would be reverted. Therefore
	 * attempt to steal space from bitmaps if we're adding an extent entry.
	 */
	steal_from_bitmap(ctl, info, true);

D
Dennis Zhou 已提交
2505 2506
	filter_bytes = max(filter_bytes, info->bytes);

2507
	ret = link_free_space(ctl, info);
J
Josef Bacik 已提交
2508
	if (ret)
2509
		kmem_cache_free(btrfs_free_space_cachep, info);
2510
out:
2511
	btrfs_discard_update_discardable(block_group, ctl);
2512
	spin_unlock(&ctl->tree_lock);
2513

J
Josef Bacik 已提交
2514
	if (ret) {
2515
		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2516
		ASSERT(ret != -EEXIST);
J
Josef Bacik 已提交
2517 2518
	}

D
Dennis Zhou 已提交
2519 2520
	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
		btrfs_discard_check_filter(block_group, filter_bytes);
2521
		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
D
Dennis Zhou 已提交
2522
	}
2523

J
Josef Bacik 已提交
2524 2525 2526
	return ret;
}

2527
int btrfs_add_free_space(struct btrfs_block_group *block_group,
2528 2529
			 u64 bytenr, u64 size)
{
2530 2531 2532 2533 2534
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
		trim_state = BTRFS_TRIM_STATE_TRIMMED;

2535 2536
	return __btrfs_add_free_space(block_group->fs_info,
				      block_group->free_space_ctl,
2537
				      bytenr, size, trim_state);
2538 2539
}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
/*
 * This is a subtle distinction because when adding free space back in general,
 * we want it to be added as untrimmed for async. But in the case where we add
 * it on loading of a block group, we want to consider it trimmed.
 */
int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
				       u64 bytenr, u64 size)
{
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;

	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
		trim_state = BTRFS_TRIM_STATE_TRIMMED;

	return __btrfs_add_free_space(block_group->fs_info,
				      block_group->free_space_ctl,
				      bytenr, size, trim_state);
}

2559
int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2560
			    u64 offset, u64 bytes)
J
Josef Bacik 已提交
2561
{
2562
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2563
	struct btrfs_free_space *info;
2564 2565
	int ret;
	bool re_search = false;
J
Josef Bacik 已提交
2566

2567
	spin_lock(&ctl->tree_lock);
2568

2569
again:
2570
	ret = 0;
2571 2572 2573
	if (!bytes)
		goto out_lock;

2574
	info = tree_search_offset(ctl, offset, 0, 0);
2575
	if (!info) {
2576 2577 2578 2579
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
2580
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2581 2582
					  1, 0);
		if (!info) {
2583 2584 2585 2586
			/*
			 * If we found a partial bit of our free space in a
			 * bitmap but then couldn't find the other part this may
			 * be a problem, so WARN about it.
2587
			 */
2588
			WARN_ON(re_search);
2589 2590
			goto out_lock;
		}
2591 2592
	}

2593
	re_search = false;
2594
	if (!info->bitmap) {
2595
		unlink_free_space(ctl, info);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
		if (offset == info->offset) {
			u64 to_free = min(bytes, info->bytes);

			info->bytes -= to_free;
			info->offset += to_free;
			if (info->bytes) {
				ret = link_free_space(ctl, info);
				WARN_ON(ret);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, info);
			}
J
Josef Bacik 已提交
2607

2608 2609 2610 2611 2612
			offset += to_free;
			bytes -= to_free;
			goto again;
		} else {
			u64 old_end = info->bytes + info->offset;
2613

2614
			info->bytes = offset - info->offset;
2615
			ret = link_free_space(ctl, info);
2616 2617 2618 2619
			WARN_ON(ret);
			if (ret)
				goto out_lock;

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
			/* Not enough bytes in this entry to satisfy us */
			if (old_end < offset + bytes) {
				bytes -= old_end - offset;
				offset = old_end;
				goto again;
			} else if (old_end == offset + bytes) {
				/* all done */
				goto out_lock;
			}
			spin_unlock(&ctl->tree_lock);

2631 2632 2633 2634
			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
						     offset + bytes,
						     old_end - (offset + bytes),
						     info->trim_state);
2635 2636 2637
			WARN_ON(ret);
			goto out;
		}
J
Josef Bacik 已提交
2638
	}
2639

2640
	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2641 2642
	if (ret == -EAGAIN) {
		re_search = true;
2643
		goto again;
2644
	}
2645
out_lock:
2646
	btrfs_discard_update_discardable(block_group, ctl);
2647
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2648
out:
2649 2650 2651
	return ret;
}

2652
void btrfs_dump_free_space(struct btrfs_block_group *block_group,
J
Josef Bacik 已提交
2653 2654
			   u64 bytes)
{
2655
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2656
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2657 2658 2659 2660
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

2661
	spin_lock(&ctl->tree_lock);
2662
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
J
Josef Bacik 已提交
2663
		info = rb_entry(n, struct btrfs_free_space, offset_index);
L
Liu Bo 已提交
2664
		if (info->bytes >= bytes && !block_group->ro)
J
Josef Bacik 已提交
2665
			count++;
2666
		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2667
			   info->offset, info->bytes,
2668
		       (info->bitmap) ? "yes" : "no");
J
Josef Bacik 已提交
2669
	}
2670
	spin_unlock(&ctl->tree_lock);
2671
	btrfs_info(fs_info, "block group has cluster?: %s",
2672
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2673
	btrfs_info(fs_info,
2674
		   "%d blocks of free space at or bigger than bytes is", count);
J
Josef Bacik 已提交
2675 2676
}

2677
void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
J
Josef Bacik 已提交
2678
{
2679
	struct btrfs_fs_info *fs_info = block_group->fs_info;
2680
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2681

2682
	spin_lock_init(&ctl->tree_lock);
2683
	ctl->unit = fs_info->sectorsize;
2684
	ctl->start = block_group->start;
2685 2686
	ctl->private = block_group;
	ctl->op = &free_space_op;
2687 2688
	INIT_LIST_HEAD(&ctl->trimming_ranges);
	mutex_init(&ctl->cache_writeout_mutex);
J
Josef Bacik 已提交
2689

2690 2691 2692 2693 2694
	/*
	 * we only want to have 32k of ram per block group for keeping
	 * track of free space, and if we pass 1/2 of that we want to
	 * start converting things over to using bitmaps
	 */
2695
	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
J
Josef Bacik 已提交
2696 2697
}

2698 2699 2700 2701 2702 2703
/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
2704
static void __btrfs_return_cluster_to_free_space(
2705
			     struct btrfs_block_group *block_group,
2706 2707
			     struct btrfs_free_cluster *cluster)
{
2708
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2709 2710 2711 2712 2713 2714 2715
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

2716
	cluster->block_group = NULL;
2717
	cluster->window_start = 0;
2718 2719
	list_del_init(&cluster->block_group_list);

2720
	node = rb_first(&cluster->root);
2721
	while (node) {
2722 2723
		bool bitmap;

2724 2725 2726
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
2727
		RB_CLEAR_NODE(&entry->offset_index);
2728 2729

		bitmap = (entry->bitmap != NULL);
2730
		if (!bitmap) {
2731
			/* Merging treats extents as if they were new */
2732
			if (!btrfs_free_space_trimmed(entry)) {
2733
				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2734 2735 2736
				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
					entry->bytes;
			}
2737

2738
			try_merge_free_space(ctl, entry, false);
2739
			steal_from_bitmap(ctl, entry, false);
2740 2741

			/* As we insert directly, update these statistics */
2742
			if (!btrfs_free_space_trimmed(entry)) {
2743
				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2744 2745 2746
				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
					entry->bytes;
			}
2747
		}
2748
		tree_insert_offset(&ctl->free_space_offset,
2749
				   entry->offset, &entry->offset_index, bitmap);
2750
	}
2751
	cluster->root = RB_ROOT;
2752

2753 2754
out:
	spin_unlock(&cluster->lock);
2755
	btrfs_put_block_group(block_group);
2756 2757
}

2758 2759
static void __btrfs_remove_free_space_cache_locked(
				struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2760 2761 2762
{
	struct btrfs_free_space *info;
	struct rb_node *node;
2763 2764 2765

	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
2766 2767 2768 2769 2770 2771
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			free_bitmap(ctl, info);
		}
2772 2773

		cond_resched_lock(&ctl->tree_lock);
2774
	}
2775 2776 2777 2778 2779 2780
}

void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
	spin_lock(&ctl->tree_lock);
	__btrfs_remove_free_space_cache_locked(ctl);
2781 2782
	if (ctl->private)
		btrfs_discard_update_discardable(ctl->private, ctl);
2783 2784 2785
	spin_unlock(&ctl->tree_lock);
}

2786
void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2787 2788
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2789
	struct btrfs_free_cluster *cluster;
2790
	struct list_head *head;
J
Josef Bacik 已提交
2791

2792
	spin_lock(&ctl->tree_lock);
2793 2794 2795 2796
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);
2797 2798 2799

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
2800 2801

		cond_resched_lock(&ctl->tree_lock);
2802
	}
2803
	__btrfs_remove_free_space_cache_locked(ctl);
2804
	btrfs_discard_update_discardable(block_group, ctl);
2805
	spin_unlock(&ctl->tree_lock);
2806

J
Josef Bacik 已提交
2807 2808
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
/**
 * btrfs_is_free_space_trimmed - see if everything is trimmed
 * @block_group: block_group of interest
 *
 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
 */
bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *info;
	struct rb_node *node;
	bool ret = true;

	spin_lock(&ctl->tree_lock);
	node = rb_first(&ctl->free_space_offset);

	while (node) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);

		if (!btrfs_free_space_trimmed(info)) {
			ret = false;
			break;
		}

		node = rb_next(node);
	}

	spin_unlock(&ctl->tree_lock);
	return ret;
}

2840
u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2841 2842
			       u64 offset, u64 bytes, u64 empty_size,
			       u64 *max_extent_size)
J
Josef Bacik 已提交
2843
{
2844
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2845 2846
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
2847
	struct btrfs_free_space *entry = NULL;
2848
	u64 bytes_search = bytes + empty_size;
2849
	u64 ret = 0;
D
David Woodhouse 已提交
2850 2851
	u64 align_gap = 0;
	u64 align_gap_len = 0;
2852
	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
J
Josef Bacik 已提交
2853

2854
	spin_lock(&ctl->tree_lock);
D
David Woodhouse 已提交
2855
	entry = find_free_space(ctl, &offset, &bytes_search,
2856
				block_group->full_stripe_len, max_extent_size);
2857
	if (!entry)
2858 2859 2860 2861
		goto out;

	ret = offset;
	if (entry->bitmap) {
2862
		bitmap_clear_bits(ctl, entry, offset, bytes);
2863 2864 2865 2866

		if (!btrfs_free_space_trimmed(entry))
			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

2867
		if (!entry->bytes)
2868
			free_bitmap(ctl, entry);
2869
	} else {
2870
		unlink_free_space(ctl, entry);
D
David Woodhouse 已提交
2871 2872
		align_gap_len = offset - entry->offset;
		align_gap = entry->offset;
2873
		align_gap_trim_state = entry->trim_state;
D
David Woodhouse 已提交
2874

2875 2876 2877
		if (!btrfs_free_space_trimmed(entry))
			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

D
David Woodhouse 已提交
2878 2879 2880 2881
		entry->offset = offset + bytes;
		WARN_ON(entry->bytes < bytes + align_gap_len);

		entry->bytes -= bytes + align_gap_len;
2882
		if (!entry->bytes)
2883
			kmem_cache_free(btrfs_free_space_cachep, entry);
2884
		else
2885
			link_free_space(ctl, entry);
2886
	}
2887
out:
2888
	btrfs_discard_update_discardable(block_group, ctl);
2889
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2890

D
David Woodhouse 已提交
2891
	if (align_gap_len)
2892
		__btrfs_add_free_space(block_group->fs_info, ctl,
2893 2894
				       align_gap, align_gap_len,
				       align_gap_trim_state);
J
Josef Bacik 已提交
2895 2896
	return ret;
}
2897 2898 2899 2900 2901 2902 2903 2904 2905

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
2906
void btrfs_return_cluster_to_free_space(
2907
			       struct btrfs_block_group *block_group,
2908 2909
			       struct btrfs_free_cluster *cluster)
{
2910
	struct btrfs_free_space_ctl *ctl;
2911 2912 2913 2914 2915 2916 2917

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
2918
			return;
2919 2920 2921 2922
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
2923
		return;
2924
	}
2925
	btrfs_get_block_group(block_group);
2926 2927
	spin_unlock(&cluster->lock);

2928 2929
	ctl = block_group->free_space_ctl;

2930
	/* now return any extents the cluster had on it */
2931
	spin_lock(&ctl->tree_lock);
2932
	__btrfs_return_cluster_to_free_space(block_group, cluster);
2933
	spin_unlock(&ctl->tree_lock);
2934

2935 2936
	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);

2937 2938 2939 2940
	/* finally drop our ref */
	btrfs_put_block_group(block_group);
}

2941
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2942
				   struct btrfs_free_cluster *cluster,
2943
				   struct btrfs_free_space *entry,
2944 2945
				   u64 bytes, u64 min_start,
				   u64 *max_extent_size)
2946
{
2947
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2948 2949 2950 2951 2952 2953 2954 2955
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	search_start = min_start;
	search_bytes = bytes;

2956
	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2957
	if (err) {
J
Josef Bacik 已提交
2958 2959
		*max_extent_size = max(get_max_extent_size(entry),
				       *max_extent_size);
2960
		return 0;
2961
	}
2962 2963

	ret = search_start;
2964
	__bitmap_clear_bits(ctl, entry, ret, bytes);
2965 2966 2967 2968

	return ret;
}

2969 2970 2971 2972 2973
/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
2974
u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2975
			     struct btrfs_free_cluster *cluster, u64 bytes,
2976
			     u64 min_start, u64 *max_extent_size)
2977
{
2978
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2979 2980
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2997
	while (1) {
J
Josef Bacik 已提交
2998 2999 3000
		if (entry->bytes < bytes)
			*max_extent_size = max(get_max_extent_size(entry),
					       *max_extent_size);
3001

3002 3003
		if (entry->bytes < bytes ||
		    (!entry->bitmap && entry->offset < min_start)) {
3004 3005 3006 3007 3008 3009 3010 3011
			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}

3012 3013 3014
		if (entry->bitmap) {
			ret = btrfs_alloc_from_bitmap(block_group,
						      cluster, entry, bytes,
3015 3016
						      cluster->window_start,
						      max_extent_size);
3017 3018 3019 3020 3021 3022 3023 3024
			if (ret == 0) {
				node = rb_next(&entry->offset_index);
				if (!node)
					break;
				entry = rb_entry(node, struct btrfs_free_space,
						 offset_index);
				continue;
			}
3025
			cluster->window_start += bytes;
3026 3027 3028 3029 3030 3031
		} else {
			ret = entry->offset;

			entry->offset += bytes;
			entry->bytes -= bytes;
		}
3032

3033
		if (entry->bytes == 0)
3034 3035 3036 3037 3038
			rb_erase(&entry->offset_index, &cluster->root);
		break;
	}
out:
	spin_unlock(&cluster->lock);
3039

3040 3041 3042
	if (!ret)
		return 0;

3043
	spin_lock(&ctl->tree_lock);
3044

3045 3046 3047
	if (!btrfs_free_space_trimmed(entry))
		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);

3048
	ctl->free_space -= bytes;
3049 3050
	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3051
	if (entry->bytes == 0) {
3052
		ctl->free_extents--;
3053
		if (entry->bitmap) {
3054 3055
			kmem_cache_free(btrfs_free_space_bitmap_cachep,
					entry->bitmap);
3056 3057
			ctl->total_bitmaps--;
			ctl->op->recalc_thresholds(ctl);
3058 3059
		} else if (!btrfs_free_space_trimmed(entry)) {
			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3060
		}
3061
		kmem_cache_free(btrfs_free_space_cachep, entry);
3062 3063
	}

3064
	spin_unlock(&ctl->tree_lock);
3065

3066 3067 3068
	return ret;
}

3069
static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3070 3071
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
3072 3073
				u64 offset, u64 bytes,
				u64 cont1_bytes, u64 min_bytes)
3074
{
3075
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3076 3077
	unsigned long next_zero;
	unsigned long i;
3078 3079
	unsigned long want_bits;
	unsigned long min_bits;
3080
	unsigned long found_bits;
3081
	unsigned long max_bits = 0;
3082 3083
	unsigned long start = 0;
	unsigned long total_found = 0;
3084
	int ret;
3085

3086
	i = offset_to_bit(entry->offset, ctl->unit,
3087
			  max_t(u64, offset, entry->offset));
3088 3089
	want_bits = bytes_to_bits(bytes, ctl->unit);
	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3090

3091 3092 3093 3094 3095 3096 3097
	/*
	 * Don't bother looking for a cluster in this bitmap if it's heavily
	 * fragmented.
	 */
	if (entry->max_extent_size &&
	    entry->max_extent_size < cont1_bytes)
		return -ENOSPC;
3098 3099
again:
	found_bits = 0;
3100
	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3101 3102
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
3103
		if (next_zero - i >= min_bits) {
3104
			found_bits = next_zero - i;
3105 3106
			if (found_bits > max_bits)
				max_bits = found_bits;
3107 3108
			break;
		}
3109 3110
		if (next_zero - i > max_bits)
			max_bits = next_zero - i;
3111 3112 3113
		i = next_zero;
	}

3114 3115
	if (!found_bits) {
		entry->max_extent_size = (u64)max_bits * ctl->unit;
3116
		return -ENOSPC;
3117
	}
3118

3119
	if (!total_found) {
3120
		start = i;
3121
		cluster->max_size = 0;
3122 3123 3124 3125
	}

	total_found += found_bits;

3126 3127
	if (cluster->max_size < found_bits * ctl->unit)
		cluster->max_size = found_bits * ctl->unit;
3128

3129 3130
	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
		i = next_zero + 1;
3131 3132 3133
		goto again;
	}

3134
	cluster->window_start = start * ctl->unit + entry->offset;
3135
	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3136 3137
	ret = tree_insert_offset(&cluster->root, entry->offset,
				 &entry->offset_index, 1);
3138
	ASSERT(!ret); /* -EEXIST; Logic error */
3139

J
Josef Bacik 已提交
3140
	trace_btrfs_setup_cluster(block_group, cluster,
3141
				  total_found * ctl->unit, 1);
3142 3143 3144
	return 0;
}

3145 3146
/*
 * This searches the block group for just extents to fill the cluster with.
3147 3148
 * Try to find a cluster with at least bytes total bytes, at least one
 * extent of cont1_bytes, and other clusters of at least min_bytes.
3149
 */
3150
static noinline int
3151
setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3152 3153
			struct btrfs_free_cluster *cluster,
			struct list_head *bitmaps, u64 offset, u64 bytes,
3154
			u64 cont1_bytes, u64 min_bytes)
3155
{
3156
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3157 3158 3159 3160 3161 3162
	struct btrfs_free_space *first = NULL;
	struct btrfs_free_space *entry = NULL;
	struct btrfs_free_space *last;
	struct rb_node *node;
	u64 window_free;
	u64 max_extent;
J
Josef Bacik 已提交
3163
	u64 total_size = 0;
3164

3165
	entry = tree_search_offset(ctl, offset, 0, 1);
3166 3167 3168 3169 3170 3171 3172
	if (!entry)
		return -ENOSPC;

	/*
	 * We don't want bitmaps, so just move along until we find a normal
	 * extent entry.
	 */
3173 3174
	while (entry->bitmap || entry->bytes < min_bytes) {
		if (entry->bitmap && list_empty(&entry->list))
3175
			list_add_tail(&entry->list, bitmaps);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
		node = rb_next(&entry->offset_index);
		if (!node)
			return -ENOSPC;
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	window_free = entry->bytes;
	max_extent = entry->bytes;
	first = entry;
	last = entry;

3187 3188
	for (node = rb_next(&entry->offset_index); node;
	     node = rb_next(&entry->offset_index)) {
3189 3190
		entry = rb_entry(node, struct btrfs_free_space, offset_index);

3191 3192 3193
		if (entry->bitmap) {
			if (list_empty(&entry->list))
				list_add_tail(&entry->list, bitmaps);
3194
			continue;
3195 3196
		}

3197 3198 3199 3200 3201 3202
		if (entry->bytes < min_bytes)
			continue;

		last = entry;
		window_free += entry->bytes;
		if (entry->bytes > max_extent)
3203 3204 3205
			max_extent = entry->bytes;
	}

3206 3207 3208
	if (window_free < bytes || max_extent < cont1_bytes)
		return -ENOSPC;

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	cluster->window_start = first->offset;

	node = &first->offset_index;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 */
	do {
		int ret;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
3222
		if (entry->bitmap || entry->bytes < min_bytes)
3223 3224
			continue;

3225
		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3226 3227
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
J
Josef Bacik 已提交
3228
		total_size += entry->bytes;
3229
		ASSERT(!ret); /* -EEXIST; Logic error */
3230 3231 3232
	} while (node && entry != last);

	cluster->max_size = max_extent;
J
Josef Bacik 已提交
3233
	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3234 3235 3236 3237 3238 3239 3240
	return 0;
}

/*
 * This specifically looks for bitmaps that may work in the cluster, we assume
 * that we have already failed to find extents that will work.
 */
3241
static noinline int
3242
setup_cluster_bitmap(struct btrfs_block_group *block_group,
3243 3244
		     struct btrfs_free_cluster *cluster,
		     struct list_head *bitmaps, u64 offset, u64 bytes,
3245
		     u64 cont1_bytes, u64 min_bytes)
3246
{
3247
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3248
	struct btrfs_free_space *entry = NULL;
3249
	int ret = -ENOSPC;
3250
	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3251

3252
	if (ctl->total_bitmaps == 0)
3253 3254
		return -ENOSPC;

3255 3256 3257 3258
	/*
	 * The bitmap that covers offset won't be in the list unless offset
	 * is just its start offset.
	 */
3259 3260 3261 3262
	if (!list_empty(bitmaps))
		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);

	if (!entry || entry->offset != bitmap_offset) {
3263 3264 3265 3266 3267
		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
		if (entry && list_empty(&entry->list))
			list_add(&entry->list, bitmaps);
	}

3268
	list_for_each_entry(entry, bitmaps, list) {
3269
		if (entry->bytes < bytes)
3270 3271
			continue;
		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3272
					   bytes, cont1_bytes, min_bytes);
3273 3274 3275 3276 3277
		if (!ret)
			return 0;
	}

	/*
3278 3279
	 * The bitmaps list has all the bitmaps that record free space
	 * starting after offset, so no more search is required.
3280
	 */
3281
	return -ENOSPC;
3282 3283
}

3284 3285
/*
 * here we try to find a cluster of blocks in a block group.  The goal
3286
 * is to find at least bytes+empty_size.
3287 3288 3289 3290 3291
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
3292
int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3293 3294 3295
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
3296
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3297
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3298
	struct btrfs_free_space *entry, *tmp;
3299
	LIST_HEAD(bitmaps);
3300
	u64 min_bytes;
3301
	u64 cont1_bytes;
3302 3303
	int ret;

3304 3305 3306 3307 3308 3309
	/*
	 * Choose the minimum extent size we'll require for this
	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
	 * For metadata, allow allocates with smaller extents.  For
	 * data, keep it dense.
	 */
3310
	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3311
		cont1_bytes = min_bytes = bytes + empty_size;
3312
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3313
		cont1_bytes = bytes;
3314
		min_bytes = fs_info->sectorsize;
3315 3316
	} else {
		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3317
		min_bytes = fs_info->sectorsize;
3318
	}
3319

3320
	spin_lock(&ctl->tree_lock);
3321 3322 3323 3324 3325

	/*
	 * If we know we don't have enough space to make a cluster don't even
	 * bother doing all the work to try and find one.
	 */
3326
	if (ctl->free_space < bytes) {
3327
		spin_unlock(&ctl->tree_lock);
3328 3329 3330
		return -ENOSPC;
	}

3331 3332 3333 3334 3335 3336 3337 3338
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}

J
Josef Bacik 已提交
3339 3340 3341
	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
				 min_bytes);

3342
	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3343 3344
				      bytes + empty_size,
				      cont1_bytes, min_bytes);
3345
	if (ret)
3346
		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3347 3348
					   offset, bytes + empty_size,
					   cont1_bytes, min_bytes);
3349 3350 3351 3352

	/* Clear our temporary list */
	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
		list_del_init(&entry->list);
3353

3354
	if (!ret) {
3355
		btrfs_get_block_group(block_group);
3356 3357 3358
		list_add_tail(&cluster->block_group_list,
			      &block_group->cluster_list);
		cluster->block_group = block_group;
J
Josef Bacik 已提交
3359 3360
	} else {
		trace_btrfs_failed_cluster_setup(block_group);
3361 3362 3363
	}
out:
	spin_unlock(&cluster->lock);
3364
	spin_unlock(&ctl->tree_lock);
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
3376
	cluster->root = RB_ROOT;
3377
	cluster->max_size = 0;
3378
	cluster->fragmented = false;
3379 3380 3381 3382
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}

3383
static int do_trimming(struct btrfs_block_group *block_group,
3384
		       u64 *total_trimmed, u64 start, u64 bytes,
3385
		       u64 reserved_start, u64 reserved_bytes,
3386
		       enum btrfs_trim_state reserved_trim_state,
3387
		       struct btrfs_trim_range *trim_entry)
3388
{
3389
	struct btrfs_space_info *space_info = block_group->space_info;
3390
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3391
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3392 3393
	int ret;
	int update = 0;
3394 3395 3396
	const u64 end = start + bytes;
	const u64 reserved_end = reserved_start + reserved_bytes;
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3397
	u64 trimmed = 0;
3398

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	spin_lock(&space_info->lock);
	spin_lock(&block_group->lock);
	if (!block_group->ro) {
		block_group->reserved += reserved_bytes;
		space_info->bytes_reserved += reserved_bytes;
		update = 1;
	}
	spin_unlock(&block_group->lock);
	spin_unlock(&space_info->lock);

3409
	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3410
	if (!ret) {
3411
		*total_trimmed += trimmed;
3412 3413
		trim_state = BTRFS_TRIM_STATE_TRIMMED;
	}
3414

3415
	mutex_lock(&ctl->cache_writeout_mutex);
3416 3417 3418 3419 3420 3421 3422 3423
	if (reserved_start < start)
		__btrfs_add_free_space(fs_info, ctl, reserved_start,
				       start - reserved_start,
				       reserved_trim_state);
	if (start + bytes < reserved_start + reserved_bytes)
		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
				       reserved_trim_state);
	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3424 3425
	list_del(&trim_entry->list);
	mutex_unlock(&ctl->cache_writeout_mutex);
3426 3427 3428 3429 3430 3431 3432 3433 3434

	if (update) {
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);
		if (block_group->ro)
			space_info->bytes_readonly += reserved_bytes;
		block_group->reserved -= reserved_bytes;
		space_info->bytes_reserved -= reserved_bytes;
		spin_unlock(&block_group->lock);
3435
		spin_unlock(&space_info->lock);
3436 3437 3438 3439 3440
	}

	return ret;
}

3441 3442 3443
/*
 * If @async is set, then we will trim 1 region and return.
 */
3444
static int trim_no_bitmap(struct btrfs_block_group *block_group,
3445 3446
			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
			  bool async)
3447
{
3448 3449
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
3450 3451 3452 3453 3454 3455
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret = 0;
	u64 extent_start;
	u64 extent_bytes;
3456
	enum btrfs_trim_state extent_trim_state;
3457
	u64 bytes;
3458
	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3459 3460

	while (start < end) {
3461 3462 3463
		struct btrfs_trim_range trim_entry;

		mutex_lock(&ctl->cache_writeout_mutex);
3464
		spin_lock(&ctl->tree_lock);
3465

3466 3467
		if (ctl->free_space < minlen)
			goto out_unlock;
3468

3469
		entry = tree_search_offset(ctl, start, 0, 1);
3470 3471
		if (!entry)
			goto out_unlock;
3472

3473 3474 3475
		/* Skip bitmaps and if async, already trimmed entries */
		while (entry->bitmap ||
		       (async && btrfs_free_space_trimmed(entry))) {
3476
			node = rb_next(&entry->offset_index);
3477 3478
			if (!node)
				goto out_unlock;
3479 3480
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
3481 3482
		}

3483 3484
		if (entry->offset >= end)
			goto out_unlock;
3485

3486 3487
		extent_start = entry->offset;
		extent_bytes = entry->bytes;
3488
		extent_trim_state = entry->trim_state;
3489 3490 3491 3492 3493 3494 3495 3496 3497
		if (async) {
			start = entry->offset;
			bytes = entry->bytes;
			if (bytes < minlen) {
				spin_unlock(&ctl->tree_lock);
				mutex_unlock(&ctl->cache_writeout_mutex);
				goto next;
			}
			unlink_free_space(ctl, entry);
D
Dennis Zhou 已提交
3498 3499 3500 3501 3502 3503 3504 3505
			/*
			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
			 * X when we come back around.  So trim it now.
			 */
			if (max_discard_size &&
			    bytes >= (max_discard_size +
				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3506 3507 3508 3509
				bytes = max_discard_size;
				extent_bytes = max_discard_size;
				entry->offset += max_discard_size;
				entry->bytes -= max_discard_size;
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
				link_free_space(ctl, entry);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, entry);
			}
		} else {
			start = max(start, extent_start);
			bytes = min(extent_start + extent_bytes, end) - start;
			if (bytes < minlen) {
				spin_unlock(&ctl->tree_lock);
				mutex_unlock(&ctl->cache_writeout_mutex);
				goto next;
			}
3522

3523 3524 3525
			unlink_free_space(ctl, entry);
			kmem_cache_free(btrfs_free_space_cachep, entry);
		}
3526

3527
		spin_unlock(&ctl->tree_lock);
3528 3529 3530 3531
		trim_entry.start = extent_start;
		trim_entry.bytes = extent_bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3532

3533
		ret = do_trimming(block_group, total_trimmed, start, bytes,
3534 3535
				  extent_start, extent_bytes, extent_trim_state,
				  &trim_entry);
3536 3537
		if (ret) {
			block_group->discard_cursor = start + bytes;
3538
			break;
3539
		}
3540 3541
next:
		start += bytes;
3542 3543 3544
		block_group->discard_cursor = start;
		if (async && *total_trimmed)
			break;
3545

3546 3547 3548 3549 3550 3551 3552
		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}
3553 3554 3555 3556 3557 3558 3559 3560

	return ret;

out_unlock:
	block_group->discard_cursor = btrfs_block_group_end(block_group);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

3561 3562 3563
	return ret;
}

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
/*
 * If we break out of trimming a bitmap prematurely, we should reset the
 * trimming bit.  In a rather contrieved case, it's possible to race here so
 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
 *
 * start = start of bitmap
 * end = near end of bitmap
 *
 * Thread 1:			Thread 2:
 * trim_bitmaps(start)
 *				trim_bitmaps(end)
 *				end_trimming_bitmap()
 * reset_trimming_bitmap()
 */
static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
{
	struct btrfs_free_space *entry;

	spin_lock(&ctl->tree_lock);
	entry = tree_search_offset(ctl, offset, 1, 0);
3584
	if (entry) {
3585
		if (btrfs_free_space_trimmed(entry)) {
3586 3587
			ctl->discardable_extents[BTRFS_STAT_CURR] +=
				entry->bitmap_extents;
3588 3589
			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
		}
3590
		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3591 3592
	}

3593 3594 3595
	spin_unlock(&ctl->tree_lock);
}

3596 3597
static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
				struct btrfs_free_space *entry)
3598
{
3599
	if (btrfs_free_space_trimming_bitmap(entry)) {
3600
		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3601 3602
		ctl->discardable_extents[BTRFS_STAT_CURR] -=
			entry->bitmap_extents;
3603
		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3604
	}
3605 3606
}

3607 3608 3609
/*
 * If @async is set, then we will trim 1 region and return.
 */
3610
static int trim_bitmaps(struct btrfs_block_group *block_group,
3611
			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
D
Dennis Zhou 已提交
3612
			u64 maxlen, bool async)
3613
{
3614 3615
	struct btrfs_discard_ctl *discard_ctl =
					&block_group->fs_info->discard_ctl;
3616 3617 3618 3619 3620 3621
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	int ret = 0;
	int ret2;
	u64 bytes;
	u64 offset = offset_to_bitmap(ctl, start);
3622
	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3623 3624 3625

	while (offset < end) {
		bool next_bitmap = false;
3626
		struct btrfs_trim_range trim_entry;
3627

3628
		mutex_lock(&ctl->cache_writeout_mutex);
3629 3630 3631
		spin_lock(&ctl->tree_lock);

		if (ctl->free_space < minlen) {
3632 3633
			block_group->discard_cursor =
				btrfs_block_group_end(block_group);
3634
			spin_unlock(&ctl->tree_lock);
3635
			mutex_unlock(&ctl->cache_writeout_mutex);
3636 3637 3638 3639
			break;
		}

		entry = tree_search_offset(ctl, offset, 1, 0);
D
Dennis Zhou 已提交
3640 3641 3642 3643 3644 3645 3646 3647 3648
		/*
		 * Bitmaps are marked trimmed lossily now to prevent constant
		 * discarding of the same bitmap (the reason why we are bound
		 * by the filters).  So, retrim the block group bitmaps when we
		 * are preparing to punt to the unused_bgs list.  This uses
		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
		 * which is the only discard index which sets minlen to 0.
		 */
		if (!entry || (async && minlen && start == offset &&
3649
			       btrfs_free_space_trimmed(entry))) {
3650
			spin_unlock(&ctl->tree_lock);
3651
			mutex_unlock(&ctl->cache_writeout_mutex);
3652 3653 3654 3655
			next_bitmap = true;
			goto next;
		}

3656 3657 3658 3659 3660 3661 3662 3663 3664
		/*
		 * Async discard bitmap trimming begins at by setting the start
		 * to be key.objectid and the offset_to_bitmap() aligns to the
		 * start of the bitmap.  This lets us know we are fully
		 * scanning the bitmap rather than only some portion of it.
		 */
		if (start == offset)
			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;

3665
		bytes = minlen;
3666
		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3667
		if (ret2 || start >= end) {
3668
			/*
D
Dennis Zhou 已提交
3669 3670
			 * We lossily consider a bitmap trimmed if we only skip
			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3671
			 */
D
Dennis Zhou 已提交
3672
			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3673
				end_trimming_bitmap(ctl, entry);
3674 3675
			else
				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3676
			spin_unlock(&ctl->tree_lock);
3677
			mutex_unlock(&ctl->cache_writeout_mutex);
3678 3679 3680 3681
			next_bitmap = true;
			goto next;
		}

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
		/*
		 * We already trimmed a region, but are using the locking above
		 * to reset the trim_state.
		 */
		if (async && *total_trimmed) {
			spin_unlock(&ctl->tree_lock);
			mutex_unlock(&ctl->cache_writeout_mutex);
			goto out;
		}

3692
		bytes = min(bytes, end - start);
D
Dennis Zhou 已提交
3693
		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3694
			spin_unlock(&ctl->tree_lock);
3695
			mutex_unlock(&ctl->cache_writeout_mutex);
3696 3697 3698
			goto next;
		}

D
Dennis Zhou 已提交
3699 3700 3701 3702 3703 3704 3705 3706 3707
		/*
		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
		 * If X < @minlen, we won't trim X when we come back around.
		 * So trim it now.  We differ here from trimming extents as we
		 * don't keep individual state per bit.
		 */
		if (async &&
		    max_discard_size &&
		    bytes > (max_discard_size + minlen))
3708
			bytes = max_discard_size;
3709

3710 3711 3712 3713 3714
		bitmap_clear_bits(ctl, entry, start, bytes);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);

		spin_unlock(&ctl->tree_lock);
3715 3716 3717 3718
		trim_entry.start = start;
		trim_entry.bytes = bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3719 3720

		ret = do_trimming(block_group, total_trimmed, start, bytes,
3721
				  start, bytes, 0, &trim_entry);
3722 3723
		if (ret) {
			reset_trimming_bitmap(ctl, offset);
3724 3725
			block_group->discard_cursor =
				btrfs_block_group_end(block_group);
3726
			break;
3727
		}
3728 3729 3730
next:
		if (next_bitmap) {
			offset += BITS_PER_BITMAP * ctl->unit;
3731
			start = offset;
3732 3733
		} else {
			start += bytes;
3734
		}
3735
		block_group->discard_cursor = start;
3736 3737

		if (fatal_signal_pending(current)) {
3738 3739
			if (start != offset)
				reset_trimming_bitmap(ctl, offset);
3740 3741 3742 3743 3744 3745 3746
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}

3747 3748 3749 3750
	if (offset >= end)
		block_group->discard_cursor = end;

out:
3751 3752
	return ret;
}
3753

3754
int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3755 3756
			   u64 *trimmed, u64 start, u64 end, u64 minlen)
{
3757
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3758
	int ret;
3759
	u64 rem = 0;
3760 3761 3762 3763 3764

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
3765
		spin_unlock(&block_group->lock);
3766
		return 0;
3767
	}
3768
	btrfs_freeze_block_group(block_group);
3769 3770
	spin_unlock(&block_group->lock);

3771
	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3772 3773
	if (ret)
		goto out;
3774

D
Dennis Zhou 已提交
3775
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3776 3777 3778 3779
	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
	/* If we ended in the middle of a bitmap, reset the trimming flag */
	if (rem)
		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3780
out:
3781
	btrfs_unfreeze_block_group(block_group);
3782 3783 3784
	return ret;
}

3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
				   u64 *trimmed, u64 start, u64 end, u64 minlen,
				   bool async)
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
		spin_unlock(&block_group->lock);
		return 0;
	}
3798
	btrfs_freeze_block_group(block_group);
3799 3800 3801
	spin_unlock(&block_group->lock);

	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3802
	btrfs_unfreeze_block_group(block_group);
3803 3804 3805 3806 3807 3808

	return ret;
}

int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
				   u64 *trimmed, u64 start, u64 end, u64 minlen,
D
Dennis Zhou 已提交
3809
				   u64 maxlen, bool async)
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
		spin_unlock(&block_group->lock);
		return 0;
	}
3820
	btrfs_freeze_block_group(block_group);
3821 3822
	spin_unlock(&block_group->lock);

D
Dennis Zhou 已提交
3823 3824 3825
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
			   async);

3826
	btrfs_unfreeze_block_group(block_group);
3827 3828 3829 3830

	return ret;
}

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
/*
 * Find the left-most item in the cache tree, and then return the
 * smallest inode number in the item.
 *
 * Note: the returned inode number may not be the smallest one in
 * the tree, if the left-most item is a bitmap.
 */
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
{
	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
	struct btrfs_free_space *entry = NULL;
	u64 ino = 0;

	spin_lock(&ctl->tree_lock);

	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
		goto out;

	entry = rb_entry(rb_first(&ctl->free_space_offset),
			 struct btrfs_free_space, offset_index);

	if (!entry->bitmap) {
		ino = entry->offset;

		unlink_free_space(ctl, entry);
		entry->offset++;
		entry->bytes--;
		if (!entry->bytes)
			kmem_cache_free(btrfs_free_space_cachep, entry);
		else
			link_free_space(ctl, entry);
	} else {
		u64 offset = 0;
		u64 count = 1;
		int ret;

3867
		ret = search_bitmap(ctl, entry, &offset, &count, true);
3868
		/* Logic error; Should be empty if it can't find anything */
3869
		ASSERT(!ret);
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880

		ino = offset;
		bitmap_clear_bits(ctl, entry, offset, 1);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);
	}
out:
	spin_unlock(&ctl->tree_lock);

	return ino;
}
3881 3882 3883 3884 3885 3886

struct inode *lookup_free_ino_inode(struct btrfs_root *root,
				    struct btrfs_path *path)
{
	struct inode *inode = NULL;

3887 3888 3889 3890
	spin_lock(&root->ino_cache_lock);
	if (root->ino_cache_inode)
		inode = igrab(root->ino_cache_inode);
	spin_unlock(&root->ino_cache_lock);
3891 3892 3893 3894 3895 3896 3897
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path, 0);
	if (IS_ERR(inode))
		return inode;

3898
	spin_lock(&root->ino_cache_lock);
3899
	if (!btrfs_fs_closing(root->fs_info))
3900 3901
		root->ino_cache_inode = igrab(inode);
	spin_unlock(&root->ino_cache_lock);
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921

	return inode;
}

int create_free_ino_inode(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_path *path)
{
	return __create_free_space_inode(root, trans, path,
					 BTRFS_FREE_INO_OBJECTID, 0);
}

int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	struct btrfs_path *path;
	struct inode *inode;
	int ret = 0;
	u64 root_gen = btrfs_root_generation(&root->root_item);

3922
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3923 3924
		return 0;

3925 3926 3927 3928
	/*
	 * If we're unmounting then just return, since this does a search on the
	 * normal root and not the commit root and we could deadlock.
	 */
3929
	if (btrfs_fs_closing(fs_info))
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return 0;

	inode = lookup_free_ino_inode(root, path);
	if (IS_ERR(inode))
		goto out;

	if (root_gen != BTRFS_I(inode)->generation)
		goto out_put;

	ret = __load_free_space_cache(root, inode, ctl, path, 0);

	if (ret < 0)
3946 3947 3948
		btrfs_err(fs_info,
			"failed to load free ino cache for root %llu",
			root->root_key.objectid);
3949 3950 3951 3952 3953 3954 3955 3956 3957
out_put:
	iput(inode);
out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_write_out_ino_cache(struct btrfs_root *root,
			      struct btrfs_trans_handle *trans,
3958 3959
			      struct btrfs_path *path,
			      struct inode *inode)
3960
{
3961
	struct btrfs_fs_info *fs_info = root->fs_info;
3962 3963
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	int ret;
3964
	struct btrfs_io_ctl io_ctl;
3965
	bool release_metadata = true;
3966

3967
	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
C
Chris Mason 已提交
3968 3969
		return 0;

C
Chris Mason 已提交
3970
	memset(&io_ctl, 0, sizeof(io_ctl));
3971
	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3972 3973 3974 3975 3976 3977 3978 3979
	if (!ret) {
		/*
		 * At this point writepages() didn't error out, so our metadata
		 * reservation is released when the writeback finishes, at
		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
		 * with or without an error.
		 */
		release_metadata = false;
3980
		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3981
	}
C
Chris Mason 已提交
3982

3983
	if (ret) {
3984
		if (release_metadata)
3985
			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3986
					inode->i_size, true);
3987
		btrfs_debug(fs_info,
3988 3989
			  "failed to write free ino cache for root %llu error %d",
			  root->root_key.objectid, ret);
3990
	}
3991 3992 3993

	return ret;
}
3994 3995

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3996 3997 3998 3999 4000 4001
/*
 * Use this if you need to make a bitmap or extent entry specifically, it
 * doesn't do any of the merging that add_free_space does, this acts a lot like
 * how the free space cache loading stuff works, so you can get really weird
 * configurations.
 */
4002
int test_add_free_space_entry(struct btrfs_block_group *cache,
4003
			      u64 offset, u64 bytes, bool bitmap)
4004
{
4005 4006 4007
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info = NULL, *bitmap_info;
	void *map = NULL;
4008
	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4009 4010
	u64 bytes_added;
	int ret;
4011

4012 4013 4014 4015 4016
again:
	if (!info) {
		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
		if (!info)
			return -ENOMEM;
4017 4018
	}

4019 4020 4021 4022
	if (!bitmap) {
		spin_lock(&ctl->tree_lock);
		info->offset = offset;
		info->bytes = bytes;
4023
		info->max_extent_size = 0;
4024 4025 4026 4027 4028 4029 4030 4031
		ret = link_free_space(ctl, info);
		spin_unlock(&ctl->tree_lock);
		if (ret)
			kmem_cache_free(btrfs_free_space_cachep, info);
		return ret;
	}

	if (!map) {
4032
		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
		if (!map) {
			kmem_cache_free(btrfs_free_space_cachep, info);
			return -ENOMEM;
		}
	}

	spin_lock(&ctl->tree_lock);
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					 1, 0);
	if (!bitmap_info) {
		info->bitmap = map;
		map = NULL;
		add_new_bitmap(ctl, info, offset);
		bitmap_info = info;
4047
		info = NULL;
4048
	}
4049

4050 4051
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
					  trim_state);
4052

4053 4054 4055
	bytes -= bytes_added;
	offset += bytes_added;
	spin_unlock(&ctl->tree_lock);
4056

4057 4058
	if (bytes)
		goto again;
4059

4060 4061
	if (info)
		kmem_cache_free(btrfs_free_space_cachep, info);
4062 4063
	if (map)
		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4064
	return 0;
4065 4066 4067 4068 4069 4070 4071
}

/*
 * Checks to see if the given range is in the free space cache.  This is really
 * just used to check the absence of space, so if there is free space in the
 * range at all we will return 1.
 */
4072
int test_check_exists(struct btrfs_block_group *cache,
4073
		      u64 offset, u64 bytes)
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
{
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&ctl->tree_lock);
	info = tree_search_offset(ctl, offset, 0, 0);
	if (!info) {
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					  1, 0);
		if (!info)
			goto out;
	}

have_info:
	if (info->bitmap) {
		u64 bit_off, bit_bytes;
		struct rb_node *n;
		struct btrfs_free_space *tmp;

		bit_off = offset;
		bit_bytes = ctl->unit;
4096
		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
		if (!ret) {
			if (bit_off == offset) {
				ret = 1;
				goto out;
			} else if (bit_off > offset &&
				   offset + bytes > bit_off) {
				ret = 1;
				goto out;
			}
		}

		n = rb_prev(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (tmp->offset + tmp->bytes < offset)
				break;
			if (offset + bytes < tmp->offset) {
4115
				n = rb_prev(&tmp->offset_index);
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
				continue;
			}
			info = tmp;
			goto have_info;
		}

		n = rb_next(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (offset + bytes < tmp->offset)
				break;
			if (tmp->offset + tmp->bytes < offset) {
4129
				n = rb_next(&tmp->offset_index);
4130 4131 4132 4133 4134 4135
				continue;
			}
			info = tmp;
			goto have_info;
		}

4136
		ret = 0;
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
		goto out;
	}

	if (info->offset == offset) {
		ret = 1;
		goto out;
	}

	if (offset > info->offset && offset < info->offset + info->bytes)
		ret = 1;
out:
	spin_unlock(&ctl->tree_lock);
	return ret;
}
4151
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */